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Abstract

With the rapid adoption of Federated Learn-
ing (FL) as the training and tuning proto-
col for applications utilizing Large Language
Models (LLMs), recent research highlights the
need for significant modifications to FL to ac-
commodate the large-scale of LLMs. While
substantial adjustments to the protocol have
been introduced as a response, comprehensive
privacy analysis for the adapted FL protocol
is currently lacking.

To address this gap, our work delves into an
extensive examination of the privacy analy-
sis of FL. when used for training LLMs, both
from theoretical and practical perspectives. In
particular, we design two active membership
inference attacks with guaranteed theoretical
success rates to assess the privacy leakages of
various adapted FL configurations. Our the-
oretical findings are translated into practical
attacks, revealing substantial privacy vulner-
abilities in popular LLMs, including BERT,
RoBERTa, DistilBERT, and OpenAl’s GPTs,
across multiple real-world language datasets.
Additionally, we conduct thorough experi-
ments to evaluate the privacy leakage of these
models when data is protected by state-of-the-
art differential privacy (DP) mechanisms.

1 INTRODUCTION

Recent years have observed the exceptional capabilities

of Large Language Models (LLMs) (Taylor et al] P022)
in many complex real-world applications, especially

those involving Al-generated conversations of Chat-

GPT (OpenAl) 2023)) and Google Bard (Google] [2023)).

This has spurred significant research efforts in training
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and utilizing LLMs in various important domains across

multiple industries (]Huang et al.| [2023] 2023}
[Singhal et al] 023} [Liu et al] [2023]). Nevertheless, the

success of LLMs comes at the cost of massive amounts
of training data as well as computational resources. In
response, many recent research (Houlsby et al} [2019
@D independently propose the usage of Federated
Tearning (FL) (McMahan ot al] P06} [Rairowz of al]
to resolve those challenges as it allows the uti-
lization of private data and distributed resources.

Due to the massive size of LLMs, directly training or
fine-tuning them for down-stream tasks on FL would
cause substantial communication overhead and place
heavy burdens on the storage and computational re-
sources of participating devices (Hu et al} [2022} [Zhang

|et al.|, |2023t |Chen et a1.|, |2023|). A natural solution for

the issues, known as parameter-efficient training and
tuning (PET) (Zhang et al} [2023)), is to update only
a small number of the parameters while freezing the
rest (Fig. [[). The PET methods either inject some
additional trainable parameters (Li and Liang} [2021]),
introduce some extra layers m 9
[et al] 2022)), or update only some portions of the origi-
nal LLMs (Ben Zaken ct al] 2022). These studies have
shown the modified FL can achieve comparable perfor-
mance to traditional FL; nevertheless, a critical gap
remains in terms of privacy analysis for these novel pro-
tocols. While the overall reduction in communication
messages can potentially lower the attack surface, it
remains uncertain whether the modified FL. methods of-
fer enhanced security as the introduction of extra layers
and parameters may introduce new vulnerabilities.

Motivated by that lack of study, this paper investi-
gates the privacy leakage in the adoption of FL to
LLMs from both theoretical and practical perspectives.
Our study focuses on the active setting, wherein the
FL server operates dishonestly by manipulating the
trainable weights to compromise privacy. Our findings
reveal that clients’ data are fundamentally vulnerable
to active membership inference (AMI) carried out by
a dishonest server. The theme of our study is the con-
struction of low-complexity adversaries with provable
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Figure 1: Training/tuning LLMs in FL: The clients
typically exchange a light amount of trainable parame-
ters 0; while keeping most parameters, i.e., 8, frozen.

high attack success rates. As we will demonstrate in our
theoretical results, establishing complexity bounds for
these adversaries is imperative as it forms the founda-
tion for rigorous security/privacy statements about the
protocol. The challenges are not only in determining
the sweet spots between adversaries’ complexity and
the attacking success rates but also in showing how the
theoretical vulnerabilities manifest as practical risks
in the context of FLs for LLMs. For that purpose,
our attacks are designed to exploit the trainable fully
connected (FC) layers and self-attention layers in FL
updates as both are widely adopted to utilize LLMs.
Our main contributions are summarized as follows:

e We prove that the server can exploit the FC layers
to perfectly infer membership information of local
training data (Theorem in FL with LLMs.

e When the trainable weights belong to a self-
attention layer, we introduce a sefl-attention-based
AMI attack with a significantly high guarantee suc-
cess rate and demonstrate a similar privacy risk
as in the case of FC layers (Theorem [2).

e Practical privacy risks of utilizing LLMs in FL to
AMI are demonstrated through the implementa-
tions of the formulated adversaries. Our experi-
ments are conducted on five state-of-the-art LLMs,
including BERT-based (Devlin et al} [2019
[t al] POI9} [Sanh et al] [2019) and GPT mod-
els (Radford et al] 2019} [Brown et al} [2020)) on
four different datasets. We heuristically assess the
privacy risks for both unprotected and Differential
Privacy protected data.

Organization. Sect. [J discusses the background,
the related works, and the notations used in this
manuscript. Sect. [3] describes the AMI threat mod-
els. Sects. ] provide the descriptions of our attacks and
their theoretical analysis. Sect. o] reports our experi-
mental results and Sect. [f] concludes this paper.

2 BACKGROUND, RELATED
WORKS, AND NOTATIONS

This section provides the background, related works,
and notations that we use in this work.

Federated Learning (FL). FL (Kairouz et al}[2019)
is a collaborative learning framework that allows model
updates across decentralized devices while keeping the
data localized. The training is typically orchestrated by
a central server. At the beginning, the server initializes
the model’s parameters. For each training iteration,
a subset of clients is selected to participate. Each of
them computes the gradients of trainable parameters
on its local data. The gradients are then aggregated
among the selected clients. The model’s parameters
are then updated based on the aggregated gradients.
The training continues until convergence.

Parameter-Efficient Training and Tuning. There
has been a notable increase in research on PET to
avoid full model updates in FL. Generally, these meth-
ods focus on updating lightweight trainable parame-
ters while keeping the rest frozen. For instance, the
adapter approach (Houlsby et al)] 019} [Pfeiffer et al
[2020) inserts two adapter layers to each Transformer
block (Vaswani et al] 2017). The computation can
be described formally as h < Wy,o(W4h), where o is
the nonlinear activation function. Reparameterization-
based methods such as LoRA aim to
optimize the low-rank decomposition for weight update
matrices. On the other hand, BitFit (Ben Zaken et al]
empirically demonstrates that only updating the
bias terms can still lead to competitive performance.
Another common approach is prompt-tuning
which attaches trainable vectors, namely

prompt, to the model’s input.

Attention mechanism in FL. The Attention mech-
anism is a machine learning technique that allows a
model to focus on specific parts of the input. It has been
widely used in machine translation, video processing,
speech recognition, and many other applications. Some
popular models using attention mechanisms are Trans-
former (Vaswani et al] 017), BERT (Devlin et al]
[2019), RoBERTa ([Liu et al} [2019), and GPTs (Rad]
ford et al] R0T9} [Brown et al] [2020). With its pop-
ularity, it is increasingly common to find attention
mechanisms in models trained in FL settings, e.g. mod-
els of Google (Shah et al] R020} [Yang et all]

[Beautays et al] [2019)), Amazon (Roosta et al.]
and many others (Stremmel and Singhf [2021} |Che

et al] 020} [Bui et alf [2019).

FL with Differential Privacy. Differential Privacy
(DP) (Dwork et al.| [2006f [Erlingsson et al} [2014)) has
been recognized as a solution to mitigate the privacy

),
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risks of gradient sharing in FL. The principle of DP is
based on randomized response , initially
introduced to maintain the confidentiality of survey
respondents. The definition of e-DP is:

Definition 1. -DP. A randomized algorithm M ful-
fills e-DP, if for all subset S C Range(M) and for any
adjacent datasets D and D', we have: PriM(D) €
S| < efPriM(D’) € S|, where € is a privacy budget.

The privacy budget ¢ controls the privacy level: a
smaller € enforces a stronger privacy guarantee; how-
ever, it reduces data utility as the distortion is larger.

Related works. The first AMI attack by a dishonest

server in FL was recently introduced by
(2019). The attack relies on multiple model updates

for inference. Later, the work (Nguyen et al] [2023)
introduces a stronger and stealthier attack requiring
only one FL iteration; however, a separate neural net-
work trained on the dataset is needed. Both attacks
have non-trivial time complexity and provide no theo-
retical guarantees. Furthermore, neither of these works
is tailored for FL with LLMs, and their efficacy in this
context has not been validated.

