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ABSTRACT

Realistic synthetic electronic health records (EHRs) can be leveraged to acceler-
ate methodological developments for research purposes while mitigating privacy
concerns associated with data sharing. However, the training of Generative Ad-
versarial Networks remains challenging, often resulting in issues like mode col-
lapse. While diffusion models have demonstrated progress in generating qual-
ity synthetic samples for tabular EHRs given ample denoising steps, their perfor-
mance wanes when confronted with missing modalities in heterogeneous tabular
EHRs data. For example, some EHRs contain solely static measurements, and
some contain only contain temporal measurements, or a blend of both data types.
To bridge this gap, we introduce FLEXGEN-EHR– a versatile diffusion model tai-
lored for heterogeneous tabular EHRs, equipped with the capability of handling
missing modalities in an integrative learning framework. We define an optimal
transport module to align and accentuate the common feature space of hetero-
geneity of EHRs. We empirically show that our model consistently outperforms
existing state-of-the-art synthetic EHR generation methods both in fidelity by up
to 3.10% and utility by up to 7.16%. Additionally, we show that our method can
be successfully used in privacy-sensitive settings, where the original patient-level
data cannot be shared.

1 INTRODUCTION

The widespread digitization of health data has enabled the training of deep learning models for
precision medicine, in the form of personalized prediction of risks and health trajectories (Rajkomar
et al., 2018; Miotto et al., 2016). However, there are various concerns over patient privacy that need
to be accounted for in order to collect the large quantities of data needed to train robust models.
As such, it is challenging for researchers to obtain access to real electronic health records (EHRs).
One approach to mitigate privacy risks is through the practice of de-identification in the form of
data perturbation and randomization (El Emam et al., 2015; McLachlan et al., 2016). However, the
blind application of de-identification leads to records that are vulnerable to re-identification attacks
(Narayanan & Shmatikov, 2008). An alternative approach that is receiving increasing attention is the
creation and dissemination of synthetic datasets that aim to capture many of the complexities of the
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original data set (e.g., distributions, non-linear relationships, and noise). Synthetic data can yield
records that are robust against re-identification. To support the creation of realistic and synthetic
data, generative models have emerged as the key element to advance precision medicine.

Although several distinguished efforts for synthetic EHR generation exist (Bing et al., 2022; Choi
et al., 2017; Torfi & Fox, 2020; Yan et al., 2020; Li et al., 2021a; Theodorou et al., 2023), designing
an effective generative model for EHRs remains a challenging task for two key reasons: (1) hetero-
geneous features encompassing both static and temporal measurements and (2) missing data. EHRs
consist of diverse and multi-dimensional data that contain static features (e.g., race and gender) and
temporal measurements (e.g., heart rate, temperature, blood pressure). We refer to this as heteroge-
neous tabular EHRs (i.e., not including unstructured text). Existing works (Choi et al., 2017; Torfi
& Fox, 2020; He et al., 2023) extended classical deep generative models to EHRs, building upon
generative adversarial networks (GANs), autoencoders, or diffusion models. However, these meth-
ods are limited to generating static measurements including billing codes, and ignore the temporal
features (e.g., lab results repeated over time), hindering their utility for downstream tasks. On the
other hand, (Biswal et al., 2021) focused on generating temporal features only. EHR-M-GAN (Li
et al., 2021b) circumvents this problem by training two separate encoders for each modality (static
and temporal features), but it lacks the capability of training using data with missing modality.

Missing data, is a complex and pervasive problem in medical records and public health research,
affecting both randomized trials and observational studies (Haneuse et al., 2021). Nevertheless,
existing methods assume completeness of the data, yielding less reliable generation when facing
missing data. Reasons for missing data can vary substantially across studies because of dropout or
loss to follow-up, missed study visits, or an unrecorded measurement during an office visit. Merely
removing missing data is not feasible because the learned generative model is likely to suffer from
selection bias, whereby the results downstream utility (ie, to the intended or target patient popula-
tion) is compromised). This underscores the need for generative methods for EHRs that 1) handle
heterogeneous (or mixed-type) EHRs and 2) expand the scope of existing generative methods by
supporting missing observations of EHRs. A clear articulation of assumptions is critical because
of the different mechanisms that can induce missing data. We consider the scenario of missing
modality not at random (MMCAR) in work suggested by Tang et al. (2020); Haneuse et al. (2021);
Gianfrancesco & Goldstein (2021). In this scenario, not every record will have data associated with
each modality. For example, medications (documented as static data) may not have corresponding
records of the measurements of patients physiological status due to loss of records. Another exam-
ple is protecting patient privacy by omitting one modality where they can be easily identified (e.g.,
a woman above 100 with otherwise similar temporal features to the population).

Present Work. To address the aforementioned limitations, for the first time, we introduce
FLEXGEN-EHR, a flexible generative framework for simultaneously synthesizing heterogeneous
longitudinal EHR data. Specifically, we focus on generating both static and temporal records
jointly. Patient trajectories with high-dimensionality and heterogeneous data types (both continuous-
valued and discrete-valued timeseries) are generated while the underlying temporal dependencies
and temporal-static correlations are captured.

In summary, our contributions are as follows: 1⃝ We formalize the challenge of generating hetero-
geneous Electronic Health Records (EHR) in the presence of missing modality.

2⃝We present FLEXGEN-EHR, a latent diffusion method demonstrating superior generation fidelity,
evidenced by a reduction of Maximum Mean Discrepancy (MMD) by up to 3.10%, and enhanced
utility, with an increase in Area Under the Precision-Recall Curve (AUPR) by up to 7.16%.

3⃝ We introduce an innovative solution to the missing modality issue by formulating an optimal
transport problem in the embedding space, enabling the construction of meaningful and reasonable
latent embedding pairs to solve the missing correspondence in the data.

4⃝ We empirically verify that FLEXGEN-EHR maintains high standards of generation and utility
even in instances of missing modality, solidifying its applicability and reliability in practical, real-
world scenarios involving incomplete data.
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Figure 1: Conceptual model illustration FLEXGEN-EHR allows training using data with missing
modality (details in 4.3).

