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Abstract—Artificial Intelligence-Generated Content (AIGC)
is an automated method for generating, manipulating, and
modifying valuable and diverse data using AI algorithms cre-
atively. This survey paper focuses on the deployment of AIGC
applications, e.g., ChatGPT and Dall-E, at mobile edge networks,
namely mobile AIGC networks, that provide personalized and
customized AIGC services in real time while maintaining user
privacy. We begin by introducing the background and fundamen-
tals of generative models and the lifecycle of AIGC services at
mobile AIGC networks, which includes data collection, training,
fine-tuning, inference, and product management. We then discuss
the collaborative cloud-edge-mobile infrastructure and technolo-
gies required to support AIGC services and enable users to
access AIGC at mobile edge networks. Furthermore, we explore
AIGC-driven creative applications and use cases for mobile AIGC
networks. Additionally, we discuss the implementation, security,
and privacy challenges of deploying mobile AIGC networks.
Finally, we highlight some future research directions and open
issues for the full realization of mobile AIGC networks.

Index Terms—AIGC, generative Al, mobile edge networks,
communication and networking, AI training and inference,
Internet technology.
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I. INTRODUCTION
A. Background

N RECENT years, artificial intelligence-generated con-
Itent (AIGC) has emerged as a novel approach to the
production, manipulation, and modification of data [1]. By
utilizing Al technologies, AIGC automates content genera-
tion alongside traditionally professionally-generated content
(PGC) and user-generated content (UGC) [2], [3], [4]. With
the marginal cost of data creation reduced to nearly zero,
AIGC, e.g., ChatGPT [5], promises to supply a vast amount
of synthetic data for Al development and the digital economy,
offering significant productivity and economic value to society.
The rapid growth of AIGC capabilities is driven by the
continuous advancements in Al technology, particularly in
the areas of large-scale and multimodal models [6], [7]. A
prime example of this progress is the development of the
transformer-based DALL-E [8] which is designed to generate
images by predicting successive pixels. In its latest iteration,
DALL-E2 [9], a diffusion model is employed to reduce noise
generated during the training process, leading to more refined
and novel image generation. In the context of text-to-image
generation using generative Al models, the language model
serves as a guide, enhancing semantic coherence between
the input prompt and the resulting image. Simultaneously,
the generative Al model processes existing image attributes
and components, generating limitless synthesis images from
existing datasets.

Based on large-scale pre-trained models with billions of
parameters, AIGC services are designed to enhance knowledge
and creative work fields that employ billions of people. By
leveraging generative Al, these fields can achieve at least a
10% increase in efficiency for content creation, potentially
generating trillions of dollars in economic value [10]. AIGC
can be applied to various forms of text generation, ranging
from practical applications, such as customer service inquiries
and messages, to creative tasks like activity tracking and mar-
keting copywriting [11]. For example, OpenAI’s ChatGPT [12]
can automate the generation of socially valuable content based
on user-provided prompts. Through extended and coherent
conversations with ChatGPT, individuals from diverse profes-
sions from all walks of life, can seek assistance in debugging
code, discovering healthy recipes, writing scripts, and devising
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marketing campaigns. In the realm of image generation,
generative Al models can process existing images accord-
ing to their attributes and components, enabling end-to-end
image synthesis, such as generating complete images directly
from existing ones [9]. Moreover, generative Al models hold
immense potential for cross-modal generation, as they can
spatially process existing video attributes and simultaneously
process multiple video clips automatically [13].

The benefits of AIGC in content creation, when compared to
PGC and UGC, are already apparent to the public. Specifically,
generative Al models can produce high-quality content within
seconds and deliver personalized content tailored to users’
needs [3], [14]. Over time, the performance of AIGC has
significantly improved, driven by enhanced models, increased
data availability, and greater computational power [15]. On
one hand, superior models [6], such as diffusion models,
have been developed to provide more robust tools for cross-
modal AIGC generation. These advancements are attributed
to the foundational research in generative Al models and
the continuous refinement of learning paradigms and network
structures within generative deep neural networks (DNN).
On the other hand, data and computing power for generative
Al training and inference have become more accessible as
networks grow increasingly interconnected [11], [16], [17].
For instance, generative Al models that require thousands of
GPUs can be trained and executed in cloud data centers,
enabling users to submit frequent data generation requests over
core networks.

B. Motivation

Although AIGC is acknowledged for its potential to
revolutionize existing production processes, users accessing
AIGC services on mobile devices currently lack sup-
port for interactive and resource-intensive data generation
services [1], [18], [29]. Initially, the robust computing capa-
bilities of cloud data centers can be utilized to pre-train
generative Al models, such as GPT-3 for ChatGPT and GPT-4
for ChatGPT Plus. Subsequently, users can access cloud-based
AIGC services via the core network by executing generative
Al models on cloud servers. However, due to their remote
nature, cloud services exhibit high latency. Consequently,
deploying interaction-intensive AIGC services on mobile edge
networks, i.e., mobile AIGC networks, as shown in Fig. 1,
should be considered a more practical option [30], [31], [32].
In mobile AIGC networks, the cloud layer handles the pre-
training and fine-tuning of AIGC models, which require a
significant amount of computing and storage resources. In
addition, the edge layer is responsible for data collection,
inference, and product management, requiring specialized
hardware and software, as well as efficient communication
protocols. Finally, the mobile device layer is crucial for
data collection, inference, and product management with low
latency, presenting unique challenges that can be addressed
with specialized techniques such as federated learning and
differential privacy. In detail, the motivations for developing
mobile AIGC networks include
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Fig. 1. The overview of mobile AIGC networks, including the cloud layer,
the edge layer, and the mobile device layer. The lifecycle of AIGC services,
including data collection, pre-training, fine-tuning, inference, and product
management, is circulated among the core networks and edge networks.

o Low-latency: Instead of directing requests for AIGC
services to cloud servers within the core network,
users can access low-latency services in mobile AIGC
networks [33]. For example, users can obtain AIGC
services directly in radio access networks (RANs) by
downloading pre-trained models to edge servers and
mobile devices for fine-tuning and inference, thereby
supporting real-time, interactive AIGC.

o Localization and Mobility: In mobile AIGC networks,
base stations with computing servers at the network’s
edge can fine-tune pre-trained models by localizing ser-
vice requests [34], [35]. Furthermore, users’ locations
can serve as input for AIGC fine-tuning and inference,
addressing specific geographical demands. Additionally,
user mobility can be integrated into the AIGC service pro-
visioning process, enabling dynamic and reliable AIGC
service provisioning.

o Customization and Personalization: Local edge servers
can adapt to local user requirements and allow users to
request personalized services based on their preferences
while providing customized services according to local
service environments. On one hand, edge servers can
tailor AIGC services to the needs of the local user
community by fine-tuning them accordingly [3]. On the
other hand, users can request personalized services from
edge servers by specifying their preferences.

e Privacy and Security: AIGC users only need to submit
service requests to edge servers, rather than sending
preferences to cloud servers within the core network.
Therefore, the privacy and security of AIGC users can be
preserved during the provisioning, including fine-tuning
and inference, of AIGC services.

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 24,2024 at 23:43:21 UTC from IEEE Xplore. Restrictions apply.



XU et al.: UNLEASHING THE POWER OF EDGE-CLOUD GENERATIVE AI IN MOBILE NETWORKS

TABLE I

SUMMARY OF RELATED WORKS VERSUS OUR SURVEY
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Year

Ref.

Contributions

AIGC
Algorithms

AIGC
Applications

Edge
Intelligence

2019

(18]

Introduce mobile edge intelligence, and discuss the infrastructure,
implementation methodologies, and use cases

X

X

v

2020

[19]

Present the implementation challenges of FL at mobile edge
networks

[15]

Discuss the visions, implementation details, and applications of
the convergence of edge computing and DL

2021

[20]

Investigate the copyright laws regarding Al-generated music

(2]

INustrate the interaction of art and Al from two perspectives, i.e.,
Al for art analysis and Al for art creation

(3]

Discuss the application of computational arts in Metaverse to
create surrealistic cyberspace

[21]

Investigate the deployment of distributed learning in wireless
networks

EEIRNIESYANIRNI RN

x| N NN x| X

N x| % [ N | N

[22]

Provide a comprehensive overview of the major approaches,
datasets, and metrics used to synthesize and process multimodal
images

N

AN

(23]

Propose a novel conceptual architecture for 6G networks, which
consists of holistic network virtualization and pervasive network

intelligence

[24]
networks

Discusses the visions and potentials of low-power, low-latency,
reliable, and trustworthy edge intelligence for 6G wireless X

2022
(6]

diffusion models

Provide comprehensive guidance and comparison among
advanced generative models, including GAN, energy-based
models, VAE, autoregressive models, flow-based models, and

[25] diffusion models

Present fundamental algorithms, classification and applications of

(1]

methods for machine-generated text

Provide a comprehensive overview of generation and detection

[26]

Provide a comprehensive examination of what, why, and how
edge intelligence and blockchain can be integrated

[27]
blockchain

Introduce the architecture of edge-enabled Metaverse and discuss
enabling technologies in communication, computing, and X v v

2023 (28]

Summarize existing works on the generation of gestures with
simultaneous speeches based on deep generative models

networks.

A comprehensive tutorial on applying generative diffusion model
in various network optimization tasks. Case studies explore

[1] integrating the diffusion model with DRL, incentive mechanism 4 X v
design, semantic communications, and Internet of Vehicles (IoV)

Ours

existing implementation challenges

Investigate the deployment of mobile AIGC networks via
collaborative cloud-edge-mobile infrastructure, discuss creative
mobile applications and exemplary use cases, and identify

As illustrated in Fig. 1, when users access AIGC services
on mobile edge networks through edge servers and mobile
devices, limited computing, communication, and storage
resources pose challenges for delivering interactive and
resource-intensive AIGC services. First, resource allocation
on edge servers must balance the tradeoff among accuracy,
latency, and energy consumption of AIGC services at edge
servers. In addition, computationally intensive AIGC tasks can
be offloaded from mobile devices to edge servers, improving
inference latency and service reliability. Moreover, Al models
that generate content can be cached in edge networks, similar
to content delivery networks (CDNs) [36], [37], to minimize
delays in accessing the model. Finally, mobility management
and incentive mechanisms should be explored to encourage
user participation in both space and time [38]. Compared
to traditional AI, AIGC technology requires overall technical

maturity, transparency, robustness, impartiality, and insightful-
ness of the algorithm for effective application implementation.
From a sustainability perspective, AIGC can use both existing
and synthetic datasets as raw materials for generating new
data. However, when biased data are used as raw data, these
biases persist in the knowledge of the model, which inevitably
leads to unfair algorithm results. Finally, static generative
Al models rely primarily on templates to generate machine-
generated content that may have similar text and output
structures.

C. Related Works and Contributions

In this survey, we provide an overview of research activities
related to AIGC and mobile edge intelligence, as illustrated in
Fig. 2. Given the increasing interest in AIGC, several surveys
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The development roadmap of AIGC and mobile edge networks from 2013 to Oct 2023. From the perspective of AIGC technology development,

AIGC has evolved from generating text and audio to generating 3D content. From the perspective of mobile edge computing, computing has gradually shifted

from cloud data centers to mobile device computing.

on related topics have recently been published. Table II
presents a comparison of these surveys with this paper.

The study by [1] offers a focused exploration of Generative
Diffusion Models (GDMs) in network optimization tasks.!
Commencing with an essential background on GDMs, it
outlines their ability to model complex data distributions
effectively. This enables them to excel in diverse tasks, ranging
from image generation to reinforcement learning. The paper
advances by presenting case studies that integrate GDMs
with Deep Reinforcement Learning, incentive mechanism
design, Semantic Communications, and Internet of Vehicles
networks. These case studies substantiate the model’s practical

IThe code is available at https://github.com/HongyangDu/GDMOPT.

utility in solving complex network optimization problems.
The study in [39] provides a comprehensive overview of the
current generative Al models published by researchers and
the industry. The authors identify nine categories summarizing
the evolution of generative Al models, including text-to-text,
text-to-image, text-to-audio, text-to-video, text-to-3D, text-
to-code, text-to-science, image-to-text, and other models. In
addition, they reveal that only six organizations with enormous
computing power and highly skilled and experienced teams
can deploy these state-of-the-art models, which is even fewer
than the number of categories. Following the taxonomy of
generative Al models developed in [39], other surveys discuss
generative Al models in detail subsequently. The study in [11]
examines existing methods for generating text and detecting
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models. The study in [22] provides a comprehensive overview
of the major approaches, datasets, and evaluation metrics
for multimodal image synthesis and processing. Based on
techniques of speech and image synthesis, the study in [28]
summarizes existing works on the generation of gestures with
simultaneous speeches based on deep generative models. The
study in [20] investigates the copyright laws regarding Al-
generated music, which includes the complicated interactions
among Al tools, developers, users, and the public domain. The
study in [6] provides comprehensive guidance and comparison
among advanced generative models, including GANs, energy-
based models, variational autoencoder (VAE), autoregressive
models, flow-based models, and diffusion models. As diffu-
sion models draw tremendous attention in generating creative
data, the study in [25] presents fundamental algorithms and
comprehensive classification for diffusion models. Based on
these algorithms, the authors [2] illustrate the interaction of
art and Al from two perspectives, i.e., Al for art analysis and
Al for art creation. In addition, the authors in [3] discuss the
application of computational arts in the Metaverse to create
surrealistic cyberspace.

In 6G [23], mobile edge intelligence based on edge com-
puting systems, including edge caching, edge computing,
and edge intelligence, for intelligent mobile networks, is
introduced in [18], [40]. The study in [21] investigates the
deployment of distributed learning in wireless networks. The
study [19] provides a guide to federated learning (FL) and a
comprehensive overview of implementing FL at mobile edge
networks. The authors offer a detailed analysis of the chal-
lenges of implementing FL, including communication costs,
resource allocation, privacy, and security. In [15], various
application scenarios and technologies for edge intelligence
and intelligent edges are presented and discussed in detail. In
addition, the study [24] discusses the visions and potentials
of low-power, low-latency, reliable, and trustworthy edge
intelligence for 6G wireless networks. The study [26] explores
how blockchain technologies can be used to enable edge
intelligence and how edge intelligence can support the deploy-
ment of blockchain at mobile edge networks. The authors
provide a comprehensive review of blockchain-driven edge
intelligence, edge intelligence-amicable blockchain, and their
implementation at mobile edge networks.

Distinct from existing surveys and tutorials, our survey
concentrates on the deployment of mobile AIGC networks for
real-time and privacy-preserving AIGC service provisioning.
We introduce the current development of AIGC and collab-
orative infrastructure in mobile edge networks. Subsequently,
we present the technologies of deep generative models and the
workflow of provisioning AIGC services within mobile AIGC
networks. Additionally, we showcase creative applications
and several exemplary use cases. Furthermore, we identify
implementation challenges, ranging from resource allocation
to security and privacy, for the deployment of mobile AIGC
networks. The contributions of our survey are as follows.

o We initially offer a tutorial that establishes the definition,
lifecycle, models, and metrics of AIGC services. Then,
we propose the mobile AIGC networks, i.e., provi-
sioning AIGC services at mobile edge networks with

1131

collaborative mobile-edge-cloud communication, com-
puting, and storage infrastructure.

e We present several use cases in mobile AIGC networks,
encompassing creative AIGC applications for text,
images, video, and 3D content generation. We summarize
the advantages of constructing mobile AIGC networks
based on these use cases.

o We identify crucial implementation challenges in the path
to realizing mobile AIGC networks. The implementation
challenges of mobile AIGC networks stem not only from
dynamic channel conditions but also from the presence
of meaningless content, insecure content precepts, and
privacy leaks in AIGC services.

o Lastly, we discuss future research directions and open
issues from the perspectives of networking and comput-
ing, machine learning (ML), and practical implementation
considerations, respectively.

As the outline illustrated in Fig. 3, the survey is orga-
nized as follows. Section II examines the background and
fundamentals of AIGC. Section III presents the technologies
and collaborative infrastructure of mobile AIGC networks.
The applications and advantages of mobile AIGC networks
are discussed in Section IV, and potential use cases are
shown in Section V. Section VI addresses the implementation
challenges. Section VII explores future research directions.
Section VIII provides the conclusions.

II. BACKGROUND AND FUNDAMENTALS OF AIGC

In this section, the background and fundamentals of AIGC
technology are presented. Specifically, we examine the defini-
tion of AIGC, its classification, and the technological lifecycle
of AIGC in mobile networks. Finally, we introduce ChatGPT
as a use case, which is the most famous and revolutionary
application of AIGC.

A. Definitions of PGC, UGC, and AIGC

In the next generation of the Internet, i.e., Web 3.0 and
Metaverse [41], [42], [43], there are three primary forms of
content [2], including PGC, UGC, and AIGC.

1) Professionally-Generated Content: PGC refers to
professional-generated digital content [44]. Here, the
generators are individuals or organizations with professional
skills, knowledge, and experience in a particular field,
e.g., journalists, editors, and designers. As these experts
who create PGC are typically efficient and use specialized
tools, PGC has the advantages in terms of automation and
multimodality. However, because PGC is purposeful, the
diversity and creativity of PGC can be limited.

2) User-Generated Content: UGC refers to digital material
generated by users, rather than by experts or organiza-
tions [45]. The users include website visitors and social media
users. UGC can be presented in any format, including text,
photos, video, and audio. The barrier for users to create UGC
is being lowered. For example, some websites> allow users to

2Example of a website that allows users to create their own UGC:
https://ugc-nft.io/Home
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Fig. 3. The outline of this survey, where we introduce the provisioning of AIGC services at mobile edge networks and highlight some essential implementation

challenges about mobile edge networks for provisioning AIGC services.

create images with a high degree of freedom on a pixel-by-
pixel basis. As a result, UGC is more creative and diverse,
thanks to a wide user base. However, UGC is less automated
and less multimodal than the PGC that is generated by experts.
3) AIGC: AIGC is generated by using generative Al mod-
els according to input from users. Because Al models can learn
the features and patterns of input data from the human artistic
mind, they can develop a wide range of content. The recent
success of text-to-image applications based on the diffusion
model [46] and the ChatGPT based on transformer [12] has
led to AIGC gaining a lot of attention. We have defined the
AIGC according to its characteristics as follows
o Automatic: AIGC is generated by Al models automati-
cally. After the Al model has been trained, users only
need to provide input, such as the task description, to
efficiently obtain the generated content. The process,

from input to output, does not require user involvement
and is done automatically by the Al models.

