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Abstract—Federated Learning (FL) has garnered significant
attention for its potential to protect user privacy while enhancing
model training efficiency. For that reason, FL has found its
use in various domains, from healthcare to industrial engineer-
ing, especially where data cannot be easily exchanged due to
sensitive information or privacy laws. However, recent research
has demonstrated that FL protocols can be easily compromised
by active reconstruction attacks executed by dishonest servers.
These attacks involve the malicious modification of global model
parameters, allowing the server to obtain a verbatim copy of
users’ private data by inverting their gradient updates. Tackling
this class of attack remains a crucial challenge due to the strong
threat model. In this paper, we propose a defense mechanism,
namely OASIS, based on image augmentation that effectively
counteracts active reconstruction attacks while preserving model
performance. We first uncover the core principle of gradient
inversion that enables these attacks and theoretically identify the
main conditions by which the defense can be robust regardless
of the attack strategies. We then construct our defense with
image augmentation showing that it can undermine the attack
principle. Comprehensive evaluations demonstrate the efficacy of
the defense mechanism highlighting its feasibility as a solution.

Index Terms—Federated Learning, Privacy, Deep Neural Net-
works, Reconstruction Attack, Dishonest Servers

I. INTRODUCTION

In recent years, Federated Learning (FL) has developed into

a well-respected distributed learning framework that promotes

user privacy with high model performance. By design, FL

authorizes collaborative training of a global model between

millions of users without revealing any of their locally trained,

private data. It is an iterative protocol where, in each round, a

central server distributes the most up-to-date global model to

an arbitrary subset of users that train locally and communicate

their model updates back to the server. These model updates

include the gradients that are calculated based on the global

model and the local training data. The central server then

averages these model updates to form a new global model

to distribute in the next round.

With a disruptive privacy-centric design, FL has been re-

garded as an auspicious solution for applying machine learning

to the healthcare sector, particularly in scenarios where sharing

medical data between different sites is intractable due to strict

privacy protection policies such as the Health Insurance Porta-

bility and Accountability Act (HIPAA) [1] and General Data

Protection Regulation (GDPR) [2]. Numerous studies have

proposed FL for medical image analysis, utilizing data such
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as X-rays, MRIs, and PET scans from different hospital sites

while complying with privacy laws [3]–[8]. This innovative

approach is not limited to healthcare; FL is also making

significant strides in industrial engineering. For instance, in

urban environment image sensing, research has shown that

FL makes it easier to perform a time-series analysis of indus-

trial environment factors obtained from multiple sensors and

unmanned aerial vehicles (UAVs) across different companies

while maintaining confidential data privacy [9]–[12]. Beyond

these applications, FL is also stimulating advancements in

diverse domains such as control systems, autonomous vehicles,

and smart manufacturing [13]–[15], showcasing the versatility

and broad impact of a privacy-preserving learning framework.

However, the promise of privacy for clients in FL has

been constantly challenged [16]. Recent work [17]–[24] has

investigated a strong and practical threat model in which the

server can be actively dishonest, such that it is capable of

maliciously modifying the global model before dispatching it

to the users. This threat model has instigated several active

reconstruction attacks in which an FL server can perfectly

reconstruct some data points in a users’ training data [17],

[18], [24]. These attacks exploit a fundamental concept that

the gradients in the local model updates sent by users may

contain complete and memorized individual data points. These

gradients can later be inverted by the server to reveal such

data points. As an actively dishonest adversary, the server

can strategically manipulate the weights of the global model

to maximize the number of individual data points that can

be reconstructed from the users’ gradients. For that reason,

although the training data is said to never leave a users’ device,

it can still be reconstructed, thereby refuting the claim of

privacy-preservation in FL.

Given such a strong adversary, defending against this class

of active reconstruction attacks is challenging. Until now, a

mitigation approach for FL-based attacks focused on obfuscat-

ing the gradients via a Differential Privacy (DP) mechanism,

such as DPSGD [25], that formally bounds the privacy leakage

by adding calibrated noise to the gradients. However, previous

work [17], [18] has shown that to prevent an attacker from

discerning the content of reconstructed data, the user must

add a significant amount of DP noise to the gradients that

unfortunately degrades the overall model performance.

