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Abstract— Structural Health Monitoring (SHM) uses wireless
sensor network (WSN) to monitor a civil construction’s conditions
remotely and constantly for its sustainable usage. Security in WSN
for SHM is essential to safeguard critical transportation
infrastructure such as bridges. While WSN offers cost-effective
solutions for Bridge SHM, its wireless nature expands attack
surfaces, making security a significant concern. Despite progress in
addressing security issues in WSN for Bridge SHM, challenges
persist in device authentication due to the unique placement of
sensor nodes and their resource constraints, particularly in energy
conservation requirements to extend the system’s lifetime. To
overcome these limitations, this paper proposes an innovative
authentication scheme with deep learning at the physical layer. Our
approach steers away from conventional device authentication
methods: no challenge-response protocol with heavy
communication overhead and no cryptography of intensive
computation. Instead, we use radio frequency (RF) fingerprinting
to authenticate sensor nodes. Deep learning is chosen for its ability
to discover patterns in large datasets without manual feature
engineering. We model our scheme on IEEE 802.11ah, Wi-Fi
HaLow of long-range communication and low-power consumption
for machine-to-machine (M2M) applications. Simulations and
experiments using universal software radio peripheral (USRP)
demonstrate the effectiveness of the proposed scheme. By
integrating security into Cyber-Physical System/the Internet-of-
Things (CPS/IoT) design of WSN for Bridge SHM, our work
contributes to critical infrastructure protection.

Keywords—wireless sensor network (WSN), transceiver design,
bridge structural health monitoring (SHM), deep learning for
physical layer security, fingerprinting, machine learning for resource
management

I. INTRODUCTION

Ensuring the security of Wireless Sensor Network (WSN)
used for Bridge Structural Health Monitoring (SHM) has
emerged due to economic and safety consequences associated
with protecting the nation's critical infrastructure [1]. Bridge
SHM, a process that determines and tracks the structural integrity
of bridges, observes the physical world where civil, mechanical,
and electrical engineers identify and characterize potential
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damage, corrosion, and other structural responses to forcing
events. WSN, connecting autonomous data acquisition nodes
which each encompasses sensing elements, multiprocessor with
memory, and wireless communication components, creates a
cyber space in the computer science and engineering realm.
Sensors/transducers link the physical world and the cyber space
by converting variations in a physical quantity to data streams in
an electrical signal. In the context of Bridge SHM, sensors
include strain gauges, load cells, accelerometers, and
inclinometers. Therefore, WSN-based Bridge SHM is a type of
cyber-physical system (CPS) [2].

Over the past two decades, significant progress has been made
in the development of WSN for Bridge SHM. Wisden, an early
work in 2004, demonstrated a transition from wired sensing to
wireless by designing a WSN prototype software system that
reliably delivered time-synchronized structural-response data
from multiple locations to a central server [3]. The deployment of
a WSN-based SHM system on the Golden Gate Bridge (GGB) in
2007 marked a significant milestone [4]. Further advancements
focused on machine learning techniques for bridge rating and in-
network processing to optimize energy consumption and extend
the system's lifetime [5].

Despite these achievements, security concerns within WSN
for Bridge SHM have been a longstanding issue. WSN presents a
double-edged sword, offering cost-effective solutions for SHM
while exposing vulnerabilities to potential cyber-attacks. The
massive dense deployment of sensor nodes poses challenges in
device authentication, and the resource constraints of sensor
nodes render conventional security methods ineffective [6].
Although some remedies leverage WSN features such as random,
grid, or cluster configurations [7], the specific requirements of
Bridge SHM, which necessitate node placement at critical
locations for accurate damage detection, demand innovative
security mechanisms. Presently, research in WSN for SHM
predominantly focuses on performance metrics such as sensing
coverage, communication range, energy consumption, reliability,
and lifetime, neglecting the crucial aspect of security. Drawing
lessons from the early days of the Internet, it is imperative to
incorporate security into the design of WSN for Bridge SHM in
particular and CPS in general, rather than relying on post-
deployment patching.

