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Abstract—Artificial Intelligence-Generated Content (AIGC)
is an automated method for generating, manipulating, and
modifying valuable and diverse data using AI algorithms cre-
atively. This survey paper focuses on the deployment of AIGC
applications, e.g., ChatGPT and Dall-E, at mobile edge networks,
namely mobile AIGC networks, that provide personalized and
customized AIGC services in real time while maintaining user
privacy. We begin by introducing the background and fundamen-
tals of generative models and the lifecycle of AIGC services at
mobile AIGC networks, which includes data collection, training,
fine-tuning, inference, and product management. We then discuss
the collaborative cloud-edge-mobile infrastructure and technolo-
gies required to support AIGC services and enable users to
access AIGC at mobile edge networks. Furthermore, we explore
AIGC-driven creative applications and use cases for mobile AIGC
networks. Additionally, we discuss the implementation, security,
and privacy challenges of deploying mobile AIGC networks.
Finally, we highlight some future research directions and open
issues for the full realization of mobile AIGC networks.
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I. INTRODUCTION

A. Background

I
N RECENT years, artificial intelligence-generated con-

tent (AIGC) has emerged as a novel approach to the

production, manipulation, and modification of data [1]. By

utilizing AI technologies, AIGC automates content genera-

tion alongside traditionally professionally-generated content

(PGC) and user-generated content (UGC) [2], [3], [4]. With

the marginal cost of data creation reduced to nearly zero,

AIGC, e.g., ChatGPT [5], promises to supply a vast amount

of synthetic data for AI development and the digital economy,

offering significant productivity and economic value to society.

The rapid growth of AIGC capabilities is driven by the

continuous advancements in AI technology, particularly in

the areas of large-scale and multimodal models [6], [7]. A

prime example of this progress is the development of the

transformer-based DALL-E [8] which is designed to generate

images by predicting successive pixels. In its latest iteration,

DALL-E2 [9], a diffusion model is employed to reduce noise

generated during the training process, leading to more refined

and novel image generation. In the context of text-to-image

generation using generative AI models, the language model

serves as a guide, enhancing semantic coherence between

the input prompt and the resulting image. Simultaneously,

the generative AI model processes existing image attributes

and components, generating limitless synthesis images from

existing datasets.

Based on large-scale pre-trained models with billions of

parameters, AIGC services are designed to enhance knowledge

and creative work fields that employ billions of people. By

leveraging generative AI, these fields can achieve at least a

10% increase in efficiency for content creation, potentially

generating trillions of dollars in economic value [10]. AIGC

can be applied to various forms of text generation, ranging

from practical applications, such as customer service inquiries

and messages, to creative tasks like activity tracking and mar-

keting copywriting [11]. For example, OpenAI’s ChatGPT [12]

can automate the generation of socially valuable content based

on user-provided prompts. Through extended and coherent

conversations with ChatGPT, individuals from diverse profes-

sions from all walks of life, can seek assistance in debugging

code, discovering healthy recipes, writing scripts, and devising
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marketing campaigns. In the realm of image generation,

generative AI models can process existing images accord-

ing to their attributes and components, enabling end-to-end

image synthesis, such as generating complete images directly

from existing ones [9]. Moreover, generative AI models hold

immense potential for cross-modal generation, as they can

spatially process existing video attributes and simultaneously

process multiple video clips automatically [13].

The benefits of AIGC in content creation, when compared to

PGC and UGC, are already apparent to the public. Specifically,

generative AI models can produce high-quality content within

seconds and deliver personalized content tailored to users’

needs [3], [14]. Over time, the performance of AIGC has

significantly improved, driven by enhanced models, increased

data availability, and greater computational power [15]. On

one hand, superior models [6], such as diffusion models,

have been developed to provide more robust tools for cross-

modal AIGC generation. These advancements are attributed

to the foundational research in generative AI models and

the continuous refinement of learning paradigms and network

structures within generative deep neural networks (DNNs).

On the other hand, data and computing power for generative

AI training and inference have become more accessible as

networks grow increasingly interconnected [11], [16], [17].

For instance, generative AI models that require thousands of

GPUs can be trained and executed in cloud data centers,

enabling users to submit frequent data generation requests over

core networks.

B. Motivation

Although AIGC is acknowledged for its potential to

revolutionize existing production processes, users accessing

AIGC services on mobile devices currently lack sup-

port for interactive and resource-intensive data generation

services [1], [18], [29]. Initially, the robust computing capa-

bilities of cloud data centers can be utilized to pre-train

generative AI models, such as GPT-3 for ChatGPT and GPT-4

for ChatGPT Plus. Subsequently, users can access cloud-based

AIGC services via the core network by executing generative

AI models on cloud servers. However, due to their remote

nature, cloud services exhibit high latency. Consequently,

deploying interaction-intensive AIGC services on mobile edge

networks, i.e., mobile AIGC networks, as shown in Fig. 1,

should be considered a more practical option [30], [31], [32].

In mobile AIGC networks, the cloud layer handles the pre-

training and fine-tuning of AIGC models, which require a

significant amount of computing and storage resources. In

addition, the edge layer is responsible for data collection,

inference, and product management, requiring specialized

hardware and software, as well as efficient communication

protocols. Finally, the mobile device layer is crucial for

data collection, inference, and product management with low

latency, presenting unique challenges that can be addressed

with specialized techniques such as federated learning and

differential privacy. In detail, the motivations for developing

mobile AIGC networks include

Fig. 1. The overview of mobile AIGC networks, including the cloud layer,
the edge layer, and the mobile device layer. The lifecycle of AIGC services,
including data collection, pre-training, fine-tuning, inference, and product
management, is circulated among the core networks and edge networks.

• Low-latency: Instead of directing requests for AIGC

services to cloud servers within the core network,

users can access low-latency services in mobile AIGC

networks [33]. For example, users can obtain AIGC

services directly in radio access networks (RANs) by

downloading pre-trained models to edge servers and

mobile devices for fine-tuning and inference, thereby

supporting real-time, interactive AIGC.

• Localization and Mobility: In mobile AIGC networks,

base stations with computing servers at the network’s

edge can fine-tune pre-trained models by localizing ser-

vice requests [34], [35]. Furthermore, users’ locations

can serve as input for AIGC fine-tuning and inference,

addressing specific geographical demands. Additionally,

user mobility can be integrated into the AIGC service pro-

visioning process, enabling dynamic and reliable AIGC

service provisioning.

• Customization and Personalization: Local edge servers

can adapt to local user requirements and allow users to

request personalized services based on their preferences

while providing customized services according to local

service environments. On one hand, edge servers can

tailor AIGC services to the needs of the local user

community by fine-tuning them accordingly [3]. On the

other hand, users can request personalized services from

edge servers by specifying their preferences.

• Privacy and Security: AIGC users only need to submit

service requests to edge servers, rather than sending

preferences to cloud servers within the core network.

Therefore, the privacy and security of AIGC users can be

preserved during the provisioning, including fine-tuning

and inference, of AIGC services.
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TABLE I
SUMMARY OF RELATED WORKS VERSUS OUR SURVEY

As illustrated in Fig. 1, when users access AIGC services

on mobile edge networks through edge servers and mobile

devices, limited computing, communication, and storage

resources pose challenges for delivering interactive and

resource-intensive AIGC services. First, resource allocation

on edge servers must balance the tradeoff among accuracy,

latency, and energy consumption of AIGC services at edge

servers. In addition, computationally intensive AIGC tasks can

be offloaded from mobile devices to edge servers, improving

inference latency and service reliability. Moreover, AI models

that generate content can be cached in edge networks, similar

to content delivery networks (CDNs) [36], [37], to minimize

delays in accessing the model. Finally, mobility management

and incentive mechanisms should be explored to encourage

user participation in both space and time [38]. Compared

to traditional AI, AIGC technology requires overall technical

maturity, transparency, robustness, impartiality, and insightful-

ness of the algorithm for effective application implementation.

From a sustainability perspective, AIGC can use both existing

and synthetic datasets as raw materials for generating new

data. However, when biased data are used as raw data, these

biases persist in the knowledge of the model, which inevitably

leads to unfair algorithm results. Finally, static generative

AI models rely primarily on templates to generate machine-

generated content that may have similar text and output

structures.

C. Related Works and Contributions

In this survey, we provide an overview of research activities

related to AIGC and mobile edge intelligence, as illustrated in

Fig. 2. Given the increasing interest in AIGC, several surveys
Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 24,2024 at 23:43:21 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. The development roadmap of AIGC and mobile edge networks from 2013 to Oct 2023. From the perspective of AIGC technology development,
AIGC has evolved from generating text and audio to generating 3D content. From the perspective of mobile edge computing, computing has gradually shifted
from cloud data centers to mobile device computing.

on related topics have recently been published. Table II

presents a comparison of these surveys with this paper.

The study by [1] offers a focused exploration of Generative

Diffusion Models (GDMs) in network optimization tasks.1

Commencing with an essential background on GDMs, it

outlines their ability to model complex data distributions

effectively. This enables them to excel in diverse tasks, ranging

from image generation to reinforcement learning. The paper

advances by presenting case studies that integrate GDMs

with Deep Reinforcement Learning, incentive mechanism

design, Semantic Communications, and Internet of Vehicles

networks. These case studies substantiate the model’s practical

1The code is available at https://github.com/HongyangDu/GDMOPT.

utility in solving complex network optimization problems.

The study in [39] provides a comprehensive overview of the

current generative AI models published by researchers and

the industry. The authors identify nine categories summarizing

the evolution of generative AI models, including text-to-text,

text-to-image, text-to-audio, text-to-video, text-to-3D, text-

to-code, text-to-science, image-to-text, and other models. In

addition, they reveal that only six organizations with enormous

computing power and highly skilled and experienced teams

can deploy these state-of-the-art models, which is even fewer

than the number of categories. Following the taxonomy of

generative AI models developed in [39], other surveys discuss

generative AI models in detail subsequently. The study in [11]

examines existing methods for generating text and detecting
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models. The study in [22] provides a comprehensive overview

of the major approaches, datasets, and evaluation metrics

for multimodal image synthesis and processing. Based on

techniques of speech and image synthesis, the study in [28]

summarizes existing works on the generation of gestures with

simultaneous speeches based on deep generative models. The

study in [20] investigates the copyright laws regarding AI-

generated music, which includes the complicated interactions

among AI tools, developers, users, and the public domain. The

study in [6] provides comprehensive guidance and comparison

among advanced generative models, including GANs, energy-

based models, variational autoencoder (VAE), autoregressive

models, flow-based models, and diffusion models. As diffu-

sion models draw tremendous attention in generating creative

data, the study in [25] presents fundamental algorithms and

comprehensive classification for diffusion models. Based on

these algorithms, the authors [2] illustrate the interaction of

art and AI from two perspectives, i.e., AI for art analysis and

AI for art creation. In addition, the authors in [3] discuss the

application of computational arts in the Metaverse to create

surrealistic cyberspace.

In 6G [23], mobile edge intelligence based on edge com-

puting systems, including edge caching, edge computing,

and edge intelligence, for intelligent mobile networks, is

introduced in [18], [40]. The study in [21] investigates the

deployment of distributed learning in wireless networks. The

study [19] provides a guide to federated learning (FL) and a

comprehensive overview of implementing FL at mobile edge

networks. The authors offer a detailed analysis of the chal-

lenges of implementing FL, including communication costs,

resource allocation, privacy, and security. In [15], various

application scenarios and technologies for edge intelligence

and intelligent edges are presented and discussed in detail. In

addition, the study [24] discusses the visions and potentials

of low-power, low-latency, reliable, and trustworthy edge

intelligence for 6G wireless networks. The study [26] explores

how blockchain technologies can be used to enable edge

intelligence and how edge intelligence can support the deploy-

ment of blockchain at mobile edge networks. The authors

provide a comprehensive review of blockchain-driven edge

intelligence, edge intelligence-amicable blockchain, and their

implementation at mobile edge networks.

Distinct from existing surveys and tutorials, our survey

concentrates on the deployment of mobile AIGC networks for

real-time and privacy-preserving AIGC service provisioning.

We introduce the current development of AIGC and collab-

orative infrastructure in mobile edge networks. Subsequently,

we present the technologies of deep generative models and the

workflow of provisioning AIGC services within mobile AIGC

networks. Additionally, we showcase creative applications

and several exemplary use cases. Furthermore, we identify

implementation challenges, ranging from resource allocation

to security and privacy, for the deployment of mobile AIGC

networks. The contributions of our survey are as follows.

• We initially offer a tutorial that establishes the definition,

lifecycle, models, and metrics of AIGC services. Then,

we propose the mobile AIGC networks, i.e., provi-

sioning AIGC services at mobile edge networks with

collaborative mobile-edge-cloud communication, com-

puting, and storage infrastructure.

• We present several use cases in mobile AIGC networks,

encompassing creative AIGC applications for text,

images, video, and 3D content generation. We summarize

the advantages of constructing mobile AIGC networks

based on these use cases.

• We identify crucial implementation challenges in the path

to realizing mobile AIGC networks. The implementation

challenges of mobile AIGC networks stem not only from

dynamic channel conditions but also from the presence

of meaningless content, insecure content precepts, and

privacy leaks in AIGC services.

• Lastly, we discuss future research directions and open

issues from the perspectives of networking and comput-

ing, machine learning (ML), and practical implementation

considerations, respectively.

As the outline illustrated in Fig. 3, the survey is orga-

nized as follows. Section II examines the background and

fundamentals of AIGC. Section III presents the technologies

and collaborative infrastructure of mobile AIGC networks.

The applications and advantages of mobile AIGC networks

are discussed in Section IV, and potential use cases are

shown in Section V. Section VI addresses the implementation

challenges. Section VII explores future research directions.

Section VIII provides the conclusions.

II. BACKGROUND AND FUNDAMENTALS OF AIGC

In this section, the background and fundamentals of AIGC

technology are presented. Specifically, we examine the defini-

tion of AIGC, its classification, and the technological lifecycle

of AIGC in mobile networks. Finally, we introduce ChatGPT

as a use case, which is the most famous and revolutionary

application of AIGC.

A. Definitions of PGC, UGC, and AIGC

In the next generation of the Internet, i.e., Web 3.0 and

Metaverse [41], [42], [43], there are three primary forms of

content [2], including PGC, UGC, and AIGC.

1) Professionally-Generated Content: PGC refers to

professional-generated digital content [44]. Here, the

generators are individuals or organizations with professional

skills, knowledge, and experience in a particular field,

e.g., journalists, editors, and designers. As these experts

who create PGC are typically efficient and use specialized

tools, PGC has the advantages in terms of automation and

multimodality. However, because PGC is purposeful, the

diversity and creativity of PGC can be limited.

2) User-Generated Content: UGC refers to digital material

generated by users, rather than by experts or organiza-

tions [45]. The users include website visitors and social media

users. UGC can be presented in any format, including text,

photos, video, and audio. The barrier for users to create UGC

is being lowered. For example, some websites2 allow users to

2Example of a website that allows users to create their own UGC:
https://ugc-nft.io/Home
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Fig. 3. The outline of this survey, where we introduce the provisioning of AIGC services at mobile edge networks and highlight some essential implementation
challenges about mobile edge networks for provisioning AIGC services.

create images with a high degree of freedom on a pixel-by-

pixel basis. As a result, UGC is more creative and diverse,

thanks to a wide user base. However, UGC is less automated

and less multimodal than the PGC that is generated by experts.

3) AIGC: AIGC is generated by using generative AI mod-

els according to input from users. Because AI models can learn

the features and patterns of input data from the human artistic

mind, they can develop a wide range of content. The recent

success of text-to-image applications based on the diffusion

model [46] and the ChatGPT based on transformer [12] has

led to AIGC gaining a lot of attention. We have defined the

AIGC according to its characteristics as follows

• Automatic: AIGC is generated by AI models automati-

cally. After the AI model has been trained, users only

need to provide input, such as the task description, to

efficiently obtain the generated content. The process,

from input to output, does not require user involvement

and is done automatically by the AI models.

• Creativity: AIGC refers to an idea or item that is

innovative. For example, AIGC is believed to be leading

to the development of a new profession, called Prompt

Engineer [47], which aims to improve human interaction

with AI. In this context, the prompt serves as the starting

point for the AI model, and it significantly impacts the

originality and quality of the generated content. A well-

crafted prompt that is specific results in more relevant

and creative content than a vague or general prompt.