2 RELATED WORK

Here, we discuss the related works on synthetic EHR generation and diffusion-based models.

In this context, we use ’categorical’ and ’static’ interchangeably, both referring to features that fall
within defined categories and remain consistent. Similarly, ’numerical’ and ’temporal’ are used
synonymously, denoting features that can vary over time.

Synthetic EHR Generation. The predominant approaches for EHR tabular generation currently
rely on GAN-based methods, which utilize two neural networks: the generator and the discrimina-
tor. MedGAN (Choi et al., 2017), CorGAN(Torfi & Fox, 2020), and EHR-WGAN (Zhang et al.,
2019) utilize GANs for generating patient feature matrices (diagnosis only). However, challenges
still remain for GAN-based methods, such as the mode collapse problem (Li et al., 2021c) and the
alignment between heterogeneous data types.

While several works focus on static data generation such as MedGAN and CorGAN, it’s essential
to note that real-world EHRs encompass a mixture of heterogeneous data types. These include
temporal features (e.g., blood test results) and static features (e.g., sex and ethnicity), also denoted
as numerical and categorical features. Although VAE performs the common method for static feature
generation, when it comes to synthesizing temporal features, current GAN-based models, such as
C-RNN-GAN (Mogren, 2016), TimeGAN (Yoon et al., 2019), rely heavily on adopting recurrent
neural networks (RNNs) for both their generator and discriminator components. Therefore, in the
context of heterogeneous Tabular EHR data generation, GAN-based methods face challenges in
learning joint distribution representation due to the diverse structures of their generators.

Very recently, EHR-M-GAN (Li et al., 2021b) is proposed as a method for synthesizing heteroge-
neous EHR data. However, it operates under the assumption that representations learned by autoen-
coders can seamlessly integrate with those from bidirectional Long Short-Term Memory(BLSTM)
(Zhou et al., 2016), a premise that might not be reliable given the inherent structural differences
between the models. In contrast, FLEXGEN-EHR introduces a integrative learning framework.
For both static and temporal features, they are learned under a separate VAE architecture, which
naturally aligns common feature space of heterogeneity for EHR Tabular datas.

Tabular Diffusion. First proposed in (Sohl-Dickstein et al., 2015), diffusion models are a family
of latent variable generative models characterized by a forward and a reverse Markov process. Dif-
fusion models have excelled in various image-generation tasks and now extended beyond computer
visions (Chen et al., 2021; Vahdat et al., 2021). However, only few works have been proposed to
introducing diffusion models for tabular data generation so far, especially when encompassing with
heterogenous datasets like EHRs.

As an early adopter of diffusion models for EHR generation, MedDiff (He et al., 2023) primarily
focuses on utilizing Gaussian diffusion process to generate numerical EHR data. But it is important
to note that real-world EHRs is formed by a mixture of numerical features (eg., respiration rate) and
categorical features (eg., LOS and mortality). MedDiff generates diagnosis count matrix only, leav-
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ing out numerical features unsolved. The more recent model, TabDDPM (Kotelnikov et al., 2023),
addresses this problem by generating heterogeneous tabular data encompassing both static and tem-
poral features, which could be denoted as numerical and categorical as well. It employs Gaussian
quantile transformation for temporal features, and a one-hot encoder for each static features. A re-
cent study (Ceritli et al., 2023) evaluates the performance of implementing TabDDPM into EHR
generation, which out performs other contemporary models.

A common observation among existing diffusion-based EHR models is their inability to generate
categorical features or their tendency to treat numerical and categorical features independently. Yet,
in practical scenarios like bedside data analysis in hospitals, numerical features (eg., respiration
rate) and categorical features (eg., diagnosis and admission type) often have intrinsic logical re-
lationships. For a synthetic model to generate a realistic heterogeneous tabular EHR dataset, it
must adeptly discern and represent the underlying relationships between numerical and categorical
features. Different from TabDDP that concatenates the numerical and categorical features to the net-
work, FLEXGEN-EHR adeptly discerns and represents the underlying relationships between static
and temporal features.

3 PRELIMINARIES

Diffusion. Diffusion models leverage a pre-defined forward process in training, where a clean dis-
tribution q(x0) can be corrupted to a noisy distribution q(xt|x0) at a specified timestep t. Given a
pre-defined variance schedule {βt}1:T , the noisy distribution at any intermediate timestep is given
by:

q(xt|x0) = N
(√

ᾱtx0, (1− ᾱt)I
)

; ᾱt =

t
∏

i=1

(1− βi).

To reverse such forward process, a generative model θ learns to estimate the analytical true posterior
in order to recover xt−1 from xt as follows:

min
θ

DKL[q(xt−1|xt, x0)||pθ(xt−1|xt)]; ∀t ∈ {1, ..., T},

and such an objective can be reduced to a simple denoising estimation loss []:

LDDPM = Et,x0∼q(x0),ϵ∼N (0,I)

[

∥ϵ− ϵθ(
√
ᾱx0 +

√
1− ᾱtϵ, t)∥2

]

(1)

For the case where label information is available, the model is trained to estimate the noise as above
in both conditional cases ϵθ(xt, y, t) with data-label pairs (x0, y) and unconditional case ϵθ(xt, t).
In the sampling, the label-guided model estimates the noise with a linear interpolation

ϵ̂ = (1 + ω)ϵθ(xt, y, t)− ωϵθ(xt, t)

to recover xt−1, which is often referred to as Classifier-Free Guidance (CFG) (Ho, 2022).

Latent Diffusion Model. To improve the efficiency, the Latent Diffusion Model (LDM) (Rombach
et al., 2022b) introduces an explicit separation between the compressive and generative learning
phases of training diffusion models. Central to this approach is the use of an autoencoding model,
consisting of an encoder E(·) and a decoder D(·). This autoencoder is designed to capture a com-
pressed latent space for diffusion model, which, upon decoding, closely resembles the original data
space in its perceptual attributes.

