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Abstract—As the demand for renewable energy rises, op-
timizing wind power as an energy source is crucial. Wind
power is one of the cleanest forms of energy available, and
understanding the energy that wind turbines generate over
time is necessary for building a better foundation for wind
energy reliance. Previous research has explored using Long-
Short-Term Memory (LSTM) and LSTM-based algorithms for
practical wind turbine data analysis and predictions. In those
cases, the LSTM-based forecasts showed the most robust wind
turbine prediction rates based on various variables, mainly
wind speed and direction, and generated active power. This
research implements LSTM, Nonlinear Autoregressive (NAR),
and Nonlinear Autoregressive Exogenous (NARX) networks on
simulated Texas wind turbine data to compare the techniques that
produce better data predictions. The data is normalized using
correlation analysis techniques on the following data features:
system power generated, wind speed, wind direction, pressure,
and air temperature. The data is separated for training and
testing and run through the LSTM, NAR, and NARX algorithms.
After obtaining the mean squared error (MSE) of the testing data,
the algorithms are compared to determine the best predicting
algorithm. The results show which algorithm on time-series data
holds the most robust prediction of generated energy from wind
turbines.

Keywords—forecasting, LSTM, NAR, NARX, prediction, wind
energy, wind turbine

I. INTRODUCTION

Wind power is a significant and reliable source of energy
that is collected through the use of wind turbines. These
turbines absorb the energy of the wind when it hits the pro-
peller blades, and the motion of the blades allows a generator
to gather kinetic energy. In order to better understand the
impact of the power generated, the turbines collect various
variables such as wind speed, air temperature, pressure, and
wind direction [1]. One can understand how these variables
interact under different circumstances and create patterns by

tracking them in a time series. For this research, each variable
is recorded hourly for an entire year, allowing an AI algorithm
to be incorporated to predict future variable trends. Previous
research has explored the effectiveness of machine learning
algorithms in predicting wind power generation. For instance,
in [2], the LSTM model was measured for its effectiveness
through the mean absolute error (MAE) of a normalized data
set before being split into training and testing data. Multiple
hyperparameter tuning techniques have been utilized on the
training data to record error rates between the moving-average
approach and the multi-layer perceptron model. The study con-
cluded that the LSTM system had the smallest error estimates.
In study [3], a basic LSTM algorithm was used to predict
data pre-processed into three forms of experiments (single-
sensor, multi-sensor, and small-number data). The multi-sensor
data underwent hyperparameter tuning once the data was split
into training and testing data. They were compared to other
machine learning algorithms in which the LSTM’s results
showed higher accuracy.

Study in [4] suggested using an LSTM-based algorithm
on pre-processed and normalized data ran through the Aquila
optimizer (AO). The algorithm’s performance is compared to a
basic LSTM model, revealing that the AO-LSTM has the low-
est recorded errors. Similarly, in [5], LSTM and Convolutional
Neural Network (CNN) utilize pre-processed data through
outlier removal and normalization before running it through
the Adam algorithm optimizer. The performance is measured
through various errors in the CNN and LSTM values, with
the LSTM system having the smallest error. In [6], research
shows the effectiveness of LSTM mixed with the Gaussian
algorithm in forecasting short-term wind power data. The data
was pre-processed by removing nonoperational data points
and normalized using the min-max method. The Adam algo-



rithm then optimizes the data before recording error metrics.
These metrics, along with their respective forecast confidence
intervals, are compared with various techniques to reinforce
the accuracy of the LSTM method. Furthermore, in [7], the
LSTM’s strength in data is pre-processed by outlier removal,
and the testing data undergoes a time-sequence probability-
based optimization. Once the accuracy of the variables is
found, it is compared to different techniques, showing that
employing the LSTM-based algorithm over other machine
learning variations holds a stronger accuracy percentage.