• Multimodal: The AI models to generate AIGC can handle

multimodal input and output. For example, ChatGPT [12]

allows conversational services that employ text as input

and output, DALL-E 2 [48] can create original, realistic

images from a text description, and AIGC services with
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Fig. 4. The four development stages of ChatGPT, including pre-training,
fine-tuning, inference, and product management.

voice and 3D models as input or output are progress-

ing [49].

• Diverse: AIGC is diverse in service personalization and

customization. On the one hand, users can adjust the

input to the AI model to suit their preferences and

needs, resulting in a personalized output. On the other

hand, AI models are trained to provide diverse outputs.

For example, consider the DALL-E 2 as an example,

the model can generate images of individuals that more

correctly represent the diversity of the global population,

even with the same text input.

• Extendedly valuable: AIGC should be extendedly valu-

able to society, economics, and humanity [50]. For

example, AI models can be trained to write medical

reports and interpret medical images, enabling healthcare

personnel to make accurate diagnoses.

AIGC provides various advantages over PGC and UGC,

including better efficiency, originality, diversity, and flexibility.

The reason is that AI models can produce vast amounts

of material quickly and develop original content based on

established patterns and principles. These advantages have

led to the growing creative applications of the generative AI

models, which are discussed in Section IV-A1.

B. Serving ChatGPT at Mobile Edge Networks

ChatGPT, developed by OpenAI, excels at generating

human-like text and engaging in conversations [12]. Based on

the GPT-3 [51], this transformer-based neural network model

can produce remarkably coherent and contextually appropriate

text. Among its primary advantages, ChatGPT is capable

of answering questions, providing explanations, and assisting

with various tasks in a manner nearly indistinguishable from

human responses. As illustrated in Fig. 4, the development

of ChatGPT involves four main stages, including pre-training,

fine-tuning, inference, and product management.

1) Pre-Training: In the initial stage, known as pre-training,

the foundation model of ChatGPT, GPT-3, is trained on a

large corpus of text, which includes books, articles, and

other information sources. This process enables the model

to acquire knowledge of language patterns and structures, as

well as the relationships between words and phrases. The

base model, GPT-3, is an autoregressive language model with

a Transformer architecture that has 175 billion parameters,

making it one of the largest language models available. During

pre-training, GPT-3 is fed with a large corpus of text from

diverse sources, such as books, articles, and websites for

self-supervised learning, where the model learns to predict

the next word in a sentence given the context. To train the

foundation model, the technique used is called maximum

likelihood estimation, where the model aims to maximize the

probability of predicting the next word correctly. Training

GPT-3 demands significant computational resources and time,

typically involving specialized hardware like graphics process-

ing units (GPUs) or tensor processing units (TPUs). The exact

resources and time required depend on factors such as model

size, dataset size, and optimization techniques.

2) Fine-Tuning: The fine-tuning stage of ChatGPT involves

adapting the model to a specific task or domain, such as

customer service or technical support, to enhance its accuracy

and relevance for that task. To transform ChatGPT into a

conversational AI, a supervised learning process is employed

using a dataset containing dialogues between humans and AI

models [52]. To optimize ChatGPT’s parameters, a reward

model for reinforcement learning is built by ranking multiple

model responses by quality. Alternative completions are

ranked by AI trainers, and the model uses these rankings to

improve its performance through several iterations of Proximal

Policy Optimization [53]. This technique allows ChatGPT to

learn from its mistakes and improve its responses over time.

3) Inference: In the inference stage, ChatGPT generates

text based on a given input or prompt, testing the model’s

ability to produce coherent and contextually appropriate

responses relevant to the input. ChatGPT generates responses

by leveraging the knowledge it acquired during pre-training

and fine-tuning, analyzing the context of the input to generate

relevant and coherent responses. In-context learning involves

analyzing the entire context of the input [54], including the

dialogue history and user profile, to generate responses that

are personalized and tailored to the user’s needs. ChatGPT

employs chain-of-thought to generate responses that are coher-

ent and logical, ensuring that the generated text is not only

contextually appropriate but also follows a logical flow. The

resources consumed during inference are typically much lower

than those required for training, making real-time applications

and services based on ChatGPT computationally feasible.

4) Product Management: The final product management

phase involves deploying the model in a production envi-

ronment and ensuring its smooth and efficient operation. In

the context of mobile edge networks, the applications of

AI-powered tools such as the new Bing [55] and Office

365 Copilot [56] could be particularly useful due to their

ability to provide personalized and contextually appropriate

responses while conserving resources. The new Bing offers

a new type of search experience with AI-powered features

such as detailed replies to complex questions, summarized

answers, and personalized responses to follow-up questions,

while Office 365 Copilot, powered by GPT-4 from OpenAI,

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 24,2024 at 23:43:21 UTC from IEEE Xplore.  Restrictions apply. 



1134 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 2, SECOND QUARTER 2024

assists with generating documents, emails, presentations, and

other tasks in Microsoft 365 apps and services. These tools

can be integrated into mobile edge networks with special-

ized techniques that balance performance and accuracy while

preserving data integrity.

• New bing: The new Bing offers a set of AI-powered

features that provide a new type of search experience,

including detailed replies to complex questions, summa-

rized answers, and personalized responses to follow-up

questions. Bing also offers creative tools such as assis-

tance with writing poems and stories. In the context

of mobile edge networks, Bing’s ability to consolidate

reliable sources across the Web and provide a single,

summarized answer could be particularly useful for users

with limited resources. Additionally, Bing’s ability to

generate personalized responses based on user behavior

and preferences could improve the experience of users in

mobile edge networks.

• Office 365 copilot: Microsoft has recently launched an

AI-powered assistant named Office 365 Copilot, which

can be summoned from the sidebar of Microsoft 365

apps and services. Copilot can help users generate doc-

uments, emails, and presentations, as well as provide

assistance with features such as PivotTables in Excel.

It can also transcribe meetings, remind users of missed

items, and provide summaries of action items. However,

when deploying Copilot in mobile edge networks, it is

important to keep in mind the limited resources of these

devices and to develop specialized techniques that can

balance performance and accuracy while preserving data

integrity.

In addition to the previously mentioned commercial applica-

tions, ChatGPT holds substantial commercial potential owing

to its capacity for producing human-like text, which is char-

acteristically coherent, pertinent, and contextually fitting. This

language model can be fine-tuned to accommodate a diverse

array of tasks and domains, rendering it highly adaptable for

numerous applications. ChatGPT exhibits remarkable profi-

ciency in comprehending and generating text across multiple

languages. Consequently, it can facilitate various undertakings,

such as composing emails, developing code, generating con-

tent, and offering explanations, ultimately leading to enhanced

productivity. By automating an assortment of tasks and

augmenting human capabilities, ChatGPT contributes to a

paradigm shift like human work, fostering new opportunities

and revolutionizing industries. In addition to ChatGPT, more

use cases developed by various generative AI models are

discussed in Section V.

C. Life-Cycle of AIGC at Mobile Edge Networks

AIGC has gained tremendous attention as a technology

superior to PGC and UGC. However, the lifecycle of the AIGC

is also more elaborate. In the following, we discuss the AIGC

lifecycle with mobile edge network enablement:

1) Data Collection: Data collection is an integral com-

ponent of AIGC and plays a significant role in defining

the quality and diversity of the material created by AI

systems [57]. The data used to train AI models influences

the patterns and relationships that the AI models learn and,

consequently, the output. There are several data collection

techniques for AIGC:

• Crowdsourcing: Crowdsourcing is the process of acquir-

ing information from a large number of individuals,

generally via the use of online platforms [58].

Crowdsourced data may be used to train ML models

for text and image generation, among other applications.

One common example is the use of Amazon Mechanical

Turk,3 where individuals are paid to perform tasks such

as annotating text or images, which can then be used to

train generative AI models.

• Data Market: Another way to obtain data is to buy it from

a data provider. For example, Datatang4 is a firm that

offers high-quality datasets and customized data services

to assist businesses in enhancing the performance of their

AI models. By giving access to varied, high-quality data,

Datatang enables organizations to train AI models that

are more accurate and effective, resulting in enhanced

business performance and results.

• Internet-of-Things (IoT) data collection: In IoT, edge

devices can help to collect the data, e.g., Global

Positioning System (GPS) records and wireless sensing

data [59]. For example, mobile phone sensors can track

the device’s movement and location or users [60]. The

sensors can be used to collect data on the location,

speed, and direction of movement of the device. These

data are important for the implementation of personalized

generative AI models. In addition to these traditional data

collection methods, large-scale datasets are specifically

designed for training generative AI models. For instance,

the LAION-400M dataset [61], a large-scale, non-curated

dataset consisting of 400 million English (image, text)

pairs, is used in training models like CLIP.

• Passive data collection can be achieved with the help

of edge networks [62]. In the smart city, sensors can

be placed at strategic locations, such as on lamp posts,

buildings, or other structures, to collect data on various

aspects of the city environment. The data obtained by the

sensors might be used to train AI models, which could

subsequently be utilized to produce insights on air quality,

traffic flow, and pedestrian density. Using data obtained

from air quality sensors, an AI model can be trained to

forecast air quality. The model can then be used to create

a real-time map of the city’s air quality. This real-time

map could be used to guide policy choices about the

management of air quality, leading to the development

of generative AI models that are capable of generating

decision solutions for managing air quality.

After the data has been collected, the data is then used to train

the generative AI model.

2) Pre-Training: The collected data is used to train the

generative AI model. In mobile networks, training is typically

3The website of Amazon Mechanical Turk as a crowdsourcing marketplace:
https://www.mturk.com/.

4The website of Datatang: https://www.datatang.ai/.
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done by central servers with powerful computing power.

During the training process, the generative model auto-

matically learns the patterns and features in the data and

predicts the target outcome. We introduce several genera-

tive AI technologies in Section III-B, including Generative

Adversarial Networks (GANs), VAE, Flow-based models, and

diffusion models. These different training techniques have

different strengths and weaknesses. The choice of technique

depends on the specific requirements of the AIGC task, the

available data, the desired output, and the computational

resources available. After training is complete, cloud data

centers can accept requests uploaded by network users to per-

form subsequent fine-tuning and inference tasks. Alternatively,

cloud data centers can deliver the trained generative AI

models down to network edge servers, which can process

user requests locally. It is important to note the substan-

tial computational resources required for the pre-training

of generative AI models. For instance, the pre-training

process of the Stable Diffusion model, a large-scale AI

model developed by Stability AI, was conducted on a cloud

cluster with 256 Nvidia A100 GPUs for about 150,000 hours,

which equates to a cost of approximately $600,000

(https://huggingface.co/CompVis/stable-diffusion-v1-4). This

highlights the intensive computational demands of training

such models.

3) Fine-Tuning: Fine-tuning in AIGC is the process of

adjusting a pre-trained generative AI model to new tasks or

domains by including a modest quantity of extra data. This

approach can be used to enhance the model’s performance on

a given task or in a specific area by adjusting the AI model’s

parameters to suit the new data better. In mobile networks,

tasks of fine-tuning can be performed by the edge network,

using the small-size dataset uploaded by mobile users.

4) Inference: Using the trained generative AI model,

inference can be done, which involves generating the desired

content based on the input. generative AI models are tradi-

tionally managed via centralized servers, such as the Hugging

Face platform [63]. In this setting, a large number of users

make requests to the central server, wait in line, and obtain the

requested services. Researchers aim to install AIGC services

on edge networks to prevent request congestion and optimize

service latency. Edge devices have sufficient computational

capacity for AIGC inference and are closer to consumers than

central servers. Therefore, users can interact with devices with

a reduced transmission delay. In addition, as AIGC services

are dispersed to several edge devices, the latency can be

significantly reduced.

5) Product Management: The preceding stages cover con-

tent generation. However, as an irreplaceable online property

comparable to NFT, AIGC possesses unique ownership,

copyright, and worth for each content. Consequently, the

preservation and management of AIGC products should

be incorporated into the AIGC life cycle. Specifically, we

refer to the party requesting the production of the AIGC

as producers, e.g., mobile users or companies, who hire

AIGC generators, e.g., network servers, to perform the AIGC

tasks. Then, the main process in AIGC product management

includes:

• Distribution: After the content is generated in network

edge servers, the producers acquire ownership of the

AIGC products. Consequently, they have the right to dis-

tribute these products to social media or AIGC platforms

through edge networks

• Trading: Since AIGC products are regarded as a novel

kind of non-fungible digital properties, they can be

traded. The trading process can be modeled as a fund

ownership exchange between two parties.

To implement the aforementioned AIGC lifecycle in mobile

networks, we further investigate the technical implementation

of AIGC in the following section.

III. TECHNOLOGIES AND COLLABORATIVE

INFRASTRUCTURE OF MOBILE AIGC NETWORKS

In this section, we delve into the technologies and collabora-

tive infrastructure of mobile AIGC networks. This section aims

to provide a comprehensive understanding of the rationale and

objectives of edge computing systems designed to support

AIGC. Before we explore the design of these systems, it

is crucial to establish the performance metrics that measure

whether the system can maximize user satisfaction and utility.

A. Evaluation Metrics of Generative AI Models and Services

We first discuss several metrics for assessing the quality of

generative AI models, which can be used by AIGC service

providers and users in mobile networks.

1) Inception Score: The Inception Score (IS) can be used

to measure the accuracy of images generated by generative

AI models in the mobile network [64]. The IS is based on

the premise that high-fidelity generated images should have

high-class probabilities, which suggest a reliable classification

model, and a low Kullback-Leibler (KL) divergence between

the projected class probability and a reference class distribu-

tion. To compute the IS, an exponential function is applied to

the KL divergence between the anticipated class probabilities

and the reference class distribution. The resulting value is then

averaged over all created photos to obtain the IS. A higher IS

indicates better overall image quality.

2) Frechet Inception Distance: The Frechet Inception

Distance (FID) has emerged as a well-established metric for

evaluating the effectiveness of generative models, particularly

GANs, in terms of image quality and diversity [65]. FID lever-

ages a pre-trained Inception network to calculate the distance

between actual and synthetic image embeddings. This metric

can be used by generative AI model providers to evaluate

the quality of their generative models in mobile networks.

Additionally, users can assess the capabilities of AIGC service

providers through multiple requests for services based on FID

measurements. However, when evaluating conditional text-to-

image synthesis, FID only measures the visual quality of the

output images, ignoring the adequacy of their conditioning on

the input text [66]. Thus, while FID is an excellent evaluation

metric for assessing image quality and diversity, it is limited

when applied to conditional text-to-image synthesis.

3) R-Precision: R-Precision is a standard metric to evaluate

how AI-generated images align with text inputs [67]. In
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mobile networks, the generative AI model producers can

retrieve matching text from 100 text candidates using the

AI-generated image as a query. The R-Precision measures

the proportion of relevant items retrieved among the top-R

retrieved items, where R is typically set to 1. Specifically, the

Deep Attentional Multimodal Similarity Model (DAMSM) is

commonly used to compute the text-image retrieval similarity

score [68]. DAMSM maps each subregion of an image and

its corresponding word in the sentence to a joint embedding

space, allowing for the measurement of fine-grained image-

text similarity for retrieval. However, it should be noted that

text-to-image generative AI models can directly optimize the

DAMSM module used to calculate R-Precision. This results

in the metric being model-specific and less objective, limiting

the evaluation of generative AI models in mobile networks.

4) CLIP-R-Precision: CLIP-R-Precision is an assessment

metric to address the model-specific character of the

R-Precision metric [69]. Instead of the conventional DAMSM,

the suggested measure uses the latest multimodal CLIP

model [7] to obtain R-Precision scores. Here, CLIP is trained

on a massive corpus of Web-based image-caption pairings

and is capable, via a contrastive aim, of bringing together

the two embeddings (visual and linguistic). Thus, the CLIP-

R-Precision can provide a more objective evaluation of

text-to-image generative AI model performance in mobile

networks.

5) Quality of Experience: The Quality of Experience

(QoE) metric plays a critical role in evaluating the performance

of AIGC in mobile network applications [70]. QoE measures

user satisfaction with the generated content, considering fac-

tors such as visual quality, relevancy, and utility. Gathering

and analyzing user surveys, interaction, and behavioral data

are standard methods used to determine QoE. In addition,

the definition of QoE can vary depending on the objectives

of the mobile network system designer and the user group

being considered. With the aid of QoE, AIGC performance

can be improved, and new models can be created to meet user

expectations. It is essential to account for QoE when analyzing

the performance of AIGC in mobile network applications to

ensure that the generated content meets user expectations and

provides a great user experience.