Given a tabular data entry x with dimensions x ∈ R
H×W , the encoder E maps x into a latent

representation denoted by z = E(x). Subsequently, the decoder D reconstructs the original data
entry from zz, resulting in x̃ = D(z) = D(E(x)). This latent space, with dimensions z ∈ R

h×w,
offers the advantage of reduced computational demands while preserving the perceptual integrity of
the regenerated samples.

The objective function tailored for training the LDM is expressed as:

L(θ) = Ezt∼q(zt|z),z=E(x),t∼[0,1]

[

ωt · ∥Fθ(zt, t)− z∥22
]

(2)

Here, the latent representation z is derived during the training process using Encoder E. Once
generated, z can be decoded back to its original data form using D.
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3.1 OPTIMAL TRANSPORT

Optimal transport formalizes the problem of finding a minimum cost mapping between two point
sets, viewed as discrete distributions. Specifically, we assume two empirical distributions over em-
beddings, e.g., embeddings of static features zSi and embeddings of temporal features zTi

µ =

I
∑

i=1

pzTi and ν =

J
∑

j=1

qzTj (3)

Here, p and q are non-negative vectors of length I and J that sum up to 1. We denote their proba-
bilistic couplings, and cost matrix C, as: We find a transportation map Γ realizing :

inf
T

{
∫

X

c(x,Γ(x))dµ(x) | Γ#µ = ν

}

, (4)

where the cost c(x,Γ(x)) is typically just ∥x− Γ(x)∥ and Γ#µ = ν implies that the source points
must exactly map to the targets.

4 FLEXGEN-EHR

4.1 PROBLEM FORMULATION

Heterogeneous Tabular EHR Generation. Given heterogeneous tabular EHR data D =
{(

xS
i ,x

T
i , yi

)}N

i=1
of N electronic records where xT

i ∈ R
m contains time-invariant features,

xT
i ∈ R

T×d contains time-dependent features, and yi represents the label information of inter-
est. Here, N refers to the number of examples (unique IDs in the data table), T is the number of
timesteps after "discretizing" the observation period into time bins of size. The dimensionalities
of the time-invariant and time-dependent features are denoted by m and d, respectively. The goal
is to generate synthetic EHR data D̂ such that L(D, D̂) is minimized where L is any divergence
measurement, such as mean-squared loss and maximum mean discrepancy (MMD).

Heterogeneous Tabular EHR Generation with missing modalities. The above problem can be
extended to the setting where not every record will have data associated with each modality. Thus,
the heterogeneous tabular EHR data can take the formD =

{(

xS
i , yi

)

,
(

xT
j , yj

)

,
(

xS
k ,x

T
k , yk

)}

for
i = 1, · · · , I, j = 1, · · · J, k = 1, · · · ,K. Here, I, J,K represent the number of records containing
only static, only temporal, and both types of information, respectively.

4.2 LATENT DIFFUSION MODEL ON EHRS

Given a sample
(

xS
i ,x

T
i , yi

)

, FLEXGEN-EHR utilizes a dual encoder-decoder framework to in-
dependently obtain static and temporal latent embeddings, denoted as zSi and zTi . Specifically, an
encoder EncS operates on static features, embedding the patient information as zSi = EncS(xSi ),
while another encoder, EncT , is specialized for temporal features, representing repeated measure-
ments. The implementation of two distinct encoders is motivated by the fact that a single encoder is
inadequate to capture meaningful embeddings for both feature types due to the distinctive domains
of static and temporal features. Our empirical investigations confirm that utilizing an LSTM encoder
for temporal features and an MLP encoder for static ones yields superior quality embeddings. Fol-
lowing the encoding phase, these separately constructed latent representations are concatenated to
construct a fused latent representation, represented as zi = [zT ; zS ]. A latent diffusion model G is
then trained on this unified representation zi.

The choice of using a latent diffusion model is significant not only because generation with diffusion
on a compact scale is more expedient, but also due to our observations that, given the high-dimension
of EHR data (d > 5000), leveraging diffusion models or even the recently proposed TabDDPM tends
to encounter training failures and generates samples at least 5 times slower. Thus the integration
of a dual-encoder-decoder framework and a latent diffusion model is synergistic, culminating in
the achievement of hyper-parameter robustness, high-quality synthetic samples, and more efficient
generation procedures. This optimized combination ensures the precise and coherent embedding of
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both static and temporal features, and provides a comprehensive and nuanced representation of the
complex, multifaceted data encountered in healthcare settings.

4.3 LATENT SPACE ALIGNMENT

The above section assumes that both modalities are present, which cannot readily handle the missing
modality. Here, we define the optimal transport problem for solving data with missing modalities
such that xi =

(

xS
i ,NA, yi

)

or xi =
(

NA,xT
i , yi

)

, where NA denotes not available. Instead
of mapping-based methods, which rely on nearest-neighbor computation to infer the NA data, we
observed that latent space embedding models, trained on disparate features, manifested analogous
geometric patterns and behaviors. This drives us to posit that the latent embedding spaces of hetero-
geneous EHRs can potentially be transformed reciprocally through linear transformations.

Specifically, suppose the sample size of zSi and zTi are identical, let ZT =
[

zT1 , . . . , z
T
I

]

∈ R
lt×I

and ZS =
[

zS1 , . . . , z
S
J

]

∈ R
ls×I represent the embedding matrices of temporal and static features,

respectively. Here, lt and ls denote the size of the embeddings and I represents the number of
samples. A viable solution entails solving the following linear system:

min
A∈O(l)

∥ZS −AZT ∥2F , (5)

where O(l) =
{

A ∈ R
ls×lt | A⊤A = I

}

. This formulation has a closed-form solution that can
be easily obtained. However, the linear system approach only solves the supervised version of the
problem as it requires a known correspondence between the columns of ZS and ZT . Clearly, it
cannot solve the alignment problem without the correspondence caused by the missing modalities.