This paper addresses the aforementioned security challenges
by proposing an innovative authentication scheme that employs



deep learning at the physical layer focusing on generating
datasets for such a scheme. To save communication overhead, our
scheme involves no challenge-response protocol during
authentication process. Furthermore, we leverage radio frequency
(RF) fingerprinting, instead of computationally intensive
cryptography such as digital signature to verify the source of a
message [8]. We choose deep learning in authenticating sensor
nodes to a data logger, for the need of agility in the unpredictable
arms race of WSN security. Deep learning can discover patterns
in large datasets without the need of manual feature engineering
[7]. WSN for Bridge SHM readily collects or arguments massive
datasets. We demonstrate our approach’s security effectiveness
on IEEE 802.11ah (aka Wi-Fi HalLow), a wireless networking
standard for machine-to-machine (M2M) and Internet-of-Things
(IoT) applications [9], the core of CPS. Results from simulations
in MATLAB and experiments with Software Defined Radio
(SDR) demonstrate the effectiveness of our approach. The main
contributions of our work are as follows:

e Devise an innovative physical-layer authentication
scheme, leveraged by deep learning, suitable to ensure
source integrity in WSN for Bridge SHM.

e Address the limitations of existing security mechanisms
in critical infrastructure protection to ensure the safety and
performance of CPS, particularly of Bridge SHM.

e Demonstrate feature extraction of RF fingerprinting for
building deep learning datasets used for physical layer
authentication.

e Add security in CPS designs, applicable to protect other
critical infrastructures with similar characteristics such as
tunnels in transportation, powerlines in energy, and
borders in homeland.

II.  'WSN SECURITY REQUIREMENTS AND ATTACK MODEL

A. System Architecture

We adopt CPS design principles in developing the system
architecture of WSN for Bridge SHM. The trend of deploying
WSN for SHM towards CPS design is anticipated to alleviate

Cyber: Governing Equation [10]
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WSN resource constraints and effectively meet the specific
requirements of SHM applications, by multidisciplinary
collaborations among engineering and computing. However,
comprehensive CPS design remains an open issue [2]. Integrating
security in CPS design is challenging.

Fig. I illustrates our CPS architecture of WSN for Bridge
SHM. A physical world contains a bridge with its substructures
of physical elements. Civil, mechanical, and electrical engineers
examine the physical aspects of the bridge such as its response to
environmental forces for crack event detection. A cyber space
models the bridge dynamics, such as the governing equation for
a beam’s vertical dynamic displacement u(x,1), i.e. vibration, of a
single-degree-of-freedom beam on a truss bridge with span L,
mass m, shape function y/.), flexural rigidity E7, and time-variant
load P(.) [10].

Sensors in WSN, such as the load cells made by PASCO,
measure tension and compression forces in a bridge. Sensors
provide the perspective of a physical world to a cyber space for
detection, replacing costly and risky manual inspection. The
amount of raw data collected is small, in hundreds to a few
thousand bytes. For Bridge SHM, a part of a bridge, called
substructure, can be monitored independently without the need to
examine the whole structure. Thus, a group of sensor nodes (each
with  sensing, processing/storage, and communication
components), called subnetwork, is placed on a substructure.
Sensor nodes are battery-operated to save cabling hassles as in
wired sensor network and to save investment cost as in energy-
harvesting devices. Most wireless sensor platforms are supplied
with limited power. For example, Crossbow MICAz has two AA
batteries, lasting several weeks while Intel Imote2 has two AAA
batteries, up to a few months. Resources are also limited in sensor
nodes. MICAz has ATmegal28L (8-bit, I6MHz) CPU, 128KB
ROM for code and 4KB RAM for data [2].

Adopting CPS design principles, engineering and computing
experts co-design the SHM system to optimize both WSN
performance (network lifetime) and application performance
(damage detection) [11]. Each aspect involves different but
intertwined issues: cyber builds a computation model from data
collected and information exchanged by computer
scientists/engineers while physical dynamics of a bridge are
studied by civil, mechanical, and electrical engineers. More
particularly in Bridge SHM, our previous work demonstrated the
achievement by engineering and computing collaboration in time
domain responses for Bridge SHM, which otherwise had resulted
in suboptimal solutions if cyber and physical aspects are
processed separately [12].
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a) B. WSN Security Requirements for Bridge SHM

Security services aim at three general goals: Confidentiality,
Integrity, and Availability, abbreviated as C.I.4. Confidentiality
prevents data from unauthorized access. Integrity is divided into
two categories: one is Data Integrity that protects data in
transmission or at storage from unauthorized changes or
fabrication; the other is Device Integrity, also known as Source
Integrity, to assure that a device or system is not compromised or
tampered. Availability ensures that legitimate users can access
resources (system, data, and service) without disruption.

CPS/IoT exposes layers of attack surfaces [7]:

e Perception Layer: where sensors collect data including the
medium that they use to communicate. Physical tampering
and resource depletion

o Network Layer: where transceivers (Tx/Rx) deliver data to
access points (AP) for datalogger/server

o Application Layer: where a server processes data based on
some computation model to make intelligent decisions[7].