In their research, the authors of [8] explored combining the
LSTM algorithm and optimizer by filtering data based on the
sequential correlation features of target turbines. The Spectral
Clustering algorithm was then used to optimize the results,
and the resulting error value was compared to other algorithms
such as Support Vector Regression (SVR), K-Nearest Neigh-
bors (KNN), and a conventional LSTM algorithm to determine
the accuracy. In [9], the potency of the LSTM method on
wind pattern time series was further emphasized through the
K-Means-LSTM technique. This technique involved cleaning
the data with the culling method and normalizing it through
Pearson correlation coefficient analysis. The data was split into
testing and training sets and underwent the Adam algorithm
to optimize the loss function. Dropout technology was also
used to prevent model overfitting. The method’s effectiveness
was measured through error metrics and compared to other
models such as SVR, Elman, and a conventional LSTM model.
According to performance measurement rates, the K-Means
clustering and LSTM combination showed the lowest residual
rates compared to the other methods.

In the study reported in [10], CNN-LSTM measurement was
performed using linear regression and 10-fold validation pro-
cessing. The input variables included wind speed and direction,
elevation, temperature, air pressure, and electrical generation,
which have been used to make different comparisons. The total
power output of the generator was the output variable derived
using the 10-fold validation as a hyperparameter. The paper
concluded that linear regression is an effective method for
testing CNN-LSTM. In the referenced study [11], the LSTM-
based system was applied to Supervisory Control and Data
(SCADA). It was first pre-processed by outlier removal and
normalized through correlation analysis to prepare for training
and testing. Hyperparameter tuning used an optimizer to record
the error metrics and correlation coefficient R2 for LSTM and
CNN-LSTM algorithms. The study found that the CNN-LSTM
model had negligible errors between actual and predicted.

Based on the literature presented, this paper suggests con-
ducting a comparative analysis of three techniques for predict-
ing the output of a wind turbine in Texas. These techniques
include LSTM, NAR, and NARX networks.

The paper is organized into several sections. Section II
outlines the methodology proposed for the study. Section III
explores the results and provides a discussion. Finally, sec-
tion IV concludes the paper.

Fig. 1. Flowchart for proposed time series forecasting of Texas wind turbine’s
generated power

II. METHODOLOGY

The methodology this research follows is illustrated in Fig.
1 and involves utilizing and contrasting three machine learning
algorithms, namely LSTM, NAR, and NARX. The details and
architectures of these algorithms are explained underneath.

A. Long-Short-Term Memory (LSTM)

When it comes to artificial intelligence (AI) learning algo-
rithms for long-term dependencies, one common option is the
LSTM, a Recurrent Neural Network (RNN). LSTM programs
use past and present data to make predictions, making them
particularly useful for time-series-based projects. There are
several advantages to using an LSTM. For one thing, it con-
siders the data’s previous behavior when making predictions
about its current behavior. This can lead to solid predictions
on time-based data sets. LSTM also has excellent performance
across a variety of time scales. Finally, these programs can be
trained using back-propagation, which means that the weights
of different parts of the data can be adjusted depending on how
much the algorithm expects that information to be needed for
future predictions [12], [13].

The design of an LSTM is illustrated in Fig. 2. This
model has three gates: input, forget, and output. The input
gate decides which data components to use for adjusting the
algorithm’s memory. Mathematically, the algorithm utilizes a



Fig. 2. Architecture of LSTM

sigmoid function to assign a value of either 0 or 1 to data
points. If the value is 0, the data is not considered in the
prediction process. If the value is 1, the data is passed through
and given a weight between -1 and 1 based on the tanh
function. The weight the tanh function assigned the influence
the point will have on the prediction-making process.

The forget gate is a crucial architectural component that
evaluates which data pieces are unnecessary to create the
next set of predictions. Similar to the input gates, the forget
gate accepts values of 0 or 1 to determine which pieces of
data should be kept or omitted from its memory. The output
gates use the input and weighted data memory to determine
the algorithm’s output. It identifies which input value should
be used to adjust the memory. The sigmoid function decides
which values to allow through while the tanh function assigns
weight to the passed values.

To ensure optimal performance of the LSTM, the data is
divided into training and testing data. About 70-80% of the
data is used for training and 20-30% for testing. Two variables
are created during training to accept input sequences and target
values. These variables work together to teach the algorithm
to predict the next step’s value. The normalization used for
training and testing data is to prevent divergence during the
training process, and the same normalization is used for testing
variables. Next, the training variables are refined by adjusting
the data through hyperparameter tuning. The effectiveness of
the training is evaluated using statistical measurements like
MSE and root mean square error (RMSE). This methodology
is also applied to the testing data before the LSTM can be
used for predicting future steps.