We solve this issue by "imputing" the correspondence via a modified Gromov-Wasserstein-based
manifold alignment algorithm. The algorithm exploits the inner structure of the embedding space
and uses the available label information as global correspondence between two spaces. We consider
two measure spaces expressed in terms of within-embedding space similarity (cosine similarity used
here) matrices CT ∈ R

I×I and CS ∈ R
J×J . For clarity, we represent i, j, k, and l as indices for

individual samples, acknowledging a slight abuse of notation herein. We now define a loss function

between similarity pairs: L : R× R → R, where L
(

CT
ik,C

S
jl

)

measures the discrepancy between

the distances CT
ik and CS

jl. In this work, we define L
(

CT
ik,C

S
jl

)

= 1
2 (yiykC

T
ik − yjylC

S
jl)

2. It

can be understood as the cost of "matching" i to j and k to l. In addition, it avoids misalignment
by penalizing the mis-correspondence when pairs have similarities between the embedding space
but have different outcomes. All the relevant values of L(·, ·) can be put in a 4-th order tensor

L ∈ R
I×I×J×J , where Lijkl = L

(

CT
ik,C

S
jl

)

. Similar to the definition 3.1, we seek a coupling Γ ∈
R

I×J specifying how much mass to transfer between each pair of points from the two embedding
spaces. The Gromov-Wasserstein problem is then defined as solving

GW
(

CT ,CS ,p,q
)

= min
Γ∈Π(p,q)

∑

i,j,k,l

LijklΓijΓkl − ϵH(Γ), (6)

where Γij is the relative probability that matches embedding zTi to zSj . We add an entropic regular-
ization penalty to solve the problem faster. Once we have solved equation 6, the optimal transport
coupling Γ provides an explicit (soft) matching between temporal and static features, which can be
interpreted as a probabilistic translation: for every pair of embeddings, it provides a likelihood that
these two embeddings are correspondent of each other. Now, we can solve the least square problem
with full correspondence information:

min
A
∥ZSΓ−AZT ∥2F (7)

Instead of equation 5, this formulation can achieve alignment when the number of samples with
missing modalities does not necessarily to be equal to that of non-missing data becasue the learning
problem is not a supervised correspondence problem. Suppose static features in xi are not available,
we can obtain the most likely latent embedding zSi by running a simple transformation A:iz

T
i Γ

−1
i: .

To obtain zTi from zSi , resolving the problem considering zSi as the source and zTi as the target is
necessary to obtain a reliable and accurate solution.
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Generation. Next, we elucidate the procedure for generation. Whether a modality is missing or
present, we demonstrate that FLEXGEN-EHR can train a latent diffusion model using fused rep-
resentations zi =

[

zT ; zS
]

, as shown in equation 2. If there is missing data, FLEXGEN-EHRcan
"impute" the full representations by solve the OT problem equation 6 to find reasonable correspond-
ing features.

Upon the successful training of the diffusion model, our first step is to generate synthetic fused
representations. Subsequently, decoupled embeddings (by simply splitting) into respective decoders
as follows:

x̂T
i = DecT (zT ), x̂S

i = DecS(zS)

The overview of FLEXGEN-EHRis presented in Figure 1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines. In our study, we consider six methods as baselines: i) VAE (Kingma & Welling,
2022), a Variational Autoencoder model, traditionally used in generating high-dimensional data;
ii) MEDGAN (Choi et al., 2017), a GAN-based model that generates low-dimensional synthetic
records and decoded with an autoencoder; iii) CORGAN (Torfi & Fox, 2020), another GAN-based
model that, akin to MedGAN, amalgamates Convolutional Generative Adversarial Networks (Con-
vGANs) and Convolutional Autoencoders to synthesize and reconstruct medical records; iv) EHR-
M-GAN (Li et al., 2021b), a GAN-based model tailored for longitudinal heterogeneous EHRs; v)
TABDDPM (Kotelnikov et al., 2023), a diffusion model specialized in handling tabular data with the
unique capability of addressing the challenges presented by the heterogeneous nature of EHRs; and
vi) LDM (Rombach et al., 2022a), a latent diffusion model that decomposes the generation process
into a sequence of autoencoders and diffusion models (DMs).

These models introduce unique methodologies and focus on varying aspects of EHR data synthesis
and reconstruction, providing a comprehensive perspective on the potential approaches and their
efficacy in handling heterogeneous medical records. More details are available in Appendix B.1.

Datasets. We use two real-world de-identified EHR datasets, MIMIC-III (Johnson et al., 2016) and
eICU (Pollard et al., 2018). Both are inpatient datasets that consist of varying lengths of sequences
and include multiple static and temporal features with missing components.

We adopted the preprocessed datasets from FIDDLE (Tang et al., 2020). The cohort numbers and
dimensionalities of extracted features are summarized in Table 1, where m and d denote the dimen-
sions of static and temporal features respectively. More details on datasets and preprocessing are
available at Appendix B.2.

Table 1: Summarization of the sample size and dimensionalities of extracted features. ARF means
acute respiratory failure.

MIMIC-III N m d eICU N m d
In-hospital mortality
(48 h)

8,577 96 7,307
In-hospital mortality
(48 h)

77,066 146 2,382

ARF (4h) 15,873 98 4,045 ARF (4h) 138,840 717 5,854

Evaluation. We evaluate the effectiveness of FLEXGEN-EHR on fidelity, utility on downstream
machine learning tasks, and also demonstrate its ability to preserve privacy. Fidelity: We evaluate the
quality of synthetic data through various metrics that assess how closely the synthetic data resembles
real data. Following Li et al. (2021b); Yoon et al. (2023), we report R2 values (the higher the better)
and maximum mean discrepancy (the lower the better). The details can be found in B.3. Utility:
We focus on prediction tasks and train a random forest (RF). We report the area under the ROC and
PR curves (AUROC and AUPR, respectively) using test datasets. Privacy: Unlike de-identified data,
there is no straightforward one-to-one mapping between real and synthetic data (generated from
random vectors). However, there may be some indirect privacy leakage risks built on correlations
between the synthetic data and partial information from real data. Following Torfi & Fox (2020);

7



Published as a conference paper at ICLR 2024

Theodorou et al. (2023), we consider the membership inference attack that adversaries may apply to
de-anonymize private data.