Creativity: AIGC refers to an idea or item that is
innovative. For example, AIGC is believed to be leading
to the development of a new profession, called Prompt
Engineer [47], which aims to improve human interaction
with AL In this context, the prompt serves as the starting
point for the Al model, and it significantly impacts the
originality and quality of the generated content. A well-
crafted prompt that is specific results in more relevant
and creative content than a vague or general prompt.
Multimodal: The Al models to generate AIGC can handle
multimodal input and output. For example, ChatGPT [12]
allows conversational services that employ text as input
and output, DALL-E 2 [48] can create original, realistic
images from a text description, and AIGC services with
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fine-tuning, inference, and product management.

voice and 3D models as input or output are progress-
ing [49].

o Diverse: AIGC is diverse in service personalization and
customization. On the one hand, users can adjust the
input to the AI model to suit their preferences and
needs, resulting in a personalized output. On the other
hand, Al models are trained to provide diverse outputs.
For example, consider the DALL-E 2 as an example,
the model can generate images of individuals that more
correctly represent the diversity of the global population,
even with the same text input.

o Extendedly valuable: AIGC should be extendedly valu-
able to society, economics, and humanity [50]. For
example, Al models can be trained to write medical
reports and interpret medical images, enabling healthcare
personnel to make accurate diagnoses.

AIGC provides various advantages over PGC and UGC,
including better efficiency, originality, diversity, and flexibility.
The reason is that AI models can produce vast amounts
of material quickly and develop original content based on
established patterns and principles. These advantages have
led to the growing creative applications of the generative Al
models, which are discussed in Section IV-Al.

B. Serving ChatGPT at Mobile Edge Networks

ChatGPT, developed by OpenAl, excels at generating
human-like text and engaging in conversations [12]. Based on
the GPT-3 [51], this transformer-based neural network model
can produce remarkably coherent and contextually appropriate
text. Among its primary advantages, ChatGPT is capable
of answering questions, providing explanations, and assisting
with various tasks in a manner nearly indistinguishable from
human responses. As illustrated in Fig. 4, the development
of ChatGPT involves four main stages, including pre-training,
fine-tuning, inference, and product management.

1) Pre-Training: In the initial stage, known as pre-training,
the foundation model of ChatGPT, GPT-3, is trained on a
large corpus of text, which includes books, articles, and
other information sources. This process enables the model
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to acquire knowledge of language patterns and structures, as
well as the relationships between words and phrases. The
base model, GPT-3, is an autoregressive language model with
a Transformer architecture that has 175 billion parameters,
making it one of the largest language models available. During
pre-training, GPT-3 is fed with a large corpus of text from
diverse sources, such as books, articles, and websites for
self-supervised learning, where the model learns to predict
the next word in a sentence given the context. To train the
foundation model, the technique used is called maximum
likelihood estimation, where the model aims to maximize the
probability of predicting the next word correctly. Training
GPT-3 demands significant computational resources and time,
typically involving specialized hardware like graphics process-
ing units (GPUs) or tensor processing units (TPUs). The exact
resources and time required depend on factors such as model
size, dataset size, and optimization techniques.

2) Fine-Tuning: The fine-tuning stage of ChatGPT involves
adapting the model to a specific task or domain, such as
customer service or technical support, to enhance its accuracy
and relevance for that task. To transform ChatGPT into a
conversational Al, a supervised learning process is employed
using a dataset containing dialogues between humans and Al
models [52]. To optimize ChatGPT’s parameters, a reward
model for reinforcement learning is built by ranking multiple
model responses by quality. Alternative completions are
ranked by Al trainers, and the model uses these rankings to
improve its performance through several iterations of Proximal
Policy Optimization [53]. This technique allows ChatGPT to
learn from its mistakes and improve its responses over time.

3) Inference: In the inference stage, ChatGPT generates
text based on a given input or prompt, testing the model’s
ability to produce coherent and contextually appropriate
responses relevant to the input. ChatGPT generates responses
by leveraging the knowledge it acquired during pre-training
and fine-tuning, analyzing the context of the input to generate
relevant and coherent responses. In-context learning involves
analyzing the entire context of the input [54], including the
dialogue history and user profile, to generate responses that
are personalized and tailored to the user’s needs. ChatGPT
employs chain-of-thought to generate responses that are coher-
ent and logical, ensuring that the generated text is not only
contextually appropriate but also follows a logical flow. The
resources consumed during inference are typically much lower
than those required for training, making real-time applications
and services based on ChatGPT computationally feasible.

4) Product Management: The final product management
phase involves deploying the model in a production envi-
ronment and ensuring its smooth and efficient operation. In
the context of mobile edge networks, the applications of
Al-powered tools such as the new Bing [55] and Office
365 Copilot [56] could be particularly useful due to their
ability to provide personalized and contextually appropriate
responses while conserving resources. The new Bing offers
a new type of search experience with Al-powered features
such as detailed replies to complex questions, summarized
answers, and personalized responses to follow-up questions,
while Office 365 Copilot, powered by GPT-4 from OpenAl,
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assists with generating documents, emails, presentations, and
other tasks in Microsoft 365 apps and services. These tools
can be integrated into mobile edge networks with special-
ized techniques that balance performance and accuracy while
preserving data integrity.

e New bing: The new Bing offers a set of Al-powered
features that provide a new type of search experience,
including detailed replies to complex questions, summa-
rized answers, and personalized responses to follow-up
questions. Bing also offers creative tools such as assis-
tance with writing poems and stories. In the context
of mobile edge networks, Bing’s ability to consolidate
reliable sources across the Web and provide a single,
summarized answer could be particularly useful for users
with limited resources. Additionally, Bing’s ability to
generate personalized responses based on user behavior
and preferences could improve the experience of users in
mobile edge networks.

o Office 365 copilot: Microsoft has recently launched an
Al-powered assistant named Office 365 Copilot, which
can be summoned from the sidebar of Microsoft 365
apps and services. Copilot can help users generate doc-
uments, emails, and presentations, as well as provide
assistance with features such as PivotTables in Excel.
It can also transcribe meetings, remind users of missed
items, and provide summaries of action items. However,
when deploying Copilot in mobile edge networks, it is
important to keep in mind the limited resources of these
devices and to develop specialized techniques that can
balance performance and accuracy while preserving data
integrity.

In addition to the previously mentioned commercial applica-
tions, ChatGPT holds substantial commercial potential owing
to its capacity for producing human-like text, which is char-
acteristically coherent, pertinent, and contextually fitting. This
language model can be fine-tuned to accommodate a diverse
array of tasks and domains, rendering it highly adaptable for
numerous applications. ChatGPT exhibits remarkable profi-
ciency in comprehending and generating text across multiple
languages. Consequently, it can facilitate various undertakings,
such as composing emails, developing code, generating con-
tent, and offering explanations, ultimately leading to enhanced
productivity. By automating an assortment of tasks and
augmenting human capabilities, ChatGPT contributes to a
paradigm shift like human work, fostering new opportunities
and revolutionizing industries. In addition to ChatGPT, more
use cases developed by various generative Al models are
discussed in Section V.

C. Life-Cycle of AIGC at Mobile Edge Networks

AIGC has gained tremendous attention as a technology
superior to PGC and UGC. However, the lifecycle of the AIGC
is also more elaborate. In the following, we discuss the AIGC
lifecycle with mobile edge network enablement:

1) Data Collection: Data collection is an integral com-
ponent of AIGC and plays a significant role in defining
the quality and diversity of the material created by Al
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systems [57]. The data used to train AI models influences
the patterns and relationships that the Al models learn and,
consequently, the output. There are several data collection
techniques for AIGC:

¢ Crowdsourcing: Crowdsourcing is the process of acquir-
ing information from a large number of individuals,
generally via the use of online platforms [58].
Crowdsourced data may be used to train ML models
for text and image generation, among other applications.
One common example is the use of Amazon Mechanical
Turk,®> where individuals are paid to perform tasks such
as annotating text or images, which can then be used to
train generative Al models.

o Data Market: Another way to obtain data is to buy it from
a data provider. For example, Datatang* is a firm that
offers high-quality datasets and customized data services
to assist businesses in enhancing the performance of their
Al models. By giving access to varied, high-quality data,
Datatang enables organizations to train Al models that
are more accurate and effective, resulting in enhanced
business performance and results.

o Internet-of-Things (IoT) data collection: In IoT, edge
devices can help to collect the data, e.g., Global
Positioning System (GPS) records and wireless sensing
data [59]. For example, mobile phone sensors can track
the device’s movement and location or users [60]. The
sensors can be used to collect data on the location,
speed, and direction of movement of the device. These
data are important for the implementation of personalized
generative Al models. In addition to these traditional data
collection methods, large-scale datasets are specifically
designed for training generative Al models. For instance,
the LAION-400M dataset [61], a large-scale, non-curated
dataset consisting of 400 million English (image, text)
pairs, is used in training models like CLIP.

e Passive data collection can be achieved with the help
of edge networks [62]. In the smart city, sensors can
be placed at strategic locations, such as on lamp posts,
buildings, or other structures, to collect data on various
aspects of the city environment. The data obtained by the
sensors might be used to train Al models, which could
subsequently be utilized to produce insights on air quality,
traffic flow, and pedestrian density. Using data obtained
from air quality sensors, an Al model can be trained to
forecast air quality. The model can then be used to create
a real-time map of the city’s air quality. This real-time
map could be used to guide policy choices about the
management of air quality, leading to the development
of generative Al models that are capable of generating
decision solutions for managing air quality.

After the data has been collected, the data is then used to train
the generative Al model.

2) Pre-Training: The collected data is used to train the

generative Al model. In mobile networks, training is typically

3The website of Amazon Mechanical Turk as a crowdsourcing marketplace:
https://www.mturk.com/.
4The website of Datatang: https://www.datatang.ai/.
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done by central servers with powerful computing power.
During the training process, the generative model auto-
matically learns the patterns and features in the data and
predicts the target outcome. We introduce several genera-
tive Al technologies in Section III-B, including Generative
Adversarial Networks (GANSs), VAE, Flow-based models, and
diffusion models. These different training techniques have
different strengths and weaknesses. The choice of technique
depends on the specific requirements of the AIGC task, the
available data, the desired output, and the computational
resources available. After training is complete, cloud data
centers can accept requests uploaded by network users to per-
form subsequent fine-tuning and inference tasks. Alternatively,
cloud data centers can deliver the trained generative Al
models down to network edge servers, which can process
user requests locally. It is important to note the substan-
tial computational resources required for the pre-training
of generative Al models. For instance, the pre-training
process of the Stable Diffusion model, a large-scale Al
model developed by Stability Al, was conducted on a cloud
cluster with 256 Nvidia A100 GPUs for about 150,000 hours,
which equates to a cost of approximately $600,000
(https://huggingface.co/CompVis/stable-diffusion-v1-4). This
highlights the intensive computational demands of training
such models.

3) Fine-Tuning: Fine-tuning in AIGC is the process of
adjusting a pre-trained generative Al model to new tasks or
domains by including a modest quantity of extra data. This
approach can be used to enhance the model’s performance on
a given task or in a specific area by adjusting the Al model’s
parameters to suit the new data better. In mobile networks,
tasks of fine-tuning can be performed by the edge network,
using the small-size dataset uploaded by mobile users.

4) Inference: Using the trained generative Al model,
inference can be done, which involves generating the desired
content based on the input. generative Al models are tradi-
tionally managed via centralized servers, such as the Hugging
Face platform [63]. In this setting, a large number of users
make requests to the central server, wait in line, and obtain the
requested services. Researchers aim to install AIGC services
on edge networks to prevent request congestion and optimize
service latency. Edge devices have sufficient computational
capacity for AIGC inference and are closer to consumers than
central servers. Therefore, users can interact with devices with
a reduced transmission delay. In addition, as AIGC services
are dispersed to several edge devices, the latency can be
significantly reduced.

5) Product Management: The preceding stages cover con-
tent generation. However, as an irreplaceable online property
comparable to NFT, AIGC possesses unique ownership,
copyright, and worth for each content. Consequently, the
preservation and management of AIGC products should
be incorporated into the AIGC life cycle. Specifically, we
refer to the party requesting the production of the AIGC
as producers, e.g., mobile users or companies, who hire
AIGC generators, e.g., network servers, to perform the AIGC
tasks. Then, the main process in AIGC product management
includes:
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o Distribution: After the content is generated in network
edge servers, the producers acquire ownership of the
AIGC products. Consequently, they have the right to dis-
tribute these products to social media or AIGC platforms
through edge networks

e Trading: Since AIGC products are regarded as a novel
kind of non-fungible digital properties, they can be
traded. The trading process can be modeled as a fund
ownership exchange between two parties.

To implement the aforementioned AIGC lifecycle in mobile

networks, we further investigate the technical implementation
of AIGC in the following section.

III. TECHNOLOGIES AND COLLABORATIVE
INFRASTRUCTURE OF MOBILE AIGC NETWORKS

In this section, we delve into the technologies and collabora-
tive infrastructure of mobile AIGC networks. This section aims
to provide a comprehensive understanding of the rationale and
objectives of edge computing systems designed to support
AIGC. Before we explore the design of these systems, it
is crucial to establish the performance metrics that measure
whether the system can maximize user satisfaction and utility.

A. Evaluation Metrics of Generative AI Models and Services

We first discuss several metrics for assessing the quality of
generative Al models, which can be used by AIGC service
providers and users in mobile networks.

1) Inception Score: The Inception Score (IS) can be used
to measure the accuracy of images generated by generative
Al models in the mobile network [64]. The IS is based on
the premise that high-fidelity generated images should have
high-class probabilities, which suggest a reliable classification
model, and a low Kullback-Leibler (KL) divergence between
the projected class probability and a reference class distribu-
tion. To compute the IS, an exponential function is applied to
the KL divergence between the anticipated class probabilities
and the reference class distribution. The resulting value is then
averaged over all created photos to obtain the IS. A higher IS
indicates better overall image quality.

2) Frechet Inception Distance: The Frechet Inception
Distance (FID) has emerged as a well-established metric for
evaluating the effectiveness of generative models, particularly
GAN:g, in terms of image quality and diversity [65]. FID lever-
ages a pre-trained Inception network to calculate the distance
between actual and synthetic image embeddings. This metric
can be used by generative Al model providers to evaluate
the quality of their generative models in mobile networks.
Additionally, users can assess the capabilities of AIGC service
providers through multiple requests for services based on FID
measurements. However, when evaluating conditional text-to-
image synthesis, FID only measures the visual quality of the
output images, ignoring the adequacy of their conditioning on
the input text [66]. Thus, while FID is an excellent evaluation
metric for assessing image quality and diversity, it is limited
when applied to conditional text-to-image synthesis.

3) R-Precision: R-Precision is a standard metric to evaluate
how Al-generated images align with text inputs [67]. In
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mobile networks, the generative Al model producers can
retrieve matching text from 100 text candidates using the
Al-generated image as a query. The R-Precision measures
the proportion of relevant items retrieved among the top-R
retrieved items, where R is typically set to 1. Specifically, the
Deep Attentional Multimodal Similarity Model (DAMSM) is
commonly used to compute the text-image retrieval similarity
score [68]. DAMSM maps each subregion of an image and
its corresponding word in the sentence to a joint embedding
space, allowing for the measurement of fine-grained image-
text similarity for retrieval. However, it should be noted that
text-to-image generative Al models can directly optimize the
DAMSM module used to calculate R-Precision. This results
in the metric being model-specific and less objective, limiting
the evaluation of generative Al models in mobile networks.

4) CLIP-R-Precision: CLIP-R-Precision is an assessment
metric to address the model-specific character of the
R-Precision metric [69]. Instead of the conventional DAMSM,
the suggested measure uses the latest multimodal CLIP
model [7] to obtain R-Precision scores. Here, CLIP is trained
on a massive corpus of Web-based image-caption pairings
and is capable, via a contrastive aim, of bringing together
the two embeddings (visual and linguistic). Thus, the CLIP-
R-Precision can provide a more objective evaluation of
text-to-image generative Al model performance in mobile
networks.

5) Quality of Experience: The Quality of Experience
(QoE) metric plays a critical role in evaluating the performance
of AIGC in mobile network applications [70]. QoE measures
user satisfaction with the generated content, considering fac-
tors such as visual quality, relevancy, and utility. Gathering
and analyzing user surveys, interaction, and behavioral data
are standard methods used to determine QoE. In addition,
the definition of QoE can vary depending on the objectives
of the mobile network system designer and the user group
being considered. With the aid of QoE, AIGC performance
can be improved, and new models can be created to meet user
expectations. It is essential to account for QoE when analyzing
the performance of AIGC in mobile network applications to
ensure that the generated content meets user expectations and
provides a great user experience.

Based on the aforementioned evaluation metrics, diverse and
valuable synthetic data can be generated from deep generative
models. Therefore, in the next section, we introduce several
generative Al models for mobile AIGC networks.

B. Generative AI Models

Generative Al models aim to understand and replicate the
true data distribution of input data through iterative training.
This understanding allows the generation of novel data that
closely aligns with the original distribution. As depicted in
Fig. 5, this section delves into five fundamental generative
models: Generative Adversarial Networks (GANSs), energy-
based models, Variational Autoencoders (VAEs), flow-based
models, and diffusion models.

1) Generative Adversarial Networks: GANs are a funda-
mental framework for AIGC, comprising a generative model
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Fig. 5. The model architecture of generative AI models, including generative
adversarial networks, energy-based models, variational autoencoder, flow-
based models, and diffusion models.

and a discriminative model [71]. The generative network
aims to generate data that is as realistic and similar to the
original data as possible to deceive the discriminative model
based on the data in the original dataset. Conversely, the
discriminant model’s task is to differentiate between real and
fake instances. During the GAN training process, the two
networks continually enhance their performance by competing
against each other until they reach a stable equilibrium. The
advantages and disadvantages of GANs can be summarized as
follows [71]:
o Advantages:

— GANSs can generate new data closely resembling the
original dataset, making them useful for tasks such
as image synthesis and text-to-image translation.