During our research, we noticed related privacy con-
cerns regarding FL with LLMs. The work of
[et al] (2023) and [Yu et al] (2023)) explore differentially
private FL. with LLMs, primarily focusing on assess-
ing the model’s performance while assuming privacy
budgets. In contrast, our goal is to analyze new at-
tack vectors in modified FL for LLMs through novel
adversarial inference schemes.

Another line of related work focuses on inference at-
tacks, where the attackers aim to deduce the private
features of clients in FL (Hitaj et al} P017} [Zhu et al]
[POT9} [Wu et al] ROT9} [Jin et al] [2021). While inference
attacks can be considered as more potent than member-
ship inferences since they can recover the entire input,
their effectiveness heavily relies on the training model
and method-specific optimizations. These dependen-
cies hinder the establishment of theoretical guarantees
of inference attacks. In contrast, membership infer-
ences enable us to circumvent these dependencies, a
crucial aspect for establishing Theorems[f]and 2} which
provide formal statements regarding the vulnerability
of Federated LLMs.

Notations. We consider the private data D in
LLMs consists of 2-dimensional arrays, and write
D = {X;}*, for X; € X where X C Rx*xlx_ We
use D to denote the data distribution. Each column
of a 2-dimensional array X, denoted by z; € RIx | is
referred as a token. We also denote M as the largest Lo
norm of the tokens, i.e., M = maxxep maxyex ||2;]|.

Regarding the self-attention mechanisms, for an input

X € RI¥x*Ix the layer’s output Z" € RémiaxIx of the
attention head h is given by:

Z" = Wi Xsoftmax (Y Ve XTWI}QTWC%X) (1)

where Wg € Ravnxdx Jyh ¢ RdawnXdx gand Wit €
Riaxdx are the trainable weights of the head h.
The output of the layer after ReLLU activation is

= Re _ + bo where is the
Y = ReLU (0, WhZ" + bo17 ) where H is th

number of heads, W4 € R *duia are the trainable
weights and bo € R? are the trainable biases for the
aggregation of the layer’s final output.

3 THE THREAT MODEL

As the FL server defines the model’s architecture and
distributes the parameters, it can deviate from the
protocol to strengthen the privacy attacks (Boenisch]
ot aT} P21t [Neuyon of al], P02 [FowT ot aT] PO21).
We formalize our study on the security of FL with
LLMs via a security game denoted by AMI Security
Game in Subsect. In the game, a dishonest server
maliciously specifies the model’s architecture and mod-
ifies its parameters to infer information about the local
training data of a client. We then discuss how the AMI
security game can capture the security threat of FL
with LLMs in Subsect. B2

3.1 AMI Security Games

We formalize the AMI threat models as in the standard
settings of existing works (Shokri et al] 017} [Carlini
[t al] 022} [Yeom et al] P01S)) into the security games
Exp™(A) with description in Fig.[2] The adversarial
server A in the security games consists of 3 components
AT, Aattack and Aguess. First, a randomly gener-
ated bit b is used to determine whether the client’s
data D contains a target sample T. If the protocol
allows the server to decide the training architecture,
the first step of the server Ayt decides a model ®
for the training. If that is not the case, Ay simply
collects information on the model from the protocol.
Then, Aattack crafts the model’s parameters 6 based
on the target T and the trained architecture. Upon
receiving ® and 6, the client computes the gradients
0 = VyLy(D) and sends them to the server, where £
denotes a loss function for training. With 6, Acugss
guesses the value of b. Correctly inferring b is equiv-
alent to determining whether T is in the local data
D. The advantage of the adversarial server A in the
security game is given by:

AdvAM(A) = 2Pr[Exp™™M(4) =1] -1
—Prft = 1|b=1]+Prft = 0p=0] — 1
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Exp*MI(A):
# Simulating client’s dataset
D+ 0
while |D| < n do
XEx # Sampling from data distribution
if X ¢ D then
| D+ DU{X}
# The random bit game
b<{0,1}, X + NONE

if b =1 then
L TED # Uniformly sampling
else

while T == NONE or T € D do
L T & X # Sampling from data distribution

# The attack

@ < AT

0 <+ Anttack(T)

6« VoLa(D)

b" < Aguess(T', 9)
Ret [t/ — 1)

Figure 2: The AMI Threat Model as a Security Game.

where Pr[b’ = 1|b = 1] and Pr[b/ = 0]b = 0] are the True
Positive Rate and the True Negative Rate of the adver-
sary, respectively. The existence of an adversary with a
high advantage implies a high privacy risk/vulnerability
of the protocol described in the security game.

3.2 AMI Security Games for Federated LLMs

To ensure EprMI(.A) truly captures practical threats in
Federated LLM, additional constraints are needed. For
example, to describe PET, Aattack should exclusively
target trainable weights 6, at specific model locations.
We now describe those conditions and our proposed
attacks will align accordingly.

0, 0.
(a) LLM as embedding
0.
0 0
p p
0, Wl 6. || O 0,

(b) Trainable weights in serial ~ (c) Trainable weights in parallel

Figure 3: Different scenarios in training/fine-tuning
LLMs in FL. The red squares show the privacy leakage
surfaces in the threat model. The white and grey boxes
indicate the trainable and frozen weights, respectively.

Fig[d|illustrates typical FL update scenarios with LLMs
and their associated privacy leaking surfaces. The most
common configuration (a) is when the LLM or some
of its layers are used as embedding modules. In the
second and third scenarios, additional modules with
trainable weights are introduced sequentially (b) or in
parallel (c). They capture the PET strategies involving
adapters (Houlsby et al] 2019} [Pfeiffer et al) 020]) and

reparameterization tricks (Hu et al} [2022)).

To make EprMI(.A) describe the threats in Federated
LLMs, the type of layers and weights in the trainable
modules need to be specified. The assumption is that
their inputs are hidden representations of the input
data at some fixed locations of the language models.
The most common layers are the fully connected (FC)
layers and the attention mechanism
. Consequently, our inference attacks are designed
for those layers.

It is noteworthy to point out that, the actual pattern
that the adversaries operate on is the embedded version
of T, i.e., ®g,(T). As the pre-trained parameters 6,
are public, and under a mild assumption that different
target T result in different embedding ®¢,(T'), the
problems of inferring T' and ®y (T') are equivalent

Therefore, in the subsequent discussions, we treat the
embeddings as the user’s data for ease of notation.

4 ACTIVE MEMBERSHIP
INFERENCE ATTACKS

This section presents our membership attacks and their
theoretical guarantees in inferring data in FL on LLMs.
The first attack, called FC-based adversary Agc, is
designed for scenarios where the first two trainable
layers (See Fig.[3)) are FC layers. The second attack,
Attention-based adversary Aattn, is tailored for cases
when the first trainable layer is self-attention. The
primary goal of both attacks is to create a neuron in
those layers such that it is activated if and only if the
target pattern is fed to the model. Consequently, the
gradients of the weights computing that neuron are
non-zero if and only if the target pattern is in the
private training batch.

4.1 FC-based adversary

The FC-based adversary Arc operates as follows. First,
if the protocol permits, the initialization Arc_niT Spec-
ifies the model @ in the FL training to use FC as its first
two layers. For a target pattern T" with a dimension
of dr, the weights W7 and biases by of the first layer
are set to dimensions 2dr x dr and 2dr, respectively.

'For LLMs, the assumption means different input texts
result in different embedding, which is quite reasonable.



Minh N. Vu, Truc Nguyen, Tre’ R. Jeter, My T. Thai

Attention 1
(Filtered)

Attention 2
(Non-filtered)

Figure 4: The Aawn adversary exploiting self-attention mechanism for membership inference in FL: I_f the target
pattern v = x; is in the data, the output z} of the filtered head approximates the token’s average X instead of
approximating x;. This creates non-zero gradients for weights computing the difference between two heads.

If the protocol requires a larger dimension, extra pa-
rameters can be ignored. Conversely, if only smaller
dimensions are allowed, the attacker uses a substring
of T as the detected pattern and proceeds from there.
Since Apc uses only one output neuron at the second
FC layer, the attack only needs to set one row and one
entry of its weights and biases, denoted by Ws[1,:] and
ba[1]. Particularly, the weights and biases of the two
FC layers are set by Arc_aTTack as:

Li, -T
Wl(—|:_IdT:|, b1<_|:T:|
W?[L :] A _1¢—irTa b2[1] «T (2>
where I, is the identity matrix and 14, is the one-
vector of size dr. The parameter 7 controls the allow-
able distance between an input X and the target T,
which can be obtained from the distribution statistics.
In the guessing phase, Arc_guess returns 1 if the gra-
dient of ba[1] is non-zero and 0 otherwise. Appx.

provides a more detailed description of this attack.