Implementation Details.

We perform experiments on two settings: i) an easier setting where we train models on data without
missing modality, and ii) a harder setting where we randomly delete p% static samples and q%
temporal features. We implemented FLEXGEN-EHR with PyTorch. For training the models, we
used Adam (Kingma & Ba, 2015) with the learning rate set to 0.001, and a mini-batch of 128 on
a machine equipped with one Nvidia GeForce RTX 3090 and CUDA 11.2. Hyperparamters of
FLEXGEN-EHR are selected after grid search. We use a timestep of 50 and a noise scheduling β
from 1× 10−4 to 1× 10−2.

5.2 Q1: RESULTS-COMPARISON IN FIDELITY

We first evaluates the statistical similarity of the generated and real data. For each method, we gen-
erate a synthetic dataset of the same size as the training dataset. We calculate the probabilities for
each feature (dimension-wise) within the real and synthetic datasets and then compute R2 and MMD
values. Results are presented in Table 2. Across all methods, we find that FLEXGEN-EHR consis-
tently outperforms baselines by making an average improvement of R2 (0.025) and MMD (0.031).
In terms of correlation, FLEXGEN-EHR improves R2 by 0.027, 0.019, 0.019, and 0.032 over the
strongest baseline on each dataset respectively. In terms of distance, FLEXGEN-EHR reduces MMD
by 0.030, 0.028, 0.014, and 0.049 over the strongest baseline on each dataset respectively. Although
it is not our main contribution, results demonstrated that the improvement can be attributed to the
dual encoder-decoder with latent diffusion.

Table 2: Generation Fidelity. R2 (↑) correlation and MMD (↓) distance between synthetic and real
datasets. FLEXGEN-EHRachieves the highest correlation.

Dataset MIMIC-Mortality MIMIC-ARF eICU-Mortality eICU-ARF

R2 (↑) MMD (↓) R2 MMD R2 MMD R2 MMD

VAE 0.632 ±0.052 1.514 ±0.048 0.577 ±0.074 0.981 ±0.048 0.694 ±0.031 0.857 ±0.029 0.655 ±0.034 0.802 ±0.016

MEDGAN 0.639 ±0.047 1.108 ±0.037 0.595 ±0.069 0.831 ±0.052 0.712 ±0.037 0.832 ±0.044 0.662 ±0.044 0.786 ±0.019

CORGAN 0.656 ±0.051 1.093 ±0.041 0.612 ±0.055 0.830 ±0.059 0.724 ±0.054 0.712 ±0.037 0.671 ±0.031 0.760 ±0.015

TABDDPM 0.395 ±0.060 1.636 ±0.067 0.525 ±0.059 1.182 ±0.041 0.653 ±0.046 0.774 ±0.045 0.617 ±0.038 0.784 ±0.012

LDM 0.694 ±0.038 0.755 ±0.042 0.658 ±0.052 0.635 ±0.039 0.758 ±0.049 0.662 ±0.038 0.736 ±0.033 0.710 ±0.017

EHR-M-GAN 0.712 ±0.044 0.711 ±0.045 0.676 ±0.047 0.614 ±0.043 0.781 ±0.042 0.617 ±0.033 0.762 ±0.019 0.667 ±0.020

FLEXGEN-EHR 0.739 ±0.045 0.681 ±0.042 0.695 ±0.051 0.586 ±0.045 0.800 ±0.037 0.603 ±0.035 0.794 ±0.024 0.618 ±0.019

5.3 Q2: RESULTS-COMPARISON IN UTILITY

Following the experimental setup in (Tang et al., 2020), we trained ML models to predict inhospi-
tal mortality and acute respiratory failure (ARF) in our evaluation of utility. Overall, FLEXGEN-
EHR has won 4 out of 4 tests (2 metrics in 4 datasets) and makes an average improvement of
AUROC (6.37%) and AUPR (7.16%) over with the strongest baseline across datasets.

Table 3: Generation Utility. The downstream classifier is trained using either real data (the first
row) or synthetic data (2-8 rows). We report AUROC (↑) and AUPR (↑) evaluated on real test
set.FLEXGEN-EHRachieves the highest comparable performance with real data.

Dataset MIMIC-Mortality MIMIC-ARF eICU-Mortality eICU-ARF

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Real data (goal) 0.856 ±0.032 0.445 ±0.117 0.817 ±0.023 0.657 ±0.029 0.841 ±0.012 0.401 ±0.027 0.714 ±0.014 0.269 ±0.032

VAE 0.731 ±0.031 0.394 ±0.102 0.693 ±0.019 0.582 ±0.025 0.732 ±0.012 0.298 ±0.028 0.634 ±0.012 0.188 ±0.035

MEDGAN 0.754 ±0.030 0.401 ±0.109 0.766 ±0.021 0.602 ±0.021 0.743 ±0.015 0.310 ±0.029 0.647 ±0.015 0.211 ±0.022

CORGAN 0.759 ±0.027 0.400 ±0.114 0.783 ±0.025 0.613 ±0.023 0.752 ±0.008 0.317 ±0.024 0.649 ±0.017 0.214 ±0.025

TABDDPM 0.712 ±0.028 0.375 ±0.135 0.788±0.024 0.626 ±0.027 0.741 ±0.012 0.305 ±0.027 0.615 ±0.015 0.205 ±0.028

LDM 0.772 ±0.036 0.408 ±0.122 0.775±0.020 0.621 ±0.022 0.749 ±0.011 0.322 ±0.025 0.668 ±0.019 0.223±0.029

EHR-M-GAN 0.778 ±0.035 0.409 ±0.109 0.787±0.025 0.645 ±0.024 0.753 ±0.010 0.326 ±0.028 0.681 ±0.021 0.216 ±0.031

FLEXGEN-EHR 0.794 ±0.035 0.428 ±0.116 0.792 ±0.017 0.674 ±0.025 0.764 ±0.013 0.356 ±0.028 0.689 ±0.014 0.254 ±0.026
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Table 4: Generation Privacy. Accuracy is reported as the membership inference metrics.