In this paper, we propose a new defense, OASIS, to Offset

this class of Active reconStructIon attackS. As there are differ-

ent strategies to manipulate the global model for conducting



Figure 1: Overview design of OASIS. Top: Standard active reconstruction attack with malicious model modifications perfectly

reconstructing training samples. Bottom: OASIS in place with augmented data to defend the active reconstruction attacks. The

resulting reconstruction is a linear combination of images, effectively hiding the content of training samples. Note: Rotation

is not the only transformation within OASIS.

this attack, it is imperative to figure out how to tackle the

attack in principle so that the defense is robust regardless

of the manipulation strategies. We first analyze the attack

surface and determine the core vulnerability in the gradient

updates that enables the memorization of individual training

samples. By doing so, we generalize the existing attacks by

discovering the conditions under which a dishonest server

can conduct gradient inversion to reconstruct users’ data. We

then intuitively show how to undermine those conditions and

mitigate the impact of the attacks.

From the attack principle, we show that the users can

preprocess their training data in a way that prevents the

samples from being revealed via gradient inversion, effectively

countering this class of active reconstruction attacks. A mecha-

nism for such preprocessing is image augmentation [26], [27].

This includes adding augmented versions of an image, such

as rotated, flipped, and sheared counterparts to the training

data before computing the gradients. By doing this, OASIS

aims to have the gradients memorize a linear combination

of the original image and its augmented versions, instead of

memorizing any individual images. As a result, inverting these

gradients would reconstruct what appears to be an overlap of

multiple images, thereby effectively preventing the server from

discerning the content of the reconstructed images, as shown in

Figure 1. Since image augmentation is used to improve model

generalization [28], we safely maintain the performance of

FL with this countermeasure. Our analysis shows that OASIS

opens a new approach to protect users’ data from gradient

inversion without suffering the utility loss as in DP.

Contributions. Our key contributions are as follows:

• We analyze the attack surface and determine the key

principle behind gradient inversion that enables active

reconstruction attacks. From that, we theoretically show

how to tackle this class of attack, regardless of how the

attacker manipulates the global model parameters.

• Based on the attack principle, we present OASIS as a

suite of image augmentations. To our knowledge, this

mechanism stands as the first general and scalable de-

fense against active reconstruction attacks via gradient

inversion by actively dishonest servers in FL.

• We thoroughly analyze the effectiveness of OASIS

through experiments with respect to attack success rate

and augmentation type. We also show how OASIS main-

tains model performance.

Organization. The paper’s structure is as follows: Section II

provides a primer on FL, image augmentation, and the main

augmentations used. Section III presents the threat model,

attack principle, and our OASIS defense. Section IV presents

an in-depth experimental analysis and results supporting our

defense. Section V discusses related research on reconstruction

attacks and existing defenses. Section VI concludes the paper,

summarizing our key findings.

II. PRELIMINARIES

In this section, we summarize the FL process while also

describing the benefits of image augmentation during training.

A. Federated Learning

Depending on how training data is distributed among the

participants, there are two main versions of FL: horizontal

and vertical. In this paper, we focus on a horizontal setting

in which different data owners hold the same set of features

but different sets of samples. We denote fw : Rd → R
k as a

k-class neural network model that is parameterized by a set of



weights w. The goal of fw is to map a data point x ∈ R
d to

a vector of posterior probabilities fw(xi) = Y over k classes.

FL is an iterative learning framework for training a global

model fw on decentralized data owned by N different users

{uj}
N
j=1. A central server coordinates the training of fw by

iteratively aggregating gradients computed locally by the users.

Let t ∈ [0, T ] be the current iteration of the FL protocol, and

wt be the set of parameters at iteration t. At iteration t = 0, the

global wt is initialized at random by a central server. At every

iteration t, a subset of M < N users is randomly selected

to contribute to the training. Each of the selected users uj

obtains fwt from the central server and calculates the gradients

Gt
j for fwt using their local training batch Dj . In specific,

Gt
j = ∇wtL(Dj , w

t) where L is a loss function. Then, each

uj uploads its gradients to the central server. With a learning

rate η, the server averages these gradients to update the global

model’s parameters as follows:

Gt =
1

M

M
∑

j=1

Gt
j , wt+1 = wt − ηGt (1)

The training continues until fwt converges.