Attack strategy. Upon receiving an input X, the two
FC layers compute zo := max {bo[1] — | X — T||,,0}.
If there is an X = T in the data, zg will be activated
and the gradient of the bias bs[1] is non-zero. On the
other hand, for b2[1] = 7 > 0 small enough, zy = 0 for
all X # T. Thus, the gradient of the bias by[1] is zero
when T ¢ D. Therefore, the gradient of bo[1] indicates
the presence of T in the local data.

Remark 1. The dimension of the target T. In
practice, it is uncommon to feed the embedding of the
entire input to FC layers. Instead, it is more common to
forward each token individually. This means the target
T is the embedding of a token with a dimension of
dx. We might expect that this could hinder adversarial
inference as a smaller portion of the input is exploited.
However, as LLMs create strong connections among
tokens, each token can embed the signature of the entire
sentence. While this characteristic benefits the model’s
performance, it also enables the inference of the input
from the token level. Our experiments (Sect. @ will
consider both sentence embedding and token embedding
and illustrate the above claim.

Attack advantage. The attack strategy implies that

the adversary wins the security game E><pAMI with

probability 1. We formalize that claim in Lemma

Lemma 1. The advantage of the adversary Agc in the
security game Exp™M! is 1, i.e., AdvAMI(AFc) =1.

(Proof in Appz.

Since Afpc can be constructed in O(d%), the Lemma
gives us the following theoretical result on the vulnera-
bility of unprotected data in FL against AMI:

Theorem 1. There exists an AMI adversary A ex-
ploiting 2 FC layers with time complezity O(d%) and
advantage Adv*™M(A) = 1 in the game Exp™ML.

The implication of Theorem [I] is that unprotected pri-
vate data of clients in FL is exposed to very high privacy
risk, which was also observed by [Nasr et al] [2019);
[Nguyen et al.| (2023). However, the adversaries in those
works involve multiple updates of either the FL model
or other neural networks; thus, theoretical results on
the trade-off between their success rates and complex-
ities are not yet available. Therefore, it is unknown
whether the vulnerability of Federated LLMs can be
rigorously established from those attacks.

Remark 2. Attack assumptions. The FC attack
Arc does not need any distributional information to
work on unprotected data. In fact, the attacker just
needs to specify T @ small enough such that 7 <
|1X1—Xz2||L, for any X1 # X in the model’s dictionary.
This is shown in the proof of Lemma (Appz. .
Since the dictionary or the tokenizer is public, selecting
T does not require any additional information.

4.2 Attention-based adversary

Our proposed Aagn exploits the memorization capabil-
ity of the self-attention, which was indirectly studied
by [Ramsauer et al] (2021)). That work shows the atten-
tion is equivalent to the proposed Hopfield layer, whose
main purpose is to directly integrate memorization into
the layer. We adopt that viewpoint and introduce a
specific configuration of the attention to make it memo-
rize the local training data while filtering out the target
of inference.

Since Aagn Operates at a token level, the target of infer-
ence is the token resulting from embedding the target
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T, denoted by v € R%x . The intuition of Aagn is shown
in Fig. by setting an attention head to memorize
the input batch and filter out the target token, Aagn
introduces a gap between that head’s output and the
output of a non-filtered head. The gap is then exploited
to reveal the victim’s data. The following describes the
components, strategy, and advantage of this attack.

Initialization Apwn—init: The attack uses 4 attention
heads, i.e., H to 4. The layer dimensions are d.in =
dx — 1, dpiq = dx and dy = 2dx. Any configurations
with more parameters can adopt this attack since the
extra parameters can simply be ignored.

Algorithm 1: Aagn—atTack (V)

Hyper-parameters: 3,7 € RT
1 Randomly initialize Wéj, W}}, W"}, Wo and bo
for all head h € {1,2,3,4}
Randomly initialize a matrix W € Réxxdx
Wi, 1] <= v # Set the first column of W to v
Q, R <+ QR(W) # QR-factorization W
Wé < Q2 :dx]" # Embed pattern to W}
6 W}( — ﬁWéTT # Set head 1 to memorization
7 W]% — BWC%TT # Set head 2 to memorization
8 Wé — Wé, W3 « Wi # Copy head 1 to head 3
9 Wé — Wé, W?( < W2 # Copy head 2 to head 4
10 W‘l/ — gy, W‘Q/ — Iy, W‘% — 14y,

B ® N

w

W‘% (*Idx
I, —I; 04 Og
W <_ X X X X
O 00 Ouy Iy, Iay

12 bo; = =7, Vie {1, ,dy}
13 Ret all weights and biases

Attack Apeen—atTack: This step (Algo. [I]) sets the at-
tention weights Wg, Wh, W‘G, Wo, and bias bp, where
h is the head’s index. There are two hyper-parameters,
B and v € RT. While 3 controls how much the heads
memorize the input patterns x!, v adjusts a cut-off
thresholding between v € D and v ¢ D (Fig.[4). Given
a target v, the first attention head is set such that:

Wi W, ~ Bls, and Whv =0 (3)

To enforce , dx —1 vectors orthogonal to v € R are
assigned to W via QR-factorization (line 3{f5). Then,
W is set to the transpose of BWE;, where 1 denotes
the pseudo-inverse. On the other hand, the second
head randomizes W§ and assigns W as its pseudo-
inverse. This means the second condition of does
not hold for the second head. The other parameters of
the first two heads are set so that the first dx rows of
Y compute max{0, Z' — Z2 —~417}. The third and the
fourth heads are configured to compute the negations
of the first two, i.e., they make the last dx rows of Y’

return max{0, Z2 — Z! —~1T}. For ease of analysis, we
construct W and W from identity and zero matrices.

Guessing Aawn—cuess: The attacker checks whether
any of the weights in Wy have non-zero gradients, and
returns b’ = 1 if that is the case.

Attack strategy. Aaun exploits the memorization
imposed by the first condition of . To see how it
works, we consider following the two cases:

Case 1: If v ¢ X, /s X TWETWLHX ~ X T X, which is
the correlation matrix of the tokens. The softmax’s
output then approximates I;, as the diagonal of X X
is larger than other entries. The head’s output Z' ~ X,
i.e., 2} ~ z;, as a result. Since the second head behaves
similarly in this case, we have Z2? ~ X and 27 ~ ;.

Case 2: When X contains v, the second condition of
1' makes x;'—W}(TWéxz =~ 0, and consequently causes
the softmax’s output uniform, i.e., the attention is
distributed equally among all tokens. Thus, the first
head’s output is the token’s average z} ~ X. Since the
second head does not filter v, z2 ~ z;. The difference

|z} — 22| then reveals the presence of v in X.

Attack advantage. The advantage of Aawn, depends
on an intrinsic measure of the data, called the Separa-

tion of Patterns (Ramsauer et al} 021):

Definition 2. (Separation of Patterns). For a token
z; in X = {xj}éil, its separation A; from X is A; ==
minj,j# (l‘jl‘z — l‘jl‘]) = xiTxi — max; xjxj We say

X is A-separated if A; > A for alli e {1,--- |ix}. A
data D is A-separated if all X in D are A-separated.

Intuitively, A-separated captures the intrinsic difficulty
of adversarial inference on the data D: the less separat-
ing the data, i.e., a smaller A, the harder to distinguish
its tokens. In the context of LLMs, A is determined
by the choice of the embedding modules. We are now
ready for Lemma [2] about the advantage of Aain:

Lemma 2. For a A-separated data D with i.i.d tokens
of EprMI, and for any B > 0 large enough such that:

A > 2/(Blx) +log(2(lx — VIxBMD/B  (4)

the advantage of Aawn satisfies:
1
AMI D
Adv (AAttn) > Pproj <BZX]W> +

1 2nlx B

P2 <W> - PR, (3A) -1 (5)
where A = 2M (Ix — 1)exp (2/Ix — BA). Pgoj(é) is
the probability that the projected component between
two independent tokens drawn from D is smaller than

§ and PP (5) is the probability that a random token

box
drawn from D is in the cube of size 20 centering at the

mean of the tokens in D. (Proof in Appz.