Dataset MIMIC-Mortality MIMIC-ARF eICU-Mortality eICU-ARF

Real (Ideal) 0.5 0.5 0.5 0.5

VAE 0.512 0.488 0.519 0.487

MEDGAN 0.485 0.490 0.482 0.517

CORGAN 0.513 0.481 0.515 0.483

TABDDPM 0.483 0.521 0.521 0.481

LDM 0.482 0.518 0.519 0.483

EHR-M-GAN 0.485 0.514 0.517 0.482

FLEXGEN-EHR 0.483 0.484 0.519 0.481

5.4 Q3: RESULTS-COMPARISON IN PRIVACY

In this section, we quantify the vulnerability of all methods to adversarys membership inference
attacks (Hayes et al., 2018). As shown in Table 4, there is not much difference in the privacy metrics
(e.g., the accuracy of an attacker changed from 0.482 to 0.513 on MIMIC-Mortality). It shows that
FLEXGEN-EHR maintains a level of privacy preservation that aligns with existing methods, while
achieving superior data fidelity. It is essential to recognize that this trade-off between generation
quality and privacy guarantee is a shared characteristic among all diffusion-based generative models.

5.5 Q4: RESULTS-HETEROGENEOUS TABULAR EHR GENERATION WITH MISSING

MODALITY

We investigate the capability of FLEXGEN-EHR to generate with missing modality effectively. We
randomly designate p% of samples as lacking temporal features and q% samples as lacking tem-
poral features. We compare with EHR-M-GAN, the strongest baseline selected for this study. In
the case of the baseline, we impute samples with absent modality using kNN and proceed to train
both the generative and classification models, as EHR-M-GAN is not able to handle such scenarios.
Investigation into Generation Fidelity. We report the fidelity metrics (R2) in Figure 2 and 3. It can
be observed that FLEXGEN-EHR maintains high generation fidelity even when number of samples
with missing modality increases. Examination of Generation Utility. Subsequently, we assess
the generation utility. The outcomes shown in Figure 4 demonstrate that the simple imputation of
samples notably diminishes discriminative capability, whereas FLEXGEN-EHR can alleviate this
problem, delivering performance that is comparable with full samples.

Figure 2: R2 on MIMIC-
Mortality

Figure 3: R2 on eICU-ARF Figure 4: AUROC on eICU-ARF

6 CONCLUSION

We introduce FLEXGEN-EHR, a novel generative model that is both flexible and easy-to-use, and
can be trained on data with missing modality. We introduce an innovative solution to the missing
modality issue by formulating an optimal transport problem in the embedding space, enabling the
construction of meaningful and reasonable latent embedding pairs to solve the missing correspon-
dence in the data. By constructing reasonable fused representations for data with missing modality,
FLEXGEN-EHR is able to training using all samples without requiring removing then or other im-
putation techniques. Results demonstrate the potential of FLEXGEN-EHR as a general strategy for
EHR generative models.
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A FURTHER DETAILS

A.1 DIFFUSION FORWARD PROCESS

Given a data distribution x0q(x0)x0 ∼ q(x0), diffusion models gradually add noise to the original
data distribution until it loses all the original information and becomes an entirely noisy distribution
(as shown by the xTxT sample in Figure 1). DDPM convolves q(x0) with an isotropic Gaussian
noiseN (0, σ2

i I) in T steps to produce a noise corrupted sequence x1,x2, . . . ,xT . xT will converge
to an isotropic Gaussian distribution as T →∞. However, for DDIM, a different variance schedule
is used to produce x1,x2, . . . ,xT . The explicit input distribution q of DDIM is derived as :

q(x1:T |x0) := q(xT |x0)

T
∏

t=2

q(xt−1|xt,x0) (8)

where q(xT |x0) = N (
√
ᾱx0, (1− ᾱT )I) and for all t > 1,

q(xt−1|xt,x0) = N (
√
ᾱt−1x0 +

√

1− ᾱt−1 − σ2
xt −

√
ᾱtx0√

1− ᾱt

, σ2I)

Here ᾱ controls the scale of noise added at each time step. At the beginning, noise should be small
so that it is possible for the model to learn well, e.g., ᾱ1 > ᾱ2 · · · > ᾱT .

The DDIM distribution is parameterized to guarantee the marginal density is equivalent to DDPM.
However, the key difference between DDPM and DDIM is that the forward process of DDIM is no
longer a Markov process. This allows acceleration of the generative process as multiple steps can be
taken. Moreover, different reverse samplers can be utilized by changing the variance of the reverse
noise. This means DDIM can be compatible with other samplers.

A.2 DIFFUSION BACKWARD PROCESS

For DDPM, the forward process is defined by a Markov chain, and thus the true sample can be
recreated from Gaussian noise xT ∼ N (0, I) by reversing the forward process. However, as noted
above, DDIM relies on a family of non-Markovian processes. Denote pθ as a parameterized neural
network, the reverse process with a prior pθ(xT ) = N (0, I) can be computed as

pθ(x0|x1) = N
(x1 −

√
1− ᾱ1θ(x1, 1)√

ᾱ1
, σ2

1I
)

, pθ(xt−1|xt) = q(xt−1|xt,
xt −

√
1− ᾱtθ(xt, t)√

ᾱt

)

(9)

A.3 DIFFUSION CONDITIONED SAMPLING

To incorporate guidance in the absence of an independent classifier fϕ, one could leverage the scores
from both conditional and unconditional diffusion models as suggested . Specifically, the uncondi-
tional denoising diffusion model, represented as pθ(x), is parameterized through a score estimator
ϵθ(xt, t). On the other hand, the conditional model pθ(x|y) utilizes a score estimator ϵθ(xt, t, y).
These two models can be learned through a single neural network.