Based on the aforementioned evaluation metrics, diverse and

valuable synthetic data can be generated from deep generative

models. Therefore, in the next section, we introduce several

generative AI models for mobile AIGC networks.

B. Generative AI Models

Generative AI models aim to understand and replicate the

true data distribution of input data through iterative training.

This understanding allows the generation of novel data that

closely aligns with the original distribution. As depicted in

Fig. 5, this section delves into five fundamental generative

models: Generative Adversarial Networks (GANs), energy-

based models, Variational Autoencoders (VAEs), flow-based

models, and diffusion models.

1) Generative Adversarial Networks: GANs are a funda-

mental framework for AIGC, comprising a generative model

Fig. 5. The model architecture of generative AI models, including generative
adversarial networks, energy-based models, variational autoencoder, flow-
based models, and diffusion models.

and a discriminative model [71]. The generative network

aims to generate data that is as realistic and similar to the

original data as possible to deceive the discriminative model

based on the data in the original dataset. Conversely, the

discriminant model’s task is to differentiate between real and

fake instances. During the GAN training process, the two

networks continually enhance their performance by competing

against each other until they reach a stable equilibrium. The

advantages and disadvantages of GANs can be summarized as

follows [71]:

• Advantages:

– GANs can generate new data closely resembling the

original dataset, making them useful for tasks such

as image synthesis and text-to-image translation.

– The adversarial training process leads to continuous

improvement in the performance of both the gener-

ative and discriminative models.

• Disadvantages:

– GANs can be difficult to train because the two

networks in a GAN, i.e., the generator and the

discriminator, constantly compete against others,

making training unstable and slow.

– GANs primarily augment the existing dataset rather

than creating entirely new content, limiting their

ability to generate new content with other modalities.

2) Energy-Based Generative Models: Energy-based gener-

ative models are a class of generative models that represent

input data using energy values [72]. These models define an

energy function and then minimize the input data’s energy

value through optimization and training. This approach is

easily comprehensible, and the models exhibit excellent flex-

ibility and generalization ability in providing AIGC services.

EBMs capture dependencies by associating an unnormalized

probability scalar (energy) to each configuration of the com-

bination of observed and latent variables. Inference consists

of finding latent variables that minimize the energy given a

set of observed variables. The model learns a function that

associates low energies with the latent variables’ correct values

and higher energies with incorrect values.
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3) Variational Autoencoder: The VAE [73] is a type of

generative models that consist of two primary components: an

encoder and a decoder network. The encoder transforms the

input data into a set of parameters (mean and variance) in a

latent space. These parameters are then used to sample from

the latent space, generating latent variables. The decoder takes

these latent variables as input and generates new data. VAEs

differ from GANs in their training methods. While GANs are

trained using a supervised learning approach, VAEs employ

an unsupervised learning approach. This difference is reflected

in how they generate data. VAEs generate data by sampling

from the learned distribution, while GANs approximate the

data distribution using the generator network.

4) Flow-Based Generative Models: Flow-based genera-

tive models [74] facilitate the data generation process by

employing probabilistic flow formulations. Additionally, these

models compute gradients during generation using backprop-

agation algorithms, enhancing training and learning efficiency.

Consequently, flow-based models in mobile edge networks

present several benefits. One such advantage is computa-

tional efficiency. Flow-based models can directly compute the

probability density function during generation, circumventing

resource-intensive calculations. This promotes more efficient

computation within mobile edge networks.

5) Generative Diffusion Models: Diffusion models are

likelihood-based models trained with Maximum Likelihood

Estimation (MLE) [25], as opposed to GANs trained with a

minimax game between the generator and the discriminator.

Therefore, the pattern collapses and thus the training instabili-

ties can be avoided. Specifically, diffusion models are inspired

by non-equilibrium thermodynamics theory [1]. They learn the

inverse diffusion process to construct the desired data sample

from noise by defining a Markov chain of diffusion steps that

gradually add random noise to the data. In addition, diffusion

can mathematically transform the computational space of the

model from pixel space to a low-dimensional space called

latent space. This reduces the computational cost and time

required and improves the training efficiency of the model.

Unlike VAE or flow-based models, diffusion models are

learned using a fixed procedure, and the hidden variables have

high dimensions that are the same as the original data. This

versatility and computational efficiency make diffusion models

highly effective across a broad range of applications, including

computer vision, natural language processing, audio synthesis,

3D modeling, and network optimization [1].

6) Large Language Models: Large language models

(LLM), which consist of billions of parameters, are trained

on large-scale datasets [75], and thus demonstrate the ability

to handle various downstream tasks. LLMs can understand

input prompts and generate human-like text in response. These

models have greatly influenced our interaction with technology

and have helped pave the way for advancements in artificial

general intelligence. For instance, Google’s PaLM-E [76] is

an embodied language model that can handle tasks involving

reasoning, visuals, and language. It can process multimodal

sentences and transfer knowledge across domains, enabling it

to perform tasks such as robot planning and embodied question

answering.

In wireless networks, deploying LLMs faces several impor-

tant issues from the perspectives of wireless communications,

computing, and storage [77]. In terms of wireless communica-

tions, efficient utilization of computing and energy resources

is crucial due to the large sizes of LLMs and the need

to process vast amounts of data [78]. Compatibility with

existing infrastructure is also a concern, including potential

limitations in data, configuration, and transmission protocols.

From a computing perspective, LLMs face challenges such as

long response times, high bandwidth requirements, and data

privacy concerns [79]. Deploying LLMs at the network edge is

necessary to address these challenges. The staggering size of

LLMs poses significant obstacles for mobile edge computing

(MEC) systems. Balancing inference accuracy and memory

usage is crucial when employing parameter sharing in LLMs.

Furthermore, there are still numerous open research problems

regarding the utilization of MEC systems to support LLMs. In

terms of storage and caching [80], managing the computation

and memory-intensive nature of LLMs is essential during load-

ing and execution on edge servers. Core network latency and

congestion can be problematic when offloading services for

caching and inference, particularly due to the high number of

service requests. Designing effective caching algorithms that

consider the frequency of use for LLMs and user preferences is

important. Dynamic cache structures based on service runtime

configuration, such as batch size, add complexity to cache

loading and eviction. Balancing the tradeoff between latency,

energy consumption, and accuracy is a key consideration when

managing cached models at edge servers.

C. Collaborative Infrastructure for Mobile AIGC Networks

By asking ChatGPT the question “Integrating AI-generated

content and mobile edge networks, please define mobile

AIGC networks in one sentence,” we can get the answer

“Mobile AIGC networks are a fusion of AI-generated content

and mobile edge networks, enabling rapid content creation,

delivery, and processing at the network’s edge for enhanced

user experiences and reduced latency.” (from Mar. 14 Version

based on GPT-4) To support the pre-training, fine-tuning, and

inference of the aforementioned models, substantial compu-

tation, communication, and storage resources are necessary.

Consequently, to provide low-latency and personalized AIGC

services, a collaborative cloud-edge-mobile AIGC framework

shown in Fig. 6 is essential, requiring extensive cooperation

among heterogeneous resource shareholders.

1) Cloud Computing: In mobile AIGC networks, cloud

computing [81] represents a centralized infrastructure sup-

plying remote server, storage, and database resources to

support AIGC service lifecycle processes, including data

collection, model training, fine-tuning, and inference. Cloud

computing allows users to access AIGC services through the

core network where these services are deployed, rather than

building and maintaining physical infrastructure. Specifically,

there are three primary delivery models in cloud computing:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS),

and Software as a Service (SaaS). In mobile AIGC networks,
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Fig. 6. The collaborative cloud-edge-mobile infrastructure for mobile AIGC
networks. The advantages and limitations of provisioning AIGC services in
each layer are elaborated.

IaaS providers offer access to virtualized AIGC comput-

ing resources such as servers, storage, and databases [23].

Additionally, PaaS provides a platform for developing and

deploying AIGC applications and services. Lastly, SaaS deliv-

ers applications and services over the Internet, enabling users

to access generative AI models directly through a Web browser

or mobile application. In summary, cloud computing in mobile

AIGC networks allows developers and users to harness the

benefits of AI while reducing costs and mitigating chal-

lenges associated with constructing and maintaining physical

infrastructure, playing a critical role in the development,

deployment, and management of AIGC services.

2) Edge Computing: By providing computing and storage

infrastructure at the edge of the core network [29], users can

access AIGC services through radio access networks (RAN).

Unlike the large-scale infrastructure of cloud computing, edge

servers’ limited resources often cannot support generative

AI model training. However, edge servers can offer real-time

fine-tuning and inference services that are less computa-

tionally and storage-intensive. By deploying edge computing

at the network’s periphery, users need not upload data

through the core network to cloud servers to request AIGC

services. Consequently, reduced service latency, improved

data protection, increased reliability, and decreased bandwidth

consumption are benefits of AIGC services delivered via edge

servers. Compared to exclusively delivering AIGC services

Fig. 7. The connections among AIGC services, wireless communication,
mobile edge computing, and generative AI.

through centralized cloud computing, location-aware AIGC

services at the edge can significantly enhance user experi-

ence [82]. Furthermore, edge servers for local AIGC service

delivery can be customized and personalized to meet user

needs. Overall, edge computing enables users to access high-

quality AIGC services with lower latency.

3) Mobile Computing: Device-to-device (D2D) mobile

computing involves using mobile devices for the direct exe-

cution of AIGC services by users [18], [83]. On one hand,

mobile devices can directly execute generative AI models and

perform local AIGC inference tasks. While running generative

AI models on devices demands significant computational

resources and consumes mobile device energy, it reduces

AIGC service latency and protects user privacy. On the other

hand, mobile devices can offload AIGC services to edge or

cloud servers operating over wireless connections, providing

a flexible scheme for delivering AIGC services. However,

offloading AIGC services to edge or cloud servers for exe-

cution necessitates stable network connectivity and increases

service latency. Lastly, model compression and quantization

must be considered to minimize the resources required for

execution on mobile devices, as generative AI models are

often large-scale.

Specifically, the connections among AIGC services, wireless

communication, mobile edge computing, and generative AI

are illustrated in Fig. 7.

D. Lessons Learned

1) Cloud-Edge Collaborative Training and Fine-Tuning

for Generative AI Models: To support AIGC services with

required performance evaluated based on metrics discussed in

Section III-A, cloud-edge collaborative pre-training and fine-

tuning are envisioned to be promising approaches. On the

one hand, cloud data centers can train generative AI models

by using powerful computing and data resources. Pre-training

in cloud data centers enables leveraging powerful computing

and data resources and pre-training on large datasets, which

can help models learn general features. However, AIGC

services require significant communication and bandwidth

resources, and thus raise privacy concerns, and may not be

as effective for fine-tuning on smaller more specific datasets.

On the other hand, utilizing a large amount of user data in

the edge network, the generative AI model can be fine-

tuned to be more customized and personalized. The selection

discusses the pros and cons of fine-tuning AIGC models on
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Fig. 8. Generated images of different generative AI models, including Stable Diffusion (https://huggingface.co/spaces/stabilityai/stable-diffusion), DALLE-
2 (https://labs.openai.com/), Visual ChatGPT (https://huggingface.co/spaces/microsoft/visual_chatgpt), Point-E (https://huggingface.co/spaces/openai/point-e),
using the prompt “A photo of a green pumpkin.”

TABLE II
SUMMARY OF STATE-OF-THE-ART GENERATIVE AI MODELS

edge devices, including the utilization of user data available

on edge devices, real-time interaction/response, and reduced

privacy concerns, as well as limitations such as computing and

storage resources and the need for specialized hardware and

software.

2) Edge-Mobile Collaborative Inference for AIGC Services:

In a mobile AIGC network, the user’s location and mobility

change over time [84]. Therefore, a large number of edge and

mobile collaborations are required to complete the provision

of AIGC inference services. Due to the different mobility

of users, the AIGC services forwarded to the edge servers

for processing are also dynamic. Several techniques can be

leveraged to address the mobility issues in mobile AIGC

networks, which include federated learning and distributed

training to improve the efficiency of AIGC model updates,

advanced DRL algorithms, and meta-learning techniques to

optimize the AIGC provider selection strategy in response

to changing network conditions, edge caching to deliver

low-latency content generation and computing services, and

gathering user historical requests and profiles to provide

personalized services. Therefore, dynamic resource allocation

and task offloading decisions of AIGC applications are some

of the challenges in deploying mobile AIGC networks, which

we discuss in Section VI.

IV. HOW TO DEPLOY AIGC AT MOBILE EDGE

NETWORKS: APPLICATIONS AND ADVANTAGES OF AIGC

This section introduces creative applications and advantages

of AIGC services in the mobile edge network. Then, we

provide four use cases of AIGC applications of mobile AIGC

networks. Some examples of generative AI models are shown

in Fig. 8. The applications elaborated in this section are

summarized in Table II.
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A. Applications of Mobile AIGC Networks

1) AI-Generated Texts: Recent advancements in Natural

Language Generation (NLG) technology have led to

AI-generated text that is nearly indistinguishable from human-

written text [11]. The availability of powerful open-source

AI-generated text models, along with their reduced computing

power requirements, has facilitated widespread adoption, par-

ticularly in mobile networks. The development of lightweight

NLG models that can operate on resource-constrained devices,

such as smartphones and IoT devices, while maintaining high-

performance levels, has made AI-generated text an essential

service in mobile AIGC networks [39].

One example of such a model is ALBERT (A Lite BERT),

designed to enhance the efficiency of BERT (Bidirectional

Encoder Representations from Transformers) while reducing

its computational and memory requirements [119]. ALBERT

is pre-trained on a vast corpus of text data and uses factorized

embedding parameterization, cross-layer parameter sharing,

and sentence-order prediction tasks to optimize BERT’s

performance while minimizing computational and memory

demands. ALBERT has achieved performance levels compa-

rable to BERT on various natural language processing tasks,

such as question answering and sentiment analysis [12]. Its

lighter model design makes it more suitable for deployment

on edge devices with limited resources.

MobileBERT is another model designed for deployment on

mobile and edge devices with minimal resources [120]. This

more compact variant of the BERT model is pre-trained on the

same amount of data as BERT but features a more computa-

tionally efficient design with fewer parameters. Quantization

is employed to reduce the model’s weight accuracy, further

decreasing its processing requirements. MobileBERT is a

highly efficient model compatible with various devices, includ-

ing smartphones and IoT devices, and can be used in multiple

mobile applications, such as personal assistants, chatbots, and

text-to-speech systems [39]. Additionally, it can be employed

in small-footprint cross-modal applications, such as image

captioning, video captioning, and voice recognition. These AI-

generated text models offer significant advantages to mobile

edge networks, enabling new applications and personalized

user experiences in real time while preserving user privacy.

2) AI-Generated Audio: AI-generated audio has gained

prominence in mobile networks due to its potential to enhance

user experience, and increase efficiency, security, personaliza-

tion, cost-effectiveness, and accessibility [20]. For instance,

AIGC-based speech synthesis and enhancement can improve

call quality in mobile networks, while AIGC-based speech

recognition and compression can optimize mobile networks by

reducing the data required to transmit audio and automating

tasks such as speech-to-text transcription. Voice biometrics

powered by AI can bolster mobile network security by utilizing

the user’s voiceprint as a unique identifier for authentica-

tion [111]. AIGC-driven audio services, such as personalized

music generation, can automate tasks and reduce network load,

thereby cutting costs.

Audio Albert [49], a streamlined version of the BERT model

adapted for self-supervised learning of audio representations,

demonstrates competitive performance levels compared to

other popular AI-generated audio models in various natural

language processing tasks such as speech recognition, speaker

identification, and music genre classification. In terms of

latency, Audio Albert shows faster inference times than

previous models, with a 20% reduction in average inference

time on average, which can significantly improve response

times in mobile edge networks. Additionally, Audio Albert’s

accuracy is comparable to BERT and achieves state-of-the-art

results on several benchmarks. Furthermore, Audio Albert’s

model design is lighter than other models, making it suit-

able for deployment on edge devices with limited resources,

improving computational efficiency while maintaining high-

performance levels. Utilizing Audio Albert in mobile edge

networks can provide several benefits, such as faster response

times, reduced latency, and lower power consumption, making

it a promising solution for AI-generated audio in mobile edge

networks.