Minh N. Vu, Truc Nguyen, Tre’ R. Jeter, My T. Thai

Table 1: General information of our experiments.

Experiment No. runs Adversary Dataset Language model
200 Anttn One-hot / Spherical / Gaussian No
20 x 500 AAattn IMDB BERT

4x3x1x40 Arc / Aaen / AMI (Nguyen et al.|[2023
4x3x4x10  Arc / Apwn / AMI (Nguyen et al.
4x1x4x10 Arc [/ Anttn

The key step of proving Lemma[2]is to rigorously show
the configured attention layer operates as described
in the attack strategy. We first bound the outputs 2
of the layer when z; # v with Lemma [3] (Appx. B.1),
which is a specific case of the Ezponentially Small

Retrieval Error Theorem |Ramsauer et a1.|, |2021|). The

bound claims zf ~ x; with a probability lower-bounded

by szoj (1/six M ). This controls the false-positive error.
When z; = v, 2z} ~ X as described in the attack
strategy. The false negatives happen when there exist
other tokens filtered out unintentionally, i.e., they are
near the center of the embedding. This probability is
bounded by PP (3A).

box

We now state some remarks about the advantage (b)) on
different embeddings and their asymptotic behaviors.

Remark 3. A vs. the advantage (@) A larger A
allows a smaller 8 satisfied ({)). It makes PR : (1/pix M),
and consequently, the lower bound larger.

Remark 4. Most vulnerable embedding. A data
resulting in a lower bound near 1 is one-hot data.
Since it has no token alignment, A achieves its mai-
mum and Ppoj (Y/gix M) is 1. Furthermore, since there
is no token at the center of one-hot, a large B can be
selected so that PP _(3A) =0 (See Fig. Efor more).

Oox

-@- sphere-5
y n | % sphere-10
x P i --m-- sphere-15
4 - gauss-5
gauss-10

o
©

o
=Y

o
B

gauss-15
o -A- one-hot-5
p - one-hot-10
=¥-- one-hot-15
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Figure 5: Simulations of the lower bound for spher-
ical, Gaussian and one-hot data with Ix € {5,10,15}
(left). B is chosen s.t. the ratios of A over the RHS of
@) > 1, i.e., condition @ holds (right).

Remark 5. Asymptotic behavior of the advan-
tage. For high dimensional data, i.e., large dx,
Adv*™MI(A) = 1. The reason is, when dx — oo, two
random points are surely almost orthogonal (szioj —1),
and a random point is almost always at the boundary
(PP —0) (Blum et al}|202()). Our Monte-Carlo sim-
ulations for the lower bound (8) for spherical, Gaussian,

and one-hot data in Fig. [ support that claim. It is
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Figure 6: Success rates of Aain on real-world IMDB
dataset with different 5.

clear that one-hot data results in an advantage of 1.
Appz. [B] provides more explanations for other data.

Remark 6. Impact of 5. A larger 8 in Aagn in-

creases the memorization of the attention (Ramsaue

2021). We demonstrate its impact via an ex-
periment of BERT (Devlin et all [2019) and one-hot

embeddings on the IMDB dataset. Fig.[§ shows that
large B can help Apwn make correct inferences even
when the batch size is very large (500 sentences). One-
hot embedding still achieves perfect inference regardless
of the batch size as stated in Remark [}

As Aatn can be constructed in O(d%), the Lemma
gives us the theoretical vulnerability of unprotected
data in FL with attention layer. We conclude this
section with Theorem [l about that claim.

Theorem 2. There exists an adversary A exploiting a
self-attention layer whose advantage satisfying (@ with
time complexity O(d%) in the game Exp™™M!.

5 EXPERIMENTS

This section provides experiments demonstrating the
practical risks of leaking private data in FL with
LLMs El In particular, we implement the FC-based
Afrc and self-attention-based Aawn adversaries and eval-
uate them in real-world setting. For the FC-based, we
implement 2 versions, called Arc_ru and Afrc_token,
which operate at a full sentence and at the token level
(See Remark [1)). For the benchmark, we extend the

previous work (Nguyen et al} 2023) into two inference

20ur code is publicly available atfhttps://github.com/|
|vunhatmin.h/FL_Attacks . git|
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Table 2: Average Accuracies, F1, and AUCs of AMI attacks at different layers of LLMs on 4 real-world datasets.
The methods are listed in decreasing order of trainable weights where d,, = 768,1, € {24, 32} and d;, = 1000 are
the feature dimension, the number of tokens, and the method-specific parameter of the benchmark (Nguyen et al.

2023)), respectively.

Mothod No. params BERT RoBERTa DistilIBERT GPT1 GPT2
ACC FI AUC ACC F1I__AUC ACC FI AUC ACC FI_AUC ACC FI AUC
Arc_run (Ours) 212 X d2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMIFC Full I, xdyxd, 094 095 094 078 074 078 087 08 08 1.00 1.00 1.00 078 078 0.83
Apgen (Ours) 2042 0.96 095 096 1.00 1.00 1.00 0.88 088 089 1.00 1.00 1.00 0.86 086 0.87
AFc_Token (Ours) 242 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMI FC Token dy X dj, 094 095 094 077 072 077 08 088 087 1.00 1.00 1.00 077 077 0.82

Table 3: Average Accuracies, F1, and AUCs of AMI at
reported results are averaging among 4 DP mechanisms

tacks under DP defenses on 4 real-world datasets. The

~DP Method BERT RoBERTa DistilBERT GPT1 GPT2
ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC
Arc_run (Ours) 094 093 097 097 096 099 096 096 098 096 095 099 096 0.96 1.00
AMI FC Full 0.68 068 0.69 0.67 0.66 0.67 068 069 070 062 062 065 0.66 0.65 0.67
10 Angtn (Ours) 069 065 072 076 073 081 072 068 07 081 079 086 0.63 059 0.64
Afc_Token (Ours) 0.87 0.85 092 090 089 093 090 090 096 091 0.89 094 091 090 094
AMI FC Token  0.66 0.67 0.67 065 0.63 064 066 067 0.68 061 060 063 0.62 0.62 0.63
Arc_run (Ours) 084 083 088 0.8 0.8l 087 082 0.8 087 082 079 089 086 0.84 0.90
AMI FC Full 0.57 056 0.58 0.58 0.58 0.58 0.62 061 062 052 051 054 058 0.59 0.59
7.5 Apgtn (Ours) 062 058 0.64 063 059 065 065 062 065 066 064 070 054 055 0.56
Afc_Token (Ours) 0.72 0.68 0.77 0.76 0.73 0.82 0.76 0.74 081 0.69 065 0.73 0.76 0.74 0.80
AMI FC Token  0.55 0.54 0.56 0.59 0.58 0.60 060 059 0.61 050 051 052 0.53 0.54 0.54
Arc_run (Ours) 0.67 064 0.69 0.67 0.64 071 063 060 065 068 065 0.7 066 0.64 0.71
AMI FC Full 055 054 056 053 0.54 053 054 052 055 053 051 053 055 0.56 0.56
5 Apen (Ours) 052 050 0.53 054 052 054 052 050 053 056 052 056 051 051 0.51
Arc_Token (Ours) 0.57 0.53 0.60 0.60 0.58 0.63 0.59 0.58 061 058 0.53 059 0.57 055 0.59
AMI FC Token  0.53 0.52 0.53 051 0.51 050 052 050 0.53 050 051 051 0.50 0.50 0.50

Table 4: Accuracies, F1, and AUCs at different layers
(e = 10). We highlight the entries of the layers where
the metrics achieve their highest values for each attack.

size D is chosen to be 40. More information on the
setting of our experiments is discussed in Appx. [C]

To realize DP mechanisms, we use Generalized Ran-

domized Response (GRR) (Dwork et al] [2006)), Google

L Method RoBERTa GPT1
e WEESC W00 F1 AUC  ACC  F1 | AUGC RAPPOR (Erlingsson et al} 2014)), Histogram encod-
Ao 085 087 092 083 083 097 ing (HE) (Wang et al._ 291 and Microsoft dBlt.—
Barly 0 e 079 078 0.87  0.87 0.86 0.92 FlipPM (Ding et al} [2017)) implemented by ({Arcolezi
Mid Arc T 0.92 091 094 091 089 094 2022). Table 1) provides the general information
! Antn 0.80 077 086 083 0.80 091 of our experiments. The No. runs indicates the to-
Late AFC-Token 091 090 0.94 088 085  0.90 tal number of simulated security games for each point

ate

Aaen 068 065 071 073 071 075 plotted/reported in our figures/tables. For instance,

attacks also at sentence and token levels, called AMI
FC Full and AMI FC Token, respectively.