To elucidate, a conditional diffusion model pθ(x|y) is trained on corresponding data sets (x, y).
Through the training process, the conditioning variable y is discarded intermittently at random inter-
vals. This procedure ensures the model’s capability to generate images without explicit conditioning,
as expressed by the relation: ϵθ(xt, t) = ϵθ(xt, t, y = ∅).

Furthermore, the gradient of an implicit classifier can be expressed utilizing both conditional and
unconditional score estimators. Once incorporated into the classifier-guided modified score, there’s
no reliance on an independent classifier, as shown in the equations below:
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∇xt
log p (y | xt) = ∇xt

log p (xt | y)−∇xt
log p (xt)

= − 1√
1− ᾱt

(ϵθ (xt, t, y)− ϵθ (xt, t))

ϵ̄θ (xt, t, y) = ϵθ (xt, t, y)−
√
1− ᾱtw∇xt

log p (y | xt)

= ϵθ (xt, t, y) + w (ϵθ (xt, t, y)− ϵθ (xt, t))

= (w + 1)ϵθ (xt, t, y)− wϵθ (xt, t)

(10)

The parameter w emerges as a weighting coefficient in the equation. Its role is to modulate the
difference between the conditional and unconditional score estimators, effectively controlling the
balance between the two. In essence, w determines the extent to which the conditional guidance is
emphasized over its unconditional counterpart.

A.4 ALGORITHM OF FLEXGEN-EHR

Algorithm 1: Training of FLEXGEN-EHR

Input: D =
{(

xS
i , yi

)

,
(

xT
j , yj

)

,
(

xS
k ,x

T
k , yk

)}

for i = 1, · · · , I, j = 1, · · · J, k = 1, · · · ,K
A static encoder EncS , a temporal encoder, EncT

A static decoder DecS , a temporal decoder, DecT

A latent diffusion model G
for e← 1 to E do

Compute static and temporal latent embeddings zSi = EncS(xS
i ), zTi = EncT (xSi )

Learn correspondece information Γ by solving equation 6
Learn A by solving minA ∥ZSΓ−AZT ∥2F
Impute missing embeddings by zSi = A:iz

T
i Γ

−1
i:

Train G using fused latent embeddings zi = [zT ; zS ]
Train encoders and decoders based on G(zi)

end

Return EncS , EncT , DecS , DecT , G

B EXPERIMENTAL DETAILS

B.1 IMPLMENTATIONS

Encoder Selection. we carefully selected the appropriate encoder. This consideration was applied
to all our comparisons. For the extraction of temporal features, we utilized a 1d neural network
(CNN) as the encoder. This configuration was kept consistent across all datasets to ensure a fair
comparison, where differences in prediction performance could be attributed to the generative algo-
rithm itself. The implementation of the CNN architecture was adapted from a recently published
benchmark codebase in the literature Ragab et al. (2022). The 1D-CNN architecture consists of
three blocks, each consisting of a 1D convolutional layer, followed by a 1D batch normalization
layer, a rectified linear unit (ReLU) function for non-linearity, and finally, a 1D max-pooling layer.
VAE:. It’s a generative model that learns to encode and decode data in an unsupervised manner.
The model is constructed with an encoder, a decoder, and a loss function designed to reconstruct
data while enforcing a constraint on the encoding space. The encoder converts input data into a set
of parameters in a latent space, typically representing the mean and variance of a probability distri-
bution. These parameters are then sampled to generate new data points in the latent space, which
the decoder reconstructs back into the original data space. MEDGAN. It’s a discrete-valued EHR
generative model. We flatten the input and use a two layer MLP to train the model. The first layer
and second layer have a hidden size of 512 and 128 respectively. CorGAN. Similar to MedGAN, it
is proposed to generate discrete EHR matrices. For all other baselines, we directly adopt implemen-
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Table 5: Summary of MIMIC-III tables used in our analysis

Table name Description Example variables

PATIENTS Information on unique pa-
tients

Age, Sex

ADMISSIONS Information on unique hos-
pitalizations

Admission type, Admission location

ICUSTAYS Information on unique ICU
stays

Care unit, Ward ID, Admission-to-ICU time

CHARTEVENTS Charted data, including vi-
tal signs, and other infor-
mation relevant to patients
care

Heart rate, Pain location, Daily weight

LABEVENTS Laboratory test results
from the hospital database

Lactate, WBC

INPUTEVENTS_MV Fluid intake administered,
including dosage and route
(e.g., oral or intravenous)

NaCl 0.45%, Whole blood

OUTPUTEVENTS Fluid output during the
ICU stay OR urine

Stool

PROCEDUREEVENT_MV Patients procedures during
the ICU stay

CT scan, X-ray

MICROBIOLOGYEVENTS Microbiology specimen
from hospital database

Sputum

DATETIMEEVENTS Documentation of dates
and times of certain events

Last dialysis, Pregnancy due

tations from the corresponding official websites and only modify necessary hyperparameters. Codes
of baseline models are available online 1 2 3 4 5.

B.2 DATASETS

MIMIC-III is an extensive database that houses anonymized data related to around sixty thousand
critical care unit admissions from Beth Israel Deaconess Medical Center, gathered between 2001 and
2012. eICU is a large-scale, multi-center collection of anonymized health-related data, encompass-
ing over 200,000 admissions to intensive care units throughout the United States from 2014-2015.
We adopted the preprocessed datasets from FIDDLE (Tang et al., 2020). Table 5 and 6 are directly
reused from (Tang et al., 2020) here. In table 5, files ’PATIENTS, ADMISSIONS, ICUSTAYS’
correspond to static features and others are temporal features. In table 6, files ’patient, treatment’
correspond to static features and others are temporal features

B.3 EVALUATION

In our model, R2 serves as an indicator of how well the synthetic data generated by FLEXGEN-
EHR corresponds to the real-world data it aims to replicate. This metric is particularly relevant for
evaluating the model’s performance in terms of data fidelity. In contrast to R2, MMD/KS-statics are
both non-parametric tests used for determining if two samples are drawn from different distributions.
By quantifying the maximum distance between these functions, MMD/KS-Statistics allow us to
rigorously test the hypothesis that the synthetic and original data come from the same distribution.
Fidelity Metric: Maximum Mean Discrepancy (MMD). Maximum Mean Discrepancy (MMD)
is a statistical test used to measure the difference between two probability distributions. For two