B. Image Augmentation

Image augmentation is a very useful technique in deep

learning that allows for the expansion of a training dataset with

artificially generated data. Given a dataset of images, augment-

ing each image using rotation, shearing, or flipping yields a

new expanded dataset for training. This added preprocessing

helps increase model generalization and avoid overfitting by

altering the makeup of data and adding it to the training set

[26], [27]. With more data to train, the model is less prone to

memorize the data, but generalize the pattern between the data.

In turn, increased model generalization tends to lead to higher

model performance. Image augmentation has been widely used

in datasets like ImageNet [29] and CIFAR-10 [28].

Our work focuses on three main transformations: rotation,

shearing, and flipping. In each augmentation scenario, we

consider a 2D image I where I(i, j) denotes the pixel value

at coordinates (i, j). Rotation includes tilting an image’s

pixels by an angle θ. We define major rotation angles as

the maximum degrees of each respective quadrant in an x-y

coordinate system (i.e., 90◦, 180◦, and 270◦). Minor rotation

angles are described as any angle < 90◦. More formally, an

image I ′ can be constructed from I as follows:

I ′(i, j) = I(i cos(θ)−j sin(θ), i sin(θ)+j cos(θ)) ∀i, j (2)

where θ is the angle in which an image is rotated.

Flipping includes reflecting an image on its x-axis (vertical

flip) or its y-axis (horizontal flip). A horizontally flipped image

I ′ can be constructed from I as follows:

I ′(i, j) = I(−i, j) ∀i, j (3)

Similarly, a vertically flipped image I ′ can be constructed from

I as follows:

I ′(i, j) = I(i,−j) ∀i, j (4)

Shearing is projecting a point or set of points within an

image in a different direction. A sheared image I ′ can be

constructed from I as follows:

I ′(i, j) = I(i+ µj, j) ∀i, j (5)

where µ is the shear factor controlling the shearing intensity.

III. OASIS – A PROPOSED DEFENSE

This section describes our proposed defense, OASIS, against

active reconstruction attacks via gradient inversion in FL. In

order to devise an effective defense, we analyze the attack

surface to determine the core vulnerability of the system and

how the attacks exploit it in principle. We then propose OASIS

to prevent such exploitation, effectively tackling this class of

attacks, regardless of how they are implemented.

A. Generalizing Active Reconstruction Attacks via Gradient

Inversion

Threat Model. We examine a server that is dishonest and aims

to reconstruct the private data of a targeted user. As discussed

in previous work [17], [18], a dishonest server is capable

of making malicious modifications to w before dispatching

it to the users at any iterations. These modifications can

include changing and/or adding model parameters. However,

the modification should be minimal to avoid detection.

For this attack, the adversary places a malicious fully-

connected layer consisting of n attacked neurons in the neural

network model fw, so that inverting the gradients of these

neurons would recover the users’ data. Generally, the attack

becomes less effective when the layer is placed deeper in

the neural network. For the purpose of devising a robust

defense, we consider a strong adversary who can place the

malicious layer directly right after the input layer. The layer

is parameterized by a weight matrix W ∈ R
n×d and a bias

vector b ∈ R
n. Denoting D = {xj ∈ Rd}Bj=1 as the local

training data of a targeted user where B is the batch size, the

goal of the attack is to reconstruct the data points in D via

the malicious layer. Our defense, OASIS, aims to minimize

the quality of reconstruction, regardless of how the malicious

layer (W, b) is determined by the adversary.

Attack Vector Analysis. We aim to generalize state-of-the-art

active reconstruction attacks by deducing their core principle.