Experimental Settings. Our attacks are evaluated
on 5 state-of-the-art language models: BERT
RTin ot aT} POT9), RoBERTa (Tiu ot al], POT9), disti-
BERT (Sanh et al] P019), GPT1 (Brown et al] 020),
and GPT2 (Radford et al} [2019). The experiments
are on 4 real-world text datasets: IMDB review
[et al] ROT)), Yelp review (Zhang et al} P015), Twitter-
emotion (Saravia et al}[2018), and Finance (Casanuevaj
fet_al} [2020). All models and datasets are from the
Hugginingface database (Lhoest et al[2021]). Our ex-
periment follows the security game in Fig.[2} The batch

the expression 4 x 3 x 4 x 10 means the results are
averaged over 4 datasets, at 3 layers of the model, using
4 DP mechanisms and 10 security games. The reported
privacy budget is applied once to the whole dataset
and that budget is for a single communication round.

AMI without defense. Table [J] reports the aver-
age accuracies, F1 scores, and AUCs of attacks on all
datasets at three locations of each model. The surfaces
of attacks (Fig. [3]) are the first, the middle, and the
last layers (specified in more detail in Appx. |C)). The
results are the averages among 4 datasets. Notably, FC-
based attacks consistently achieve a 100% success rate,
aligning with the statement in Lemma[l} Furthermore,
the attention-based attack exhibits competitive per-
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formance when compared to the benchmark
. Note that, all of our methods have theo-
retical guarantees, and do not require neural network
training. The table also includes the number of train-
able weights in each attack. It serves as an indicator of
the amount of fingerprints resulting from the attacks.

AMI with DP. We apply 4 DP mechanisms with
budgets e € {5,7.5,10} to evaluate the attacks in the
high, medium, and low privacy regimes. Table]reports
the results averaging from 4 mechanisms, 4 datasets,
and 3 locations of each model. This gives us a general
idea of how attacks perform under the presence of
protected noise. Results for each defense are reported

separately in Appx.

The first observation is that, at € = 5, almost all
attacks fail to infer the pattern, i.e. AUCs < 0.72;
however, at mid and low privacy regimes, our attacks
still achieve significant success rates. Especially, the
FC-based Arc_run and Arc_Token are always the top-2
with the highest performance. The results also show the
advantages of Arc_pui over Apc_Token Since it exploits
all input information. On the other hand, both neural
network approaches using AMI FC degrade rapidly
with the presence of noise. Since they rely on over-
fitting the target pattern, it becomes more challenging
to successfully train the inference networks when the
input dimension becomes large in the context of LLMs.

Inference at different layers. It is interesting to
examine the privacy leakage at different locations of
LLMs. We might expect that the deeper the attacking
surface, the more private the data. However, we figured
out that is not necessarily the case. Table [] shows the
performance of our attacks at different locations of
RoBERTa and GPT1 at ¢ = 10. While the claim
holds for GPT1, it is not correct for RoBERTa. In
fact, the layer with the highest success inference rates
in RoBERTa is the mid-layer 6. Our hypothesis for
the phenomenon is the tokens at that layer are more
separated than those at the earlier layers. More results
for other models are provided in Appx.

6 CONCLUSION

This work studies the formal threat models for AMI
attacks with dishonest FL servers and demonstrates
significant privacy threats in utilizing LLMs with FL
for real-world applications. We provide evidence for
the high success rates of active inference attacks, con-
firmed by both theoretical analysis and experimental
evaluations. Our findings underscore the critical vul-
nerability of unprotected data in FL. when confronted
with dishonest servers. We extend our investigation to
practical language models and gauge the privacy risks
across different levels of DP budgets. Looking ahead,

our future work will focus on identifying the prereq-
uisites for a more secure centralized FL system and
implementing these conditions effectively in practice.
Furthermore, from a system perspective, we intend to
explore decentralized FL protocols as a means to elimi-
nate trust in a central server. We hope this work can
serve as a stepping stone for future systematic updates
and modifications of existing protocols, to make them
more secure and robust for Federated LLMs.
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APPENDIX

This is the appendix of our paper Analysis of Privacy Leakage in Federated Large Language Models. Its main
content and outline are as follows:

e Appendix [A] shows more details of our results about the FC-based adversary in FL.
— Appendix [A7T} the description of our FC-based adversary for AMI.
— Appendix [A72} the proof of Lemma [T}
e Appendix [B] shows more details of our results about the Attention-based adversary in FL.

— Appendix the proof of Lemma

— Appendix [B2} the asymptotic behavior of the advantages of our self-attention-based adversary for
spherical and Gaussian data.

e Appendix [C] provides the details of our experiments reported in the main manuscript.

— Appendix details of the datasets.
— Appendix details implementation of our adversaries.

e Appendix [D] provides additional experimental results.
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A Vulnerability of FL to AMI Attack Exploiting FC Layers

This appendix reports the details of our theoretical results on AMI in FL. In Appx. [AZI] we provide the descriptions
of the proposed FC-based AMI adversary used in our analysis. Appx. shows the proof of Lemma

A.1 FC-Based Adversary for AMI in FL

We now describe the FC-based adversary Apc mentioned in Sect.[d] The adversary is specified by the descriptions
of its 3 components Arc_iniT, Arc—atTack and Afrc—GuEess-

AMI initialization Arc_nt: The model specified by the adversary uses FC as its first two layers. Given an
input X € R, the attacker computes ReLU(W;X + b;) = max(0, W; X + b;) where W, is the weights and b; is
the bias of layer . We set the dimensions of Wy and b; to 2dx X dx and 2dx, respectively. For the second layer,
the attack only considers one of its output neurons, thus, it only requires the number of columns of W5 to be
2dx. We use Ws[1,:] and bs[1] to refer to the parameters of the row of W5 and the entry of bs corresponding to
that neuron. Any configurations with a higher number of parameters can adopt our proposed attack because
extra parameters can simply be ignored.

AMI attack Arc_atTack: The weights and biases of the first two FC layers are set as:

14 -T
wie S e [ e g nine s ©)
where I;, is the identity matrix and 14, is the one vector of size dx. The hyper-parameter 7 controls the total
allowable distance between an input X and the target 7', which can be obtained from the distribution statistics.
The pseudo-code of the attack is shown in Algo.

AMI guess Arc_cguess: In the guessing phase, the AMI server returns 1 if the gradient of by[1] is non-zero and
returns 0 otherwise. Algo. [3] shows the pseudo-code of this step.

Algorithm 2: Arc_artack(T) exploiting fully-connected layer in AMI

Hyper-parameters: 7 € R™
1 # Configuring W, € R?#x*4x and b; € R?4X of the first FC
Wi+ [I;;X:| s bl — l: TT:|
3 # Configuring the first row of Wa € R?*2?X and the first entry of by € R? of the second FC
4 Wg[l,i] %712de7 bg[l] — T
5 Ret all weights and biases

N

Algorithm 3: Arc_guess(7, 9) exploiting fully-connected layer in AMI

1 # If the gradient of b[1] is non-zero, returns 1
if [0(b2[1])| > 0 then
Ret 1
end
Ret 0

(S V)

A.2 Proof of Lemma [1I] on the Advantage of the Adversary Arc in FL

This appendix provides the proof of Lemma [[] We restate the Lemma below:
Lemma. The advantage of the adversary Arc in the security game EprMI s 1, i.e., AdVAMI(AFC) =1.