— The adversarial training process leads to continuous
improvement in the performance of both the gener-
ative and discriminative models.

e Disadvantages:

— GANSs can be difficult to train because the two
networks in a GAN, i.e., the generator and the
discriminator, constantly compete against others,
making training unstable and slow.

— GANSs primarily augment the existing dataset rather
than creating entirely new content, limiting their
ability to generate new content with other modalities.

2) Energy-Based Generative Models: Energy-based gener-
ative models are a class of generative models that represent
input data using energy values [72]. These models define an
energy function and then minimize the input data’s energy
value through optimization and training. This approach is
easily comprehensible, and the models exhibit excellent flex-
ibility and generalization ability in providing AIGC services.
EBMs capture dependencies by associating an unnormalized
probability scalar (energy) to each configuration of the com-
bination of observed and latent variables. Inference consists
of finding latent variables that minimize the energy given a
set of observed variables. The model learns a function that
associates low energies with the latent variables’ correct values
and higher energies with incorrect values.
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3) Variational Autoencoder: The VAE [73] is a type of
generative models that consist of two primary components: an
encoder and a decoder network. The encoder transforms the
input data into a set of parameters (mean and variance) in a
latent space. These parameters are then used to sample from
the latent space, generating latent variables. The decoder takes
these latent variables as input and generates new data. VAEs
differ from GANSs in their training methods. While GANSs are
trained using a supervised learning approach, VAEs employ
an unsupervised learning approach. This difference is reflected
in how they generate data. VAEs generate data by sampling
from the learned distribution, while GANs approximate the
data distribution using the generator network.

4) Flow-Based Generative Models: Flow-based genera-
tive models [74] facilitate the data generation process by
employing probabilistic flow formulations. Additionally, these
models compute gradients during generation using backprop-
agation algorithms, enhancing training and learning efficiency.
Consequently, flow-based models in mobile edge networks
present several benefits. One such advantage is computa-
tional efficiency. Flow-based models can directly compute the
probability density function during generation, circumventing
resource-intensive calculations. This promotes more efficient
computation within mobile edge networks.

5) Generative Diffusion Models: Diffusion models are
likelihood-based models trained with Maximum Likelihood
Estimation (MLE) [25], as opposed to GANs trained with a
minimax game between the generator and the discriminator.
Therefore, the pattern collapses and thus the training instabili-
ties can be avoided. Specifically, diffusion models are inspired
by non-equilibrium thermodynamics theory [1]. They learn the
inverse diffusion process to construct the desired data sample
from noise by defining a Markov chain of diffusion steps that
gradually add random noise to the data. In addition, diffusion
can mathematically transform the computational space of the
model from pixel space to a low-dimensional space called
latent space. This reduces the computational cost and time
required and improves the training efficiency of the model.
Unlike VAE or flow-based models, diffusion models are
learned using a fixed procedure, and the hidden variables have
high dimensions that are the same as the original data. This
versatility and computational efficiency make diffusion models
highly effective across a broad range of applications, including
computer vision, natural language processing, audio synthesis,
3D modeling, and network optimization [1].

6) Large Language Models: Large language models
(LLM), which consist of billions of parameters, are trained
on large-scale datasets [75], and thus demonstrate the ability
to handle various downstream tasks. LLMs can understand
input prompts and generate human-like text in response. These
models have greatly influenced our interaction with technology
and have helped pave the way for advancements in artificial
general intelligence. For instance, Google’s PaLM-E [76] is
an embodied language model that can handle tasks involving
reasoning, visuals, and language. It can process multimodal
sentences and transfer knowledge across domains, enabling it
to perform tasks such as robot planning and embodied question
answering.
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In wireless networks, deploying LLMs faces several impor-
tant issues from the perspectives of wireless communications,
computing, and storage [77]. In terms of wireless communica-
tions, efficient utilization of computing and energy resources
is crucial due to the large sizes of LLMs and the need
to process vast amounts of data [78]. Compatibility with
existing infrastructure is also a concern, including potential
limitations in data, configuration, and transmission protocols.
From a computing perspective, LLMs face challenges such as
long response times, high bandwidth requirements, and data
privacy concerns [79]. Deploying LLMs at the network edge is
necessary to address these challenges. The staggering size of
LLMs poses significant obstacles for mobile edge computing
(MEC) systems. Balancing inference accuracy and memory
usage is crucial when employing parameter sharing in LLMs.
Furthermore, there are still numerous open research problems
regarding the utilization of MEC systems to support LLMs. In
terms of storage and caching [80], managing the computation
and memory-intensive nature of LLMs is essential during load-
ing and execution on edge servers. Core network latency and
congestion can be problematic when offloading services for
caching and inference, particularly due to the high number of
service requests. Designing effective caching algorithms that
consider the frequency of use for LLMs and user preferences is
important. Dynamic cache structures based on service runtime
configuration, such as batch size, add complexity to cache
loading and eviction. Balancing the tradeoff between latency,
energy consumption, and accuracy is a key consideration when
managing cached models at edge servers.

C. Collaborative Infrastructure for Mobile AIGC Networks

By asking ChatGPT the question “Integrating Al-generated
content and mobile edge networks, please define mobile
AIGC networks in one sentence,” we can get the answer
“Mobile AIGC networks are a fusion of Al-generated content
and mobile edge networks, enabling rapid content creation,
delivery, and processing at the network’s edge for enhanced
user experiences and reduced latency.” (from Mar. 14 Version
based on GPT-4) To support the pre-training, fine-tuning, and
inference of the aforementioned models, substantial compu-
tation, communication, and storage resources are necessary.
Consequently, to provide low-latency and personalized AIGC
services, a collaborative cloud-edge-mobile AIGC framework
shown in Fig. 6 is essential, requiring extensive cooperation
among heterogeneous resource shareholders.

1) Cloud Computing: In mobile AIGC networks, cloud
computing [81] represents a centralized infrastructure sup-
plying remote server, storage, and database resources to
support AIGC service lifecycle processes, including data
collection, model training, fine-tuning, and inference. Cloud
computing allows users to access AIGC services through the
core network where these services are deployed, rather than
building and maintaining physical infrastructure. Specifically,
there are three primary delivery models in cloud computing:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS). In mobile AIGC networks,
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Fig. 6. The collaborative cloud-edge-mobile infrastructure for mobile AIGC
networks. The advantages and limitations of provisioning AIGC services in
each layer are elaborated.

laaS providers offer access to virtualized AIGC comput-
ing resources such as servers, storage, and databases [23].
Additionally, PaaS provides a platform for developing and
deploying AIGC applications and services. Lastly, SaaS deliv-
ers applications and services over the Internet, enabling users
to access generative Al models directly through a Web browser
or mobile application. In summary, cloud computing in mobile
AIGC networks allows developers and users to harness the
benefits of AI while reducing costs and mitigating chal-
lenges associated with constructing and maintaining physical
infrastructure, playing a critical role in the development,
deployment, and management of AIGC services.

2) Edge Computing: By providing computing and storage
infrastructure at the edge of the core network [29], users can
access AIGC services through radio access networks (RAN).
Unlike the large-scale infrastructure of cloud computing, edge
servers’ limited resources often cannot support generative
Al model training. However, edge servers can offer real-time
fine-tuning and inference services that are less computa-
tionally and storage-intensive. By deploying edge computing
at the network’s periphery, users need not upload data
through the core network to cloud servers to request AIGC
services. Consequently, reduced service latency, improved
data protection, increased reliability, and decreased bandwidth
consumption are benefits of AIGC services delivered via edge
servers. Compared to exclusively delivering AIGC services
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Fig. 7. The connections among AIGC services, wireless communication,
mobile edge computing, and generative Al.

through centralized cloud computing, location-aware AIGC
services at the edge can significantly enhance user experi-
ence [82]. Furthermore, edge servers for local AIGC service
delivery can be customized and personalized to meet user
needs. Overall, edge computing enables users to access high-
quality AIGC services with lower latency.

3) Mobile Computing: Device-to-device (D2D) mobile
computing involves using mobile devices for the direct exe-
cution of AIGC services by users [18], [83]. On one hand,
mobile devices can directly execute generative Al models and
perform local AIGC inference tasks. While running generative
Al models on devices demands significant computational
resources and consumes mobile device energy, it reduces
AIGC service latency and protects user privacy. On the other
hand, mobile devices can offload AIGC services to edge or
cloud servers operating over wireless connections, providing
a flexible scheme for delivering AIGC services. However,
offloading AIGC services to edge or cloud servers for exe-
cution necessitates stable network connectivity and increases
service latency. Lastly, model compression and quantization
must be considered to minimize the resources required for
execution on mobile devices, as generative Al models are
often large-scale.

Specifically, the connections among AIGC services, wireless
communication, mobile edge computing, and generative Al
are illustrated in Fig. 7.

D. Lessons Learned

1) Cloud-Edge Collaborative Training and Fine-Tuning
for Generative Al Models: To support AIGC services with
required performance evaluated based on metrics discussed in
Section III-A, cloud-edge collaborative pre-training and fine-
tuning are envisioned to be promising approaches. On the
one hand, cloud data centers can train generative Al models
by using powerful computing and data resources. Pre-training
in cloud data centers enables leveraging powerful computing
and data resources and pre-training on large datasets, which
can help models learn general features. However, AIGC
services require significant communication and bandwidth
resources, and thus raise privacy concerns, and may not be
as effective for fine-tuning on smaller more specific datasets.
On the other hand, utilizing a large amount of user data in
the edge network, the generative Al model can be fine-
tuned to be more customized and personalized. The selection
discusses the pros and cons of fine-tuning AIGC models on
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(a) Stable Diffusion

Fig. 8.
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A photo of a green pumpkin

| have generated an image of a green pumpkin for you. The file name is

image/3cab2000.png.

(¢) Visual ChatGPT

(d) Point-E

Generated images of different generative AI models, including Stable Diffusion (https://huggingface.co/spaces/stabilityai/stable-diffusion), DALLE-

2 (https://labs.openai.com/), Visual ChatGPT (https://huggingface.co/spaces/microsoft/visual_chatgpt), Point-E (https://huggingface.co/spaces/openai/point-¢),

using the prompt “A photo of a green pumpkin.”

TABLE II
SUMMARY OF STATE-OF-THE-ART GENERATIVE Al MODELS

Network Archi-

Application Models Datasets Evaluation Metrics
tectures
WebText,
Text Generation GPT-3 [85], GPT-4, BERT [86], | Transformer [88], | BookCorpus BLEU [90], ROUGE
LaMDA [87], ChatGPT [12] Diffusion Model [89], Common | [91], Perplexity
Crawl

StyleGAN [92], BigGANs [93],
StyleGANXL [94], DVD-GAN

[95], DALLE [8], DALLE2 [9],

Diffusion Model,

ImageNet [104],

. CLIP [7], VisualGPT [96], VAE | GAN [102], FID [107], IS [108],
Image Generation | g7 pro oy based GAN [72], | VQ-VAE [103], ggeclg‘ 0 6[105]’ LPIPS [109]
Flow-based models [74], Imagen | Transformer [88] [106]
[98], diffusion probabilistic models
[99], DDPM [100], DDIM [101]
Transformer, MIDI Dataset, .
Music Generation xz\izgz: [111511121]1’di0L1\.IIUI[(le ;1;10 k, RNN, CNN, | MAESTRO ;&i(l?ICS:notatlon, Mu-
’ Diffusion Model | [113]
Diffusion models beat GANSs Diffusion Model
Video Generation | [114], Video Diffusion Models [1]. GAN Kinetics [117] PSNR, SSIM
[115], Dreamfusion [116] ’
3D Generation | NeRF [118] Diffusion Model, | Synthetic = and | p\rp “gopv 1 prps
MLP real-world scenes

edge devices, including the utilization of user data available
on edge devices, real-time interaction/response, and reduced
privacy concerns, as well as limitations such as computing and
storage resources and the need for specialized hardware and
software.

2) Edge-Mobile Collaborative Inference for AIGC Services:
In a mobile AIGC network, the user’s location and mobility
change over time [84]. Therefore, a large number of edge and
mobile collaborations are required to complete the provision
of AIGC inference services. Due to the different mobility
of users, the AIGC services forwarded to the edge servers
for processing are also dynamic. Several techniques can be
leveraged to address the mobility issues in mobile AIGC
networks, which include federated learning and distributed
training to improve the efficiency of AIGC model updates,
advanced DRL algorithms, and meta-learning techniques to
optimize the AIGC provider selection strategy in response

to changing network conditions, edge caching to deliver
low-latency content generation and computing services, and
gathering user historical requests and profiles to provide
personalized services. Therefore, dynamic resource allocation
and task offloading decisions of AIGC applications are some
of the challenges in deploying mobile AIGC networks, which
we discuss in Section VI.

IV. How 1O DEPLOY AIGC AT MOBILE EDGE
NETWORKS: APPLICATIONS AND ADVANTAGES OF AIGC

This section introduces creative applications and advantages
of AIGC services in the mobile edge network. Then, we
provide four use cases of AIGC applications of mobile AIGC
networks. Some examples of generative Al models are shown
in Fig. 8. The applications elaborated in this section are
summarized in Table II.
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A. Applications of Mobile AIGC Networks

1) Al-Generated Texts: Recent advancements in Natural
Language Generation (NLG) technology have led to
Al-generated text that is nearly indistinguishable from human-
written text [11]. The availability of powerful open-source
Al-generated text models, along with their reduced computing
power requirements, has facilitated widespread adoption, par-
ticularly in mobile networks. The development of lightweight
NLG models that can operate on resource-constrained devices,
such as smartphones and IoT devices, while maintaining high-
performance levels, has made Al-generated text an essential
service in mobile AIGC networks [39].

One example of such a model is ALBERT (A Lite BERT),
designed to enhance the efficiency of BERT (Bidirectional
Encoder Representations from Transformers) while reducing
its computational and memory requirements [119]. ALBERT
is pre-trained on a vast corpus of text data and uses factorized
embedding parameterization, cross-layer parameter sharing,
and sentence-order prediction tasks to optimize BERT’s
performance while minimizing computational and memory
demands. ALBERT has achieved performance levels compa-
rable to BERT on various natural language processing tasks,
such as question answering and sentiment analysis [12]. Its
lighter model design makes it more suitable for deployment
on edge devices with limited resources.

MobileBERT is another model designed for deployment on
mobile and edge devices with minimal resources [120]. This
more compact variant of the BERT model is pre-trained on the
same amount of data as BERT but features a more computa-
tionally efficient design with fewer parameters. Quantization
is employed to reduce the model’s weight accuracy, further
decreasing its processing requirements. MobileBERT is a
highly efficient model compatible with various devices, includ-
ing smartphones and IoT devices, and can be used in multiple
mobile applications, such as personal assistants, chatbots, and
text-to-speech systems [39]. Additionally, it can be employed
in small-footprint cross-modal applications, such as image
captioning, video captioning, and voice recognition. These Al-
generated text models offer significant advantages to mobile
edge networks, enabling new applications and personalized
user experiences in real time while preserving user privacy.

2) Al-Generated Audio: Al-generated audio has gained
prominence in mobile networks due to its potential to enhance
user experience, and increase efficiency, security, personaliza-
tion, cost-effectiveness, and accessibility [20]. For instance,
AIGC-based speech synthesis and enhancement can improve
call quality in mobile networks, while AIGC-based speech
recognition and compression can optimize mobile networks by
reducing the data required to transmit audio and automating
tasks such as speech-to-text transcription. Voice biometrics
powered by Al can bolster mobile network security by utilizing
the user’s voiceprint as a unique identifier for authentica-
tion [111]. AIGC-driven audio services, such as personalized
music generation, can automate tasks and reduce network load,
thereby cutting costs.

Audio Albert [49], a streamlined version of the BERT model
adapted for self-supervised learning of audio representations,
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demonstrates competitive performance levels compared to
other popular Al-generated audio models in various natural
language processing tasks such as speech recognition, speaker
identification, and music genre classification. In terms of
latency, Audio Albert shows faster inference times than
previous models, with a 20% reduction in average inference
time on average, which can significantly improve response
times in mobile edge networks. Additionally, Audio Albert’s
accuracy is comparable to BERT and achieves state-of-the-art
results on several benchmarks. Furthermore, Audio Albert’s
model design is lighter than other models, making it suit-
able for deployment on edge devices with limited resources,
improving computational efficiency while maintaining high-
performance levels. Utilizing Audio Albert in mobile edge
networks can provide several benefits, such as faster response
times, reduced latency, and lower power consumption, making
it a promising solution for Al-generated audio in mobile edge
networks.

3) Al-Generated Images: Al-generated images offer
numerous applications in mobile networks, such as image
enhancement, image compression, image recognition, and text-
to-image generation [121]. Image enhancement can improve
picture quality in low-light or noisy environments, while image
compression decreases the data required to transmit images,
enhancing overall efficiency. Various image recognition
applications include object detection, facial recognition, and
image search. Text-to-image generation enables the creation
of images from textual descriptions for visual storytelling,
advertising, and virtual reality/augmented reality (VR/AR)
experiences [122], [123], [124], [125].

Make-a-Scene, a novel text-to-image generation model
proposed in [126], leverages human priors to generate realistic
images based on textual descriptions. The model consists of a
text encoder, an image generator, and a prior human module
trained on human-annotated data to incorporate common sense
knowledge. In mobile networks, this model can be trained
on a large dataset of images and textual descriptions to
swiftly generate images in response to user requests, such as
creating visual representations of road maps. This approach
complements the techniques employed in [127] for generating
images with specific attributes.

Furthermore, the Semi-Parametric Neural Image Synthesis
(SPADE) method introduced in [127] generates new images
from existing images and their associated attributes using
a neural network architecture. This method produces highly
realistic images conditioned on input attributes and can be
employed for image-to-image translation, inpainting, and style
transfer in mobile networks. The SPADE method shares sim-
ilarities with the text-to-image generation approach in [126],
where both techniques focus on generating high-quality, real-
istic images based on input data.