Suppose that the malicious layer is updated based on one

single-input xt ∈ R
d, for each neuron i, the gradients of the

loss with respect to the weights, and biases will be
(

∂Lt

∂Wi

,
∂Lt

∂bi

)

where Lt is shorthand for L(xt, (W, b)). All the gradients
{(

∂Lt

∂Wi

,
∂Lt

∂bi

)}n

i=1

are then uploaded to the server. As shown in [17], [18], [30],

with a ReLU activation function, the server can perfectly

reconstruct xt by dividing the gradients as follows:
(

∂Lt

∂bi

)−1
∂Lt

∂Wi

= xt (6)



where i is the index of a neuron that is activated by the

input xt and ∂Lt

∂bi
̸= 0. In other words, knowing the gradients

(

∂Lt

∂Wi
, ∂Lt

∂bi

)

of a particular input sample xt allows perfect

reconstruction of that sample via gradient inversion.

However, in practical FL, when the malicious layer is

updated based on a batched input D = {xj}
B
j=1 where

B > 1, all derivatives are summed over the batch dimension.

In particular, the gradients of the malicious layer that the server

receives will instead be:










B
∑

j=1

∂Lj

∂Wi

,

B
∑

j=1

∂Lj

∂bi











n

i=1

When the server performs the same inversion computation as

Equation (6) on this summed gradient, it will reconstruct





B
∑

j=1

∂Lj

∂bi





−1 



B
∑

j=1

∂Lj

∂Wi





which is proportional to a linear combination of the samples

that activated neuron i. The coefficient for each sample in

the linear combination depends on how much the sample

contributes to the loss L. Reconstructing such a combination

may not be able to reveal the content of each individual input

sample, thereby hindering the impact of the attack.

To circumvent the problem of summed gradients, the CAH

attack proposed by [17] chooses the parameters for (W, b) that

maximize the likelihood that each attacked neuron is activated

by only one sample in the batch. The rationale behind this is

that if i is activated only by one data point xt, then




B
∑

j=1

∂Lj

∂Wi

,

B
∑

j=1

∂Lj

∂bi



 =

(

∂Lt

∂Wi

,
∂Lt

∂bi

)

since
∂Lj

∂Wi
= 0 and

∂Lj

∂bi
= 0 for data points xj(j ̸= t) that

do not activate the neuron i. After obtaining
(

∂Lt

∂Wi
, ∂Lt

∂bi

)

, the

server can reconstruct xt by Equation (6).

On the other hand, [18] proposes the RTF attack in which

the reconstruction can be carried out by considering the differ-

ence between two successive neurons’ gradients, with respect

to some specific parameters (W, b). Specifically, the server can

strategically choose (W, b) so that, given the gradients




B
∑

j=1

∂Lj

∂Wi

,

B
∑

j=1

∂Lj

∂bi





of neuron i and




B
∑

j=1

∂Lj

∂Wi+1

,

B
∑

j=1

∂Lj

∂bi+1





of neuron i + 1, the difference between them can reveal the

gradients
(

∂Lt

∂Wi
, ∂Lt

∂bi

)

of a particular sample xt that activates

neuron i. With this, Equation (6) can perfectly reconstruct that

sample xt.

From this analysis, we can observe the underlying principle

of these attacks: as long as the gradients
(

∂Lt

∂Wi
, ∂Lt

∂bi

)

of

one individual sample xt can be extracted from the summed

gradients










B
∑

j=1

∂Lj

∂Wi

,

B
∑

j=1

∂Lj

∂bi











n

i=1

with ∂Lt

∂bi
̸= 0, that sample xt can be perfectly reconstructed

by gradient inversion via Equation (6). Therefore, the attack

strategies specifically involve choosing (W, b) that optimizes

the chance of extraction, thus improving reconstruction quality.