3) AI-Generated Images: AI-generated images offer

numerous applications in mobile networks, such as image

enhancement, image compression, image recognition, and text-

to-image generation [121]. Image enhancement can improve

picture quality in low-light or noisy environments, while image

compression decreases the data required to transmit images,

enhancing overall efficiency. Various image recognition

applications include object detection, facial recognition, and

image search. Text-to-image generation enables the creation

of images from textual descriptions for visual storytelling,

advertising, and virtual reality/augmented reality (VR/AR)

experiences [122], [123], [124], [125].

Make-a-Scene, a novel text-to-image generation model

proposed in [126], leverages human priors to generate realistic

images based on textual descriptions. The model consists of a

text encoder, an image generator, and a prior human module

trained on human-annotated data to incorporate common sense

knowledge. In mobile networks, this model can be trained

on a large dataset of images and textual descriptions to

swiftly generate images in response to user requests, such as

creating visual representations of road maps. This approach

complements the techniques employed in [127] for generating

images with specific attributes.

Furthermore, the Semi-Parametric Neural Image Synthesis

(SPADE) method introduced in [127] generates new images

from existing images and their associated attributes using

a neural network architecture. This method produces highly

realistic images conditioned on input attributes and can be

employed for image-to-image translation, inpainting, and style

transfer in mobile networks. The SPADE method shares sim-

ilarities with the text-to-image generation approach in [126],

where both techniques focus on generating high-quality, real-

istic images based on input data.

However, the development of AI-generated image tech-

nology also raises concerns around deep fake technology,

which uses AI-based techniques to generate realistic photos,

movies, or audio depicting nonexistent events or individuals,

as discussed in [16]. Deep fakes can interfere with system

performance and affect mobile user tasks, leading to ethical

and legal concerns that require more study and legislation.
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4) AI-Generated Videos: AI-generated videos, like AI-

generated images, can be utilized in mobile networks for

various applications, such as video compression, enhance-

ment, summarization, and synthesis [95]. AI-generated videos

offer several advantages over AI-generated images in mobile

networks. They provide a more immersive and engaging user

experience by dynamically conveying more information [128].

Moreover, AI-generated videos can be tailored to specific char-

acteristics, such as style, resolution, or frame rate, to improve

user experience or create videos for specific purposes, such

as advertising, entertainment, or educational content [115].

Furthermore, AI-generated videos can generate new content

from existing videos or other types of data, such as images,

text, or audio, offering new storytelling methods [115].

Various models can be employed to achieve AI-generated

videos in mobile networks. One such model is Imagen Video,

presented in [13], which is a text-conditioned video generation

system based on a cascade of video diffusion models. Imagen

Video generates high-definition videos from text input using

a base video generation model and an interleaved sequence

of spatial and temporal video super-resolution models. The

authors describe the process of scaling up the system as a

high-definition text-to-video model, including design choices

such as selecting fully-convolutional temporal and spatial

super-resolution models at specific resolutions and opting

for v-parameterization for diffusion models. They also apply

progressive distillation with classifier-free guidance to video

models for rapid, high-quality sampling [13], [115]. Imagen

Video not only produces high-quality videos but also boasts

a high level of controllability and world knowledge, enabling

the generation of diverse videos and text animations in various

artistic styles and with 3D object comprehension.

5) AI-Generated 3D: AI-generated 3D content is becoming

increasingly promising for various wireless mobile network

applications, including AR and VR [129], [130]. It also

enhances network efficiency and reduces latency through

optimal base station placement [131], [132]. Researchers have

proposed several techniques for generating high-quality and

diverse 3D content using deep learning (DL) models, some of

which complement one another in terms of their applications

and capabilities.

One such technique is the Latent-NeRF model, proposed

in [133], which generates 3D shapes and textures from 2D

images using the NeRF architecture. This model is highly

versatile and can be used for various applications, such as

3D object reconstruction, 3D scene understanding, and 3D

shape editing for wireless VR services. Another technique,

the Latent Point Diffusion (LPD) model presented in [134],

generates 3D shapes with fine-grained details while controlling

the overall structure. LPD has been shown to create more

diverse shapes than other state-of-the-art models, making it

suitable for 3D shape synthesis, 3D shape completion, and 3D

shape interpolation. The LPD model complements the latent-

NeRF approach by offering more diverse shapes and finer

details.

Moreover, researchers in [135] proposed the Diffusion-SDF

model, which generates 3D shapes from natural language

descriptions. This model utilizes a combination of voxelized

signed distance functions and diffusion-based generative mod-

els, producing high-quality 3D shapes with fine-grained details

while controlling the overall structure. This technique accu-

rately generates 3D shapes from natural language descriptions,

making it useful for applications such as 3D shape synthesis,

completion, and interpolation. It shares similarities with the

Latent-NeRF and LPD models in terms of generating high-

quality 3D content [136].

B. Advantages of Mobile AIGC

We then discuss several advantages of generative AI in

mobile networks.

1) Efficiency: Generative AI models offer several efficiency

benefits in mobile networks. As demonstrated in the appli-

cations of AI-generated text models like ALBERT [119] and

MobileBERT [120], these models can automate the process

of creating text, reducing the need for human labor and

significantly boosting productivity [137]. Moreover, as shown

in the applications of AI-generated audio models like Audio

Albert [49], these models can be implemented at the edge

of mobile networks [138], [139], allowing them to produce

data locally on devices like smartphones and IoT sensors. This

results in improved user experiences and reduced latency in

mobile applications that rely on real-time data generation and

processing [138].

2) Reconfigurability: The reconfigurability of AIGC in

mobile networks is a significant advantage. As demonstrated

in the ChatGPT application, AIGC can produce a vast array

of content, which can be seamlessly adjusted to suit evolving

network demands and user preferences [140]. Furthermore, as

shown in the applications of AI-generated image models like

Make-a-Scene [126] and SPADE [126], AIGC can contribute

to reconfigurability in mobile networks by utilizing image

and audio-generative models. These models can be trained to

generate new visuals and auditory content based on specific

parameters, such as user preferences or contextual information.

3) Accuracy: Employing generative AI models in mobile

networks provides significant benefits in terms of accu-

racy, leading to more precise predictions and well-informed

decision-making [114]. Similarly, AI-generated visuals and

audio can be employed to improve the quality and accuracy

of network-provided content, encompassing domains such as

advertising, entertainment, and accessibility services. By using

generative AI models, tailored and engaging content can be

produced, resulting in a more impactful and personalized

user experience. In the context of mobile networks, this can

mean generating high-quality images or videos adapted to

various devices and network conditions, improving the user

perception of the provided services. By harnessing the power

of generative AI models, mobile networks can offer more

accurate and efficient services, ultimately fostering a superior

user experience and enabling innovative solutions tailored to

the diverse needs of mobile users [47].

4) Scalability and Sustainability: Utilizing AIGC in

mobile networks offers significant scalability and sustainability

benefits [114]. AIGC can produce a wide range of content [13],
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enhancing mobile networks’ overall scalability and sustainabil-

ity in numerous ways. Specifically, AIGC facilitates scalability

in mobile networks by reducing the reliance on human labor

and resources. Furthermore, AIGC streamlines the entire con-

tent production process, encapsulating activities from initial

capture to retouching, and from synergistic designer col-

laboration to large-scale production. This process efficiency

leads to a substantial time saving, which not only results

in diminished energy consumption, but also contributes to a

reduced carbon footprint associated with maintaining physical

storage infrastructures [141]. Despite the challenges associated

with generative AI models, such as large model sizes and

complex training processes, leveraging edge servers in mobile

networks can help mitigate these issues by adopting an “AIGC-

as-a-Service” approach [138]. Users can interact with the

system by submitting requests through their mobile devices

and subsequently receiving computational results from edge

servers. This strategy eliminates the need to deploy generative

AI models on devices with constrained computing resources,

optimizing overall efficiency and improving scalability and

sustainability within the mobile network infrastructure [25].

5) Security and Privacy: AIGC can offer potential security

and privacy advantages by embedding sensitive information

within AI-generated content. This approach can serve as a

form of steganography, a technique that conceals data within

other types of data, making it difficult for unauthorized parties

to detect the hidden information. However, it is essential to

be aware of potential security and privacy risks associated

with AIGC, such as adversarial attacks on AI models or the

misuse of AI-generated content for malicious purposes, like

deepfakes [16]. To ensure the secure and privacy-preserving

use of AIGC in mobile networks, robust security measures and

encryption techniques must be in place, along with ongoing

research to counter potential threats [142].

V. CASE STUDIES OF AIGC IN MOBILE NETWORK

Many case studies have been done for achieving effective

and efficient mobile AIGC networks as shown in Table III.

In this section, we review several representative cases,

e.g., the AIGC service provider (ASP) selection, generative

AI-empowered traffic and driving simulation, AI-generated

incentive mechanism, and blockchain-powered lifecycle man-

agement for AIGC.

A. AI-Generated Incentive Mechanism

In this case study, we present the idea of using AI-generated

optimization solutions with a focus on the use of diffusion

models and their ability to optimize the utility function.

In today’s world of advanced Internet services, including

the Metaverse, MR technology is essential for delivering

captivating and immersive user experiences [162], [163].

Nevertheless, the restricted processing power of head-mounted

displays (HMDs) used in MR environments poses a significant

challenge to the implementation of these services. To tackle

this problem, the researchers in [143] introduce an innovative

information-sharing strategy that employs full-duplex device-

to-device semantic communication [164]. This method enables

users to circumvent computationally demanding and redundant

processes, such as producing AIGC in-view images for all MR

participants. By allowing users to transmit generated content

and semantic data derived from their view image to nearby

users, these individuals can subsequently utilize the shared

information to achieve spatial matching of computational

outcomes within their view images. In their work, the authors

of [143] primarily concentrate on developing a contract the-

oretic incentive mechanism to promote semantic information

exchange among users. Their goal is to create an optimal con-

tract that, while adhering to the utility threshold constraints of

the semantic information provider, simultaneously maximizes

the utility of the semantic information recipient. Consequently,

they devised a diffusion model-based AI-generated contract

algorithm [1], as illustrated in Fig. 9.

Specifically, the researchers developed a cutting-edge algo-

rithm for creating AI-generated incentive mechanisms [1],

which tackle the challenge of utility maximization by devising

optimal contract designs [143]. This approach is distinct from

traditional neural network backpropagation algorithms or DRL

methods, as it primarily focuses on enhancing contract design

through iterative denoising of the initial distribution instead

of optimizing model parameters. The policy for contract

design is defined by the reverse process of a conditional

diffusion model, linking environmental states to contract

arrangements. The primary goal of this policy is to produce

a deterministic contract design that maximizes the expected

total reward over a series of time steps. To optimize system

utility through contract design, the researchers in [143] create

a contract quality network that associates an environment-

contract pair with a value representing the expected total

reward when an agent implements a particular contract design

policy from the current state and adheres to it in the future.

The optimal contract design policy maximizes the system’s

predicted cumulative utility. The researchers then carried out

an extensive comparison between their suggested AI-powered

contract algorithm and two DRL algorithms, specifically SAC

and PPO. As illustrated in the training process in [143] (see

Fig. 10), PPO requires more iteration steps to achieve conver-

gence, while SAC converges more quickly but with a lower

final reward value in comparison to the AI-driven contract

algorithm.

The enhanced performance of the suggested AI-driven

contract algorithm can be ascribed to two main aspects:

• Improved sampling quality: By configuring the diffusion

step to 10 and applying multiple refinement steps, the dif-

fusion models generate higher quality samples, mitigating

the influence of uncertainty and augmenting sampling

precision [114].

• Enhanced long-term dependence processing capability:

Unlike conventional neural network generation models

that take into account only the current time step input,

the diffusion model creates samples with additional time

steps through numerous refinement iterations, thereby

bolstering its long-term dependence processing capabil-

ity [121].

As demonstrated in Fig. 10, the authors in [143] examine the

optimal contract design capacities of the trained models. For a
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TABLE III
KEY LITERATURE CONSIDERING AIGC WITHIN WIRELESS NETWORK

specific environmental state, the AI-driven contract algorithm

provides a contract design that attains a utility value of 189.1,

markedly outperforming SAC’s 185.9 and PPO’s 184.3. These

results highlight the practical advantages of the proposed

AI-based contract algorithm in contrast to traditional DRL

techniques.
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Fig. 9. System model of contract design in semantic information sharing network, and the AI-generated contract algorithm. The diffusion models generate
different optimal contract designs under different environmental variables.

Fig. 10. The effect of different incentive design schemes, e.g., PPO, SAC,
and AI-generated contract [143].

Lesson Learned: The case study in this research high-

lights the potential of AI-generated optimization solutions,

particularly diffusion models, for addressing complex utility

maximization problems within incentive mechanism design.

The authors in [143] present an innovative approach that

employs full-duplex device-to-device semantic communica-

tion for information-sharing in mixed reality environments,

overcoming the limitations of HMDs. The diffusion model-

based AI-generated contract algorithm proposed in this study

demonstrates superior performance compared to traditional

DRL algorithms, such as SAC and PPO. The superior

performance of the AI-generated contract algorithm can be

attributed to improved sampling quality and enhanced long-

term dependence processing capability. This study underscores

the effectiveness of employing AI-generated optimization solu-

tions in complex, high-dimensional environments, particularly

in the context of incentive mechanism design. Some promising

directions for future research include:

• Expanding the application of diffusion models:

Investigate the application of diffusion models in other

domains, such as finance, healthcare, transportation, and

logistics, where complex utility maximization problems

often arise.

• Developing novel incentive mechanisms: Explore the

development of new incentive mechanisms that com-

bine AI-generated optimization solutions with other

approaches, such as game theory or multi-agent reinforce-

ment learning, to create even more effective incentive

designs.

• Exploring the role of human-AI collaboration: Investigate

how AI-generated optimization solutions can be com-

bined with human decision-making to create hybrid

incentive mechanisms that capitalize on the strengths of

both human intuition and AI-driven optimization.

B. AIGC Service Provider Selection

The integration of generative AI models within wireless

networks offers significant potential, as these state-of-the-

art technologies have exhibited exceptional capabilities in

generating a wide range of high-quality content. By harnessing

the power of artificial intelligence, generative AI models can

astutely analyze user inputs and produce tailored, contextually

relevant content in real-time [114]. This stands to considerably

enhance user experience and foster the creation of innovative

applications across various domains, such as entertainment,

education, and communication. Nonetheless, the deployment

and application of these advanced models give rise to chal-

lenges, including extensive model sizes, complex training

processes, and resource constraints. Consequently, deploying

large-scale AI models on every network edge device poses

considerable difficulties.

To address this challenge, the authors in [138] intro-

duce the “AIGC-as-a-service” architecture. This approach

entails ASPs deploying AI models on edge servers, which

facilitates the provision of instantaneous services to users

via wireless networks, thereby ensuring a more convenient

and adaptable experience. By enabling users to effortlessly
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Fig. 11. The system model of AIGC service provider selection. Different
ASPs performing user tasks can bring different results and different user util-
ities. Considering that different mobile users have different task requirements
and different ASP’s AI models have different capabilities and computation
capacities, a proper ASP selection algorithm is needed to maximize the total
utilities of network users.

access and engage with AIGC, the proposed solution min-

imizes latency and resource consumption. Consequently,

edge-based AIGC-as-a-service holds the potential to trans-

form the creation and delivery of AIGC across wireless

networks.

However, one problem is that the effectiveness of ASP in

meeting user needs displays significant variability due to a

variety of factors. Certain ASPs may concentrate on generating

specific content types, while others boast more extensive

content generation capabilities. For instance, some providers

may specialize in producing particular content categories,

whereas others offer a wider range of content generation

options. Moreover, several ASPs may have access to advanced

computing and communication resources, empowering them to

develop and deploy more sophisticated generative AI models

within the mobile network. As depicted in Fig. 11, users

uploading images and requirement texts to different ASPs

encounter diverse results owing to the discrepancies in models

employed. For example, a user attempting to add snow to grass

in an image may experience varying outcomes depending on

the ASP chosen.

With a large number of mobile users and increasing demand

for accessing requests, it is crucial to analyze and select ASPs

with the necessary capability, skill, and resources to offer

high-quality AIGC services. This requires a rigorous selection

process considering the provider’s generative AI model

capabilities and computation resources. By selecting a provider

with the appropriate abilities and resources, organizations can

ensure that they have effective AIGC services to increase the

QoE for mobile users. Motivated by the aforementioned rea-

sons, the authors in [138] examine the viability of large-scale

deployment of AIGC-as-a-Service in wireless edge networks.