However, the development of Al-generated image tech-
nology also raises concerns around deep fake technology,
which uses Al-based techniques to generate realistic photos,
movies, or audio depicting nonexistent events or individuals,
as discussed in [16]. Deep fakes can interfere with system
performance and affect mobile user tasks, leading to ethical
and legal concerns that require more study and legislation.
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4) Al-Generated Videos: Al-generated videos, like Al-
generated images, can be utilized in mobile networks for
various applications, such as video compression, enhance-
ment, summarization, and synthesis [95]. Al-generated videos
offer several advantages over Al-generated images in mobile
networks. They provide a more immersive and engaging user
experience by dynamically conveying more information [128].
Moreover, Al-generated videos can be tailored to specific char-
acteristics, such as style, resolution, or frame rate, to improve
user experience or create videos for specific purposes, such
as advertising, entertainment, or educational content [115].
Furthermore, Al-generated videos can generate new content
from existing videos or other types of data, such as images,
text, or audio, offering new storytelling methods [115].

Various models can be employed to achieve Al-generated
videos in mobile networks. One such model is Imagen Video,
presented in [13], which is a text-conditioned video generation
system based on a cascade of video diffusion models. Imagen
Video generates high-definition videos from text input using
a base video generation model and an interleaved sequence
of spatial and temporal video super-resolution models. The
authors describe the process of scaling up the system as a
high-definition text-to-video model, including design choices
such as selecting fully-convolutional temporal and spatial
super-resolution models at specific resolutions and opting
for v-parameterization for diffusion models. They also apply
progressive distillation with classifier-free guidance to video
models for rapid, high-quality sampling [13], [115]. Imagen
Video not only produces high-quality videos but also boasts
a high level of controllability and world knowledge, enabling
the generation of diverse videos and text animations in various
artistic styles and with 3D object comprehension.

5) Al-Generated 3D: Al-generated 3D content is becoming
increasingly promising for various wireless mobile network
applications, including AR and VR [129], [130]. It also
enhances network efficiency and reduces latency through
optimal base station placement [131], [132]. Researchers have
proposed several techniques for generating high-quality and
diverse 3D content using deep learning (DL) models, some of
which complement one another in terms of their applications
and capabilities.

One such technique is the Latent-NeRF model, proposed
in [133], which generates 3D shapes and textures from 2D
images using the NeRF architecture. This model is highly
versatile and can be used for various applications, such as
3D object reconstruction, 3D scene understanding, and 3D
shape editing for wireless VR services. Another technique,
the Latent Point Diffusion (LPD) model presented in [134],
generates 3D shapes with fine-grained details while controlling
the overall structure. LPD has been shown to create more
diverse shapes than other state-of-the-art models, making it
suitable for 3D shape synthesis, 3D shape completion, and 3D
shape interpolation. The LPD model complements the latent-
NeRF approach by offering more diverse shapes and finer
details.

Moreover, researchers in [135] proposed the Diffusion-SDF
model, which generates 3D shapes from natural language
descriptions. This model utilizes a combination of voxelized
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signed distance functions and diffusion-based generative mod-
els, producing high-quality 3D shapes with fine-grained details
while controlling the overall structure. This technique accu-
rately generates 3D shapes from natural language descriptions,
making it useful for applications such as 3D shape synthesis,
completion, and interpolation. It shares similarities with the
Latent-NeRF and LPD models in terms of generating high-
quality 3D content [136].

B. Advantages of Mobile AIGC

We then discuss several advantages of generative Al in
mobile networks.

1) Efficiency: Generative Al models offer several efficiency
benefits in mobile networks. As demonstrated in the appli-
cations of Al-generated text models like ALBERT [119] and
MobileBERT [120], these models can automate the process
of creating text, reducing the need for human labor and
significantly boosting productivity [137]. Moreover, as shown
in the applications of Al-generated audio models like Audio
Albert [49], these models can be implemented at the edge
of mobile networks [138], [139], allowing them to produce
data locally on devices like smartphones and IoT sensors. This
results in improved user experiences and reduced latency in
mobile applications that rely on real-time data generation and
processing [138].

2) Reconfigurability: The reconfigurability of AIGC in
mobile networks is a significant advantage. As demonstrated
in the ChatGPT application, AIGC can produce a vast array
of content, which can be seamlessly adjusted to suit evolving
network demands and user preferences [140]. Furthermore, as
shown in the applications of Al-generated image models like
Make-a-Scene [126] and SPADE [126], AIGC can contribute
to reconfigurability in mobile networks by utilizing image
and audio-generative models. These models can be trained to
generate new visuals and auditory content based on specific
parameters, such as user preferences or contextual information.

3) Accuracy: Employing generative Al models in mobile
networks provides significant benefits in terms of accu-
racy, leading to more precise predictions and well-informed
decision-making [114]. Similarly, Al-generated visuals and
audio can be employed to improve the quality and accuracy
of network-provided content, encompassing domains such as
advertising, entertainment, and accessibility services. By using
generative Al models, tailored and engaging content can be
produced, resulting in a more impactful and personalized
user experience. In the context of mobile networks, this can
mean generating high-quality images or videos adapted to
various devices and network conditions, improving the user
perception of the provided services. By harnessing the power
of generative Al models, mobile networks can offer more
accurate and efficient services, ultimately fostering a superior
user experience and enabling innovative solutions tailored to
the diverse needs of mobile users [47].

4) Scalability and Sustainability: Utilizing AIGC in
mobile networks offers significant scalability and sustainability
benefits [114]. AIGC can produce a wide range of content [13],
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enhancing mobile networks’ overall scalability and sustainabil-
ity in numerous ways. Specifically, AIGC facilitates scalability
in mobile networks by reducing the reliance on human labor
and resources. Furthermore, AIGC streamlines the entire con-
tent production process, encapsulating activities from initial
capture to retouching, and from synergistic designer col-
laboration to large-scale production. This process efficiency
leads to a substantial time saving, which not only results
in diminished energy consumption, but also contributes to a
reduced carbon footprint associated with maintaining physical
storage infrastructures [141]. Despite the challenges associated
with generative Al models, such as large model sizes and
complex training processes, leveraging edge servers in mobile
networks can help mitigate these issues by adopting an “AIGC-
as-a-Service” approach [138]. Users can interact with the
system by submitting requests through their mobile devices
and subsequently receiving computational results from edge
servers. This strategy eliminates the need to deploy generative
Al models on devices with constrained computing resources,
optimizing overall efficiency and improving scalability and
sustainability within the mobile network infrastructure [25].

5) Security and Privacy: AIGC can offer potential security
and privacy advantages by embedding sensitive information
within Al-generated content. This approach can serve as a
form of steganography, a technique that conceals data within
other types of data, making it difficult for unauthorized parties
to detect the hidden information. However, it is essential to
be aware of potential security and privacy risks associated
with AIGC, such as adversarial attacks on Al models or the
misuse of Al-generated content for malicious purposes, like
deepfakes [16]. To ensure the secure and privacy-preserving
use of AIGC in mobile networks, robust security measures and
encryption techniques must be in place, along with ongoing
research to counter potential threats [142].

V. CASE STUDIES OF AIGC IN MOBILE NETWORK

Many case studies have been done for achieving effective
and efficient mobile AIGC networks as shown in Table III
In this section, we review several representative cases,
e.g., the AIGC service provider (ASP) selection, generative
Al-empowered traffic and driving simulation, Al-generated
incentive mechanism, and blockchain-powered lifecycle man-
agement for AIGC.

A. Al-Generated Incentive Mechanism

In this case study, we present the idea of using Al-generated
optimization solutions with a focus on the use of diffusion
models and their ability to optimize the utility function.

In today’s world of advanced Internet services, including
the Metaverse, MR technology is essential for delivering
captivating and immersive user experiences [162], [163].
Nevertheless, the restricted processing power of head-mounted
displays (HMDs) used in MR environments poses a significant
challenge to the implementation of these services. To tackle
this problem, the researchers in [143] introduce an innovative
information-sharing strategy that employs full-duplex device-
to-device semantic communication [164]. This method enables
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users to circumvent computationally demanding and redundant
processes, such as producing AIGC in-view images for all MR
participants. By allowing users to transmit generated content
and semantic data derived from their view image to nearby
users, these individuals can subsequently utilize the shared
information to achieve spatial matching of computational
outcomes within their view images. In their work, the authors
of [143] primarily concentrate on developing a contract the-
oretic incentive mechanism to promote semantic information
exchange among users. Their goal is to create an optimal con-
tract that, while adhering to the utility threshold constraints of
the semantic information provider, simultaneously maximizes
the utility of the semantic information recipient. Consequently,
they devised a diffusion model-based Al-generated contract
algorithm [1], as illustrated in Fig. 9.

Specifically, the researchers developed a cutting-edge algo-
rithm for creating Al-generated incentive mechanisms [1],
which tackle the challenge of utility maximization by devising
optimal contract designs [143]. This approach is distinct from
traditional neural network backpropagation algorithms or DRL
methods, as it primarily focuses on enhancing contract design
through iterative denoising of the initial distribution instead
of optimizing model parameters. The policy for contract
design is defined by the reverse process of a conditional
diffusion model, linking environmental states to contract
arrangements. The primary goal of this policy is to produce
a deterministic contract design that maximizes the expected
total reward over a series of time steps. To optimize system
utility through contract design, the researchers in [143] create
a contract quality network that associates an environment-
contract pair with a value representing the expected total
reward when an agent implements a particular contract design
policy from the current state and adheres to it in the future.
The optimal contract design policy maximizes the system’s
predicted cumulative utility. The researchers then carried out
an extensive comparison between their suggested Al-powered
contract algorithm and two DRL algorithms, specifically SAC
and PPO. As illustrated in the training process in [143] (see
Fig. 10), PPO requires more iteration steps to achieve conver-
gence, while SAC converges more quickly but with a lower
final reward value in comparison to the Al-driven contract
algorithm.

The enhanced performance of the suggested Al-driven
contract algorithm can be ascribed to two main aspects:

o Improved sampling quality: By configuring the diffusion
step to 10 and applying multiple refinement steps, the dif-
fusion models generate higher quality samples, mitigating
the influence of uncertainty and augmenting sampling
precision [114].

e Enhanced long-term dependence processing capability:
Unlike conventional neural network generation models
that take into account only the current time step input,
the diffusion model creates samples with additional time
steps through numerous refinement iterations, thereby
bolstering its long-term dependence processing capabil-
ity [121].

As demonstrated in Fig. 10, the authors in [143] examine the
optimal contract design capacities of the trained models. For a
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TABLE III

KEY LITERATURE CONSIDERING AIGC WITHIN WIRELESS NETWORK
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Reference System Model Method Used
[ A comprehensive tutorial on generative diffusion models in | Integration of diffusion models with DRL, incentive
various network optimization problems design, semantic communications, and IoV networks
[143] Users sharing information through full-duplex device-to-device | Diffusion model-based incentive mechanism genera-
semantic communications tion to maximize the users’ utilities
[144] Selection of AIGC service providers (ASPs) capable of effec- | Generative diffusion model for optimal decision gen-
tively executing user tasks eration in ASP selection problem
[145] Distributed diffusion model where the user transmits the results | A collaborative distributed diffusion-based AIGC
after several shared denoising steps to other users framework
[138] Large-scale deployment of AaaS with 20 AIGC service | Deep reinforcement learning (DRL)-enabled solution
providers (ASPs) and 1000 edge users to maximize a utility function
. . Blockchain technology to protect the ownership and
AIGC lifecycle management framework with three ESPs and . . .
[146] . L copyright of AIGC, along with a reputation-based
three producers, supported by the Draw Things application . . .
service provider selection strategy
Deep generative model-empowered wir cless network MANAEE" | Kyiffusion model to generate effective contracts for
[147] ment and use cases, e.g., network routing, resource allocation, | . .. . .
. incentivizing mobile AIGC services
and network economics
[148] ereless sensing platform based on the 801.11ac protocol with Multi-scale wireless perception for AIGC services
a signal transmitter and five receivers
A user requests a specific number of images from a service | Generative diffusion model-aided optimization to iden-
[149] provider that is attacked by data poisoning, while diffusion | tify the optimal diffusion steps to minimize the total
models provide the defense energy cost
A multi-modality semantic-aware framework for generative A double deep Q—net.work—based approach to .address
[150] . the resource allocation problem in generative Al-
Al-enabled vehicular networks Ll
enabled V2V communication
An integrated semantic communication and AIGC (ISCA) | Diffusion model-based joint resource allocation in
[151] -
framework for Metaverse services ISCA systems
[152] A semantic communication framework based on You Only | Semantic communications with generative diffusion
Look Once (YOLO) to construct a virtual apple orchard model-aided resource optimization
A foundation model caching and inference framework to . .
: Managing cached foundation models and user requests
[153] balance the tradeoff among inference latency, accuracy, and . .. . .
. during the provisioning of generative Al services
resource consumption
[80] A framework of joint model caching and inference for man- | A least context algorithm for managing cached models
aging models and allocating resources at edge servers
[154] An autonomous driving architecture, where generative Al is | A multi-task digital twin offloading model and a multi-
leveraged to synthesize conditioned traffic and driving data task enhanced auction-based mechanism
A framework that used mobile AIGC to drive Human Digital . . e .
[155] Twin (HDT) applications, focusing on personalized healthcare Using generative. diffusion rlnodel for the resource
solutions ’ allocation in mobile AIGC-driven HDT system
The model combines Federated Learning (FL) with AIGC to | Using FL techniques to fine-tune AIGC, yielding re-
[156] . . . A o L.
improve AIGC creation and privacy in wireless networks duced communication cost and training latency
Exploring the application of Generative Artificial Intelligence | Using a diffusion model-based method for signal di-
[157] (GA) in the physical layer of Integrated Sensing and Com- | rection estimation demonstrates GAI’s efficacy in near-
munications (ISAC) systems field ISAC
GAl-aided Semantic Communication (SemCom) system that . e
. - Using a diffusion model to ensure secure and accurate
[158] uses multi-model prompts for accurate content decoding and .
. : message transmission
incorporates security measures
[159] Using Pretrained Foundation Models (PFMs) and prompt engi- | Using ChatGPT to train an effective prompt optimizer,
neering to expand the applications of AIGC in edge networks | measuring its impact on user experience
[160] Flexible-position multiple-input multiple-output (MIMO) sys- | Using generative diffusion model to generate optimal
tems antenna trajectories to maximize system efficiency
A blockchain-aided semantic communication framework for A trammg.—bas?d targeted sema nic attack scheme and
[142] . .. . counters it with a blockchain and zero-knowledge
AIGC services in virtual transportation networks .
proof-based defense mechanism
. . . A training-based targeted semantic attack scheme and
[142] A blockchain-aided semantic communication framework for counters it with a blockchain and zero-knowledge

AIGC services in virtual transportation networks

proof-based defense mechanism

[161]

A framework that uses wireless perception to guide generative
Al in producing digital content

A Sequential Multi-Scale Perception algorithm for
user skeleton prediction and a diffusion model-based
approach to generate an optimal pricing strategy

specific environmental state, the Al-driven contract algorithm
provides a contract design that attains a utility value of 189.1,
markedly outperforming SAC’s 185.9 and PPO’s 184.3. These
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results highlight the practical advantages of the proposed
Al-based contract algorithm in contrast to traditional DRL
techniques.
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Fig. 9. System model of contract design in semantic information sharing network, and the Al-generated contract algorithm. The diffusion models generate
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Fig. 10. The effect of different incentive design schemes, e.g., PPO, SAC,
and Al-generated contract [143].

Lesson Learned: The case study in this research high-
lights the potential of Al-generated optimization solutions,
particularly diffusion models, for addressing complex utility
maximization problems within incentive mechanism design.
The authors in [143] present an innovative approach that
employs full-duplex device-to-device semantic communica-
tion for information-sharing in mixed reality environments,
overcoming the limitations of HMDs. The diffusion model-
based Al-generated contract algorithm proposed in this study
demonstrates superior performance compared to traditional
DRL algorithms, such as SAC and PPO. The superior
performance of the Al-generated contract algorithm can be
attributed to improved sampling quality and enhanced long-
term dependence processing capability. This study underscores

the effectiveness of employing Al-generated optimization solu-
tions in complex, high-dimensional environments, particularly
in the context of incentive mechanism design. Some promising
directions for future research include:

o Expanding the application of diffusion models:
Investigate the application of diffusion models in other
domains, such as finance, healthcare, transportation, and
logistics, where complex utility maximization problems
often arise.

e Developing novel incentive mechanisms: Explore the
development of new incentive mechanisms that com-
bine Al-generated optimization solutions with other
approaches, such as game theory or multi-agent reinforce-
ment learning, to create even more effective incentive
designs.

o Exploring the role of human-AlI collaboration: Investigate
how Al-generated optimization solutions can be com-
bined with human decision-making to create hybrid
incentive mechanisms that capitalize on the strengths of
both human intuition and Al-driven optimization.

B. AIGC Service Provider Selection

The integration of generative Al models within wireless
networks offers significant potential, as these state-of-the-
art technologies have exhibited exceptional capabilities in
generating a wide range of high-quality content. By harnessing
the power of artificial intelligence, generative Al models can
astutely analyze user inputs and produce tailored, contextually
relevant content in real-time [114]. This stands to considerably
enhance user experience and foster the creation of innovative
applications across various domains, such as entertainment,
education, and communication. Nonetheless, the deployment
and application of these advanced models give rise to chal-
lenges, including extensive model sizes, complex training
processes, and resource constraints. Consequently, deploying
large-scale AI models on every network edge device poses
considerable difficulties.

To address this challenge, the authors in [138] intro-
duce the “AIGC-as-a-service” architecture. This approach
entails ASPs deploying AI models on edge servers, which
facilitates the provision of instantaneous services to users
via wireless networks, thereby ensuring a more convenient
and adaptable experience. By enabling users to effortlessly
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and different ASP’s AI models have different capabilities and computation
capacities, a proper ASP selection algorithm is needed to maximize the total
utilities of network users.

access and engage with AIGC, the proposed solution min-
imizes latency and resource consumption. Consequently,
edge-based AIGC-as-a-service holds the potential to trans-
form the creation and delivery of AIGC across wireless
networks.