Defense Intuition. By this principle, to effectively defend

against such attacks, it is essential to prevent the leaking of any

individual data points’ gradients from the summed gradients,

regardless of how the parameters (W, b) are chosen. With this

in mind, we establish the following proposition:

Proposition 1. Given a sample xt ∈ D, if there exists an

x′
t ∈ D such that xt and x′

t activate the same set of neurons

in the malicious layer, then the adversary cannot extract
(

∂Lt

∂Wi

,
∂Lt

∂bi

)

with ∂Lt

∂bi
̸= 0 from











B
∑

j=1

∂Lj

∂Wi

,

B
∑

j=1

∂Lj

∂bi











n

i=1

Proof. There are two cases in which the adversary is able to

obtain
(

∂Lt

∂Wi
, ∂Lt

∂bi

)

with ∂Lt

∂bi
̸= 0 from











B
∑

j=1

∂Lj

∂Wi

,

B
∑

j=1

∂Lj

∂bi











n

i=1

(1) There exists an i ∈ {1, 2, ..., n} s.t.




B
∑

j=1

∂Lj

∂Wi

,

B
∑

j=1

∂Lj

∂bi



 =

(

∂Lt

∂Wi

,
∂Lt

∂bi

)

This means that the neuron i is activated only by xt, thus

contradicting the fact that xt and x′
t activate the same set of

neurons.

(2) There exists a subset D ¦ D \ xt such that the adversary

can determine




∑

xj∈D

∂Lj

∂Wi

,
∑

xj∈D

∂Lj

∂bi





and




∑

xj∈D∪xt

∂Lj

∂Wi

,
∑

xj∈D∪xt

∂Lj

∂bi





from










B
∑

j=1

∂Lj

∂Wi

,

B
∑

j=1

∂Lj

∂bi











n

i=1



To be able to obtain




∑

xj∈D∪xt

∂Lj

∂Wi

,
∑

xj∈D∪xt

∂Lj

∂bi





it must be that xt activates neuron i. This also means that x′
t

activates neuron i (since xt and x′
t activate the same set of

neurons) and that x′
t ∈ D. But in order to get





∑

xj∈D

∂Lj

∂Wi

,
∑

xj∈D

∂Lj

∂bi





there must be a neuron that is activated by samples in D,

which includes x′
t, and is not activated by xt. This contradicts

the fact that xt and x′
t activate the same set of neurons.

Intuitively, suppose that for every xt ∈ D, we find a data

point x′
t such that xt and x′

t always activate the same set of

neurons, and then we add x′
t to D. From Proposition 1, it can

be inferred that the best that the attacker can do is extracting
(

∂Lt

∂Wi

+
∂L′

t

∂Wi

,
∂Lt

∂bi
+

∂L′
t

∂bi

)

from the summed gradients










B
∑

j=1

∂Lj

∂Wi

,

B
∑

j=1

∂Lj

∂bi











n

i=1

Hence, it could only reconstruct a linear combination of xt

and x′
t. If the linear combination does not reveal the content

of xt, then the proposed defense is successful.

B. Image Augmentation as a Defense

From the previous attack principle and defense intuition,

we devise a robust defense mechanism as follows. For every

xt ∈ D, we find a set of data points X ′
t such that xt and every

x′ ∈ X ′
t activate the same set of neurons. Then, we construct

a new local training dataset:

D′ = D ∪

B
⋃

t=1

X ′
t (7)

If D is labeled then the data points in X ′
t are given the

same label as xt. The user will use D′ instead of D for

the FL process, so that an active reconstruction attack can

only reconstruct a linear combination of xt and x′ ∈ X ′
t.

This mechanism is illustrated in Figure 1. The defense is

considered effective if it satisfies two conditions: (1) using

D′ does not heavily reduce the training performance, and (2)

a linear combination of xt and x′ ∈ X ′
t does not reveal the

content of xt.

To find X ′
t that activates the same set of neurons as xt, we

propose using image augmentation [27] where X ′
t contains the

transformations of xt, such as rotation, shearing, or flipping.

As noted in [28], image augmentation can be used to teach a

model about invariances in the data domain. For that reason,

training with image augmentation makes the model invariant

to the transformations of images. In other words, the model

139.17 dB 15.41 dB
Original
Image

Reconstruction
w/o OASIS

Reconstruction
with OASIS

Figure 2: Example visual representation of PSNR values.