Device Integrity defends the frontline of WSN for Bridge
SHM. As shown in Fig. 2, device integrity is classified into three
levels by the answering the questions of:

2) What You Know? For example, password.
3) What You Have? For example, token or smart card.
4) What You Are? For example, fingerprint.

These schemes are enhanced by cryptography-based
certificates and challenge-response protocols.

C. Attack Model

In the context of WSN for Bridge SHM, one-way
authentication by sensor nodes to the datalogger is sufficient. 4
illustrates the attack scenario where “Alice” is one of the sensor
nodes in the network collecting data. The datalogger “Bob”
will authenticate Alice as a device in the network before
retrieving its data through the wireless channel. The
impersonator “Darth” aims to gain the trust of Bob by
authenticating itself under the guise of Alice. If successful,
Darth is able to transmit fabricated data freely to Bob and Bob
will present it as collected data from a trusted node.

III. VULENRABILITY ANALYSIS OF IEEE 802.11AH

A. IEEE 802.11ah for Bridge SHM

With low-power consumption and long-range coverage,
IEEE 802.11ah is an ideal wireless communication standard
suitable to WSN for Bridge SHM [13]. Sub 1 GHz operating
frequency reduces attenuation when propagating through
surfaces. This addresses the concerns involving the
deployment of our WSN for Bridge SHM where sensor
nodes are required to communicate through dense material.
IEEE 802.11ah Medium Access Control (MAC) allows for
shared communication to more Access Points (APs) in the
sensor network. 802.11ah stations are not required to be
always on by eliminating Traffic Information Message
(TIM) in the data frame. Non-TIM stations reduce power
consumption in M2M and IoT applications [9].

The data frame format remains the same across the family of
IEEE 802.11 standards, shown in Fig. 3.

o Frame Body field stores the payload received from a
higher layer. It can vary in length but has a maximum size
0f 2312 octets.

e Frame Check Sequence (FCS) field is responsible for
error detection in the received frame.

e Frame Control Field includes bits used to indicate the
version of the IEEE 802.11 MAC and the Protected
Frame bit.



e Duration field allows a station (STA) to determine the
remaining duration of the frame exchange between the
station and the AP.

e Sequence Control field assists the STA in identifying
duplicate frames and helps in reassembling fragmented
frames.

e The MAC header of a data frame includes four separate
address fields, although not all of them contain relevant
addresses in every case. These address fields identify the
original source address (SA), final destination address
(DA), receiver address (RA), and either the transmitter
address (TA) or the BSS identifier (BSSID), depending
on the function of the frame.

B. Threats to IEEE 802.11ah

IEEE 802.11ah shares the same frame format and protocols as
other standards in IEEE 802.11 making it susceptible to some of
the same attack threats. Common attacks to device integrity in
CPS/IoT and M2M applications include 1) spoofing and 2) replay
attacks[14].

1) Spoofing: Attackers attempt to replicate a trusted device
in the network to steal or manipulate data after gaining accesss.
2) Replay Attack: Data is intercepted during transmission by
an attacker and used to gain access by resending the captured
data to trick the recipient to accept the transmission as legitimate.

Attacks are carried out by exploiting vulnerabilities in the
component’s software/hardware in the network. The National
Vulnerabilities Database (NVD) labels and makes known these
Critical Vulnerabilities and Exposures (CVEs) identified by
trusted authorities. Mapping CVEs using language models
identify present threats in a network that leave openings for attack
[6]. Link predictions and text-to-text models can associate known
vulnerabilities to infer potential risks in software based on test
generation. Good security management for WSNs must include
awareness of known vulnerabilities and exposures paired with a
plan to identify their presence and eliminated attackers ability to
exploit them.

IV. DEFEND WITH DEEP LEARNING

A. Deep Learning in CPS/IoT Security

Deep Learning (DL) offers several benefits for remote
WLANSs. Deep learning can take large data sets and extract
complex patterns through neural networks. The ability to
automate the deep learning process makes it a better choice in our
system compared to Machine Learning (ML) which requires
more processing power and feature engineering [15]. This
research focuses on dataset generation for two types of deep
neural networks 1) Convolutional Neural Network, 2)
Reinforcement Learning. The training is to be performed offline
while the testing is online.

1) Convolutional Neural Network (CNN): Reduces layer
connections in neural network decresing computation
requirements while also maintaining high performance. Fig. 5 is
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a successful example of Rx uses CNN model to classify
legitimate Tx’s and abnormal ones [8].