Proof. For the model specified by Agc as discussed in Subsection [£]] its first layer computes:

w2+ [7]) - ()
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The first row of the second layer then computes:
dx
2o :=ReLU (— > ReLU ((z; — t;) + ReLU (t; — 27)) + T> =max {7 — || X — T|z,,0} (8)
i=1

This implies the gradient of by[1] = 7 is non-zero if and only if 7 > || X — T||z,. Thus, for a small enough 7,
T € D is equivalent to a non-zero gradient. Since 6(b[1]) is the average of gradients of b2[1] over D, we have:

Ifb=0—= 20 = O,VX ceD— ‘9(()2[1}” =0= AFC—GUESS returns 0 (9)
_ zo>0for X =T €D :
Ifb=1— {ZO 0 for other X  p = 10(02[1))] > 0 = Arc_cuss returns 1 (10)
Thus, the advantage of A is 1. O

B Vulnerability of FL to AMI Attack Exploiting Self-Attention Mechanism

This appendix provides the details of our theoretical results on exploiting the self-attention mechanism in FL. We
show in Appx. the proof of Lemma [2] about the advantage of our proposed attention-based attack. We then
discuss the asymptotic behavior of the advantages of Aaun for spherical and Gaussian data in Appendix [B:2]

B.1 Proof of Lemma on the Advantage of the Adversary Aain

We now state a Lemma bounding the error of the self-attention layer in memorization mode. The Lemma can be
considered as a specific case of Theorem 5 of ([Ramsauer et al} P021)). In the context of that work, they use the
term for well-separated pattern in their main manuscript to indicate the condition that the Theorem holds. In

fact, the condition stated in our Lemma is a sufficient condition for that Theorem of (Ramsauer et al} P021).
For the completeness of this work, we now provide the highlight of the proof of Lemma [§| based on the theoretical

results established in the work |Ramsauer et al.l, |2021|).

Lemma 3. Given a data X, a constant o > 0 large enough such that, for an x; € X:

2 1
A > — + Zlog(2(lx — 1 M? 11
i 2 o log(2(lx — ixal?) (1)

then, for any & such that ||€ — x;|| < m, we have

sz — Xsoftmax (ozXTf)H <2M(lx — 1) exp (2/lx — ad\;)

Proof. Define the sphere S; := {v such that ||v — z;|| < 1/(alxM)}. We now restate and apply some results

of (|Ramsauer et al.l, |2021|):

For A; satisfying and a mapping f, defined as f,(§) = Xsoftmax (aX T{), we have:

e The image of S; induced by f, is in S;, i.e., f, is a mapping from S; to S; (Lemma A5 (Ramsauer et al|

)

e f, is a contraction mapping in S; (Lemma A6 (Ramsauer et al}[2021])).

e f, has a fixed point in S; (Lemma A7 (Ramsauer et al} 2021])).

e Since f, is a contraction mapping in S; and £ € S;, we have
i = fa(E)]l < 2M(Ix — 1) exp (—a(A; — 2max{[|§ — i), |27 — z4[|})
where x} is a fixed point in S; (Theorem 5 (Ramsauer et al} [2021))).

Since both z} and & are in \S;, we have max{||§ — z; ||, ||z} — 2;||} < 1/(alxM). Therefore, we obtain
i = fa ()l < 2M(Ix — 1) exp (=2/lx — @)

Thus, we have the Lemma. O
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Intuitively, Lemma claims that, if we have a pattern & near x;, Xsoftmax (aX T§) is exponentially near £ as a
function of A;. Another key remark of the Lemma is that Hxl — Xsoftmax (aX Tf) H exponentially approaches 0

as the input dimension increases (Ramsauer et al) [2021]).

We now prove Lemma2]. We restate the Lemma below.

AMI

Lemma. Given a A-separated data D with i.i.d tokens of the experiment Exp™"", for any 5 > 0 large enough

such that:

A >2/(Blx) +log(2(lx — 1)IxBM?)/B

the advantage of Aawn Satisfies:

1 1 27‘le B
AdVAMI(AAttn) > Pé?oj <W> + Pgoj <W> - P£X(3A) -1

where A == 2M(Ix — 1) exp (2/lx — BA). PZ.;(8) is the probability that the projected component between two
independent tokens drawn from D is smaller than & and PE (8) is the probability that a random token drawn
from D is in the cube of size 20 centering at the arithmetic mean of the tokens in D.

Proof. For brevity, we first consider the following expression and related notations of the output of one attention
head without the head indexing h:

Xsoftmax (1/\/dathTWKTWQX) (12)

Notice that we omit Wy because they are all set to identity.

We now consider the AMI adversary Aawn specified in Subsection As W € Réxxdx (hneAlgo. is initiated
randomly, it has a high probability to be non-singular even with the assignment of v onto its first column (line
Algo. . For ease of analysis, we assume W has full rank. If that is not the case, we can simply re-run those 2
lines of the algorithm. For the same arguments, we also assume all Wg and W}é have rank dattn, = dx — 1.

For all heads, we have Wy = 5(W£)—)T (lines |§| and EI Algo. . As a consequence, %WEWQ = WCBWQ is the
projection matrix onto the column space of WC; By denoting [£1,--- ,§,] =2 = %VVKTVVQX7 we have &; is the
projection of the token x; onto that space.

For head 1 and head 3, due to line |3} we can write W = [v,wa, - -+ ,wq,]. From the QR factorization (line , we
have:

QR: [U,wQ,""IUdX] — R = QT[U7w27"'wdx]

Since R is an upper triangular matrix, v is orthogonal to all rows Q;,i € {2,--- ,dx} of Q7. Furthermore, by
the assignment at line , we have the column space of Wg is the linear span of {Qi}f;‘Q, which are all orthogonal
to v. Consequently, the difference between X and = is the component of X along the v direction:

XﬁEh:[Ilfg?v71‘1)(75{1;(]:[%11)’7@;;]7 h€{1,3} (13)
where z7 is the component of token z; € R along v.

For head 2 and head 4, even though we do not conduct the QR-factorization, LW, Wg of those heads are also
project matrices, just on different column space. These spaces are also of rank dx — 1 and it omits one direction.
By calling that direction u, we can write the difference between X and Z for those heads as:

X_Eh:[xl_gila7xlx_€lhx]:[f’lf77i.?x]7 h€{274} (14)
We now denote f, : Réx*le 5 Rix Xl aq:
E' = fa(E) = Xsoftmax (aX =)

For brevity, we also abuse the notation and write & = fo(£) = Xsoftmax (aX "¢) for € and £’ € Réx.
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With that, the output of the layer before ReLU can be written as:
2= [PEN - HE) 1) [hE) e -]
5B 15— 17| T a3 - fsE) -7
[ fa(&1) = fa(€d) =7 o fa(&l) — fﬂ(ﬁfx)—v]
fa(€d) - fﬁ(é}) Yo (sz) Fol&) =

where v is as given in Algo. [l| while 3 is rescaled with a factor of 1/v/dattn. With the above expressions, we can
see that Z has non-zero entries if and only if:

Ji such that [|f5(&;) — fa(€)) o > (15)

Note that the usage of heads 3 and 4 is for the entries of f3(¢}) that are smaller than those in fz(£2). The
condition can also be expressed as

1£8(E") = f8(E*) e > v

For a given token z;, we now consider two cases: z; # v and x; = v.
Case 1. For a token x; € X such that z; # v, from Lemma we have:
2 = f(€D)]] < 2M(Ix — 1) exp (2/Ix — BA;)
| — f3(&))]| < 2M(Ix — 1) exp (2/lx — BA)
when ||z; — &} = ||2?]] < 1/(BlxM) and ||z¥|| < 1/(Blx M), respectively. Note that we need to choose a 3 large

enough for the Lemma to hold. We denote those events by Al and A2. Thus, from the triangle inequality, we
have:

1£5(&0) = foEDIN < || fa(&l) — will + [l — fa(€D)]| < 4M(Ix — 1) exp (2/1x — BA:) =24,

with probability of Pr [A! N A?]. Here, we denote Ai =2M(lx — 1)exp (2/lx — BA;). We further loosen the
inequality with the infinity-norm, which bounds the maximum absolute difference in the pattern’s feature:

1£8(&) — f8(ED) oo < 24

Since the data point X is A-separated, i.e., A < A;, we further have:

1f5(&}) = F5(€))lloo < 2A
where A == 2M (Ix — 1) exp (2/Ix — BA).