However, one problem is that the effectiveness of ASP in
meeting user needs displays significant variability due to a
variety of factors. Certain ASPs may concentrate on generating
specific content types, while others boast more extensive
content generation capabilities. For instance, some providers
may specialize in producing particular content categories,
whereas others offer a wider range of content generation
options. Moreover, several ASPs may have access to advanced
computing and communication resources, empowering them to
develop and deploy more sophisticated generative Al models
within the mobile network. As depicted in Fig. 11, users
uploading images and requirement texts to different ASPs
encounter diverse results owing to the discrepancies in models
employed. For example, a user attempting to add snow to grass
in an image may experience varying outcomes depending on
the ASP chosen.

With a large number of mobile users and increasing demand
for accessing requests, it is crucial to analyze and select ASPs
with the necessary capability, skill, and resources to offer
high-quality AIGC services. This requires a rigorous selection
process considering the provider’s generative Al model
capabilities and computation resources. By selecting a provider
with the appropriate abilities and resources, organizations can
ensure that they have effective AIGC services to increase the
QoE for mobile users. Motivated by the aforementioned rea-
sons, the authors in [138] examine the viability of large-scale
deployment of AIGC-as-a-Service in wireless edge networks.
Specifically, in the ASP selection problem, which can be
framed as a resource-constrained task assignment problem, the
system consists of a series of sequential user tasks, a set of
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available ASPs, and the unique utility function for each ASP.
The objective is to find an assignment of tasks to ASPs, such
that the overall utility is maximized. Note that the utility of the
task assigned to the ASP is a function of the required resource.
Without loss of generality, the authors in [138] consider that
is in the form of the diffusion step of the diffusion model,
which is positively correlated to the energy cost. The reason is
that each step of the diffusion model has energy consumption
as it involves running a neural network to remove Gaussian
noise. Finally, the total availability of resources for each ASP
is taken into account to ensure that the resource constraints
are satisfied.

In this formulation of AIGC service provisioning, the
resource constraints are incorporated through the resource
constraint, which specifies the limitations on the available
resources. Note that failing to satisfy the resource constraint
can result in the crash of ASP, causing the termination and
restart of its running tasks.

Several baseline policies are used for comparison:

e Random Allocation Policy. This strategy distributes tasks
to ASPs in a haphazard manner, without accounting for
available resources, task duration, or any restrictions. The
random allocation serves as a minimum benchmark for
evaluating scheduling efficiency.

e Round-Robin Policy. The round-robin policy allocates
tasks to ASPs sequentially in a repeated pattern. This
approach can generate effective schedules when tasks
are evenly distributed. However, its performance may be
suboptimal when there are significant disparities among
them.

e Crash-Avoid Policy. The crash-avoid policy prioritizes
ASPs with greater available resources when assigning
tasks. The goal is to prevent overburdening and maintain
system stability.

e Upper Bound Policy. In this hypothetical scenario, the
scheduler has complete knowledge of the utility each
ASP offers to every user before task distribution. The
omniscient allocation strategy sets an upper limit on
the performance of user-centric services by allocating
tasks to ASPs with the highest utility and avoiding
system failures. However, this approach relies on prior
information about the unknown utility function, which is
unrealistic in practice.

The authors in [138] employed a Deep Reinforcement
Learning (DRL) technique to optimize Application Service
Provider (ASP) selection. In particular, they implemented the
Soft Actor-Critic (SAC) method, which alternates between
evaluating and improving the policy. Unlike traditional actor-
critic frameworks, the SAC approach maximizes a balance
between expected returns and entropy, allowing it to optimize
both exploitation and exploration for efficient decision-making
in dynamic ASP selection scenarios. To conduct the simu-
lation, the authors consider 20 ASPs and 1000 edge users.
Each ASP offered AaaS with a maximum resource capac-
ity, measured by total diffusion timesteps in a given time
frame, varying randomly between 600 and 1,500. Each user
submits multiple AIGC task requests to ASPs at varying
times. These requests detailed the necessary AIGC resources
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Fig. 12.  The cumulative rewards under different ASP selection algo-

rithms [138]. DRL-based algorithms can outperform multiple baseline
policies, i.e., overloading-avoidance, random, and round-robin, and approxi-
mate the optimal policy.

in terms of diffusion timesteps, randomly set between 100
and 250. Task arrivals from users adhered to a Poisson
distribution, with a rate of 0.288 requests per hour over a
288-hour duration, amounting to 1,000 tasks in total. As
shown in Fig. 12, simulation results indicate that the proposed
DRL-based algorithm outperforms three benchmark policies,
i.e., overloading-avoidance, random, and round-robin, by pro-
ducing higher-quality content for users and achieving fewer
crashed tasks.

Lesson Learned: The lesson learned from this study is that
the proper selection of ASPs is crucial for maximizing the
total utilities of network users and enhancing their experience.
The authors in [138] introduced a DRL-based algorithm for
ASP selection, which outperforms other baseline policies,
such as overloading-avoidance, random, and round-robin. By
leveraging the SAC approach, the algorithm strikes a balance
between exploitation and exploration in decision-making for
dynamic ASP selection scenarios. Consequently, this method
can provide higher-quality content for users and lead to fewer
crashed tasks, ultimately improving the quality of service in
wireless edge networks. To further enhance research in the
area of AIGC service provider selection, future studies could
have:

o Investigate the integration of FL and distributed training
methods to improve the efficiency of generative Al
model updates and reduce the communication overhead
among ASPs.

e Explore advanced DRL algorithms and meta-learning
techniques to adaptively adjust the ASP selection strategy
in response to changing network conditions and user
requirements.

o Assess the impact of real-world constraints, such as
network latency, data privacy, and security concerns, on
the ASP selection process and devise strategies to address
these challenges.

o Develop multi-objective optimization techniques for ASP
selection that consider additional factors, such as energy
consumption, cost, and the trade-off between content
quality and computational resources.
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C. Generative AI-Empowered Traffic and Driving Simulation

In autonomous driving systems, traffic and driving simu-
lation can affect the performance of connected autonomous
vehicles (AVs). Existing simulation platforms are established
based on historical road data and real-time traffic information.
However, these data collection processes are difficult and
costly, which hinders the development of fully automated
transportation systems. Fortunately, generative Al-empowered
simulations can largely reduce the cost of data collection and
labeling by synthesizing traffic and driving data via generative
Al models. Therefore, as illustrated in Fig. 13, the authors
in [154] design a specialized generative Al model, namely
TSDreambooth, for conditional traffic sign generation in the
proposed vehicular mixed reality Metaverse architecture. In
detail, TSDreambooth is a variation of stable diffusion [165]
fine-tuned based on the Belgium traffic sign (BelgiumTS)
dataset [166]. The performance of TSDreambooth is validated
via the pre-trained traffic sign classification model as gen-
erative scores. In addition, the newly generated datasets are
leveraged to improve the performance of original traffic sign
classification models.

In the vehicular Metaverse, connected AVs, roadside units,
and virtual simulators can develop simulation platforms in
the virtual space collaboratively. Specifically, AVs maintain
their representations in the virtual space via digital twin
(DT) technologies. Therefore, AVs need to continuously gen-
erate multiple DT tasks and execute them to update the
representations. To offload these DT tasks to roadside units
for remote execution in real-time, AVs need to pay for the
communication and computing resources of roadside units.
Therefore, to provide fine-grained incentives for RSUs in
executing DT tasks with heterogeneous resource demands and
various required deadlines, the authors in [154] propose a
multi-task enhanced physical-virtual synchronization auction-
based mechanism, namely MTEPViSA, to determine and
price the resources of RSUs. There are two stage of this
mechanism the online submarket for provisioning DT services
and the offline submarket for provisioning traffic and driving
simulation services. In the online simulation submarket, the
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Fig. 14. Performance evaluation of the MTEPViSA under different sizes of
the market.

multi-task DT scoring rule is proposed to resolve the external-
ities from the offline submarket. In the meanwhile, the price
scaling factor is leveraged to reduce the effect of asymmetric
information among driving simulators and traffic simulators
in the offline submarket. The simulation experiments are
performed in a vehicular Metaverse system with 30 AVs, 30
virtual traffic simulators, 1 virtual driving simulator, and 1
RSU. The experimental results demonstrate that the proposed
mechanism can improve 150% social surplus compared with
other baseline mechanisms. Finally, they develop a simulation
testbed of generative Al-empowered simulation systems in the
vehicular Metaverse.

The vehicular mixed-reality (MR) Metaverse simulation
environment was constructed employing a 3D model repre-
senting several city blocks within New York City. Geopipe,
Inc. developed this model by leveraging artificial intelli-
gence to generate a digital replica based on photographs
taken throughout the city. The simulation encompasses an
autonomous vehicle navigating a road, accompanied by strate-
gically positioned highway advertisements. Eye-tracking data
were gathered from human participants immersed in the
simulation, utilizing the HMD Eyes addon provided by Pupil
Labs. Subsequent to the simulation, participants completed a
survey aimed at evaluating their subjective level of interest in
each simulated scenario. As the experimental results shown
in Fig. 14, According to the study, as the number of AVs
continues to increase, the supply and demand mechanisms
in the market are changing. Therefore, to improve market
efficiency and total surplus, some mechanisms need to be
adopted to coordinate supply and demand. We investigate the
market mechanism and propose a mechanism based on AIGC
technology to enhance market efficiency. Compared with the
existing Physical-virtual Synchronization auction (PViSA) and
Enhanced Physical-virtual Synchronization auction (EPViSA)
mechanisms [167], [168], the AIGC-empowered mechanism
can double the total surplus under different numbers of AVs.

Lesson Learned: This case study on generative Al-
empowered autonomous driving opens a new paradigm for
the vehicular Metaverse, where data and resources can be
utilized more efficiently. The authors demonstrate the potential
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of generative Al models in synthesizing traffic and driving
data to reduce the cost of data collection and labeling. The
proposed MTEPViSA mechanism also provides a solution
to determine and price the resources of roadside units for
remote execution of digital twin tasks, improving market
efficiency and total surplus. However, there are still several
open issues that need to be addressed in this field. Firstly,
it is necessary to investigate the potential negative impacts
of generative Al models in synthesizing traffic and driving
data, such as biases and inaccuracies. Secondly, more research
is needed to develop robust and trustworthy mechanisms for
determining and pricing the resources of RSUs to ensure fair
and efficient allocation of resources. Thirdly, the proposed
mechanism needs to be tested and evaluated in more complex
and varied scenarios to ensure its scalability and applicability
in real-world situations.

D. Blockchain-Powered Lifecycle Management for
Al-Generated Content Products

This case study delves into the application of a blockchain-
based framework for managing the lifecycle of AIGC products
within edge networks. The framework, proposed by the
authors in [146], addresses concerns related to stakehold-
ers, the blockchain platform, and on-chain mechanisms. We
explore the roles and interactions of the stakeholders, discuss
the blockchain platform’s functions, and elaborate on the
framework’s on-chain mechanisms. Within edge networks, the
AIGC product lifecycle encompasses four main stakeholders:
content creators, Edge Service Providers (ESPs), end-users,
and adversaries. The following describes their roles and
interplay within the system:

o Producers: Initiate the AIGC product lifecycle by propos-
ing prompts for ESPs to generate content. They retain
ownership rights and can publish and sell the generated
products.

e ESPs: Possess the resources to generate content for
producers, charging fees based on the time and computing
power used for the tasks.

o Consumers: View and potentially purchase AIGC
products, participating in multiple trading transactions
throughout the product lifecycle.

o Attackers: Seek to disrupt normal operations of AIGC
products for profit through ownership tampering and
plagiarism.

Considering the roles of these stakeholders, the blockchain
platform fulfills two primary functions: providing a traceable
and immutable ledger and supporting on-chain mechanisms.
Transactions are recorded in the ledger and validated by full
nodes using a consensus mechanism, ensuring security and
traceability. ESPs act as full nodes, while producers and
consumers serve as clients.

To address the concerns arising from stakeholder
interactions, the framework employs three on-chain mecha-
nisms [146]:

o Proof-of-AIGC: A mechanism that defends against pla-

giarism by registering AIGC products on the blockchain.
It comprises two phases: proof generation and challenge.
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o Incentive Mechanism: Safeguards the exchange of funds
and AIGC ownership using Hashed Timelock Contracts
(HTLCs).

o Reputation-based ESP Selection: Efficiently schedules
AIGC generation tasks among ESPs based on their
reputation scores.

The Proof-of-AIGC mechanism plays a vital role in main-
taining the integrity of AIGC products. It encompasses two
stages: proof generation and challenge. The objective of proof
generation is to record AIGC products on the blockchain,
while the challenge phase allows content creators to raise
objections against any on-chain AIGC product they deem
infringing upon their creations. If the challenge is successful,
the duplicate product can be removed from the registry, thus
protecting the original creator’s intellectual property rights.

To further strengthen the security of the AIGC ecosystem, a
pledged deposit is necessary to initiate a challenge, preventing
arbitrary challenges that could burden the blockchain. This
process comprises four steps: fetching the proofs, verifying
the challenger’s identity, measuring the similarity between the
original product and the duplicate, and checking the results.

The AIGC economic system necessitates an incentive
mechanism to motivate stakeholders and ensure legitimate
exchanges of funds and ownership. The Incentive Mechanism
rewards ESPs for maintaining the ledger and providing
blockchain services. There are no transaction fees, and block
generators follow a first-come-first-serve strategy. A two-way
guarantee protocol using Hash Time Lock (HTL) is designed
to build mutual trust and facilitate AIGC circulation during
both the generation and trading phases.

The Proof-of-AIGC mechanism tackles issues like owner-
ship manipulation and AIGC plagiarism, while the incentive
mechanism ensures compliance with pre-established contracts.
Furthermore, a reputation-based ESP selection accommodates
ESP heterogeneity, which is crucial for efficient AIGC life-
cycle management. Specifically, within the AIGC lifecycle
management architecture, producers can concurrently interact
with multiple heterogeneous ESPs, necessitating the identifi-
cation of a trustworthy ESP for a specific task. Conventional
approaches involve selecting the most familiar ESP to mini-
mize potential risks, which may result in unbalanced workload
distribution and increased service latency among ESPs. To
address this challenge, a reputation-based ESP selection strat-
egy is incorporated into the framework. This strategy ranks
all accessible ESPs according to their reputation, which is
computed using Multi-weight Subjective Logic (MWSL). The
primary objectives are to assist producers in choosing the most
reliable ESP, distribute the workload evenly across multiple
ESPs, and motivate ESPs to accomplish tasks promptly and
honestly, as a negative reputation impacts their earnings.

Producers identify suitable ESPs by computing the reputa-
tion of all potential ESPs, ranking them based on their current
reputation, and allocating the AIGC generation task to the
ESP with the highest standing. In MWSL, the concept of
“opinion” serves as the fundamental element for reputation
calculation. Local opinions represent the assessments of a
specific producer who has directly interacted with the ESPs,
while recommended opinions are derived from other producers
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who have also engaged with the ESPs. To mitigate the effect of
subjectivity, an overall opinion is generated for each producer
by averaging all the acquired recommended opinions. As
producers possess varying degrees of familiarity with ESPs,
the weight of their recommended opinions differs. Reputation
is determined by combining a producer’s local opinion with
the overall opinion. The reputation scheme accomplishes
its design objectives by quantifying the trustworthiness of
ESPs, aiding producers in selecting the most dependable ESP,
reducing service bottlenecks, and incentivizing ESPs to deliver
high-quality AIGC services to maximize their profits.

A demonstration of the AIGC lifecycle management frame-
work is conducted to verify the proposed reputation-based ESP
selection approach [146]. The experimental setup comprises
three ESPs and three producers, with the AIGC services facil-
itated by the Draw Things application. Several parameters are
configured, and producers can employ the Softmax function to
ascertain the probability of choosing each ESP. The reputation
trends of the three ESPs are shown in Fig. 15, with ESP1
attaining the highest rank and remaining stable owing to its
superior service quality. When ESP1 deliberately postpones
AIGC services, its reputation declines sharply, while the
reputations of ESP2 and ESP3 continue to rise. The proposed
reputation strategy effectively measures the trustworthiness
of ESPs, enabling producers to effortlessly discern the most
reliable ESPs and motivating ESPs to operate with integrity.
In reality, the dynamics of ESP selection would become more
complex with an increase in the number of ESPs and produc-
ers. This underlines the potential challenges and importance of
effective reputation management strategies in such expanded
scenarios. The reputation-based selection method’s robustness
and scalability in a larger network is a subject for future work.
The workload of ESPs under different ESP selection methods
is also demonstrated in Fig. 16. Traditional methods lead to
uneven workloads and extended service latencies. Conversely,
the proposed reputation-based method effectively balances the
workload among ESPs. This is achieved by enabling producers
to quantitatively assess the trustworthiness of ESPs without
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solely relying on their experiential judgment. The effectiveness
of this approach in a network with a larger number of ESPs
is an aspect that invites further exploration.

Lesson Learned: The case study on blockchain-powered
lifecycle management for Al-generated content products high-
lights the potential of a blockchain-based framework in
addressing key concerns like stakeholder interactions, platform
functionality, and on-chain mechanisms. The primary lessons
learned emphasize the importance of defining clear stakeholder
roles, implementing robust mechanisms such as Proof-of-
AIGC and Incentive Mechanism to ensure system integrity,
and employing a reputation-based ESP selection scheme to
balance workload and encourage honest performance. These
insights collectively contribute to the effective management
of the AIGC product lifecycle within edge networks. Future
research in blockchain-powered lifecycle management for Al-
generated content products can explore several promising
directions:

o Enhancing the efficiency and scalability of the blockchain
platform to handle an increased number of transactions
and support a growing AIGC ecosystem might be critical.

o Refining the reputation-based ESP selection scheme to
account for more sophisticated factors, such as task com-
plexity, completion time, and user feedback, could lead to
more accurate and dynamic trustworthiness evaluations.

e Incorporating privacy-preserving techniques to protect
sensitive data in AIGC products and user information
without compromising the transparency and traceability
of blockchain technology would be valuable.

VI. IMPLEMENTATION CHALLENGES
IN MOBILE AIGC NETWORKS

When providing AIGC services, a significant amount of
computational and storage resources are required to run
the generative Al model. These computation and storage-
intensive services pose new challenges to existing mobile edge
computing infrastructure. As discussed in Section III-C, a
cloud-edge-mobile collaborative computing architecture can
be implemented to provide AIGC services. However, several
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critical implementation challenges must be addressed to
improve resource utilization and the user experience.