Specifically, in the ASP selection problem, which can be

framed as a resource-constrained task assignment problem, the

system consists of a series of sequential user tasks, a set of

available ASPs, and the unique utility function for each ASP.

The objective is to find an assignment of tasks to ASPs, such

that the overall utility is maximized. Note that the utility of the

task assigned to the ASP is a function of the required resource.

Without loss of generality, the authors in [138] consider that

is in the form of the diffusion step of the diffusion model,

which is positively correlated to the energy cost. The reason is

that each step of the diffusion model has energy consumption

as it involves running a neural network to remove Gaussian

noise. Finally, the total availability of resources for each ASP

is taken into account to ensure that the resource constraints

are satisfied.

In this formulation of AIGC service provisioning, the

resource constraints are incorporated through the resource

constraint, which specifies the limitations on the available

resources. Note that failing to satisfy the resource constraint

can result in the crash of ASP, causing the termination and

restart of its running tasks.

Several baseline policies are used for comparison:

• Random Allocation Policy. This strategy distributes tasks

to ASPs in a haphazard manner, without accounting for

available resources, task duration, or any restrictions. The

random allocation serves as a minimum benchmark for

evaluating scheduling efficiency.

• Round-Robin Policy. The round-robin policy allocates

tasks to ASPs sequentially in a repeated pattern. This

approach can generate effective schedules when tasks

are evenly distributed. However, its performance may be

suboptimal when there are significant disparities among

them.

• Crash-Avoid Policy. The crash-avoid policy prioritizes

ASPs with greater available resources when assigning

tasks. The goal is to prevent overburdening and maintain

system stability.

• Upper Bound Policy. In this hypothetical scenario, the

scheduler has complete knowledge of the utility each

ASP offers to every user before task distribution. The

omniscient allocation strategy sets an upper limit on

the performance of user-centric services by allocating

tasks to ASPs with the highest utility and avoiding

system failures. However, this approach relies on prior

information about the unknown utility function, which is

unrealistic in practice.

The authors in [138] employed a Deep Reinforcement

Learning (DRL) technique to optimize Application Service

Provider (ASP) selection. In particular, they implemented the

Soft Actor-Critic (SAC) method, which alternates between

evaluating and improving the policy. Unlike traditional actor-

critic frameworks, the SAC approach maximizes a balance

between expected returns and entropy, allowing it to optimize

both exploitation and exploration for efficient decision-making

in dynamic ASP selection scenarios. To conduct the simu-

lation, the authors consider 20 ASPs and 1000 edge users.

Each ASP offered AaaS with a maximum resource capac-

ity, measured by total diffusion timesteps in a given time

frame, varying randomly between 600 and 1,500. Each user

submits multiple AIGC task requests to ASPs at varying

times. These requests detailed the necessary AIGC resources
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Fig. 12. The cumulative rewards under different ASP selection algo-
rithms [138]. DRL-based algorithms can outperform multiple baseline
policies, i.e., overloading-avoidance, random, and round-robin, and approxi-
mate the optimal policy.

in terms of diffusion timesteps, randomly set between 100

and 250. Task arrivals from users adhered to a Poisson

distribution, with a rate of 0.288 requests per hour over a

288-hour duration, amounting to 1,000 tasks in total. As

shown in Fig. 12, simulation results indicate that the proposed

DRL-based algorithm outperforms three benchmark policies,

i.e., overloading-avoidance, random, and round-robin, by pro-

ducing higher-quality content for users and achieving fewer

crashed tasks.

Lesson Learned: The lesson learned from this study is that

the proper selection of ASPs is crucial for maximizing the

total utilities of network users and enhancing their experience.

The authors in [138] introduced a DRL-based algorithm for

ASP selection, which outperforms other baseline policies,

such as overloading-avoidance, random, and round-robin. By

leveraging the SAC approach, the algorithm strikes a balance

between exploitation and exploration in decision-making for

dynamic ASP selection scenarios. Consequently, this method

can provide higher-quality content for users and lead to fewer

crashed tasks, ultimately improving the quality of service in

wireless edge networks. To further enhance research in the

area of AIGC service provider selection, future studies could

have:

• Investigate the integration of FL and distributed training

methods to improve the efficiency of generative AI

model updates and reduce the communication overhead

among ASPs.

• Explore advanced DRL algorithms and meta-learning

techniques to adaptively adjust the ASP selection strategy

in response to changing network conditions and user

requirements.

• Assess the impact of real-world constraints, such as

network latency, data privacy, and security concerns, on

the ASP selection process and devise strategies to address

these challenges.

• Develop multi-objective optimization techniques for ASP

selection that consider additional factors, such as energy

consumption, cost, and the trade-off between content

quality and computational resources.

Fig. 13. Generative AI-empowered simulations for autonomous driving in
vehicular Metaverse, which consists of AVs, virtual simulators, and roadside
units.

C. Generative AI-Empowered Traffic and Driving Simulation

In autonomous driving systems, traffic and driving simu-

lation can affect the performance of connected autonomous

vehicles (AVs). Existing simulation platforms are established

based on historical road data and real-time traffic information.

However, these data collection processes are difficult and

costly, which hinders the development of fully automated

transportation systems. Fortunately, generative AI-empowered

simulations can largely reduce the cost of data collection and

labeling by synthesizing traffic and driving data via generative

AI models. Therefore, as illustrated in Fig. 13, the authors

in [154] design a specialized generative AI model, namely

TSDreambooth, for conditional traffic sign generation in the

proposed vehicular mixed reality Metaverse architecture. In

detail, TSDreambooth is a variation of stable diffusion [165]

fine-tuned based on the Belgium traffic sign (BelgiumTS)

dataset [166]. The performance of TSDreambooth is validated

via the pre-trained traffic sign classification model as gen-

erative scores. In addition, the newly generated datasets are

leveraged to improve the performance of original traffic sign

classification models.

In the vehicular Metaverse, connected AVs, roadside units,

and virtual simulators can develop simulation platforms in

the virtual space collaboratively. Specifically, AVs maintain

their representations in the virtual space via digital twin

(DT) technologies. Therefore, AVs need to continuously gen-

erate multiple DT tasks and execute them to update the

representations. To offload these DT tasks to roadside units

for remote execution in real-time, AVs need to pay for the

communication and computing resources of roadside units.

Therefore, to provide fine-grained incentives for RSUs in

executing DT tasks with heterogeneous resource demands and

various required deadlines, the authors in [154] propose a

multi-task enhanced physical-virtual synchronization auction-

based mechanism, namely MTEPViSA, to determine and

price the resources of RSUs. There are two stage of this

mechanism the online submarket for provisioning DT services

and the offline submarket for provisioning traffic and driving

simulation services. In the online simulation submarket, the
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Fig. 14. Performance evaluation of the MTEPViSA under different sizes of
the market.

multi-task DT scoring rule is proposed to resolve the external-

ities from the offline submarket. In the meanwhile, the price

scaling factor is leveraged to reduce the effect of asymmetric

information among driving simulators and traffic simulators

in the offline submarket. The simulation experiments are

performed in a vehicular Metaverse system with 30 AVs, 30

virtual traffic simulators, 1 virtual driving simulator, and 1

RSU. The experimental results demonstrate that the proposed

mechanism can improve 150% social surplus compared with

other baseline mechanisms. Finally, they develop a simulation

testbed of generative AI-empowered simulation systems in the

vehicular Metaverse.

The vehicular mixed-reality (MR) Metaverse simulation

environment was constructed employing a 3D model repre-

senting several city blocks within New York City. Geopipe,

Inc. developed this model by leveraging artificial intelli-

gence to generate a digital replica based on photographs

taken throughout the city. The simulation encompasses an

autonomous vehicle navigating a road, accompanied by strate-

gically positioned highway advertisements. Eye-tracking data

were gathered from human participants immersed in the

simulation, utilizing the HMD Eyes addon provided by Pupil

Labs. Subsequent to the simulation, participants completed a

survey aimed at evaluating their subjective level of interest in

each simulated scenario. As the experimental results shown

in Fig. 14, According to the study, as the number of AVs

continues to increase, the supply and demand mechanisms

in the market are changing. Therefore, to improve market

efficiency and total surplus, some mechanisms need to be

adopted to coordinate supply and demand. We investigate the

market mechanism and propose a mechanism based on AIGC

technology to enhance market efficiency. Compared with the

existing Physical-virtual Synchronization auction (PViSA) and

Enhanced Physical-virtual Synchronization auction (EPViSA)

mechanisms [167], [168], the AIGC-empowered mechanism

can double the total surplus under different numbers of AVs.

Lesson Learned: This case study on generative AI-

empowered autonomous driving opens a new paradigm for

the vehicular Metaverse, where data and resources can be

utilized more efficiently. The authors demonstrate the potential

of generative AI models in synthesizing traffic and driving

data to reduce the cost of data collection and labeling. The

proposed MTEPViSA mechanism also provides a solution

to determine and price the resources of roadside units for

remote execution of digital twin tasks, improving market

efficiency and total surplus. However, there are still several

open issues that need to be addressed in this field. Firstly,

it is necessary to investigate the potential negative impacts

of generative AI models in synthesizing traffic and driving

data, such as biases and inaccuracies. Secondly, more research

is needed to develop robust and trustworthy mechanisms for

determining and pricing the resources of RSUs to ensure fair

and efficient allocation of resources. Thirdly, the proposed

mechanism needs to be tested and evaluated in more complex

and varied scenarios to ensure its scalability and applicability

in real-world situations.

D. Blockchain-Powered Lifecycle Management for

AI-Generated Content Products

This case study delves into the application of a blockchain-

based framework for managing the lifecycle of AIGC products

within edge networks. The framework, proposed by the

authors in [146], addresses concerns related to stakehold-

ers, the blockchain platform, and on-chain mechanisms. We

explore the roles and interactions of the stakeholders, discuss

the blockchain platform’s functions, and elaborate on the

framework’s on-chain mechanisms. Within edge networks, the

AIGC product lifecycle encompasses four main stakeholders:

content creators, Edge Service Providers (ESPs), end-users,

and adversaries. The following describes their roles and

interplay within the system:

• Producers: Initiate the AIGC product lifecycle by propos-

ing prompts for ESPs to generate content. They retain

ownership rights and can publish and sell the generated

products.

• ESPs: Possess the resources to generate content for

producers, charging fees based on the time and computing

power used for the tasks.

• Consumers: View and potentially purchase AIGC

products, participating in multiple trading transactions

throughout the product lifecycle.

• Attackers: Seek to disrupt normal operations of AIGC

products for profit through ownership tampering and

plagiarism.

Considering the roles of these stakeholders, the blockchain

platform fulfills two primary functions: providing a traceable

and immutable ledger and supporting on-chain mechanisms.

Transactions are recorded in the ledger and validated by full

nodes using a consensus mechanism, ensuring security and

traceability. ESPs act as full nodes, while producers and

consumers serve as clients.

To address the concerns arising from stakeholder

interactions, the framework employs three on-chain mecha-

nisms [146]:

• Proof-of-AIGC: A mechanism that defends against pla-

giarism by registering AIGC products on the blockchain.

It comprises two phases: proof generation and challenge.
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• Incentive Mechanism: Safeguards the exchange of funds

and AIGC ownership using Hashed Timelock Contracts

(HTLCs).

• Reputation-based ESP Selection: Efficiently schedules

AIGC generation tasks among ESPs based on their

reputation scores.

The Proof-of-AIGC mechanism plays a vital role in main-

taining the integrity of AIGC products. It encompasses two

stages: proof generation and challenge. The objective of proof

generation is to record AIGC products on the blockchain,

while the challenge phase allows content creators to raise

objections against any on-chain AIGC product they deem

infringing upon their creations. If the challenge is successful,

the duplicate product can be removed from the registry, thus

protecting the original creator’s intellectual property rights.

To further strengthen the security of the AIGC ecosystem, a

pledged deposit is necessary to initiate a challenge, preventing

arbitrary challenges that could burden the blockchain. This

process comprises four steps: fetching the proofs, verifying

the challenger’s identity, measuring the similarity between the

original product and the duplicate, and checking the results.

The AIGC economic system necessitates an incentive

mechanism to motivate stakeholders and ensure legitimate

exchanges of funds and ownership. The Incentive Mechanism

rewards ESPs for maintaining the ledger and providing

blockchain services. There are no transaction fees, and block

generators follow a first-come-first-serve strategy. A two-way

guarantee protocol using Hash Time Lock (HTL) is designed

to build mutual trust and facilitate AIGC circulation during

both the generation and trading phases.

The Proof-of-AIGC mechanism tackles issues like owner-

ship manipulation and AIGC plagiarism, while the incentive

mechanism ensures compliance with pre-established contracts.

Furthermore, a reputation-based ESP selection accommodates

ESP heterogeneity, which is crucial for efficient AIGC life-

cycle management. Specifically, within the AIGC lifecycle

management architecture, producers can concurrently interact

with multiple heterogeneous ESPs, necessitating the identifi-

cation of a trustworthy ESP for a specific task. Conventional

approaches involve selecting the most familiar ESP to mini-

mize potential risks, which may result in unbalanced workload

distribution and increased service latency among ESPs. To

address this challenge, a reputation-based ESP selection strat-

egy is incorporated into the framework. This strategy ranks

all accessible ESPs according to their reputation, which is

computed using Multi-weight Subjective Logic (MWSL). The

primary objectives are to assist producers in choosing the most

reliable ESP, distribute the workload evenly across multiple

ESPs, and motivate ESPs to accomplish tasks promptly and

honestly, as a negative reputation impacts their earnings.

Producers identify suitable ESPs by computing the reputa-

tion of all potential ESPs, ranking them based on their current

reputation, and allocating the AIGC generation task to the

ESP with the highest standing. In MWSL, the concept of

“opinion” serves as the fundamental element for reputation

calculation. Local opinions represent the assessments of a

specific producer who has directly interacted with the ESPs,

while recommended opinions are derived from other producers

Fig. 15. The reputation trends of three ESPs (from the perspective of a
random producer) [146].

who have also engaged with the ESPs. To mitigate the effect of

subjectivity, an overall opinion is generated for each producer

by averaging all the acquired recommended opinions. As

producers possess varying degrees of familiarity with ESPs,

the weight of their recommended opinions differs. Reputation

is determined by combining a producer’s local opinion with

the overall opinion. The reputation scheme accomplishes

its design objectives by quantifying the trustworthiness of

ESPs, aiding producers in selecting the most dependable ESP,

reducing service bottlenecks, and incentivizing ESPs to deliver

high-quality AIGC services to maximize their profits.

A demonstration of the AIGC lifecycle management frame-

work is conducted to verify the proposed reputation-based ESP

selection approach [146]. The experimental setup comprises

three ESPs and three producers, with the AIGC services facil-

itated by the Draw Things application. Several parameters are

configured, and producers can employ the Softmax function to

ascertain the probability of choosing each ESP. The reputation

trends of the three ESPs are shown in Fig. 15, with ESP1

attaining the highest rank and remaining stable owing to its

superior service quality. When ESP1 deliberately postpones

AIGC services, its reputation declines sharply, while the

reputations of ESP2 and ESP3 continue to rise. The proposed

reputation strategy effectively measures the trustworthiness

of ESPs, enabling producers to effortlessly discern the most

reliable ESPs and motivating ESPs to operate with integrity.

In reality, the dynamics of ESP selection would become more

complex with an increase in the number of ESPs and produc-

ers. This underlines the potential challenges and importance of

effective reputation management strategies in such expanded

scenarios. The reputation-based selection method’s robustness

and scalability in a larger network is a subject for future work.

The workload of ESPs under different ESP selection methods

is also demonstrated in Fig. 16. Traditional methods lead to

uneven workloads and extended service latencies. Conversely,

the proposed reputation-based method effectively balances the

workload among ESPs. This is achieved by enabling producers

to quantitatively assess the trustworthiness of ESPs without

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 24,2024 at 23:43:21 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: UNLEASHING THE POWER OF EDGE-CLOUD GENERATIVE AI IN MOBILE NETWORKS 1149

Fig. 16. The total number of assigned tasks of three ESPs [146].

solely relying on their experiential judgment. The effectiveness

of this approach in a network with a larger number of ESPs

is an aspect that invites further exploration.