We now consider the event A}. Basically, that is the event the component of z; along v is smaller than a constant

determined by the data distribution D. Furthermore, since both v and z; are drawn independently from the

distribution (specified in the experiment ExpNONE) they can be considered as two random patterns drawn from

the input distribution. Thus, the probability of A is the probability that the projected component between two
1

random tokens is smaller or equal to 7. Formally, given an input distribution D, we denote PpmJ(é) the

probability that the projected component between any independent patterns drawn from D is less than or equal

to . We then have:
1
1 D
pr(al) = P2 (537 )

by definition. Similarly, for A?, we have:

Pr[4f] = Pr{|af]| < 1/(8ixM)] = B, (M;M)

Since v and u are independent, we obtain:

1 2 D 1 ?
Pr[A; NA7] > PY,; (BZXM>
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Case 2. Since v is orthogonal to all {Qi}?g for the matrix @ at line [4f Wgov = 0 and, therefore, & = 0.
Consequently, if 2; = v, the output of the softmax is the one-vector scaled with a factor of 1/lx. We then have:

f5(&) = Xsoftmax(0 ij — X

Since x; = v, we then obtain:

f8(€)) = f5(&) = X — f5(&) = (X —v) + (wi — f5(€7))

Thus, from triangle inequality, we have:

17(65) = Fa(€)l o« 21X = o]l —Hxi—fg@?)\!m
2 X —oll o = A2 X =]l -

when A? happens, whose probability is PP (ﬁ) . We now consider the probability that H fa(&}) —

2A: "
Pr[||fs(&) — f3(€0)] . > 24]

=1—Pr[||fs(&)) — f3())]| . < 24]
=1—Pr[||fs(&l) = f5(&)]| . < 2A]A7] Pr [A7]
—Pr[||fs(&]) — £3(&))|| . < 2A|-A7] Pr [-A7]
>1—Pr[||fs(&) — f5(&)| o, < 2AlA7] - Pr [-A7]
>1-Pr[||X —of_ — A < 28]47] — Pr [~47]
—1—Pr[||X - v]|_ <3A] - Pr[~42]

1 _
D
:Pproj <M) — Pr [U S BOX(X, 3A)]

f8E)|,, >

20
21
22

(
(
(
(23

)
)
)
)

(24)

where Box(z, ) is the cube of size 20 centering at . The inequality is due to and is from the fact

that v is independent from X and v.

We now consider Pr [’U € Box(X, 35)}, which is the probability that the pattern v belongs to the cube of size
6A around the sampled mean of the tokens in X. We denote P (§) the probability that a random pattern
drawn from D is in the cube of size 2§ centering at the arithmetic mean of the tokens in D. If the length
Ix of X is large enough, we have the sampled mean X is near the arithmetic mean of the tokens and obtain

Pr [v € Box(X,3A)] = PE_(3A).

Back to main analysis. From the analysis of the two cases, if v ¢ X, we have:

2

If the tokens are independent, we then have:

Pr[If3(E") — £5(22)]0 < 24] = HPr 1 fsle! <s?>|oos2A]>P£OJ( !

BlxM

Since the data points of D are sampled independently, if v does not appear in D, we then have:

_ 1 2’nlx
—1 —2 D
Pr [”fﬁ(.: ) - fﬁ(:‘ )”OO S 2A for all X € D] > Pprq] <W>

On the other hand, if v € X, we have:

Ji € {1, ,Ix} such that Pr[|fs(&)) — f5(&)llec > 2A] 21— PR (34)

_ 1 _
= Pr [||fﬁ(51) _ fﬁ(52)”00 > 2A] > P£OJ (ﬂlXM) — P&X(?)A)

>2lx



Analysis of Privacy Leakage in Federated Large Language Models

Thus, if pattern v appears in D, we have:

_ 1 _
Pr[3X € D such that || f5(E') — f5(E%)|w > 24] > P, (BZXM) — PP _(3A)

By choosing v = 2A, we have the probability that our proposed adversary wins is:

Py =Pr[v e D|Pr [||9’1(W0>Hoo > 0w € D} 4 Prlv¢ D]|Pr [Hél(wo)nw —Ol¢ D (25)
:% Pr [3X € D such that [ f5(Z!) — f5(E2)]lw > 2Av € D]
1 _
+5 Pr [1f3(E") = f3(E%)|lc < 2A for all X € Dlv ¢ D] (26)
1/ 5 1 Do 1 5 1\
>— S — ) = . N
=9 (PprOJ (BZXM> Pbox(gA)> + 2Ppr0_] (5lxM> (27)

Thus, the advantage of the adversary Aagnn in Algo. [I] can be bounded by:
1 1 2nlx _
Adv*™ (Apgnn) = 2Py — 1> PD. (M) + PR, (me) - PL.(3A) -1 (28)

B.2 AdvAMI(AAtnn) Approaches 1 for Spherical and Gaussian Data

This appendix provides the mathematical explanations for the asymptotic behaviors of the advantages
AdvAMI(AAtnn) for spherical and Gaussian data (Fig. .

Spherical data. We now consider the tokens are uniformly distributed on a unit sphere, i.e., ||v|| = M =1 for all
v. We now argue that, when g is large enough, we have the condition @) of Lemma [2l and a small A so that
Pngx(?)A) = 0. For the projecting probability Ppoj, we have the distribution of the projected component between
any pair of random tokens is the distribution of any one component of a random token. The reason is the choice
of the second token does not matter and we can simply select it to be the standard vector e;. Therefore, the

expected value of the projected component between any pair of random tokens is 1/y/dx. Thus, Pgoj (ﬁ)
approaches 1 as dx increases. Consequentially, AdvAMI(AAtnn) — 1 as dx increases.

Gaussian data. When the token in X have standard normally distributed components, we have the expected value
and the variance of the separation of two points are dx and 3dx, respectively (Ramsauer et al} 021]). We then
assume that A > C;dx for some constant C;. Since the expected norm of each token is v/dx, we further assume
that M < Cy+/dx for some constant Cy. With that, we can select 8 = K d}l with K large enough such that A is
small and the condition holds. By that choice, we have Pﬁx(?)ﬁ) is the probability that all [x normal random
variables are in [-3A, 3A], which clearly approaches 0 as dx increases. On the other hand, from the Central
Limit Theorem, we have the dot product of two random tokens converge in distribution to a one-dimensional

normal random variable, i.e., u - v/v/dx — N(0,1). Thus, as dx increases, we have Pr [ < Cg} — 1 for a

u-v]
lloll

large enough constant C5. As 6liM > Kvli)éz, we have Ppoj (ﬁ) — 1.

O
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C Experimental Settings

This appendix provides the experimental details of our experiments. Our experiments are implemented using
Python 3.8 and conducted on a single GPU-assisted compute node that is installed with a Linux 64-bit operating
system. The allocated resources include 36 CPU cores with 2 threads per core and 60GB of RAM. The node is
also equipped with 8 GPUs, with 80GB of memory per GPU.

We now provide more information on the tested dataset in Appx. and the details implementation of our
adversaries in Appx.

C.1 Dataset and the Language Models

In total, our experiments are conducted on 3 synthetic datasets and 4 real-world datasets. The synthetic datasets
are one-hot encoded data, Spherical data (data on the boundary of a unit ball), and Gaussian data (each dimension
is an independent A(0,1)). The real-world datasets are IMDB (movie reviews) (Maas et al] R011]), Yelp (general
reviews) (Zhang et al] [2015]), Twitter (Twitter messages with emotions) (Saravia et al} [2018]), and Finance
(meassage with intents) (Casanueva et al] 020). The real-world datasets are pre-processed with the LLMs as
embedding modules to obtain the data D in our threat models. For the synthetic datasets, we use a batch size of
1 since it does not affect the asymptotic behaviors and provides better intuition for the experiment of Fig. [} For
the real-world datasets, we use a batch size of 40.

Table 5: General information about the LLMs.

BERT RoBERTa DistilBERT GPT1 GPT2

No. params 110M 125M 67M 120M 137M

No. layers 12 12 6 12 6
No. tokens (I,) 32 32 32 32 32
Dimension (d,) 768 768 768 768 768
Attacking layers 1,6,12 1,6,12 1,3,6 1,6,12 1,3,6

Table [5] provides information about the LLMs examined in our experiments. Their implementations are provided
by the Huggingface library (Choest et al] [2021]). The rows No. tokens and dimension refers to the number of
tokens and the embedded dimension of the tokens. The dimension is 768 at all hidden layers of all language
models. The Attacking layers are the layers that we conduct our inference attacks. They correspond to the early,
middle, and late locations of attacking mentioned in Sect. [5] of the main manuscript.

C.2 Implementation of the Adversaries

In our theoretical analysis of Apc and Aagn, we have specified how their hyper-parameters should be chosen so
that theoretical guarantees can be achieved. For convenience reference, we restate those settings here:

e For Lemmal[l] 7 can be any small positive number such that 7 < || X —T'||1, for all X # T in the dataset. In
other words, we just need to choose a very small positive number. The argument is made at Subsect. [£1]

e For Lemma B is chosen large enough such that the condition of the Lemma, holds and 7 is set to 2A.
The argument is made at in Appx.