A. Edge Resource Allocation

AIGC service provisioning based on edge intelligence is
computationally and communication-intensive for resource-
constrained edge servers and mobile devices [169], [170].
Specifically, AIGC users send service allocation requests
to edge services. Upon receiving these AIGC requests,
edge servers perform the AIGC tasks and deliver the out-
put to users [171]. During this AIGC service provisioning
interaction, model accuracy and resource consumption are the
most common metrics. Consequently, significant efforts are
being made to coordinate mobile devices and edge servers
for deploying generative Al at mobile edge networks. As
summarized in Table IV, several Key Performance Indicators
(KPIs) for edge resource allocation in AIGC networks are
presented below.

Here are several KPIs for edge resource allocation in AIGC
networks.

e Model accuracy: In a resource-constrained edge comput-
ing network, a key issue when allocating edge resources
is optimizing the accuracy of Al services while fully uti-
lizing network resources [179]. Besides objective image
recognition and classification tasks, Al models are also
based on the content’s degree of personalization and
adaptation. Thus, optimizing AIGC content networks
may be more complex than traditional optimization since
personalization and customization make evaluating model
accuracy more unpredictable.

o Bandwidth utilization: While providing AIGC services,
the edge server must maximize its channel utilization to
ensure reliable service in a high-density edge network. To
allocate its bandwidth resources more efficiently, the edge
server must control channel access to reduce interference
between user requests and maximize the quality of its
AIGC service to attract more users.

o Edge resource consumption: Deploying AIGC services
in edge networks requires computationally intensive Al
training and inference tasks that consume substantial
resources. Due to the heterogeneous nature of edge
devices, edge services consume resources in generating
appropriate AIGC while processing users’ requests [180].
Deployment of AIGC services necessitates continuous
iteration to meet actual user needs, as generation results
of generative Al models are typically unstable. This
constant AIGC service provisioning at edge servers leads
to significant resource consumption.

Obtaining a balance between model accuracy and resource
consumption can be challenging in resource-constrained edge
computing networks. One potential strategy is to adjust the
trade-off between model accuracy and resource consump-
tion according to the needs of the users. For example,
in some cases, a lower level of model accuracy may be
acceptable if it results in faster response times or lower
resource consumption. Another approach is to use transfer
learning, which involves training an existing model on new
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TABLE IV

SUMMARY OF SCENARIOS, PROBLEMS, BENEFITS/CHALLENGES, AND MATHEMATICAL TOOLS OF EDGE RESOURCE ALLOCATION

Performance
Ref. Scenarios Metrics/Decision Benefits/Challenges Mathematical Tools
Variables
. Model loss/Steps of local Provisioning AIGC services
Adaptive control for . .
[172] L . updates, the total number in resource-constrained Control theory
distributed edge learning . . .
of iterations edge environments
. Execution time/Selective Provisioning Localized .
[173] Geo-distributed ML barrier, mirror clock AIGC services Convergence analysis
Total time and energy
consumption/Service Fully utilize scarce wireless
[174] Al service placement in placement decision, local spectrum and edge ADMM
mobile edge intelligence CPU frequencies, uplink computing resources in
bandwidth, edge CPU provisioning AIGC services
frequency
Energy consumption and Integrated fine-tuning and
[175] Joint model training and execution latency/Model inference for generative Al ADMM
task inference download decision and task | models with heterogeneous
splitting ratio computing resources
. Inference accuracy, latency,
. Serving edge DNN resource cost/Application Provision rich AIGC L .
inference for multiple . . Regularization-based online
[176] S . configuration, DNN model services for long-term L
applications and multiple lecti ded i LS optimization
models selection, and edge utility maximization
resources
. Providing insights for
. . Execution o . . .
Multi-user collaborative D partitioning generative Al Iterative alternating
[177] P latency/Partitioning, . oo
DNN partitioning . models under edge-mobile optimization
computation resources ¢
collaboration
. . Data convergence and Provisioning .
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and payment services in edge networks

data to improve accuracy while requiring fewer computational
resources. Model compression techniques can also be used
to reduce the size of the AI model without significantly
impacting accuracy. However, it is important to note that
these techniques may not be applicable in all scenarios, as
personalization and customization can make evaluating model
accuracy more unpredictable. Deployment of AIGC services
necessitates continuous iteration to meet actual user needs, as
generation results of generative Al models are typically unsta-
ble. Due to the heterogeneous nature of edge devices, edge
services consume resources in generating appropriate AIGC
while processing users’ requests. This constant AIGC service
provisioning at edge servers leads to significant resource
consumption.

To provide intelligent applications at mobile edge networks,
considerable effort should focus on the relationship between
model accuracy, networking, communication, and computation
resources at the edge. Simultaneously, offering AIGC services
is challenging due to the dynamic network environment and
user requirements at mobile edge networks. The authors
in [173] propose a threshold-based approach for reducing
traffic at edge networks during collaborative learning. By con-
sidering computation resources, the authors in [172] examine
the distributed ML problem under communication, computa-
tion, storage, and privacy constraints. Based on the theoretical
results obtained from the distributed gradient descent conver-
gence rate, they propose an adaptive control algorithm for
distributed edge learning to balance the trade-off between local

updates and global parameter aggregations. The experimental
results demonstrate the effectiveness of their algorithm under
various system settings and data distributions.

Generative Al models often require frequent fine-tuning and
retraining for newly generated data and dynamic requests in
non-stationary mobile edge networks [181]. Due to limited
storage resources at edge servers and the different customiza-
tion demands of AIGC providers, the AIGC service placement
problem is investigated in [174]. To minimize total time
and energy consumption in edge Al systems, the Al service
placement and resource allocation problem is formulated as
an MINLP. In the optimization problem, AI service place-
ment and channel allocation are discrete decision variables,
while device and edge frequencies are continuous variables.
However, solving this problem is not trivial, particularly in
large-scale network environments. Thus, the authors propose
an alternating direction method of multipliers (ADMM) to
reduce the complexity of solving this problem. The experimen-
tal results demonstrate that this method achieves near-optimal
system performance while the computational complexity
grows linearly as the number of users increases. Moreover,
when edge intelligence systems jointly consider AI model
training and inference [175], the ADMM method can optimize
edge resources. Additionally, the authors [176] explore how
to serve multiple Al applications and Al models at the edge.
They propose EdgeAdapter, as illustrated in Fig. 17, to balance
the triple trade-off between inference accuracy, latency, and
resource consumption. To provide inference services with
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Fig. 17. Dynamic AIGC application configuration and generative Al model

compression for serving AIGC services in mobile AIGC networks.

long-term profit maximization, they first analyze the problem
as an NP-hard problem and then solve it with a regularization-
based online algorithm.

In mobile AIGC networks, an effective architecture for
providing AIGC services is to partition a large generative Al
model into multiple smaller models for local execution [32].
In [177], the authors consider a multi-user scenario with
massive IoT [182] devices that cooperate to support an
intelligent application collaboratively. Although partitioning
large ML models and distributing smaller models to mobile
devices for collaborative execution is feasible, the model
distribution and result aggregation might incur extra latency
during model training and inference. Additionally, the formu-
lated optimization problem is complex due to its numerous
constraints and vast solution space. To address these issues, the
authors propose an alternative iterative optimization to obtain
solutions in polynomial time. Furthermore, AIGC services
allow users to input their preferences into generative Al
models. Therefore, to preserve user privacy among multiple
users during collaborative model training and inference [183],
the authors in [178] investigate the communication efficiency
issues of decentralized edge intelligence enabled by FL. In
the FL network, thousands of mobile devices participate
in model training. However, selecting appropriate cluster
heads for aggregating intermediate models can be challenging.
Decentralized learning approaches can improve reliability
while sacrificing some communication performance, unlike
centralized learning with a global controller. A two-stage
approach can be adopted in decentralized learning scenarios to
improve the participation rate. In this approach, evolutionary
game-based allocation can be used for cluster head selection,
and DL-based auction effectively rewards model owners.

B. Task and Computation Offloading

In general, executing generative Al models that generate
creative and valuable content necessitates substantial computa-
tional resources, which is impractical for mobile devices with
limited resources [25], [190]. Offering high-quality and low-
latency AIGC services is challenging for mobile devices with
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low processing power and limited battery life. Fortunately,
AIGC users can offload the tasks and computations of gen-
erative Al models over the RAN to edge servers located
in proximity to the users. This alleviates the computational
burden on mobile devices.

As listed in Table V, several KPIs are specifically relevant
to computation offloading in mobile AIGC networks:

o Service latency: Service latency refers to the delay asso-
ciated with data input and retrieval as well as the model
inference computations that users perform to generate
AIGC [191]. By offloading AIGC tasks from mobile
devices, such as fine-tuning and inference, to edge servers
for execution, the total latency in mobile AIGC networks
can be reduced. Unlike local execution of the generative
Al model, offloading Al tasks to the edge server for
execution introduces additional latency when transmitting
personalized instructions and downloading AIGC content.

o Reliability: Reliability evaluates users’ success rate in
obtaining personalized data accurately. On the one hand,
when connecting to the edge server, users may experience
difficulty uploading the requested data to edge servers
or downloading the results from servers due to dynamic
channel conditions and wireless network instability. On
the other hand, the content generated by the generative
Al model may not fully meet the needs of AIGC users
in terms of personalization and customization features.
Unsuccessful content reception and invalid content affect
the AIGC network’s reliability.

When implementing cloud-edge collaborative training and
fine-tuning for generative Al models [192], it is important to
consider specific algorithms or techniques that enable effective
collaboration between cloud and edge servers [170], [193].
For example, FL and distributed training approaches can
facilitate the collaboration process by allowing edge servers
to train models locally and then send the updated weights
to the cloud server for aggregation [194]. The division of
responsibilities between cloud and edge servers can also
greatly affect the overall efficiency and performance of the
generative Al models. Therefore, it is crucial to discuss and
implement appropriate schemes for determining which tasks
are offloaded to the edge servers and which are performed
on the cloud server. To provide AIGC services in edge
intelligence-empowered IoT, offloading ML tasks to edge
servers for remote execution is a promising approach for
computation-intensive Al model inference [195]. For instance,
in Fig 18, multiple lightweight ML models can be loaded into
IoT devices, while large-scale ML models can be installed and
executed on edge servers [29]. Heterogeneous generative Al
models can be deployed on mobile devices and edge servers
according to their resource demands and service require-
ments [196]. However, the multiple attributes of ML tasks,
such as accuracy, inference latency, and reliability, render
the offloading problem of AIGC highly complex. Therefore,
the authors in [184] propose an ML task offloading scheme
to minimize task execution latency while guaranteeing infer-
ence accuracy. Considering error inference leading to extra
delays in task processing, they initially model the inference
process as M/M/1 queues, which are also applicable to the
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TABLE V

SUMMARY OF SCENARIOS, PROBLEMS, BENEFITS/CHALLENGES, AND MATHEMATICAL TOOLS OF TASK AND COMPUTATION OFFLOADING

Ref. Scenarios . Perfo.r mance Benefits/Challenges Mathematical Tools
Metrics/Decision variables
Processing delay/Task Offload AIGC tasks for
[184] Edge intelligence in IoT offloading decisions improving inference Optimization theory
accuracy
Processing time/Offloadin Support on-demand
[185] Intelligent IoT applications §ecisions & changes for AIGC Random forest regression
applications
Collaborative intelligence Latency and energy Cloud and mobile edge
[32] between the cloud and consumption/DNN collaborative intelligence Greedy algorithm
mobile edge computation partitioning for generative Al models
Service response time/Task Reduge the average . .
[31] Cloud-edge intelligence . response time for multi-task Genetic algorithm
processing node .
parallel AIGC services
Minimize costs of AIGC
[186] Cost-driven offloading for System costs/Number of services in a Genetic algorithm based on
DNN-Based applications layers cloud-edge-end particle swarm optimization
collaborative environment
A weighted sum of task Multi-objective
. . . execution time and energy optimization of large-scale Generative coding
[187] Industrial edge intelligence consumption/Task AIGC tasks with multiple evolutionary algorithm
assignment connected devices
. . . . Reduce execution
[1gg] | Computation offloading for | Inference time/Pre-sending | oy oo s of AIGC tasks |  Hill climbing algorithm
ML web apps decisions . .
with pre-sending snapshots
Quality of Enhance vertical-horizontal
Cooperative edge . Y . cooperation in multi-user Federated multi-agent
[189] . . experience/Offloading . - -
intelligence - AIGC co-inference reinforcement learning
decisions .
scenarios
AIGC service process. Furthermore, the optimization problem ~Edge Server T
of ML task execution is formulated as a Mixed-Integer Edge AIGE
Resources Models

Nonlinear Programming (MINLP) to minimize provisioning
delay, which can be adopted in the inference process of AIGC
services. To extend the deterministic environment in [184]
into a more general environment, the authors in [185] first
propose an adaptive translation mechanism to automatically
and dynamically offload intelligent IoT applications. Then,
they make predictive offloading decisions using a random
forest regression model. Their experiments demonstrate that
the proposed framework reduces response times for complex
applications by half. Such ML methods can also be used
to analyze AIGC network traffic to improve service delivery
efficiency and reliability.

The success of edge-mobile collaboration for AIGC services
is dependent on several factors, including the type of service,
user characteristics, computational resources, and network
conditions [4], [197], [198]. For instance, a real-time AIGC
service may have different latency requirements compared
to an offline service. Similarly, the required computational
resources may vary depending on the model’s complex-
ity [199]. Additionally, the user profile, including location
and device type, may affect the selection of edge servers
for task offloading. Furthermore, network conditions such as
bandwidth and packet loss rate can impact the reliability and
latency of the service. Therefore, it is necessary to implement
effective resource allocation and task offloading schemes
to ensure high-quality and low-latency AIGC services in
dynamic and diverse environments. Cloud-edge collaborative
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Fig. 18. Model partitioning in mobile AIGC networks. The generative Al
models of mobile devices can be split and full or partial of them can be
offloaded to edge servers for remote execution.

intelligence enables local tasks to be offloaded to edge and
cloud servers. AIGC can benefit from cloud-edge intelligence,
as edge servers can provide low-latency AIGC services while
cloud servers can offer high-quality AIGC services. The
authors in [32] develop a scheme called Neurosurgeon to select
the optimal partitioning point based on model architectures,
hardware platforms, network conditions, and load information
at the servers to automatically partition the computation of ten-
sors of DNNs between cloud and edge servers. Furthermore,
the authors in [200] find that the layered approach can reduce
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the number of messages transmitted between devices by up
to 97% while only decreasing the accuracy of models by
a mere 3%. However, multiple AIGC services should be
considered in cloud-edge collaborative intelligence that differs
in types (e.g., text, images, and videos) and their diverse
quality of service (QoS) requirements [201]. In multi-task
parallel scheduling [31], the genetic algorithm can also be used
to make real-time model partitioning decisions. The authors
in [186] propose a cost-driven strategy for Al application
offloading through a self-adaptive genetic algorithm based on
particle swarm optimization.

In industrial edge intelligence, where edge intelligence is
embedded in the industrial IoT [187], [202], [203], [204],
offloading computation tasks to edge servers is an efficient
solution for self-organizing, autonomous decision-making, and
rapid response throughout the manufacturing lifecycle, which
is similarly required by mobile AIGC networks. Therefore,
efficiently solving task assignment problems is crucial for
effective  generative AI model inference. However, the
coexistence of multiple tasks among devices makes system
response slow for various tasks. For example, text-based and
image-based AIGC may coexist on the same edge device.
As one solution, in [187], the authors propose a coding
group evolution algorithm to solve large-scale task assignment
problems, where tasks span the entire lifecycle of various
products, including real-time monitoring, complex control,
product structure computation, multidisciplinary cooperation
optimization, and production process computation. Likewise,
the AIGC lifecycle includes data collection, labeling, model
training and optimization, and inference. Furthermore, a sim-
ple grouping strategy is introduced to parallel partition the
solution space and accelerate the evolutionary optimization
process. In contrast to VM-level adaptation to specific edge
servers [205], the authors propose application-level adaptation
for generic servers. The lighter adaptation framework in [188]
further improves transmission time and user data privacy
performance, including offloading and data/code recovery to
generic edge servers.

Ensuring dependable task offloading is crucial in providing
superior AIGC services with minimal latency in edge comput-
ing. For instance, data transmission redundancy can enhance
dependability by transmitting data via multiple pathways to
mitigate network congestion or failures. By incorporating these
techniques, task offloading dependability in edge computing
can be enhanced, thereby leading to more efficient and effec-
tive AIGC services. Most intelligent computing offloading
solutions converge slowly, consume significant resources, and
raise user privacy concerns [206], [207]. The situation is
similar when leveraging learning-based approaches to make
AIGC service offloading decisions. Consequently, the authors
enhance multi-user QoE [208] for cooperative edge intel-
ligence in [189] with federated multi-agent reinforcement
learning. They formulate the cooperative offloading problem
as a Markov Decision Process (MDP). The state is com-
posed of current tasks, local loads, and edge loads. Learning
agents select task processing positions to maximize multi-
user QoE, which simultaneously considers service latency,
energy consumption, task drop rate, and privacy protection.
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Fig. 19. An overview of edge caching in mobile AIGC networks. By caching
the generative Al model on the edge servers, the latency of AIGC services can
be reduced and the network congestion in the core network can be reduced.

Similarly, AIGC service provisioning systems can easily adopt
the proposed solution for maximizing QoE in AIGC services.

C. Edge Caching

Edge caching is the delivery of low-latency content and
computing services using the storage capacity of edge base
stations and mobile devices [214], [215]. As illustrated in
Fig. 19, in mobile AIGC networks, users can request AIGC
services without accessing cloud data centers by caching
generative Al models in edge servers and mobile devices.
Unlike the cache in traditional content distribution networks,
the generative Al model cache also requires computing
resources to support its execution. Additionally, the generative
Al model needs to gather user historical requests and profiles
in context to provide personalized services during the AIGC
service process. As shown in Table VI, here are several KPIs
for edge caching in AIGC networks:

e Model access delay: Model access latency is an important
indicator of AIGC service quality. The latency is lowest
when the generative Al model is cached in the mobile
device [216]. The model access latency must also be
calculated considering the delay in the wireless com-
munication network when the edge server provides the
generative Al model. Finally, the core network latency
must be considered when the cloud provides the AIGC
service.

o Backhaul traffic load: The load on the backhaul traffic is
significantly reduced, as the requests and results of AIGC
services do not need to go through the core network when
the generative Al model is cached in the mobile edge
network.

e Model hit rate: Similar to content hit rate, the model hit
rate is an important metric for generative Al models in
the edge cache. It can be used for future model exits and
loading during model replacement.