1Code available at https://github.com/CompVis/latent-diffusion
2Code available at https://github.com/yandex-research/tab-ddpm
3Code available at https://github.com/mp2893/medgan
4Code available at https://github.com/astorfi/cor-gan
5Code available at https://github.com/jli0117/ehrMGAN
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Table 6: Summary of elCU tables used in our analysis

heightTable name Description Example variables

patient Information on unique patients, hospitalizations, and
ICU stays

Age, Sex
Hospital/ward ID

vitalPeriodic
vitalAperiodic

Vital signs measured through bedside monitors or in-
vasively

Temperature
End Tidal CO2

lab
customLab

Laboratory tests
CPK
troponin - I

medication
infusionDrug
intakeOutput

Active medication orders, the intake of drug through
infusions, and intake/output of fluids

Morphine dosage
Dialysis total

microLab Microbiology cultures taken from patients
Culture site (wound)
Organism

note
nurseAssessment
nurseCare
nurseCharting

Documentation of physician/nurse assessment
Abdominal pain
Psychological status
Respiratory rate

pastHistory Relevant past medical history
Transplant
AIDS

physicalExam Results of physical exam (structured)
Blood pressure
Verbal score

respiratoryCare
respiratoryCharting

Respiratory care data
Airway position
Vent details

treatment Structured data documenting specific, active treat-
ments

Thrombolytics

distributions P and Q, the MMD is defined as:

MMD(P,Q) = sup
f∈F

(Ex∼P [f(x)]− Ey∼Q[f(y)]) (11)

where F is a class of functions.

The Gaussian kernel is a common choice for MMD and is defined as:

k(x, y) = exp

(

−||x− y||2
2σ2

)

(12)

where σ is the bandwidth of the Gaussian kernel.

Privacy Evaluation. We incorporate the Privacy Assessment methodology delineated in CorGAN
for our privacy evaluation paradigm Torfi & Fox (2020). Within this framework, Str is designated as
the subset of the original dataset utilized for the training of the FLEXGEN-EHR. Concurrently, Ste

epitomizes the portion that remains unengaged during the training process, and Syns stands as the
synthesized dataset. A central component of our analysis is the computation of the Cosine Similarity
Score between the aggregated dataset Str+Ste and Syns. This metric is elected due to its capacity to
yield a profound and meaningful correlation assessment. The distinction in similarity evaluations is
governed by a meticulously determined threshold, ensuring a rigorous and comprehensive analysis.
Details on Membership Attack Implementation: We label the real records with the lowest hamming
distance to the closest record in the synthetic dataset as positive. We pick a hamming distance
as our distance metric between patient records throughout our privacy evaluations in accordance
with (Yan et al., 2022).This attack allow us to test the ability of the synthetic dataset to prevent an
attacker from inferring whether a real record was used in the training dataset. Ideally, the accuracy
is around 50%, which is similar to a random guess. This shows that neither the model nor the
synthetic dataset reveals any meaningful or compromising information about the patient identity in
the training dataset.
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C DISCUSSION

C.1 PRACTICAL USAGE

We wish to clarify that the type of missingness addressed in our study is akin to structured miss-
ingness, where specific patterns or conditions lead to data missingness. This scenario is frequently
encountered in real-world healthcare datasets Beaulieu-Jones et al. (2017). We have expanded our
experimental framework to include scenarios with missing features. This extension allows us to
more comprehensively demonstrate the robustness of FLEXGEN-EHRin handling other realistic
and complex missing data situations. The enhanced experiments showcase FLEXGEN-EHR’s su-
perior performance in comparison to other models like LDM and MedGAN. The results, clearly
depicted in the table below, highlight our models effectiveness in managing various missing data
patterns, thereby reinforcing its practical utility in real-world healthcare applications."

C.2 LIMITATIONS AND FUTURE WORK

In this section, we delineate the limitations of our proposed FLEXGEN-EHRmodel, particularly
focusing on aspects related to privacy and generation speed. Acknowledging these limitations is cru-
cial for a comprehensive understanding of the model’s applicability and scope in practical healthcare
settings.

Privacy Concerns in Diffusion Models While FLEXGEN-EHRdemonstrates remarkable capabil-
ity in generating high-fidelity synthetic EHR data, it’s important to address the subtle yet significant
privacy trade-offs associated with diffusion models. Our model, like many in its category, slightly
compromises on privacy to achieve the desired level of data utility and quality. This is a consequence
of the inherent characteristics of diffusion models that aim to capture complex data patterns in great
detail. This detailed representation, while beneficial for data utility, can inadvertently encode sensi-
tive information, potentially making the model susceptible to privacy risks such as re-identification
or membership inference attacks. We have undertaken measures to mitigate these risks, such as
evaluating against membership inference attacks, yet the model’s intrinsic properties suggest an
inevitable balance between data utility and privacy. Future iterations of FLEXGEN-EHRcould ex-
plore advanced privacy-preserving techniques, possibly integrating differential privacy or advanced
anonymization methods to strengthen data confidentiality while maintaining the quality of synthetic
data generation.

Generation Speed of Diffusion-Based Models Another limitation for diffusion-based generative
models, like FLEXGEN-EHRto consider, is the generation speed. The inherent architecture of dif-
fusion models necessitates a reversion process that is inherently sequential and iterative. Each step
in this process gradually denoises the data, a methodical approach that, while effective in generating
high-quality synthetic data, is inherently slower compared to other generative models. This charac-
teristic can be a limiting factor, especially in scenarios requiring rapid data generation. In healthcare
settings, where time efficiency can be crucial, this aspect of the diffusion model might pose practical
challenges, which can potentially alleviated by (Xu et al., 2022). It is important for practitioners and
researchers to be cognizant of this temporal trade-off when employing FLEXGEN-EHRin real-time
or near-real-time applications.
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