Table 6: Values of g in the reported experiments.

Dataset Note on 8

One-hot / Spherical [ is is set to a constant 10
Gaussian B ox1/dx 10/dx

Real-world data The more noise, the smaller 2

As stated in Remark [0] the parameter 3 of our proposed attention-based adversary determines how much the input
patterns are memorized. While increasing 3 can increase the adversary’s success rate of inference, it decreases
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the attack’s performance when privacy-preserving noise is added to the data. The actual values of 8 in our
experiments are reported in Table [6}

Table 7: Average Accuracies, F1, and AUCs of AMI attacks under GRR defense (]Dwork et a1.|7 |2006[).

- Method BERT RoBERTa DistilBERT GPT1 GPT2
ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC
Arc—run 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 Aattn 0.89 088 092 099 099 100 082 080 082 1.00 1.00 1.00 0.84 0.82 0.85
Arc—Token 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Arc—Ful 099 099 100 100 100 100 100 1.00 1.00 099 099 1.00 099 0.99 1.00
7.5 Aattn 0.77 074 082 094 093 099 082 082 08 093 093 099 0.70 0.67 0.75
Arc—Token 097 096 1.00 094 093 099 098 098 099 097 097 1.00 099 0.99 1.00
Arc—rul 083 081 08 089 087 09 081 079 087 082 079 090 083 0.79 0.96
5 Anttn 0.56 0.51 0.60 0.67 062 069 061 052 064 064 0.60 0.67 0.50 0.50 0.50
Afc—Token 071 065 079 072 070 0.77 074 071 076 071 065 073 072 071 0.78

Table 8: Average Accuracies, F1, and AUCs of AMI attacks under RAPPOR defense (Erlingsson et al} [2014).

. Method BERT RoBERTa DistilBERT GPT1 GPT2
ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC
Arc—run 097 097 100 098 098 100 098 098 1.00 1.00 1.00 1.00 0.99 0.99 1.00
10 Aattn 0.63 059 069 073 070 081 071 067 074 080 077 089 0.55 0.50 0.54
Arc—Token 090 0.88 095 094 093 097 092 091 097 091 089 095 095 094 0.98
Arc—Ful 0.87 085 090 084 082 087 082 079 09 083 081 092 088 0.8 091
7.5 Aattn 0.60 056 0.63 055 052 057 061 058 0.60 0.57 053 0.60 0.50 0.50 0.50
Arc—Token 0.68 0.63 0.76 0.76 073 0.82 073 070 0.78 059 055 0.64 073 0.71 0.81
Arc—rFul 0.62 0.60 0.68 055 051 057 053 051 052 060 056 055 0.62 0.61 0.66
) Anttn 0.50 0.50 0.50 0.50 0.50 0.50 050 050 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Arc—Token 053 050 0.53 0.53 050 0.55 0.55 054 0.58 057 050 0.58 050 0.50 0.51

Table 9: Average Accuracies, F1, and AUCs of AMI attacks under THE defense (]VVang et al.|7 |2017|).

- Method BERT RoBERTa DistilBERT GPT1 GPT2
ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC
Arc—rul 0.80 0.77 089 090 0.8 097 087 084 092 086 083 096 089 0.88 098
10 Antn 0.56 0.51 0.60 0.58 0.53 0.63 065 059 068 0.65 0.61 0.68 0.58 0.53 0.60
Arc—Token 070 065 0.78 0.75 072 080 076 074 086 077 073 084 073 072 0.78
Arc—Ful 0.67 063 074 061 057 064 062 058 061 062 057 073 071 0.68 0.77
7.5 Aattn 0.50 0.50 050 050 050 050 060 054 060 056 0.54 0.59 0.50 0.50 0.50
Arc_Token  0.58 053 0.61 060 0.55 0.65 059 0.57 0.66 059 0.53 0.63 060 0.59 0.63
Arc—_Full 058 055 059 057 0.55 062 061 057 067 067 0.63 074 057 0.54 0.60
) Aattn 0.50 0.50 0.50 0.51 0.50 0.50 050 050 050 056 053 0.56 0.50 0.50 0.50
Arc—Token 052 049 056 054 054 0.56 050 050 0.51 051 050 0.50 053 0.53 0.50

D More Experimental Results

Due to the length constraints, the main manuscript only provides the average results of different Differential
Privacy (DP) mechanisms in Table In the following, we present more detailed results for our proposed
membership inference attacks under each DP mechanism separately.

Specifically, we display the accuracies, F1 scores, and AUCs of the attacks for four different DP mechanisms:
Generalized Randomized Response (GRR)(Dwork et al] 2006) in Tabld7] Google RAPPOR (Erlingsson et al}
[2014) in Table [§] Histogram encoding (HE)(Wang et al] [2017) in Tabldd] and Microsoft dBitFlipPM (Ding]
et al] 2017) in Table The DP mechanisms are applied at the token’s index level using the Multi-Freq-LDPy
library (Arcolezi et al] [2022)). Despite all of these mechanisms providing the same theoretical DP guarantee,
there are subtle differences in the performance of the defense methods.

It is unsurprising that GRR consistently yields the highest successful inference rates given its status as one of the
pioneers in the field of DP. When considering the relative performance among the other mechanisms, no clear
winner emerges as the outcomes vary depending on the attacking methods and the examined models.
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Table 10: Average Accuracies, F1, and AUCs of AMI attacks under dBitFlipPM defense (]Ding et al.l |2()17D.

- Method BERT RoBERTa DistilBERT GPT1 GPT2
ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC
Arc_rFul 097 097 100 098 098 1.00 099 099 1.00 098 098 1.00 097 0.96 1.00
10 Anattn 0.66 0.64 067 073 071 081 072 068 079 080 079 0.86 0.57 0.54 0.59
Arc—Token 0.89 087 096 093 092 096 093 093 099 093 092 096 095 0.95 0.99
Arc—rul 0.84 083 090 088 08 095 086 08 09 084 081 090 0.86 0.83 0.92
7.5 Antn 0.59 055 061 055 051 055 057 053 056 059 057 062 051 051 0.51
Afc—Token 0.66 059 073 0.74 072 080 075 072 080 061 055 0.65 0.70 0.67 0.77
Arc—rul 0.59 0.57 060 062 060 067 056 051 057 063 062 0.65 0.62 0.61 0.63
5 Aattn 0.55 0.50 057 051 050 052 050 050 050 055 050 054 050 0.50 0.50
Arc—Token 0.52 050 0.54 0.61 0.59 063 059 058 059 055 050 055 054 0.50 0.56

It is also worth noting that GPT models appear to exhibit greater resilience against attention-based attacks when
compared to BERT-based models. Our hypothesis is grounded in the distinctive architectural differences between
the GPTs, which feature a ”decoder-only” design, and the BERT's, which employ an ”encoder-only” architecture.

Table 11: Accuracies, F1, and AUCs at different layers (¢ = 10).

Layer Method BERT RoBERTa DistilBERT GPT1 GPT2
ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC
Arc—rull 098 0.98 1.00 099 099 1.00 099 099 1.00 098 097 1.00 098 0.98 1.00
Early Anttn 0.86 0.83 092 079 078 087 091 089 096 087 086 092 0.50 0.50 0.50
Arc_Token 0.88 087 094 088 0.87 092 091 090 096 093 093 097 0.89 0.89 0.92
Arc—Ful 097 097 1.00 096 096 1.00 096 096 1.00 096 096 1.00 096 0.95 1.00
Mid Anttn 0.66 0.63 0.68 080 077 08 08 076 086 0.83 0.80 091 0.63 0.59 0.65
Arc—Token 093 092 096 092 091 094 090 089 095 091 089 094 091 0.89 0.94
Arc—Ful 085 083 091 094 094 098 094 093 094 094 092 097 096 0.95 0.99
Late Aattn 0.54 0.50 0.55 068 065 0.71 050 050 050 073 071 07 067 0.61 0.68
Afc—Token 0.80 0.75 0.86 091 090 094 090 089 095 083 0.8 090 0.93 092 0.95

Table [[]] reports the performance of our attacks at different locations of all five language models with ¢ = 10. This
table can be considered as the full version of Table [d]in our main manuscript. We can see that, in general, it is
more challenging to infer the target data as the attacking surfaces get deeper. However, in BERT and RoBERTa,
we observe a slight increase in the successful inference rates of Apc_Token around the middle layers of the models.
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