This study utilizes the LSTM method to forecast the power
output of wind turbines. It is crucial to train the LSTM
model since wind turbines’ energy production is unpredictable,
making it challenging to determine the required power at
specific times. By integrating the LSTM into the system, one
can better anticipate the instability of power output and take
appropriate measures.

Fig. 3. Architecture of NAR

B. Nonlinear Autoregressive (NAR)

NAR is an artificial neural network that predicts time series
based on past values [14]. It consists of an input layer, a
hidden layer, and an output layer. The output at a specific time
depends heavily on previous outputs. Like an LSTM, a NAR
prediction is based on the weight given to data. To evaluate
the algorithm’s accuracy, autocorrelation, and prediction error
are assessed. See Fig. 3 for a visual representation.

The NAR algorithm confidently predicts wind turbines’
power output (in kW), much like the LSTM. Its training
utilizes historical time series data as input to the network,
allowing the model to fully grasp the complex interactions
between the input and target variables. As a result, the algo-
rithm produces accurate predictions for future periods.

C. Nonlinear Autoregressive with Exogenous (NARX)

NARX, a nonlinear autoregressive with exogenous inputs, is
a neural network for series forecasting [15]. Unlike traditional
time series models, NARX models consider past values of the
target variable and past exogenous values to make predictions
(See Fig. 4). The autoregressive component of NARX looks
at the relationship between the current target variable and its



Fig. 4. Architecture of NARX

Fig. 5. Dataset of simulated Texas wind turbine

previous outputs. Previous predictions are reintroduced into the
model using a feedback loop to improve future forecasts. This
part of NARX can identify both linear and nonlinear patterns.

In addition, an external factor impacts the target variables,
called the exogenous element. Additional inputs of exogenous
variables may affect the performance of the time series, but
they are not part of the target variable’s past. To forecast a

Fig. 6. Correlation plot of Texas wind turbine variables

series, the NARX model is utilized through a neural network
with the help of recurrent neural network frameworks like
LSTM. During the training process of the NARX model, the
network is fed with historical time series data. This enables
the model to grasp the complex interactions between the target
and exogenous variables, leading to accurate predictions.

III. RESULTS AND DISCUSSION

A. Data Description

The study’s data is accessible at [16]. The simulated wind
turbine used in the data set is located in onshore Texas and has
a rotor diameter of 111 meters, producing a rated output of
3600 kW. With an overall height of 80 meters, the turbine
collects data points every hour for a year, recording five
essential variables: system power generated (kW), wind speed
(m/s), wind direction (deg), pressure, and air temperature(C◦).
Each variable consists of 8,760 samples generated hourly for a
full year (see Fig. 5). The data set provided has been simulated
using National Renewable Energy Laboratory software to have
perfect completeness and no noisy data, allowing for quick
data split between training and testing data points.

B. Data Correlation

Figure 6 used a correlation plot to examine the relationship
between variables. The results show a strong positive corre-
lation of approximately 0.95 between wind speed and wind
power generated. The Pearson correlation coefficient confirms
that the stronger the wind speed, the more power the turbine
generates.

There is a relationship worth monitoring between pressure
and air temperature, which is portrayed as a moderate negative
correlation (-0.61). This means these variables act opposite
each other for a certain period. For example, if there is higher
pressure, a lower value from the air temperature should be
expected. A full multicollinearity test is unnecessary, as the
relationship between the variables is expected.



Fig. 7. Response of LSTM during training and testing.

The other variables have weak correlations, also known as
negligible correlations, on Pearson’s chart. A negligible corre-
lation suggests insufficient statistical evidence of a correlation
between variables occurring. In other words, the correlation
between the two variables is likely a chance occurrence. These
correlations include wind direction and air temperature (-
0.17), wind speed and pressure (-0.13), wind speed and wind
direction (-0.8), wind direction and pressure (-0.02), system
power generation and air temperature (-0.02), and wind speed
and air temperature (0.01).