2) Reinforcement Learning (RL): Produces output solution
through trial and error with success in spoofing attack protection.

B. Deep Learning to Device Integrate in WSN for SHM

Deep learning, data-driven by RF fingerprinting, can be a
powerful security tool for device authentication of sensor nodes
in the WSN for Bridge SHM [8]. RF fingerprints can be used to
characterize wireless transmissions in a WSN where a deep
learning network can identify malicious channels.

Physical characteristics of the sensor node, such as Rx and Tx
integrated circuit, contain process imperfections from
manufacturing. These imperfections contribute to the RF
fingerprint of devices giving them a Physical Unclonable
Function (PUF) which cannot be falsely mapped. By building a
dataset of extracted Rx/Tx specific features, we can label known
devices and authenticate them through the DL network.

Verifier: Bob Above Threshold? v glalmﬁl;]AJICC
Datalogger Sensor Node
"I am Alice"

RF Fingerprint: AB(

Above Threshold? P \

Impersonator: Darth
Fig 6. Attack Model with DL Solution Implemented

The dataset is compiled through feature extraction for
legitimate sensor node’s unique RF signatures. This is established
through features such as signal strength, phase noise, frequency
offset, and modulation characteristics depending on the node and
WSN. A supervised CNN model is trained and labeled with
legitimate and malicious transmitters. This scheme defends the
WSN from the attack model in Fig 3 adding a layer of
authentication for the datalogger that an attacker cannot
impersonate.



Fig. Depicts the attack model with DL implemented at the
physical layer of the datalogger. Darth attempts to pose as
Alice but is unsuccessful after the DL model identifies it does
not meet the threshold set by the RF fingerprint.

V. EVAULATION

The testing setup depicted in Fig. 7 shows the WLAN using
four Raspberry Pi ™ Model 4 units with the AHP17292S HAT
form factor developed by ALFA Network Inc. This attachment
allows 802.11ah communication between the Raspberry Pi
boards where one is setup as an AP and the other three are
STAs (A, B & C). Signals are captured on the ADALM-
PLUTO software defined radio module and can be processed
using MATLAB signal processing software as shown in Fig.
8. Each device in the WSN

STA (A)

«© AP

802.11ah

STA (B)

STA (C)

Fig. 7 IEEE 802.11ah with-Deep Learning Testing Setup

that employs our scheme must be captured and input into the
dataset so the AP can recognize it. The captured signal undergoes
feature extraction using techniques such as the spectral analysis
in Fig. 9 performed on STA A. Analyzing the features of the
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Fig. 9 Spectral Analysis of Captured Signal from STA A

signal allow us to build a deep learning dataset that can
differentiate between signals originating from trusted devices or
masquerading nodes. By training the AP before the WSN is
deployed we can authenticate nodes at the PHY layer and create
a framework deep learning dataset generation that can be adapted
to many WSN applications beyond Bridge SHM. The
effectiveness of this scheme can be measured using network
security measurement indicators such incident detection ability
[19].

VL

WSN has become crucial for Bridge SHM to ensure safe
operation of the nation’s critical infrastructure. However, WSN
security remains a significant concern due to potential economic
and safety consequences. Although progress has been made to
address the security issues in WSN for Bridge SHM, the peculiar

placement of sensor nodes and their resource constraints,
especially in the need to conserve energy consumption, pose
challenges in device authentication.

CONCLUSION AND FUTURE WORK

To overcome these limitations, we propose an innovative
authentication scheme of sensor nodes that utilizes deep learning
at the physical layer and provides a framework for generating
datasets for this scheme. Our approach saves communication
overhead by skipping challenge-response protocol. Utilizing RF
fingerprinting, instead of cryptography-based authentication
methods, reduces computation cost. Deep learning is chosen for
its ability to discover patterns in large datasets without manual
feature engineering. The effectiveness of our scheme is
demonstrated on IEEE 802.11ah through simulations in
MATLAB and experiments with Software Defined Radio (SDR)
By incorporating security into the design of WSN for Bridge
SHM, our work contributes to the protection of critical
transportation infrastructure.

Future work includes systematic testing of our proposed
scheme for device authentication. Using generative adversarial
network (GAN), we examine the limit of our scheme to
discriminate legitimate devices from spoofed instances that



another deep learning model generates. We will extend our
physical-layer authentication scheme to two-way authentication
between sensor nodes and data loggers as well as prevention of
sybil attacks among many threats to WSN for Bridge SHM.
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