Images with lower PSNR tend to have worse reconstruction

quality compared to images with higher PSNR.

should exhibit similar behavior (i.e., similar patterns of neuron

activations) given different transformations of an image. As a

result, xt and images in X ′
t are more likely to activate the

same set of neurons. Our experiments in Section 4, especially

Figures 7-12, further support this claim by showing that the

reconstructed image is a linear combination of the transformed

and the original, which is caused by xt and X ′
t activating the

same set of neurons.

Furthermore, using image augmentation as a defense also

satisfies the above-mentioned two conditions. First, using

image augmentation maintains the training performance as it

was originally designed to improve model generalization and

reduce overfitting. Second, as we shall demonstrate in Section

4, a linear combination of an image xt and its transformations

yields an unrecognizable image, thereby protecting the original

content of xt.

IV. EXPERIMENTAL ANALYSIS

This section evaluates the performance of our defense

with various experiments to shed light on how OASIS can

offset state-of-the-art active reconstruction attacks while still

maintaining the model training performance.

A. Experimental Settings

We conduct two state-of-the-art active reconstruction at-

tacks, namely Robbing the Fed (RTF) [18] and Curious

Abandon Honesty (CAH) [17], against our OASIS defense on

two datasets ImageNet [31] and CIFAR100 [32]. For these

attacks, we adopt the implementation from https://github.com/

JonasGeiping/breaching. To capture how OASIS mitigates the

success rate of the attacks, similar to previous work [18],

[30], we use the Peak Signal-to-Noise Ratio (PSNR) value

to measure the quality of a reconstructed image with respect

to the original image. Higher PSNR values indicate better

reconstruction quality, thus higher attack success rates. Figure

2 illustrates a visual representation of PSNR values. Our goal

is to minimize the PSNR values of reconstructed images.

Furthermore, we visually compare the reconstructed images

when using OASIS against their respective original images to

demonstrate how OASIS protects the content of the dataset.

Finally, we measure model performance for each augmentation

method on each dataset. OASIS is expected to impose a

negligible trade-off on the performance of training models.
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Figure 3: Average PSNR over the images reconstructed by the RTF attack w.r.t the batch size and the number of attacked

neurons on ImageNet and CIFAR100.
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Figure 4: Average PSNR over the images reconstructed by the CAH attack w.r.t the batch size and the number of attacked

neurons on ImageNet and CIFAR100.
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Figure 5: PSNR values of images reconstructed by the RTF attack w.r.t different transformations and different batch sizes on

ImageNet and CIFAR100. The green triangle denotes the average PSNR over all reconstructed images. (WO = Without OASIS,

MR = Major Rotation, mR = Minor Rotation, SH = Shearing, HFlip = Horizontal Flip, and VFlip = Vertical Flip)
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(a) ImageNet. Left: (B,n) = (8, 100). Right: (B,n) = (64, 700)
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(b) CIFAR100. Left: (B,n) = (8, 300). Right: (B,n) = (64, 600)

Figure 6: PSNR values of images reconstructed by the CAH attack w.r.t different transformations and different batch sizes on

ImageNet and CIFAR100. The green triangle denotes the average PSNR over all reconstructed images. (WO = Without OASIS,

SH = Shearing, MR = Major Rotation, and MR + SH = Major Rotation + Shearing)

For a fair evaluation, the attacks are first configured to have

the highest success rate. As discussed in the threat model

in Section III-A, the malicious layer is appended right after

the input layer. Furthermore, the attack performance depends

on the number of attacked neurons n, and the batch size B.

Generally, it is straightforward that the reconstruction attacks

perform worse with larger batch sizes. We experiment with two

batch sizes: B = 8 for evaluating against strong attacks, and

B = 64 for a more realistic training configuration. We conduct

preliminary experiments to find the hyperparameters that result

in the strongest attacks. Specifically, we test the attacks with

various batch sizes and numbers of attacked neurons, and re-

port the average PSNR value over the images reconstructed by

RTF and CAH in Figures 3 and 4, respectively. As previously

stated, the reconstruction attacks perform worse with larger

batch sizes, and that behavior is illustrated in Figures 3 and 4.

For each batch size, we choose the number of attacked neurons

n that yields the highest average PSNR.