As there is sufficient infrastructure and resources in the
cloud computing infrastructure, the generative Al model can
be fully loaded into the GPU memory for real-time service
requests. In contrast, the proposed EdgeServe in [209] keeps

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 24,2024 at 23:43:21 UTC from IEEE Xplore. Restrictions apply.



1154

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 2, SECOND QUARTER 2024

TABLE VI

SUMMARY OF SCENARIOS, PROBLEMS, PERFORMANCE METRICS, AND MATHEMATICAL TOOLS FOR EDGE CACHING IN AIGC NETWORKS

Performance
Ref. Scenarios Metrics/Decision Benefits/Challenges Mathematical Tools
Variables
Runtime memor Manage and utilize GPU
DL Model caching at the . Y memories of edge servers Cache replacement
[209] consumption and loading . . .
edge . . for caching generative Al algorithms
time/Model preload policy
models
Improve scalability of
Cachine many models at Model load and execution mobile AIGC networks via
[210] £ y latency and monetary cost model-level caching Model utility calculation
the edge . Lo .
/Caching eviction policy deployment and
replacement
Latency, accuracy loss,
. energy saving/Caching Caching for users’ requests
[211] Ca({h'éz for mo.blk.) deep policy, user selection, for multimodal AIGC Greedy algorithm
vision applications - . .
transmit power, bandwidth services
ratio
Cache for functions in Execution time, colq start Keep generative Al models Greedy-dual based
[212] . proportion/Function alive and warm for
serverless computing . . . . approach
keep-alive policy in-contextual inference
Transmission latency and
consumertlieorr%/yCaChin Privacy-preserving model
[213] | Knowledge caching for FL Sump e caching via knowledge of Optimization theory
policy, user selection, AIGC requests
transmit power, bandwidth quests
ratio

models in main memory or GPU memory so that they can be
effectively managed or used at the edge. Similar to traditional
CDNss, the authors use model execution caches at edge servers
to provide immediate Al delivery. In detail, there are mainly
three challenges in generative Al model caching:

e Resource-constraint edge servers: Compared to the
resource-rich cloud, the resources of servers in the
edge network, such as GPU memory, are limited [217].
Therefore, caching all generative Al models on one edge
server is infeasible.

e Model-missing cost: When the mobile device user
requests AIGC, the corresponding model is missed if the
generative Al model used to generate the AIGC is not
cached in the current edge server [210]. In contrast to the
instantly available AIGC service, if the generative Al
model is missing, the edge server needs to send a model
request to the cloud server and download the model,
which causes additional overhead in terms of bandwidth
and latency.

o Functionally equivalent models: The number of genera-
tive Al models is large and increases depending on the
number of detailed tasks [218]. Meanwhile, AI models
have similar functions in different applications, i.e., func-
tionally equivalent. For example, for image recognition
tasks, a large number of models with different archi-
tectures are proposed to recognize features in images,
which have different model architectures and computation
requirements.

To address these challenges, the authors in [209] formulate
the problem of edge modeling as determining which DL
models should be preloaded into memory and which should
be discarded when the memory is full while satisfying the

requirements of inferential response times. Fortunately, this
edge model caching problem can be solved using existing
cache replacement policies for edge content caching. The
accuracies and computation complexities of DL models make
this optimization problem more complicated than conventional
edge caching problems. Similarly, for resource-constrained
edge servers, the generative Al model can be dynamically
deployed and replaced. However, an effective caching algo-
rithm for loading and unloading the generative AI models to
maximize the hit rate has not yet been investigated.

As the capabilities of Al services continue to grow and
diversify, multiple models need to be deployed simultaneously
at the edge to achieve various tasks, including classification,
recognition, text/image/video generation [219]. Especially in
mobile AIGC networks, multiple base models need to work
together to generate a large amount of multimodal synthetic
data. Many models play a synergistic role in the AIGC services
at the edge of the network, while the support of multiple
models also poses a challenge to the limited GPU memory
of the edge servers. Therefore, the authors in [210] propose a
model-level caching system with an eviction policy according
to model characteristics and workloads. The model eviction
policy is based on model utility calculation from cache miss
penalty and the number of requests. This model-aware caching
approach introduces a new direction for providing AIGC
services at mobile edge networks with heterogeneous requests.
Experimental results show that compared to the non-penalty-
aware eviction policy, the model load delay can be reduced
by 1/3. This eviction policy can also be adopted in the problem
of which unpopular generative AI models should be unloaded.

At mobile AIGC networks, not only the generative Al
model needs to be cached, but also the AIGC requests and
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results can be cached to reduce the latency of service requests
in AIGC networks. To this end, the authors devise a principled
cache design to accelerate the execution of CNN models
by exploiting the temporal locality of video for continuous
vision tasks to support mobile vision applications [220]. The
authors in [211] propose a principled cache scheme, named
DeepCache, to retrieve reusable results and reuse them within
a fine-grained CNN by exploiting the temporal locality of
the mobile video stream. In DeepCache, mobile devices do
not need to offload any data to the cloud and can support
the most popular models. Additionally, without requiring
developers to retrain models or tune parameters, DeepCache
caches inference results for unmodified CNN models. Overall,
DeepCache can reduce energy consumption by caching content
to reduce model inference latency while sacrificing a small
fraction of model accuracy.

In serverless computing for edge intelligence, mobile
devices can call functions of AIGC services at edge servers,
which is more resource-efficient compared to container and
virtual machine (VM)-based AIGC services. Nevertheless,
such functions suffer from the cold-start problem of initializing
their code and data dependencies at edge servers. Although
the execution time of each function is usually short, ini-
tialization, i.e., fetching and installing prerequisite libraries
and dependencies before execution, is time-consuming [221].
Fortunately, the authors in [212] show that the caching-based
keep-alive policy can be used to address the cold-start problem
by demonstrating that the keep-alive function is equivalent
to caching. Finally, to balance the trade-off between server
memory utilization and cold-start overhead, a greedy dual-
based caching algorithm is proposed.

Frequently, a large-scale generative Al model can be
partitioned into multiple computing functions that can be
efficiently managed and accessed during training, fine-tuning,
and inference. FL models can be cached on edge servers to
facilitate user access to instances and updates, thus addressing
user privacy concerns [222], [223]. For example, the authors
in [213] propose a knowledge cache scheme for FL in which
participants can simultaneously minimize training delay and
training loss according to their preference. Their insight is that
there are two stimulations for caching knowledge for FL [224]:
i) training data sufficiency and ii) connectivity stability.
Experimental results show that the proposed preference-driven
caching policy, based on the preferences (i.e., demands or
desires for global models) of participants in FL, can outper-
form the random policy when user preferences are intense.
Therefore, preference-based generative Al model caching
should be extensively investigated for providing personalized
and customized AIGC services at edge servers.

D. Mobility Management

Mobile edge intelligence for the Internet of Vehicles and
Unmanned Aerial Vehicle (UAV) networks relies on effective
mobility management solutions [201], [232], [233], [234]
to provide mobile AIGC services. Furthermore, UAV-based
AIGC service distribution offers advantages such as ease of
deployment, flexibility, and extensive coverage for enhanced
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Fig. 20. An overview of mobility management in mobile AIGC networks.
The coverage of the mobile AIGC network will be significantly enhanced by
UAV processing the user’s server request and providing AIGC services.

edge intelligence [235], [236]. Specifically, UAVs, with their
line-of-sight communication links, can extend the reach of
edge intelligence [237]. For example, flexible UAVs equipped
with AIGC servers enable users to access AIGC services with
ultra-low latency and high reliability, especially when fixed-
edge servers are often overloaded in hotspot areas or expensive
to deploy in remote areas, as illustrated in Fig. 20. In addition,
UAV-enabled edge intelligence can be utilized to implement
mobile AIGC content and service delivery.

As summarized in Table VII, here are several KPIs for
mobility management in AIGC networks:

o Task accomplishment ratio: The provisioning of AIGC
services at mobile edge networks must consider the
dynamic nature of users [238]. As a result, services must
be completed before users leave the base station. To
measure the effectiveness of mobility management in
AIGC networks, the task completion rate can be used.

o Coverage enhancement: Vehicles and UAVs can serve as
reconfigurable base stations to enhance the coverage of
mobile AIGC networks [239], providing generative Al
models and content to users anywhere and anytime.

In vehicular networks, intelligent applications, such as
AIGC-empowered navigation systems, are reshaping existing
transportation systems. In [225], the authors propose a joint
vehicle-edge inference framework to optimize energy con-
sumption while reducing the execution latency of DNNs. In
detail, vehicles and edge servers determine an optimal partition
point for DNNs and dynamically allocate resources for DNN
execution. They propose a chemical reaction optimization-
based algorithm to accelerate convergence when solving the
resource allocation problem. This framework offers insights
for implementing mobile AIGC networks, where vehicles
can collaborate with base stations to provide real-time AIGC
services based on DNNs during their movement.

AIGC applications require sufficient processing and
memory resources to perform extensive AIGC services [240],
[241], [242], [243]. However, resource-constrained vehicles
cannot meet the QoS requirements of the tasks. The authors
in [226] propose a distributed scheduling framework that
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TABLE VII

SUMMARY OF SCENARIOS, PROBLEMS, BENEFITS/CHALLENGES, AND MATHEMATICAL TOOLS FOR MOBILITY MANAGEMENT

Ref. Scenarios Pen:formance Benefits/Challenges Mathematical Tools
Metrics/Problems
Jointing vehicle-edge deep Latency, failure rate/CPU R.ol.)usF AIG.C service Chemical reaction
[225] - provisioning via layer-level R
neural network inference frequency . optimization
offloading
Weighted average Provisioning AIGC service
. . . completion time and task in multi-vehicle .
[226] Vehicular edge intelligence acceptance ratio/Task environments with motion Greedy algorithm
dispatching policy prediction
- Task completion ratio apd Sustainable AIGC service
Mobility-enhanced edge model accuracy/Offloading L . .-
[227] . . provisioning with mobility FL
intelligence redundancy, task
. . management
assignment, beam selection
Average delay and energy
consumption/Transmission Flexible network model
[228] Edge intelligence-assisted decision, task offloading selection for AIGC services Quantum-inspired
IoV decision, bandwidth, and for balancing the tradeoff reinforcement learning
computation resource adaptively
allocation
Averace delay and ener Optimize AIGC service
Cooperative edge ge defay anc &y with spatial and temporal Hybrid stacked autoencoder
[229] . - . consumption/Trajectory . , .
intelligence in IoV LT correlations of users learning
prediction accuracy
requests
UAVs as an intelligent Model aceuracy and energy Provision AIGC services .
[230] . consumption/Number of . Greedy algorithm
service . . via a network of UAVs
local iterations
Knowledge Accuracy and inference Vlslelile;;fi(\);mzil?r?:gged
[231] distillation-empowered delay/Size of model & . Knowledge distillation
- . deployment and inference
edge intelligence parameters .
scheduling

develops a priority-driven transmission scheduling policy to
address the dynamic network topologies of vehicle networks
and promote vehicle edge intelligence. To meet the various
QoS requirements of intelligent tasks, large-volume tasks
can be partitioned and sequentially uploaded. Additionally,
the impact of vehicle motion on task completion time and
edge server load balancing can be independently handled by
intelligent task processing requests. The effectiveness of the
proposed framework is demonstrated in single-vehicle and
multi-vehicle environments through simulation and deploy-
ment experiments. To facilitate smart and green vehicle
networks [227], the real-time accuracy of Al tasks, such as
generative Al model inference, can be monitored through
on-demand model training using infrastructure vehicles and
opportunity vehicles.

The heterogeneous communication and computation
requirements of AIGC services in highly dynamic,
time-varying Internet of Vehicles (IoV) warrant further
investigation [244], [245], [246], [247]. To dynamically
make transmission and offload decisions, the authors
in [228] formulate a Markov decision process for time-
varying environments in their joint communication and
computation resource allocation strategy. Finally, they develop
a quantum-inspired reinforcement learning algorithm, in which
quantum mechanisms can enhance learning convergence
and performance. The authors in [229] propose a stacked
autoencoder to capture spatial and temporal correlations to
combine road traffic management and data network traffic

management. To reduce vehicle energy consumption and
learning delay, the proposed learning model can minimize the
required signal traffic and prediction errors. Consequently, the
accuracy of AIGC services based on autoencoder techniques
can be improved through this management framework.

With UAV-enhanced edge intelligence, UAVs can serve as
aerial wireless base stations, edge computing servers, and edge
caching providers in mobile AIGC networks [248], [249]. To
demonstrate the performance of UAV-enhanced edge intelli-
gence while preserving user privacy at mobile edge networks,
the authors in [230] use UAV-enabled FL as a use case.
Moreover, the authors suggest that flexible switching between
compute and cache services using adaptive scheduling UAVs
is a topic for future research. Therefore, flexible AIGC service
provisioning and UAV-based AIGC delivery are essential for
satisfying real-time service requirements and reliable genera-
tion. In this regard, the authors in [231] propose a visually
assisted positioning solution for UAV-based AIGC delivery
services where GPS signals are weak or unstable. Specifically,
knowledge distillation is leveraged to accelerate inference
speed and reduce resource consumption while ensuring satis-
factory model accuracy.

E. Incentive Mechanism

As suitable incentive mechanisms are designed, more edge
nodes participate in and contribute to the AIGC services [146],
[254], [255], [256]. This increases the computational capacity
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TABLE VIII

SUMMARY OF SCENARIOS, PROBLEMS, BENEFITS/CHALLENGES, AND MATHEMATICAL TOOLS OF INCENTIVE MECHANISM
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Ref. Scenarios Problems Benefits/Challenges Mathematical Tools
Incentivize AIGC service
A weighted sum of training providers with Deep reinforcement
[250] Efficient edge learning time and payment/Total heterogeneous resources P learni
S . earning
payment and training time under the uncertainty of
edge network bandwidth
Long-term incentive
. . Model. accuracy, number of mechanism for AIGC Hierarchical deep
[251] Efficient edge learning training rounds, time . . . .
. . services with long-term and reinforcement learning
efficiency/The total price - .
short-term pricing strategies
Model accuracy and loss Estimate the performance
reduction/Learning quality of AIGC services with
[252] Quality-aware FL estimation and privacy-preserving methods Reverse auction
quality-aware incentive for distributing proper
mechanism incentives
Cloud-Edge computing Profits, resource utilization, Trustworthy edge-cloud Stackelberg game and
[253] power trading for security/Computing-power resource trading framework multi-agent reinforcement
ubiquitous Al services unit price for AIGC services learning

of the system. In addition, the nodes are motivated to earn
rewards by providing high-quality services. Thus, the overall
quality of AIGC services is improved. Finally, nodes are
encouraged to engage in secure operations without secu-
rity concerns by recording resource transactions through the
blockchain.

As listed in Table VIII, here are several KPIs for incentive
mechanisms in AIGC networks:

e Social welfare: AIGC’s social welfare is the sum of the
value of AIGC’s services to the participants of the current
network. Higher social welfare means that more AIGC
users and AIGC service providers are participating in the
AIGC network and providing high-value AIGC services
within the network.

e Revenue: Providers of AIGC use a large amount of
computing and energy resources to provide AIGC, which
may be offset by revenue from AIGC users. The higher
the revenue, the more the AIGC service provider can
be motivated to improve the AIGC service to a higher
quality.

e Economic properties: In AIGC networks, AIGC providers
and users should be risk-neutral, which indicates the
incentive mechanisms should satisfy economic proper-
ties, e.g., individually rational, incentive compatible, and
budget balance [257].

While edge learning has several promising benefits, the
learning time for satisfactory performance and appropriate
monetary incentives for resource providers are nontrivial
challenges for AIGC. In [250], [258], [259], where mobile
devices are connected to the edge server, the authors design the
incentive mechanism for efficient edge learning. Specifically,
mobile devices collect data and train private models locally
with computational resources based on the price of edge
servers in each training round. Then, the updated models are
uploaded to the edge server and aggregated to minimize the
global loss function. Furthermore, the authors in [260] not
only analyze the optimal pricing strategy but also use Deep
Reinforcement Learning to learn the pricing strategy to obtain

the optimal solution in each round in a dynamic environment
and with incomplete information. In the absence of prior
knowledge, the DRL agent can learn from experience to find
the optimal pricing strategy that balances payment and training
time. To extend [250] to long-term incentive provisioning, the
authors in [251] propose a long-term incentive mechanism
for edge learning frameworks. To obtain the optimal short-
term and long-term pricing strategies, the hierarchical deep
reinforcement learning algorithm is used in the framework to
improve the model accuracy with budget constraints.

In the process of fine-tuning the AIGC edge, the incen-
tives described above can be used to balance the time and
adaptability of the fine-tuned generative Al model. In pro-
viding incentives to AIGC service providers, the quality of
AIGC services also needs to be considered in the incentive
mechanism. The authors in [252] propose a quality-aware FL
framework to prevent inferior model updates from degrading
the global model quality. Specifically, based on an Al model
trained from historical learning results, the authors estimate the
learning quality of mobile devices. To motivate participants to
contribute high-quality services, the authors propose a reverse
auction-based incentive mechanism under the recruitment
budget of edge servers, taking into account the model quality.
Finally, the authors propose an algorithm for integrating the
model quality into the aggregation process and for filtering
non-optimal model updates to further optimize the global
learning model.