Lesson Learned: The case study on blockchain-powered

lifecycle management for AI-generated content products high-

lights the potential of a blockchain-based framework in

addressing key concerns like stakeholder interactions, platform

functionality, and on-chain mechanisms. The primary lessons

learned emphasize the importance of defining clear stakeholder

roles, implementing robust mechanisms such as Proof-of-

AIGC and Incentive Mechanism to ensure system integrity,

and employing a reputation-based ESP selection scheme to

balance workload and encourage honest performance. These

insights collectively contribute to the effective management

of the AIGC product lifecycle within edge networks. Future

research in blockchain-powered lifecycle management for AI-

generated content products can explore several promising

directions:

• Enhancing the efficiency and scalability of the blockchain

platform to handle an increased number of transactions

and support a growing AIGC ecosystem might be critical.

• Refining the reputation-based ESP selection scheme to

account for more sophisticated factors, such as task com-

plexity, completion time, and user feedback, could lead to

more accurate and dynamic trustworthiness evaluations.

• Incorporating privacy-preserving techniques to protect

sensitive data in AIGC products and user information

without compromising the transparency and traceability

of blockchain technology would be valuable.

VI. IMPLEMENTATION CHALLENGES

IN MOBILE AIGC NETWORKS

When providing AIGC services, a significant amount of

computational and storage resources are required to run

the generative AI model. These computation and storage-

intensive services pose new challenges to existing mobile edge

computing infrastructure. As discussed in Section III-C, a

cloud-edge-mobile collaborative computing architecture can

be implemented to provide AIGC services. However, several

critical implementation challenges must be addressed to

improve resource utilization and the user experience.

A. Edge Resource Allocation

AIGC service provisioning based on edge intelligence is

computationally and communication-intensive for resource-

constrained edge servers and mobile devices [169], [170].

Specifically, AIGC users send service allocation requests

to edge services. Upon receiving these AIGC requests,

edge servers perform the AIGC tasks and deliver the out-

put to users [171]. During this AIGC service provisioning

interaction, model accuracy and resource consumption are the

most common metrics. Consequently, significant efforts are

being made to coordinate mobile devices and edge servers

for deploying generative AI at mobile edge networks. As

summarized in Table IV, several Key Performance Indicators

(KPIs) for edge resource allocation in AIGC networks are

presented below.

Here are several KPIs for edge resource allocation in AIGC

networks.

• Model accuracy: In a resource-constrained edge comput-

ing network, a key issue when allocating edge resources

is optimizing the accuracy of AI services while fully uti-

lizing network resources [179]. Besides objective image

recognition and classification tasks, AI models are also

based on the content’s degree of personalization and

adaptation. Thus, optimizing AIGC content networks

may be more complex than traditional optimization since

personalization and customization make evaluating model

accuracy more unpredictable.

• Bandwidth utilization: While providing AIGC services,

the edge server must maximize its channel utilization to

ensure reliable service in a high-density edge network. To

allocate its bandwidth resources more efficiently, the edge

server must control channel access to reduce interference

between user requests and maximize the quality of its

AIGC service to attract more users.

• Edge resource consumption: Deploying AIGC services

in edge networks requires computationally intensive AI

training and inference tasks that consume substantial

resources. Due to the heterogeneous nature of edge

devices, edge services consume resources in generating

appropriate AIGC while processing users’ requests [180].

Deployment of AIGC services necessitates continuous

iteration to meet actual user needs, as generation results

of generative AI models are typically unstable. This

constant AIGC service provisioning at edge servers leads

to significant resource consumption.

Obtaining a balance between model accuracy and resource

consumption can be challenging in resource-constrained edge

computing networks. One potential strategy is to adjust the

trade-off between model accuracy and resource consump-

tion according to the needs of the users. For example,

in some cases, a lower level of model accuracy may be

acceptable if it results in faster response times or lower

resource consumption. Another approach is to use transfer

learning, which involves training an existing model on new
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TABLE IV
SUMMARY OF SCENARIOS, PROBLEMS, BENEFITS/CHALLENGES, AND MATHEMATICAL TOOLS OF EDGE RESOURCE ALLOCATION

data to improve accuracy while requiring fewer computational

resources. Model compression techniques can also be used

to reduce the size of the AI model without significantly

impacting accuracy. However, it is important to note that

these techniques may not be applicable in all scenarios, as

personalization and customization can make evaluating model

accuracy more unpredictable. Deployment of AIGC services

necessitates continuous iteration to meet actual user needs, as

generation results of generative AI models are typically unsta-

ble. Due to the heterogeneous nature of edge devices, edge

services consume resources in generating appropriate AIGC

while processing users’ requests. This constant AIGC service

provisioning at edge servers leads to significant resource

consumption.

To provide intelligent applications at mobile edge networks,

considerable effort should focus on the relationship between

model accuracy, networking, communication, and computation

resources at the edge. Simultaneously, offering AIGC services

is challenging due to the dynamic network environment and

user requirements at mobile edge networks. The authors

in [173] propose a threshold-based approach for reducing

traffic at edge networks during collaborative learning. By con-

sidering computation resources, the authors in [172] examine

the distributed ML problem under communication, computa-

tion, storage, and privacy constraints. Based on the theoretical

results obtained from the distributed gradient descent conver-

gence rate, they propose an adaptive control algorithm for

distributed edge learning to balance the trade-off between local

updates and global parameter aggregations. The experimental

results demonstrate the effectiveness of their algorithm under

various system settings and data distributions.

Generative AI models often require frequent fine-tuning and

retraining for newly generated data and dynamic requests in

non-stationary mobile edge networks [181]. Due to limited

storage resources at edge servers and the different customiza-

tion demands of AIGC providers, the AIGC service placement

problem is investigated in [174]. To minimize total time

and energy consumption in edge AI systems, the AI service

placement and resource allocation problem is formulated as

an MINLP. In the optimization problem, AI service place-

ment and channel allocation are discrete decision variables,

while device and edge frequencies are continuous variables.

However, solving this problem is not trivial, particularly in

large-scale network environments. Thus, the authors propose

an alternating direction method of multipliers (ADMM) to

reduce the complexity of solving this problem. The experimen-

tal results demonstrate that this method achieves near-optimal

system performance while the computational complexity

grows linearly as the number of users increases. Moreover,

when edge intelligence systems jointly consider AI model

training and inference [175], the ADMM method can optimize

edge resources. Additionally, the authors [176] explore how

to serve multiple AI applications and AI models at the edge.

They propose EdgeAdapter, as illustrated in Fig. 17, to balance

the triple trade-off between inference accuracy, latency, and

resource consumption. To provide inference services with
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Fig. 17. Dynamic AIGC application configuration and generative AI model
compression for serving AIGC services in mobile AIGC networks.

long-term profit maximization, they first analyze the problem

as an NP-hard problem and then solve it with a regularization-

based online algorithm.

In mobile AIGC networks, an effective architecture for

providing AIGC services is to partition a large generative AI

model into multiple smaller models for local execution [32].

In [177], the authors consider a multi-user scenario with

massive IoT [182] devices that cooperate to support an

intelligent application collaboratively. Although partitioning

large ML models and distributing smaller models to mobile

devices for collaborative execution is feasible, the model

distribution and result aggregation might incur extra latency

during model training and inference. Additionally, the formu-

lated optimization problem is complex due to its numerous

constraints and vast solution space. To address these issues, the

authors propose an alternative iterative optimization to obtain

solutions in polynomial time. Furthermore, AIGC services

allow users to input their preferences into generative AI

models. Therefore, to preserve user privacy among multiple

users during collaborative model training and inference [183],

the authors in [178] investigate the communication efficiency

issues of decentralized edge intelligence enabled by FL. In

the FL network, thousands of mobile devices participate

in model training. However, selecting appropriate cluster

heads for aggregating intermediate models can be challenging.

Decentralized learning approaches can improve reliability

while sacrificing some communication performance, unlike

centralized learning with a global controller. A two-stage

approach can be adopted in decentralized learning scenarios to

improve the participation rate. In this approach, evolutionary

game-based allocation can be used for cluster head selection,

and DL-based auction effectively rewards model owners.

B. Task and Computation Offloading

In general, executing generative AI models that generate

creative and valuable content necessitates substantial computa-

tional resources, which is impractical for mobile devices with

limited resources [25], [190]. Offering high-quality and low-

latency AIGC services is challenging for mobile devices with

low processing power and limited battery life. Fortunately,

AIGC users can offload the tasks and computations of gen-

erative AI models over the RAN to edge servers located

in proximity to the users. This alleviates the computational

burden on mobile devices.

As listed in Table V, several KPIs are specifically relevant

to computation offloading in mobile AIGC networks:

• Service latency: Service latency refers to the delay asso-

ciated with data input and retrieval as well as the model

inference computations that users perform to generate

AIGC [191]. By offloading AIGC tasks from mobile

devices, such as fine-tuning and inference, to edge servers

for execution, the total latency in mobile AIGC networks

can be reduced. Unlike local execution of the generative

AI model, offloading AI tasks to the edge server for

execution introduces additional latency when transmitting

personalized instructions and downloading AIGC content.

• Reliability: Reliability evaluates users’ success rate in

obtaining personalized data accurately. On the one hand,

when connecting to the edge server, users may experience

difficulty uploading the requested data to edge servers

or downloading the results from servers due to dynamic

channel conditions and wireless network instability. On

the other hand, the content generated by the generative

AI model may not fully meet the needs of AIGC users

in terms of personalization and customization features.

Unsuccessful content reception and invalid content affect

the AIGC network’s reliability.

When implementing cloud-edge collaborative training and

fine-tuning for generative AI models [192], it is important to

consider specific algorithms or techniques that enable effective

collaboration between cloud and edge servers [170], [193].

For example, FL and distributed training approaches can

facilitate the collaboration process by allowing edge servers

to train models locally and then send the updated weights

to the cloud server for aggregation [194]. The division of

responsibilities between cloud and edge servers can also

greatly affect the overall efficiency and performance of the

generative AI models. Therefore, it is crucial to discuss and

implement appropriate schemes for determining which tasks

are offloaded to the edge servers and which are performed

on the cloud server. To provide AIGC services in edge

intelligence-empowered IoT, offloading ML tasks to edge

servers for remote execution is a promising approach for

computation-intensive AI model inference [195]. For instance,

in Fig 18, multiple lightweight ML models can be loaded into

IoT devices, while large-scale ML models can be installed and

executed on edge servers [29]. Heterogeneous generative AI

models can be deployed on mobile devices and edge servers

according to their resource demands and service require-

ments [196]. However, the multiple attributes of ML tasks,

such as accuracy, inference latency, and reliability, render

the offloading problem of AIGC highly complex. Therefore,

the authors in [184] propose an ML task offloading scheme

to minimize task execution latency while guaranteeing infer-

ence accuracy. Considering error inference leading to extra

delays in task processing, they initially model the inference

process as M/M/1 queues, which are also applicable to the
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SUMMARY OF SCENARIOS, PROBLEMS, BENEFITS/CHALLENGES, AND MATHEMATICAL TOOLS OF TASK AND COMPUTATION OFFLOADING

AIGC service process. Furthermore, the optimization problem

of ML task execution is formulated as a Mixed-Integer

Nonlinear Programming (MINLP) to minimize provisioning

delay, which can be adopted in the inference process of AIGC

services. To extend the deterministic environment in [184]

into a more general environment, the authors in [185] first

propose an adaptive translation mechanism to automatically

and dynamically offload intelligent IoT applications. Then,

they make predictive offloading decisions using a random

forest regression model. Their experiments demonstrate that

the proposed framework reduces response times for complex

applications by half. Such ML methods can also be used

to analyze AIGC network traffic to improve service delivery

efficiency and reliability.

The success of edge-mobile collaboration for AIGC services

is dependent on several factors, including the type of service,

user characteristics, computational resources, and network

conditions [4], [197], [198]. For instance, a real-time AIGC

service may have different latency requirements compared

to an offline service. Similarly, the required computational

resources may vary depending on the model’s complex-

ity [199]. Additionally, the user profile, including location

and device type, may affect the selection of edge servers

for task offloading. Furthermore, network conditions such as

bandwidth and packet loss rate can impact the reliability and

latency of the service. Therefore, it is necessary to implement

effective resource allocation and task offloading schemes

to ensure high-quality and low-latency AIGC services in

dynamic and diverse environments. Cloud-edge collaborative

Fig. 18. Model partitioning in mobile AIGC networks. The generative AI
models of mobile devices can be split and full or partial of them can be
offloaded to edge servers for remote execution.

intelligence enables local tasks to be offloaded to edge and

cloud servers. AIGC can benefit from cloud-edge intelligence,

as edge servers can provide low-latency AIGC services while

cloud servers can offer high-quality AIGC services. The

authors in [32] develop a scheme called Neurosurgeon to select

the optimal partitioning point based on model architectures,

hardware platforms, network conditions, and load information

at the servers to automatically partition the computation of ten-

sors of DNNs between cloud and edge servers. Furthermore,

the authors in [200] find that the layered approach can reduce
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the number of messages transmitted between devices by up

to 97% while only decreasing the accuracy of models by

a mere 3%. However, multiple AIGC services should be

considered in cloud-edge collaborative intelligence that differs

in types (e.g., text, images, and videos) and their diverse

quality of service (QoS) requirements [201]. In multi-task

parallel scheduling [31], the genetic algorithm can also be used

to make real-time model partitioning decisions. The authors

in [186] propose a cost-driven strategy for AI application

offloading through a self-adaptive genetic algorithm based on

particle swarm optimization.

In industrial edge intelligence, where edge intelligence is

embedded in the industrial IoT [187], [202], [203], [204],

offloading computation tasks to edge servers is an efficient

solution for self-organizing, autonomous decision-making, and

rapid response throughout the manufacturing lifecycle, which

is similarly required by mobile AIGC networks. Therefore,

efficiently solving task assignment problems is crucial for

effective generative AI model inference. However, the

coexistence of multiple tasks among devices makes system

response slow for various tasks. For example, text-based and

image-based AIGC may coexist on the same edge device.

As one solution, in [187], the authors propose a coding

group evolution algorithm to solve large-scale task assignment

problems, where tasks span the entire lifecycle of various

products, including real-time monitoring, complex control,

product structure computation, multidisciplinary cooperation

optimization, and production process computation. Likewise,

the AIGC lifecycle includes data collection, labeling, model

training and optimization, and inference. Furthermore, a sim-

ple grouping strategy is introduced to parallel partition the

solution space and accelerate the evolutionary optimization

process. In contrast to VM-level adaptation to specific edge

servers [205], the authors propose application-level adaptation

for generic servers. The lighter adaptation framework in [188]

further improves transmission time and user data privacy

performance, including offloading and data/code recovery to

generic edge servers.

Ensuring dependable task offloading is crucial in providing

superior AIGC services with minimal latency in edge comput-

ing. For instance, data transmission redundancy can enhance

dependability by transmitting data via multiple pathways to

mitigate network congestion or failures. By incorporating these

techniques, task offloading dependability in edge computing

can be enhanced, thereby leading to more efficient and effec-

tive AIGC services. Most intelligent computing offloading

solutions converge slowly, consume significant resources, and

raise user privacy concerns [206], [207]. The situation is

similar when leveraging learning-based approaches to make

AIGC service offloading decisions. Consequently, the authors

enhance multi-user QoE [208] for cooperative edge intel-

ligence in [189] with federated multi-agent reinforcement

learning. They formulate the cooperative offloading problem

as a Markov Decision Process (MDP). The state is com-

posed of current tasks, local loads, and edge loads. Learning

agents select task processing positions to maximize multi-

user QoE, which simultaneously considers service latency,

energy consumption, task drop rate, and privacy protection.

Fig. 19. An overview of edge caching in mobile AIGC networks. By caching
the generative AI model on the edge servers, the latency of AIGC services can
be reduced and the network congestion in the core network can be reduced.

Similarly, AIGC service provisioning systems can easily adopt

the proposed solution for maximizing QoE in AIGC services.

C. Edge Caching

Edge caching is the delivery of low-latency content and

computing services using the storage capacity of edge base

stations and mobile devices [214], [215]. As illustrated in

Fig. 19, in mobile AIGC networks, users can request AIGC

services without accessing cloud data centers by caching

generative AI models in edge servers and mobile devices.