C. LSTM

When training the LSTM algorithm, the RMSE decreases
significantly during training and stabilizes at around 0.6 once
more data samples are introduced. The LSTM algorithm is
trained for 200 epochs, during which parameters such as
the weights on data points are adjusted to minimize the
difference between predicted and target outputs. In the loss
function of the LSTM algorithm, initially, there is a high loss
error between actual and predicted models due to random
weights. Still, as training continues, the algorithm captures the
model’s parameters more accurately, minimizing loss. Once
the weights stabilize, the LSTM algorithm shows an average
loss of around 0.2 between actual and predicted data points.
The MSE model is approximately 0.2823 after training. Later,
the same normalization technique is applied to the testing
variables, and the algorithm is run with the trained network.
The average MSE of the testing variables is approximately
1.5757. After calculating the MSE of the overall LSTM,
predictions can be generated. The test is done for 100 steps for
all five variables and is pictured in Fig. 7. The graphs depict
the test sequence plot applying input time series to forecast
future time steps.

D. NAR

Figure 8 illustrates the difference between the intended
targets and actual outcomes over time. Though most error

Fig. 8. Response of NAR during training, validation and testing.

Fig. 9. Response of NARX during training, validation and testing.

values are small, a few stand out. The NAR response of the
output plot above is trained using a double array of 8760-time
steps, with five variable features acting as predictors. Figure 8
displays the fluctuations in error rates across all time samples.
This type of machine learning algorithm records relatively
high error rates, with the training algorithm’s MSE being
1.8410×104, which increases to 2.1093×104 after training.

E. NARX

The first case study involves the NARX Response, trained
using two double arrays with 8760 time steps each. One array
has one feature for the predictors, the system power generated,
while the other has one feature for the responses: the hours.
Based on the training, it can be observed from Fig. 9 that
the estimated forecast is closer to being accurate than not,
with the evaluated MSE for training, validation, and testing
being 0.0013. Furthermore, the current training session shows
a positive correlation between the system power generated
variable and the hours.

Moving on to the second case study, the first array has 8760
time steps and one feature for the predictors, the Wind Speed,
while the other has 8760 time steps and one feature for the



TABLE I
MSE COMPARISON OF VARIOUS TECHNIQUES

Technique Stage MSE

LSTM Training 0.2823
Testing 1.5757

NAR
Training 1.8410×104

Validation 1.9018×104

Testing 2.1093×104

NARX
Training 2.8684×10−4

Validation 3.0183×10−4

Testing 3.1311×10−4

responses, the Hours. After the test, the output MSE values
for the training, validation, and testing are 2.8684×10−4,
3.0183×10−4, and 3.1311×10−4, respectively. This indicates
the estimated forecast is accurate, as the MSE values are
notably low. It’s worth noting that wind speed and system
power generated have a higher correlation regarding more
precise forecasting.

F. Comparison

This research employs comparative analysis to evaluate the
performance differences between the three proposed models,
as presented in Table I. The comparison showcases the dif-
ference in MSE values of each algorithm after training and
testing. There is also a validation area in the cases of NAR
and NARX as these algorithms implement that into their
overall evaluation. The lower the MSE value, the better the
algorithm grasps the wind’s dynamic behavior. The best MSE
is captured by the NARX algorithm, which mainly focuses on
the system-generated power variable. While this algorithm has
the lowest MSE score, it does not account for the multivariate
nature of the data. Thus, while LSTM holds the second-lowest
MSE values, it also accounts for the five variables to create
predictions. The MSE value of 1.5757 also showcases very
little error between predicted and actual variables. The MSE
is also skewed towards the right, meaning that most errors are
closer to 0, with outliers being the main reason the MSE is
the second-best performer.

IV. CONCLUSION

Wind energy represents a highly sustainable and eco-
friendly source of power. It promises to reduce global warming
by identifying the most reliable and strong wind energy
points. However, predicting the surplus or shortage of energy
proves challenging, as wind speed and power generated are
recorded over time. Machine learning algorithms train using
the simulated Texas Wind turbine data to overcome this. This
data analysis uses correlation-based techniques to ensure ac-
curate predictions and visualize variable patterns. The NARX
algorithm performs best by capturing the dynamic behavior
of wind energy with the smallest MSE value. Comparing
the MSE results, the NARX significantly outperforms single
variable analysis, whilst LSTM is best on multivariate data.
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