Traditionally, resource utilization is inefficient, and trading
mechanisms are unfair in cloud-edge computing power trad-
ing [261] for AIGC services. To address this issue, the authors
in [253] develop a general trading framework for computing
power grids. As illustrated in Fig. 22, the authors solve the
problem of the under-utilization of computing power with Al
consumers in this framework. The computing-power trading
problem is first formulated as a Stackelberg game and then
solved with a profit-driven multi-agent reinforcement learning
algorithm. Finally, a blockchain is designed for transaction
security in the trading framework. In mobile AIGC networks
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Fig. 21. Federated Learning in mobile AIGC networks, including the local
model training at mobile devices, global aggregation at edge servers, and
cross-server model trading.

with multiple AIGC service providers and multiple AIGC
users, the Stackelberg game and its extension can still pro-
vide a valid framework for equilibrium analysis. In addition,
multi-agent reinforcement learning also learns the equilibrium
solution of the game by exploration and exploitation in the
presence of incomplete information about the game.

F. Security and Privacy

Mobile AIGC networks leverage a collaborative computing
framework on the cloud side to provide AIGC services,
utilizing a large amount of heterogeneous data and computing
power [262], [263], [264], [265]. When mobile users are
kind, AIGC can greatly enhance their creativity and efficiency.
However, malicious users can also utilize AIGC for destructive
purposes, posing a threat to users in mobile edge networks. For
example, Al-generated text can be used by malicious users to
complete phishing emails, thus compromising the security and
privacy of normal users [11]. To ensure secure AIGC services,
providers must choose trusted AIGC solutions and securely
train Al models while providing secure hints and answers to
AIGC service users [266].

1) Privacy-Preserving AIGC Service Provisioning: During
the lifecycle of providing AIGC services, privacy information
in large-scale datasets and user requests needs to be
kept secure to prevent privacy breaches. In mobile AIGC
networks, the generation and storage of data for genera-
tive Al model training occur at edge servers and mobile
devices [267], [268], [269]. Unlike resourceful cloud data
centers, edge and mobile layers have limited defense capacities
against various attacks. Fortunately, several privacy-preserving
distributed learning frameworks, such as FL [270], [271], have
been proposed to empower privacy-preserving generative Al
model fine-tuning and inference at mobile AIGC networks. In
preserving user privacy in AIGC networks, FL is a distributed
ML approach that allows users to transmit local models instead
of data during model training [204], [272], [273]. Specifically,
as illustrated in Fig. 21, there are two major approaches to
employing FL in AIGC networks
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e Secure aggregation: While FL is being learned, the
mobile devices send local updates to edge servers for
global aggregation. During global aggregation, authen-
ticated encryption allows the use of secret sharing
mechanisms.

o Differential privacy: Differential privacy can prevent FL
servers from identifying the owners of a local update.
Differential privacy is similar to secure aggregation in
that it prevents FL servers from identifying owners of
local updates.

Therefore, in [274], the authors propose a differential private
federated generative model to synthesize representative exam-
ples of private data. With guaranteed privacy, the proposed
model can solve many common data problems without human
intervention. Moreover, in [275], the authors propose an
FL-based generative learning scheme to improve the efficiency
and robustness of GAN models. The proposed scheme is
particularly effective in the presence of varying parallelism and
highly skewed data distributions. To find an inherent cluster
structure in users’ data and unlabeled datasets, the authors pro-
pose in [276] the unsupervised Iterative Federated Clustering
algorithm, which uses generative models to deal with the
statistical heterogeneity that may exist among the participants
of FL. Since the centralized FL frameworks in [275], [276]
might raise security concerns and risk single-point failure,
the authors propose in [277] a decentralized FL framework
based on a ring topology and deeply generated models. On
the one hand, a method for synchronizing the ring topology
can improve the communication efficiency and reliability of
the system. On the other hand, generative models can solve
data-related problems, such as incompleteness, low quality,
insufficient quantity, and sensitivity. Finally, an InterPlanetary
File System (IPFS)-based data-sharing system is developed to
reduce data transmission costs and traffic congestion.

2) Secure AIGC Service Provisioning: Given the numerous
benefits of provisioning AIGC services in mobile and edge lay-
ers, multi-tier collaboration among cloud servers, edge servers,
and mobile devices enables ubiquitous AIGC service provision
by heterogeneous stakeholders [151], [278], [279], [280]. A
trustworthy collaborative AIGC service provisioning frame-
work must be established to provide reliable and secure AIGC
services. Compared to central cloud AIGC providers, mobile
and edge AIGC providers can customize AIGC services by
collaborating with many user nodes while distributing data
to different devices [281]. Therefore, a secure access control
mechanism is required for multi-party content streaming to
ensure privacy and security. However, the security of AIGC
transmission cannot be ensured due to various attacks on
mobile AIGC networks [282]. Fortunately, blockchain [282],
[283], [284], [285], based on distributed ledger technologies,
can be utilized to explore a secure and reliable AIGC ser-
vice provisioning framework and record resource and service
transactions to encourage data sharing among nodes, forming
a trustworthy and active mobile AIGC ecosystem [286]. As
illustrated in Fig. 22, there are several benefits that blockchain
brings to mobile AIGC networks [26]:

o Computing and Communication

Blockchain enables heterogeneous

Management:
computing and
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Fig. 22. Blockchain in mobile AIGC networks [253], including the AIGC

application layer, blockchain layer, and computing-power network layers, for
provisioning AIGC services.

communication resources to be managed securely, adap-
tively, and efficiently in mobile AIGC networks [287].

e Data Administration: By recording AIGC resource and
service transactions in blockchain with smart contracts,
data administration in mobile AIGC networks is made
profitable, collaborative, and credible.

e Optimization: During optimization in AIGC services,
the blockchain always provides available, complete, and
secure historical data for input to optimization algorithms.

For instance, the authors in [288] propose an edge intelligence
framework based on deep generative models and blockchain.
To overcome the accuracy issue of the limited dataset, GAN
is leveraged in the framework to synthesize training sam-
ples. Then, the output of this framework is confirmed and
incentivized by smart contracts based on the proof-of-work
consensus algorithm. Furthermore, the multimodal outputs of
AIGC can be minted as NFTs and then recorded on the
blockchain. The authors in [289] develop a conditional genera-
tive model to synthesize new digital asset collections based on
the historical transaction results of previous collections. First,
the context information of NFT collections is extracted based
on unsupervised learning. Based on the historical context, the
newly minted collections are generated based on future token
transactions. The proposed generative model can synthesize
new NFT collections based on the contexts, i.e., the extracted
features of previous transactions.

G. Lessons Learned

1) Multi-Objective Quality of AIGC Services: In mobile
AIGC networks, the quality of AIGC services is determined
by several factors, including model accuracy, service latency,
energy consumption, and revenue. Consequently, AIGC ser-
vice providers must optimally allocate edge resources to
satisfy users’ multidimensional quality requirements for AIGC
services [176]. Moreover, the migration of AIGC tasks and
computations can enhance the reliability and efficiency of
AIGC services. Notably, dynamic network conditions in the
edge network necessitate users to make online decisions
to achieve load balancing and efficient use of computing
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resources. A variety of methodologies are proposed, enhanc-
ing the multi-objective quality of AIGC services within
mobile edge networks [153]. The techniques encompass
multi-objective optimization among QoS, QoE, latency, and
resource consumption. The primary objective of designing
these strategies is to optimize key parameters such as accuracy,
latency, resource consumption, and user satisfaction. The
benefits including heightened performance and superior user
experience, are attained, albeit at the potential cost of an
increase in complexity, resource consumption, and potential
privacy issues. Attaining high-quality AIGC services requires
proper considerations and practices to address the challenges
discussed above, meet the quality requirements of multiple
objectives, and improve user satisfaction and service quality.

2) Edge Caching for Efficient Delivery of AIGC Services:
Edge caching plays a pivotal role in the efficient deliv-
ery of AIGC services in mobile AIGC networks. Tackling
the challenges of constrained-memory edge servers, model-
missing costs, and functionally equivalent models is essential
for optimizing caching policies. Developing model-aware
caching approaches, investigating preference-driven caching
policies, and implementing principled cache designs to reduce
latency and energy consumption are promising directions for
enhancing the performance of mobile AIGC networks. In
the quest for the efficient delivery of AIGC services via
edge caching in mobile edge networks, the need for well-
designed edge caching algorithms is emphasized [216]. The
benefits associated with these algorithms include enhanced
efficiency, decreased latency, and improved dependability.
Conversely, the challenges that may arise from these strategies
include escalated complexity, heightened costs, and potential
privacy concerns. As Al services continue to evolve, further
research in caching strategies is crucial for providing effective,
personalized, and low-latency AIGC services for mobile users.

3) Preference-Aware AIGC Service Provisioning: Offering
AIGC services based on user preferences not only improves
user satisfaction but also reduces service latency and
resource consumption in mobile edge networks. To imple-
ment preference-based AIGC service delivery, AIGC service
providers must first collect historical user data and ana-
lyze it thoroughly. In providing AIGC services, the service
provider makes personalized recommendations and adjusts
its strategy according to user feedback. The exploration of
preference-aware AIGC service provisioning is conducted
considering several techniques, which include collaborative
filtering, DRL, context awareness, user profiling, and multi-
objective optimization. Although user preferences play a
significant role in AIGC service provision, it is essential to use
and manage this information properly to protect user privacy.

4) Life-Cycle Incentive Mechanism Throughout AIGC
Services: In mobile AIGC networks, the entire life cycle of
AIGC services necessitates appropriate incentives for partici-
pants. A single AIGC service provider cannot provide AIGC
services alone. Throughout the data collection, pre-training,
fine-tuning, and inference of AIGC services, stakeholders
with heterogeneous resources require reasonable incentives
and must share the benefits according to their contributions.
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Conversely, from the users’ perspective, evaluation mecha-
nisms must be introduced. For instance, users can assess the
reputation of AIGC service providers based on their transac-
tion history to promote service optimization and improvement.
Ultimately, the provisioning and transmission logs of AIGC
services can also be recorded in a tamper-proof distributed
ledger. Incentive strategies for participants in the life cycle of
AIGC services in mobile edge networks are also examined.
The use of smart contracts, distributed ledger technology,
evaluation mechanisms, and incentive design is proposed as
a means to strengthen collaboration and enhance the over-
all quality of AIGC services [253]. These methodologies
introduce automation, transparency, and improved reputation,
which are seen as distinct advantages.

5) Blockchain-Based System Management of Mobile AIGC
Networks: Furthermore, mobile AIGC networks connect het-
erogeneous user devices to edge servers and cloud data centers.
This uncontrolled demand for content generation introduces
uncertainty and security risks into the system. Therefore,
secure management and auditing methods are required to
manage devices in edge environments, such as dynamically
accessing, departing, and identifying IoT devices. In the
traditional centralized management architecture, the risk of
central node failure is unavoidable. Thus, a secure and reli-
able monitoring and equipment auditing system should be
developed. Lastly, we analyze a suite of techniques aimed at
improving blockchain-based system management of mobile
AIGC networks. Such techniques include blockchain-based
data administration, secure management and auditing methods,
collaborative infrastructure, decentralized management archi-
tecture, and blockchain-based optimization [146].

VII. FUTURE RESEARCH DIRECTIONS AND OPEN ISSUES

In this section, we discuss future research directions and
open issues from the perspectives of networking and comput-
ing, ML, and practical implementation.

A. Networking and Computing Issues

1) Decentralized Mobile AIGC Networks: With the
advancement of blockchain technologies [290], decentralized
mobile AIGC networks can be realized based on distributed
data storage, the convergence of computing and networking,
and proof-of-ownership of data [286]. Such a decentralized
network structure, enabled by digital identities and smart
contracts, can protect AIGC users’ privacy and data security.
Furthermore, based on blockchain technologies, mobile AIGC
networks can achieve decentralized management of the entire
lifecycle of AIGC services. Therefore, future research should
investigate specific consensus mechanisms [290], [291], off-
chain storage systems, and token structures for the deployment
of decentralized mobile AIGC networks [145].

2) Sustainability in Mobile AIGC Networks: In mobile
AIGC networks, the pre-training, fine-tuning, and inference of
generative Al models typically consume a substantial amount
of computing and networking resources [30], [292]. Hence,
future research can focus on the green operations of mobile
AIGC networks that provide AIGC services with minimal
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energy consumption and carbon emissions. To this end, effec-
tive algorithms and frameworks should be developed to operate
mobile AIGC networks under dynamic service configurations,
operating modes of edge nodes, and communication links.
Moreover, intelligent resource management and scheduling
techniques can also be proposed to balance the tradeoff
between service quality and resource consumption [293].

3) Wireless Communications in Mobile AIGC Networks:
The influence of wireless communications on AIGC services
is a critical area for future research. A key aspect to investigate
is the robustness of AIGC services to the challenges posed by
wireless communications [143]. This includes understanding
how factors such as transmit power, fading, and device
mobility within an edge network can affect the performance
of distributed diffusion model-based AIGC computing [225].
Initial research in this area, such as the study in [145],
has shown that despite the increase in bit error probability,
distributed AIGC computing exhibits relatively high robust-
ness. Further exploration of this robustness, as well as the
development of strategies to enhance it, could significantly
improve the performance and reliability of AIGC services
in wireless networks. This can involve, for example, the
development of adaptive physical layer transmission strate-
gies [294] that take into account the current state of the
wireless channel or the design of error correction mechanisms
that can recover from bit errors introduced during wireless
transmission [295], [296]. In addition, the use of Al-generated
optimization solutions, particularly diffusion models, to over-
come the challenges posed by the wireless environment and
generate optimal solutions for network design is a promising
avenue for future research. This can involve the development
of Al-generated incentive mechanisms to promote semantic
information exchange among users, as demonstrated by the
authors [143]. Such mechanisms can help to create an optimal
contract that adheres to the utility threshold constraints of the
semantic information provider while maximizing the utility of
the semantic information recipient.

High-quality data resources are also critical for the sus-
tainability of mobile AIGC networks [144]. The performance
of generative models depends not only on effective network
architectures but also on the quality of training datasets [297].
However, as AIGC becomes pervasive, training datasets are
gradually replaced by synthesized data that might be irrelevant
to real data. Therefore, improving the quality and reliability of
data in mobile AIGC networks, such as through multimodal
data fusion and incremental learning technology, can further
enhance the accuracy and performance of the models.

B. Machine Learning Issues

1) Generative AI Model Compression: As generative Al
models become increasingly complex, model compression
techniques are becoming more important to reduce service
latency and resource consumption in provisioning AIGC
services [298]. Fortunately, several techniques have been
developed for generative Al model compressions, such as
pruning, quantization, and knowledge distillation. First, prun-
ing involves removing unimportant weights from the model,
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while quantization reduces the precision of the weights [299].
Then, knowledge distillation involves training a smaller model
to mimic the larger model’s behavior. Future research on
generative Al model compression might continue to focus
on developing and refining these techniques to improve their
efficiency and effectiveness for deploying generative Al
models in edge nodes and mobile devices. It is necessary to
consider the limited resources of such devices and develop
specialized compression techniques that can balance model
size and accuracy.

2) Al-Generated Network Design: Generative Al mod-
els have various potential applications in mobile networks,
including design, analysis, control, monitoring, and traffic
prediction [1], [300]. They can be utilized to create efficient
network architectures, understand network behavior, predict
network loads, develop network control algorithms, detect
anomalies, and predict future network traffic patterns and
demands [1]. Future research directions in machine learning
for mobile AIGC networks can focus on improving the
efficiency and effectiveness of existing applications, exploring
new applications and use cases, and addressing the challenges
posed by the unique characteristics of mobile networks, such
as mobility, limited resources, and privacy concerns.

3) Privacy-Preserving AIGC Services: To provide privacy-
preserving AIGC services, it is necessary to consider privacy
computing techniques in both generative Al model training
and inference [19], [142]. Techniques such as differential
privacy, secure multi-party computation, and homomorphic
encryption can be used to protect sensitive data and prevent
unauthorized access. Differential privacy involves adding
noise to the data to protect individual privacy, while secure
multi-party computation allows multiple parties to compute
a function without revealing their inputs to one another.
Homomorphic encryption enables computations to be per-
formed on encrypted data without decryption. To successfully
deploy generative Al models in edge nodes and mobile
devices, the limited resources of such devices should be
considered and specialized techniques that can balance privacy
and performance should be developed [158]. Additionally,
concerns such as data ownership and user privacy leakage
should be taken into account.

C. Practical Implementation Issues

1) Integrating AIGC and Digital Twins: Digital twins
enable the maintenance of representations to monitor, analyze,
and predict the status of physical entities [301]. On one hand,
the integration of AIGC and digital twin technologies has the
potential to significantly improve the performance of mobile
AIGC networks. By creating virtual representations of physical
mobile AIGC networks, service latency, and quality can be
optimized through the analysis of historical data and online
predictions. Furthermore, AIGC can also enhance digital twin
applications by reducing the time required for designers to
create simulation entities. However, several issues need to be
considered during the integration of AIGC and DTs, such as
efficient and secure synchronization.
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2) Immersive Streaming: AIGC can create immersive
streaming content, such as AR and VR, that can transport
viewers to virtual worlds [302], which can be used in vari-
ous applications such as education, entertainment, and social
media. Immersive streaming can enhance the AIGC delivery
process by providing a platform for viewers to interact with the
generated content in real-time. However, combining AIGC and
immersive streaming raises some concerns. Future research
should focus on addressing the potential for biased content
generation by the AIGC algorithms and the high bandwidth
requirements of immersive streaming, which can cause latency
issues, resulting in the degradation of the viewer’s experience.

3) Alignment: In human-oriented applications that involve
digital humans and avatars, the alignment of generative Al
models [52], [303], [304] in mobile AIGC networks should
be well-investigated for safety and ethnicity. There are sev-
eral potential research directions for Al alignment, such as
personalized Al alignment, ethical guidelines for Al-generated
content, trust and transparency, emotional alignment, cultural
alignment, and robustness to adversarial attacks. By focusing
on these areas, future Al alignment research in mobile AIGC
networks can help maintain a user-centric, respectful, and
ethically responsible approach for mobile AIGC networks and
their applications.

VIII. CONCLUSION

In this paper, we have focused on the deployment of mobile
AIGC networks, which serve generative Al models, services,
and applications at mobile edge networks. We have discussed
the background and fundamentals of generative models and the
lifecycle of AIGC services at mobile AIGC networks. We have
also explored AIGC-driven creative applications and use cases
for mobile AIGC networks, as well as the implementation,
security, and privacy challenges of deploying mobile AIGC
networks. Finally, we have highlighted some future research
directions and open issues for the full realization of mobile
AIGC networks.
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