Unlike the cache in traditional content distribution networks,

the generative AI model cache also requires computing

resources to support its execution. Additionally, the generative

AI model needs to gather user historical requests and profiles

in context to provide personalized services during the AIGC

service process. As shown in Table VI, here are several KPIs

for edge caching in AIGC networks:

• Model access delay: Model access latency is an important

indicator of AIGC service quality. The latency is lowest

when the generative AI model is cached in the mobile

device [216]. The model access latency must also be

calculated considering the delay in the wireless com-

munication network when the edge server provides the

generative AI model. Finally, the core network latency

must be considered when the cloud provides the AIGC

service.

• Backhaul traffic load: The load on the backhaul traffic is

significantly reduced, as the requests and results of AIGC

services do not need to go through the core network when

the generative AI model is cached in the mobile edge

network.

• Model hit rate: Similar to content hit rate, the model hit

rate is an important metric for generative AI models in

the edge cache. It can be used for future model exits and

loading during model replacement.

As there is sufficient infrastructure and resources in the

cloud computing infrastructure, the generative AI model can

be fully loaded into the GPU memory for real-time service

requests. In contrast, the proposed EdgeServe in [209] keeps
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SUMMARY OF SCENARIOS, PROBLEMS, PERFORMANCE METRICS, AND MATHEMATICAL TOOLS FOR EDGE CACHING IN AIGC NETWORKS

models in main memory or GPU memory so that they can be

effectively managed or used at the edge. Similar to traditional

CDNs, the authors use model execution caches at edge servers

to provide immediate AI delivery. In detail, there are mainly

three challenges in generative AI model caching:

• Resource-constraint edge servers: Compared to the

resource-rich cloud, the resources of servers in the

edge network, such as GPU memory, are limited [217].

Therefore, caching all generative AI models on one edge

server is infeasible.

• Model-missing cost: When the mobile device user

requests AIGC, the corresponding model is missed if the

generative AI model used to generate the AIGC is not

cached in the current edge server [210]. In contrast to the

instantly available AIGC service, if the generative AI

model is missing, the edge server needs to send a model

request to the cloud server and download the model,

which causes additional overhead in terms of bandwidth

and latency.

• Functionally equivalent models: The number of genera-

tive AI models is large and increases depending on the

number of detailed tasks [218]. Meanwhile, AI models

have similar functions in different applications, i.e., func-

tionally equivalent. For example, for image recognition

tasks, a large number of models with different archi-

tectures are proposed to recognize features in images,

which have different model architectures and computation

requirements.

To address these challenges, the authors in [209] formulate

the problem of edge modeling as determining which DL

models should be preloaded into memory and which should

be discarded when the memory is full while satisfying the

requirements of inferential response times. Fortunately, this

edge model caching problem can be solved using existing

cache replacement policies for edge content caching. The

accuracies and computation complexities of DL models make

this optimization problem more complicated than conventional

edge caching problems. Similarly, for resource-constrained

edge servers, the generative AI model can be dynamically

deployed and replaced. However, an effective caching algo-

rithm for loading and unloading the generative AI models to

maximize the hit rate has not yet been investigated.

As the capabilities of AI services continue to grow and

diversify, multiple models need to be deployed simultaneously

at the edge to achieve various tasks, including classification,

recognition, text/image/video generation [219]. Especially in

mobile AIGC networks, multiple base models need to work

together to generate a large amount of multimodal synthetic

data. Many models play a synergistic role in the AIGC services

at the edge of the network, while the support of multiple

models also poses a challenge to the limited GPU memory

of the edge servers. Therefore, the authors in [210] propose a

model-level caching system with an eviction policy according

to model characteristics and workloads. The model eviction

policy is based on model utility calculation from cache miss

penalty and the number of requests. This model-aware caching

approach introduces a new direction for providing AIGC

services at mobile edge networks with heterogeneous requests.

Experimental results show that compared to the non-penalty-

aware eviction policy, the model load delay can be reduced

by 1/3. This eviction policy can also be adopted in the problem

of which unpopular generative AI models should be unloaded.

At mobile AIGC networks, not only the generative AI

model needs to be cached, but also the AIGC requests and
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results can be cached to reduce the latency of service requests

in AIGC networks. To this end, the authors devise a principled

cache design to accelerate the execution of CNN models

by exploiting the temporal locality of video for continuous

vision tasks to support mobile vision applications [220]. The

authors in [211] propose a principled cache scheme, named

DeepCache, to retrieve reusable results and reuse them within

a fine-grained CNN by exploiting the temporal locality of

the mobile video stream. In DeepCache, mobile devices do

not need to offload any data to the cloud and can support

the most popular models. Additionally, without requiring

developers to retrain models or tune parameters, DeepCache

caches inference results for unmodified CNN models. Overall,

DeepCache can reduce energy consumption by caching content

to reduce model inference latency while sacrificing a small

fraction of model accuracy.

In serverless computing for edge intelligence, mobile

devices can call functions of AIGC services at edge servers,

which is more resource-efficient compared to container and

virtual machine (VM)-based AIGC services. Nevertheless,

such functions suffer from the cold-start problem of initializing

their code and data dependencies at edge servers. Although

the execution time of each function is usually short, ini-

tialization, i.e., fetching and installing prerequisite libraries

and dependencies before execution, is time-consuming [221].

Fortunately, the authors in [212] show that the caching-based

keep-alive policy can be used to address the cold-start problem

by demonstrating that the keep-alive function is equivalent

to caching. Finally, to balance the trade-off between server

memory utilization and cold-start overhead, a greedy dual-

based caching algorithm is proposed.

Frequently, a large-scale generative AI model can be

partitioned into multiple computing functions that can be

efficiently managed and accessed during training, fine-tuning,

and inference. FL models can be cached on edge servers to

facilitate user access to instances and updates, thus addressing

user privacy concerns [222], [223]. For example, the authors

in [213] propose a knowledge cache scheme for FL in which

participants can simultaneously minimize training delay and

training loss according to their preference. Their insight is that

there are two stimulations for caching knowledge for FL [224]:

i) training data sufficiency and ii) connectivity stability.

Experimental results show that the proposed preference-driven

caching policy, based on the preferences (i.e., demands or

desires for global models) of participants in FL, can outper-

form the random policy when user preferences are intense.

Therefore, preference-based generative AI model caching

should be extensively investigated for providing personalized

and customized AIGC services at edge servers.

D. Mobility Management

Mobile edge intelligence for the Internet of Vehicles and

Unmanned Aerial Vehicle (UAV) networks relies on effective

mobility management solutions [201], [232], [233], [234]

to provide mobile AIGC services. Furthermore, UAV-based

AIGC service distribution offers advantages such as ease of

deployment, flexibility, and extensive coverage for enhanced

Fig. 20. An overview of mobility management in mobile AIGC networks.
The coverage of the mobile AIGC network will be significantly enhanced by
UAV processing the user’s server request and providing AIGC services.

edge intelligence [235], [236]. Specifically, UAVs, with their

line-of-sight communication links, can extend the reach of

edge intelligence [237]. For example, flexible UAVs equipped

with AIGC servers enable users to access AIGC services with

ultra-low latency and high reliability, especially when fixed-

edge servers are often overloaded in hotspot areas or expensive

to deploy in remote areas, as illustrated in Fig. 20. In addition,

UAV-enabled edge intelligence can be utilized to implement

mobile AIGC content and service delivery.

As summarized in Table VII, here are several KPIs for

mobility management in AIGC networks:

• Task accomplishment ratio: The provisioning of AIGC

services at mobile edge networks must consider the

dynamic nature of users [238]. As a result, services must

be completed before users leave the base station. To

measure the effectiveness of mobility management in

AIGC networks, the task completion rate can be used.

• Coverage enhancement: Vehicles and UAVs can serve as

reconfigurable base stations to enhance the coverage of

mobile AIGC networks [239], providing generative AI

models and content to users anywhere and anytime.

In vehicular networks, intelligent applications, such as

AIGC-empowered navigation systems, are reshaping existing

transportation systems. In [225], the authors propose a joint

vehicle-edge inference framework to optimize energy con-

sumption while reducing the execution latency of DNNs. In

detail, vehicles and edge servers determine an optimal partition

point for DNNs and dynamically allocate resources for DNN

execution. They propose a chemical reaction optimization-

based algorithm to accelerate convergence when solving the

resource allocation problem. This framework offers insights

for implementing mobile AIGC networks, where vehicles

can collaborate with base stations to provide real-time AIGC

services based on DNNs during their movement.

AIGC applications require sufficient processing and

memory resources to perform extensive AIGC services [240],

[241], [242], [243]. However, resource-constrained vehicles

cannot meet the QoS requirements of the tasks. The authors

in [226] propose a distributed scheduling framework that
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develops a priority-driven transmission scheduling policy to

address the dynamic network topologies of vehicle networks

and promote vehicle edge intelligence. To meet the various

QoS requirements of intelligent tasks, large-volume tasks

can be partitioned and sequentially uploaded. Additionally,

the impact of vehicle motion on task completion time and

edge server load balancing can be independently handled by

intelligent task processing requests. The effectiveness of the

proposed framework is demonstrated in single-vehicle and

multi-vehicle environments through simulation and deploy-

ment experiments. To facilitate smart and green vehicle

networks [227], the real-time accuracy of AI tasks, such as

generative AI model inference, can be monitored through

on-demand model training using infrastructure vehicles and

opportunity vehicles.

The heterogeneous communication and computation

requirements of AIGC services in highly dynamic,

time-varying Internet of Vehicles (IoV) warrant further

investigation [244], [245], [246], [247]. To dynamically

make transmission and offload decisions, the authors

in [228] formulate a Markov decision process for time-

varying environments in their joint communication and

computation resource allocation strategy. Finally, they develop

a quantum-inspired reinforcement learning algorithm, in which

quantum mechanisms can enhance learning convergence

and performance. The authors in [229] propose a stacked

autoencoder to capture spatial and temporal correlations to

combine road traffic management and data network traffic

management. To reduce vehicle energy consumption and

learning delay, the proposed learning model can minimize the

required signal traffic and prediction errors. Consequently, the

accuracy of AIGC services based on autoencoder techniques

can be improved through this management framework.

With UAV-enhanced edge intelligence, UAVs can serve as

aerial wireless base stations, edge computing servers, and edge

caching providers in mobile AIGC networks [248], [249]. To

demonstrate the performance of UAV-enhanced edge intelli-

gence while preserving user privacy at mobile edge networks,

the authors in [230] use UAV-enabled FL as a use case.

Moreover, the authors suggest that flexible switching between

compute and cache services using adaptive scheduling UAVs

is a topic for future research. Therefore, flexible AIGC service

provisioning and UAV-based AIGC delivery are essential for

satisfying real-time service requirements and reliable genera-

tion. In this regard, the authors in [231] propose a visually

assisted positioning solution for UAV-based AIGC delivery

services where GPS signals are weak or unstable. Specifically,

knowledge distillation is leveraged to accelerate inference

speed and reduce resource consumption while ensuring satis-

factory model accuracy.

E. Incentive Mechanism

As suitable incentive mechanisms are designed, more edge

nodes participate in and contribute to the AIGC services [146],

[254], [255], [256]. This increases the computational capacity
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of the system. In addition, the nodes are motivated to earn

rewards by providing high-quality services. Thus, the overall

quality of AIGC services is improved. Finally, nodes are

encouraged to engage in secure operations without secu-

rity concerns by recording resource transactions through the

blockchain.

As listed in Table VIII, here are several KPIs for incentive

mechanisms in AIGC networks:

• Social welfare: AIGC’s social welfare is the sum of the

value of AIGC’s services to the participants of the current

network. Higher social welfare means that more AIGC

users and AIGC service providers are participating in the

AIGC network and providing high-value AIGC services

within the network.

• Revenue: Providers of AIGC use a large amount of

computing and energy resources to provide AIGC, which

may be offset by revenue from AIGC users. The higher

the revenue, the more the AIGC service provider can

be motivated to improve the AIGC service to a higher

quality.

• Economic properties: In AIGC networks, AIGC providers

and users should be risk-neutral, which indicates the

incentive mechanisms should satisfy economic proper-

ties, e.g., individually rational, incentive compatible, and

budget balance [257].

While edge learning has several promising benefits, the

learning time for satisfactory performance and appropriate

monetary incentives for resource providers are nontrivial

challenges for AIGC. In [250], [258], [259], where mobile

devices are connected to the edge server, the authors design the

incentive mechanism for efficient edge learning. Specifically,

mobile devices collect data and train private models locally

with computational resources based on the price of edge

servers in each training round. Then, the updated models are

uploaded to the edge server and aggregated to minimize the

global loss function. Furthermore, the authors in [260] not

only analyze the optimal pricing strategy but also use Deep

Reinforcement Learning to learn the pricing strategy to obtain

the optimal solution in each round in a dynamic environment

and with incomplete information. In the absence of prior

knowledge, the DRL agent can learn from experience to find

the optimal pricing strategy that balances payment and training

time. To extend [250] to long-term incentive provisioning, the

authors in [251] propose a long-term incentive mechanism

for edge learning frameworks. To obtain the optimal short-

term and long-term pricing strategies, the hierarchical deep

reinforcement learning algorithm is used in the framework to

improve the model accuracy with budget constraints.

In the process of fine-tuning the AIGC edge, the incen-

tives described above can be used to balance the time and

adaptability of the fine-tuned generative AI model. In pro-

viding incentives to AIGC service providers, the quality of

AIGC services also needs to be considered in the incentive

mechanism. The authors in [252] propose a quality-aware FL

framework to prevent inferior model updates from degrading

the global model quality. Specifically, based on an AI model

trained from historical learning results, the authors estimate the

learning quality of mobile devices. To motivate participants to

contribute high-quality services, the authors propose a reverse

auction-based incentive mechanism under the recruitment

budget of edge servers, taking into account the model quality.

Finally, the authors propose an algorithm for integrating the

model quality into the aggregation process and for filtering

non-optimal model updates to further optimize the global

learning model.

Traditionally, resource utilization is inefficient, and trading

mechanisms are unfair in cloud-edge computing power trad-

ing [261] for AIGC services. To address this issue, the authors

in [253] develop a general trading framework for computing

power grids. As illustrated in Fig. 22, the authors solve the

problem of the under-utilization of computing power with AI

consumers in this framework. The computing-power trading

problem is first formulated as a Stackelberg game and then

solved with a profit-driven multi-agent reinforcement learning

algorithm. Finally, a blockchain is designed for transaction

security in the trading framework. In mobile AIGC networks
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Fig. 21. Federated Learning in mobile AIGC networks, including the local
model training at mobile devices, global aggregation at edge servers, and
cross-server model trading.

with multiple AIGC service providers and multiple AIGC

users, the Stackelberg game and its extension can still pro-

vide a valid framework for equilibrium analysis. In addition,

multi-agent reinforcement learning also learns the equilibrium

solution of the game by exploration and exploitation in the

presence of incomplete information about the game.

F. Security and Privacy

Mobile AIGC networks leverage a collaborative computing

framework on the cloud side to provide AIGC services,

utilizing a large amount of heterogeneous data and computing

power [262], [263], [264], [265]. When mobile users are

kind, AIGC can greatly enhance their creativity and efficiency.

However, malicious users can also utilize AIGC for destructive

purposes, posing a threat to users in mobile edge networks. For

example, AI-generated text can be used by malicious users to

complete phishing emails, thus compromising the security and

privacy of normal users [11]. To ensure secure AIGC services,

providers must choose trusted AIGC solutions and securely

train AI models while providing secure hints and answers to

AIGC service users [266].

1) Privacy-Preserving AIGC Service Provisioning: During

the lifecycle of providing AIGC services, privacy information

in large-scale datasets and user requests needs to be

kept secure to prevent privacy breaches. In mobile AIGC

networks, the generation and storage of data for genera-

tive AI model training occur at edge servers and mobile

devices [267], [268], [269]. Unlike resourceful cloud data

centers, edge and mobile layers have limited defense capacities

against various attacks. Fortunately, several privacy-preserving

distributed learning frameworks, such as FL [270], [271], have

been proposed to empower privacy-preserving generative AI

model fine-tuning and inference at mobile AIGC networks. In

preserving user privacy in AIGC networks, FL is a distributed

ML approach that allows users to transmit local models instead

of data during model training [204], [272], [273]. Specifically,

as illustrated in Fig. 21, there are two major approaches to

employing FL in AIGC networks

• Secure aggregation: While FL is being learned, the

mobile devices send local updates to edge servers for

global aggregation. During global aggregation, authen-

ticated encryption allows the use of secret sharing

mechanisms.

• Differential privacy: Differential privacy can prevent FL

servers from identifying the owners of a local update.

Differential privacy is similar to secure aggregation in

that it prevents FL servers from identifying owners of

local updates.

Therefore, in [274], the authors propose a differential private

federated generative model to synthesize representative exam-

ples of private data. With guaranteed privacy, the proposed

model can solve many common data problems without human

intervention. Moreover, in [275], the authors propose an

FL-based generative learning scheme to improve the efficiency

and robustness of GAN models. The proposed scheme is

particularly effective in the presence of varying parallelism and

highly skewed data distributions. To find an inherent cluster

structure in users’ data and unlabeled datasets, the authors pro-

pose in [276] the unsupervised Iterative Federated Clustering

algorithm, which uses generative models to deal with the

statistical heterogeneity that may exist among the participants

of FL. Since the centralized FL frameworks in [275], [276]

might raise security concerns and risk single-point failure,

the authors propose in [277] a decentralized FL framework

based on a ring topology and deeply generated models. On

the one hand, a method for synchronizing the ring topology

can improve the communication efficiency and reliability of

the system. On the other hand, generative models can solve

data-related problems, such as incompleteness, low quality,

insufficient quantity, and sensitivity. Finally, an InterPlanetary

File System (IPFS)-based data-sharing system is developed to

reduce data transmission costs and traffic congestion.

2) Secure AIGC Service Provisioning: Given the numerous

benefits of provisioning AIGC services in mobile and edge lay-

ers, multi-tier collaboration among cloud servers, edge servers,

and mobile devices enables ubiquitous AIGC service provision

by heterogeneous stakeholders [151], [278], [279], [280]. A

trustworthy collaborative AIGC service provisioning frame-

work must be established to provide reliable and secure AIGC

services. Compared to central cloud AIGC providers, mobile

and edge AIGC providers can customize AIGC services by

collaborating with many user nodes while distributing data

to different devices [281]. Therefore, a secure access control

mechanism is required for multi-party content streaming to

ensure privacy and security. However, the security of AIGC

transmission cannot be ensured due to various attacks on

mobile AIGC networks [282]. Fortunately, blockchain [282],

[283], [284], [285], based on distributed ledger technologies,

can be utilized to explore a secure and reliable AIGC ser-

vice provisioning framework and record resource and service

transactions to encourage data sharing among nodes, forming

a trustworthy and active mobile AIGC ecosystem [286]. As

illustrated in Fig. 22, there are several benefits that blockchain

brings to mobile AIGC networks [26]:

• Computing and Communication Management:

Blockchain enables heterogeneous computing and
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Fig. 22. Blockchain in mobile AIGC networks [253], including the AIGC
application layer, blockchain layer, and computing-power network layers, for
provisioning AIGC services.

communication resources to be managed securely, adap-

tively, and efficiently in mobile AIGC networks [287].

• Data Administration: By recording AIGC resource and

service transactions in blockchain with smart contracts,

data administration in mobile AIGC networks is made

profitable, collaborative, and credible.

• Optimization: During optimization in AIGC services,

the blockchain always provides available, complete, and

secure historical data for input to optimization algorithms.

For instance, the authors in [288] propose an edge intelligence

framework based on deep generative models and blockchain.

To overcome the accuracy issue of the limited dataset, GAN

is leveraged in the framework to synthesize training sam-

ples. Then, the output of this framework is confirmed and

incentivized by smart contracts based on the proof-of-work

consensus algorithm. Furthermore, the multimodal outputs of

AIGC can be minted as NFTs and then recorded on the

blockchain. The authors in [289] develop a conditional genera-

tive model to synthesize new digital asset collections based on

the historical transaction results of previous collections. First,

the context information of NFT collections is extracted based

on unsupervised learning. Based on the historical context, the

newly minted collections are generated based on future token

transactions. The proposed generative model can synthesize

new NFT collections based on the contexts, i.e., the extracted

features of previous transactions.

G. Lessons Learned

1) Multi-Objective Quality of AIGC Services: In mobile

AIGC networks, the quality of AIGC services is determined

by several factors, including model accuracy, service latency,

energy consumption, and revenue. Consequently, AIGC ser-

vice providers must optimally allocate edge resources to

satisfy users’ multidimensional quality requirements for AIGC

services [176]. Moreover, the migration of AIGC tasks and

computations can enhance the reliability and efficiency of

AIGC services. Notably, dynamic network conditions in the

edge network necessitate users to make online decisions

to achieve load balancing and efficient use of computing

resources. A variety of methodologies are proposed, enhanc-

ing the multi-objective quality of AIGC services within

mobile edge networks [153]. The techniques encompass

multi-objective optimization among QoS, QoE, latency, and

resource consumption. The primary objective of designing

these strategies is to optimize key parameters such as accuracy,

latency, resource consumption, and user satisfaction. The

benefits including heightened performance and superior user

experience, are attained, albeit at the potential cost of an

increase in complexity, resource consumption, and potential

privacy issues. Attaining high-quality AIGC services requires

proper considerations and practices to address the challenges

discussed above, meet the quality requirements of multiple

objectives, and improve user satisfaction and service quality.

2) Edge Caching for Efficient Delivery of AIGC Services:

Edge caching plays a pivotal role in the efficient deliv-

ery of AIGC services in mobile AIGC networks. Tackling

the challenges of constrained-memory edge servers, model-

missing costs, and functionally equivalent models is essential

for optimizing caching policies. Developing model-aware

caching approaches, investigating preference-driven caching

policies, and implementing principled cache designs to reduce

latency and energy consumption are promising directions for

enhancing the performance of mobile AIGC networks. In

the quest for the efficient delivery of AIGC services via

edge caching in mobile edge networks, the need for well-

designed edge caching algorithms is emphasized [216]. The

benefits associated with these algorithms include enhanced

efficiency, decreased latency, and improved dependability.

Conversely, the challenges that may arise from these strategies

include escalated complexity, heightened costs, and potential

privacy concerns. As AI services continue to evolve, further

research in caching strategies is crucial for providing effective,

personalized, and low-latency AIGC services for mobile users.

3) Preference-Aware AIGC Service Provisioning: Offering

AIGC services based on user preferences not only improves

user satisfaction but also reduces service latency and

resource consumption in mobile edge networks. To imple-

ment preference-based AIGC service delivery, AIGC service

providers must first collect historical user data and ana-

lyze it thoroughly. In providing AIGC services, the service

provider makes personalized recommendations and adjusts

its strategy according to user feedback. The exploration of

preference-aware AIGC service provisioning is conducted

considering several techniques, which include collaborative

filtering, DRL, context awareness, user profiling, and multi-

objective optimization. Although user preferences play a

significant role in AIGC service provision, it is essential to use

and manage this information properly to protect user privacy.

4) Life-Cycle Incentive Mechanism Throughout AIGC

Services: In mobile AIGC networks, the entire life cycle of

AIGC services necessitates appropriate incentives for partici-

pants. A single AIGC service provider cannot provide AIGC

services alone. Throughout the data collection, pre-training,

fine-tuning, and inference of AIGC services, stakeholders

with heterogeneous resources require reasonable incentives

and must share the benefits according to their contributions.

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 24,2024 at 23:43:21 UTC from IEEE Xplore.  Restrictions apply. 



1160 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 2, SECOND QUARTER 2024

Conversely, from the users’ perspective, evaluation mecha-

nisms must be introduced. For instance, users can assess the

reputation of AIGC service providers based on their transac-

tion history to promote service optimization and improvement.

Ultimately, the provisioning and transmission logs of AIGC

services can also be recorded in a tamper-proof distributed

ledger. Incentive strategies for participants in the life cycle of

AIGC services in mobile edge networks are also examined.

The use of smart contracts, distributed ledger technology,

evaluation mechanisms, and incentive design is proposed as

a means to strengthen collaboration and enhance the over-

all quality of AIGC services [253]. These methodologies

introduce automation, transparency, and improved reputation,

which are seen as distinct advantages.

5) Blockchain-Based System Management of Mobile AIGC

Networks: Furthermore, mobile AIGC networks connect het-

erogeneous user devices to edge servers and cloud data centers.

This uncontrolled demand for content generation introduces

uncertainty and security risks into the system. Therefore,

secure management and auditing methods are required to

manage devices in edge environments, such as dynamically

accessing, departing, and identifying IoT devices. In the

traditional centralized management architecture, the risk of

central node failure is unavoidable. Thus, a secure and reli-

able monitoring and equipment auditing system should be

developed. Lastly, we analyze a suite of techniques aimed at

improving blockchain-based system management of mobile

AIGC networks. Such techniques include blockchain-based

data administration, secure management and auditing methods,

collaborative infrastructure, decentralized management archi-

tecture, and blockchain-based optimization [146].

VII. FUTURE RESEARCH DIRECTIONS AND OPEN ISSUES

In this section, we discuss future research directions and

open issues from the perspectives of networking and comput-

ing, ML, and practical implementation.

A. Networking and Computing Issues

1) Decentralized Mobile AIGC Networks: With the

advancement of blockchain technologies [290], decentralized

mobile AIGC networks can be realized based on distributed

data storage, the convergence of computing and networking,

and proof-of-ownership of data [286]. Such a decentralized

network structure, enabled by digital identities and smart

contracts, can protect AIGC users’ privacy and data security.

Furthermore, based on blockchain technologies, mobile AIGC

networks can achieve decentralized management of the entire

lifecycle of AIGC services. Therefore, future research should

investigate specific consensus mechanisms [290], [291], off-

chain storage systems, and token structures for the deployment

of decentralized mobile AIGC networks [145].

2) Sustainability in Mobile AIGC Networks: In mobile

AIGC networks, the pre-training, fine-tuning, and inference of

generative AI models typically consume a substantial amount

of computing and networking resources [30], [292]. Hence,

future research can focus on the green operations of mobile

AIGC networks that provide AIGC services with minimal

energy consumption and carbon emissions. To this end, effec-

tive algorithms and frameworks should be developed to operate

mobile AIGC networks under dynamic service configurations,

operating modes of edge nodes, and communication links.

Moreover, intelligent resource management and scheduling

techniques can also be proposed to balance the tradeoff

between service quality and resource consumption [293].

3) Wireless Communications in Mobile AIGC Networks:

The influence of wireless communications on AIGC services

is a critical area for future research. A key aspect to investigate

is the robustness of AIGC services to the challenges posed by

wireless communications [143]. This includes understanding

how factors such as transmit power, fading, and device

mobility within an edge network can affect the performance

of distributed diffusion model-based AIGC computing [225].

Initial research in this area, such as the study in [145],

has shown that despite the increase in bit error probability,

distributed AIGC computing exhibits relatively high robust-

ness. Further exploration of this robustness, as well as the

development of strategies to enhance it, could significantly

improve the performance and reliability of AIGC services

in wireless networks. This can involve, for example, the

development of adaptive physical layer transmission strate-

gies [294] that take into account the current state of the

wireless channel or the design of error correction mechanisms

that can recover from bit errors introduced during wireless

transmission [295], [296]. In addition, the use of AI-generated

optimization solutions, particularly diffusion models, to over-

come the challenges posed by the wireless environment and

generate optimal solutions for network design is a promising

avenue for future research. This can involve the development

of AI-generated incentive mechanisms to promote semantic

information exchange among users, as demonstrated by the

authors [143]. Such mechanisms can help to create an optimal

contract that adheres to the utility threshold constraints of the

semantic information provider while maximizing the utility of

the semantic information recipient.

High-quality data resources are also critical for the sus-

tainability of mobile AIGC networks [144]. The performance

of generative models depends not only on effective network

architectures but also on the quality of training datasets [297].

However, as AIGC becomes pervasive, training datasets are

gradually replaced by synthesized data that might be irrelevant

to real data. Therefore, improving the quality and reliability of

data in mobile AIGC networks, such as through multimodal

data fusion and incremental learning technology, can further

enhance the accuracy and performance of the models.

B. Machine Learning Issues

1) Generative AI Model Compression: As generative AI

models become increasingly complex, model compression

techniques are becoming more important to reduce service

latency and resource consumption in provisioning AIGC

services [298]. Fortunately, several techniques have been

developed for generative AI model compressions, such as

pruning, quantization, and knowledge distillation. First, prun-

ing involves removing unimportant weights from the model,
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while quantization reduces the precision of the weights [299].

Then, knowledge distillation involves training a smaller model

to mimic the larger model’s behavior. Future research on

generative AI model compression might continue to focus

on developing and refining these techniques to improve their

efficiency and effectiveness for deploying generative AI

models in edge nodes and mobile devices. It is necessary to

consider the limited resources of such devices and develop

specialized compression techniques that can balance model

size and accuracy.

2) AI-Generated Network Design: Generative AI mod-

els have various potential applications in mobile networks,

including design, analysis, control, monitoring, and traffic

prediction [1], [300]. They can be utilized to create efficient

network architectures, understand network behavior, predict

network loads, develop network control algorithms, detect

anomalies, and predict future network traffic patterns and

demands [1]. Future research directions in machine learning

for mobile AIGC networks can focus on improving the

efficiency and effectiveness of existing applications, exploring

new applications and use cases, and addressing the challenges

posed by the unique characteristics of mobile networks, such

as mobility, limited resources, and privacy concerns.

3) Privacy-Preserving AIGC Services: To provide privacy-

preserving AIGC services, it is necessary to consider privacy

computing techniques in both generative AI model training

and inference [19], [142]. Techniques such as differential

privacy, secure multi-party computation, and homomorphic

encryption can be used to protect sensitive data and prevent

unauthorized access. Differential privacy involves adding

noise to the data to protect individual privacy, while secure

multi-party computation allows multiple parties to compute

a function without revealing their inputs to one another.

Homomorphic encryption enables computations to be per-

formed on encrypted data without decryption. To successfully

deploy generative AI models in edge nodes and mobile

devices, the limited resources of such devices should be

considered and specialized techniques that can balance privacy

and performance should be developed [158]. Additionally,

concerns such as data ownership and user privacy leakage

should be taken into account.

C. Practical Implementation Issues

1) Integrating AIGC and Digital Twins: Digital twins

enable the maintenance of representations to monitor, analyze,

and predict the status of physical entities [301]. On one hand,

the integration of AIGC and digital twin technologies has the

potential to significantly improve the performance of mobile

AIGC networks. By creating virtual representations of physical

mobile AIGC networks, service latency, and quality can be

optimized through the analysis of historical data and online

predictions. Furthermore, AIGC can also enhance digital twin

applications by reducing the time required for designers to

create simulation entities. However, several issues need to be

considered during the integration of AIGC and DTs, such as

efficient and secure synchronization.

2) Immersive Streaming: AIGC can create immersive

streaming content, such as AR and VR, that can transport

viewers to virtual worlds [302], which can be used in vari-

ous applications such as education, entertainment, and social

media. Immersive streaming can enhance the AIGC delivery

process by providing a platform for viewers to interact with the

generated content in real-time. However, combining AIGC and

immersive streaming raises some concerns. Future research

should focus on addressing the potential for biased content

generation by the AIGC algorithms and the high bandwidth

requirements of immersive streaming, which can cause latency

issues, resulting in the degradation of the viewer’s experience.

3) Alignment: In human-oriented applications that involve

digital humans and avatars, the alignment of generative AI

models [52], [303], [304] in mobile AIGC networks should

be well-investigated for safety and ethnicity. There are sev-

eral potential research directions for AI alignment, such as

personalized AI alignment, ethical guidelines for AI-generated

content, trust and transparency, emotional alignment, cultural

alignment, and robustness to adversarial attacks. By focusing

on these areas, future AI alignment research in mobile AIGC

networks can help maintain a user-centric, respectful, and

ethically responsible approach for mobile AIGC networks and

their applications.

VIII. CONCLUSION

In this paper, we have focused on the deployment of mobile

AIGC networks, which serve generative AI models, services,

and applications at mobile edge networks. We have discussed

the background and fundamentals of generative models and the

lifecycle of AIGC services at mobile AIGC networks. We have

also explored AIGC-driven creative applications and use cases

for mobile AIGC networks, as well as the implementation,

security, and privacy challenges of deploying mobile AIGC

networks. Finally, we have highlighted some future research

directions and open issues for the full realization of mobile

AIGC networks.
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