As can be seen in Figure 3, the RTF attack’s optimal settings

for ImageNet with a batch of 8 occur with 900 attacked

neurons yielding an average PSNR value of 127.9 dB. The

optimal settings for a batch of 64 occur with 800 attacked

neurons yielding an average PSNR value of 91.63 dB. For

CIFAR100, we see the optimal settings for a batch of 8 and

64 are 500 and 600 attacked neurons yielding average PSNR

values of 147.72 dB and 121.72 dB, respectively.

We test for the optimal settings of the CAH attack in

a similar manner in Figure 4. For ImageNet, a batch of 8

with 100 attacked neurons produces an average PSNR value

of 147.93 dB and a batch of 64 with 700 attacked neurons

produces an average PSNR value of 97.38 dB. CIFAR100

was treated the same as before. A batch of 8 along with 300

attacked neurons results in an average PSNR value of 70.54

dB while a batch of 64 with 600 attacked neurons yields an

average PSNR value of 40.02 dB.

OASIS Implementation. As for constructing D
′ in Equation

7, we test with various methods of image augmentation,

including rotation, shearing, and flipping, and observe how

each of them impacts the performance of OASIS. We describe

how the transformations are implemented as follows. In the

case of major rotation, every image in D was rotated three

different times at angles of 90
◦, 180

◦, and 270
◦, following

Equation 2, to generate three transformed images for D′. For

minor rotation, we rotate each image three different times at

angles of 30◦, 45◦, 60◦.

For flipping, we conduct both horizontal and vertical flip-

ping using Equations 3 and 4, respectively. In regard to

shearing, we follow Equation 5 and shear every image in

D with three different shear factors of 0.55, 1.0, and 0.9 to

generate three transformed images for D′. Each transformation

is implemented with the official PyTorch Vision library1 and

the Kornia library2.

1https://github.com/pytorch/vision.git
2https://github.com/kornia/kornia.git



B. OASIS Defensive Performance

Figure 5 depicts the effectiveness of our defense in regard

to reducing the reconstruction quality of the RTF attack. Five

transformations are used in this experiment, and it can be seen

from Figure 5 that each of them substantially reduce the PSNR

values of the reconstructed images across all testing scenarios.

Specifically, without OASIS, most of the images reconstructed

by the RTF attack have PSNR ranging from 130 dB to 145

dB at batch size 8, indicating perfect reconstruction. Major

rotation is the most robust transformation such that by adding

rotations at major angles to each image in D, the resulting

reconstruction by RTF only yields PSNR from 15 dB to 20

dB. Thus, the content of each image in D remains hidden.

To understand how the major rotation can invalidate the

RTF attack, we note that the activation of attacked neurons

in RTF depends on a scalar quantity of the input, such as the

average of pixel values [18]. Major rotation imposes minimal

change to this quantity (it does not change the average of

pixel values). Hence, using this transformation for building

X ′

t
ensures that xt and X ′

t
activate the same set of neurons,

for all xt ∈ D. Furthermore, as we shall see in Section IV-C,

a linear combination of an image and its rotations yields

an unrecognizable image. We also note that flipping does

not change the average of pixel values either, however, this

transformation does not necessarily result in unrecognizable

reconstruction (as shown later in Section IV-C), thus its PSNR

is slightly higher than that of major rotation.

Figure 6 illustrates the performance of OASIS against

the CAH attack. With batch size 64, we observe a similar

result as the previous experiment against RTF in which the

major rotation keeps the PSNR of reconstructed images low.

However, for batch size 8, the major rotation fails to prevent

many images from being perfectly reconstructed. The same

behavior is exhibited through shearing. The core issue here

is that these transformations alone are not enough to prevent

several xt ∈ D from being the sole activation of certain

attacked neurons in CAH, thus the content of those xt is

revealed through reconstruction.

To tackle this issue, we attempt to integrate multiple trans-

formations to increase the likelihood that xt and some images

in X ′

t
activate the same set of neurons in the malicious layer.

In other words, the set X ′

t
is constructed by more than one

transformation. As shown in Figure 6, we experiment with

integrating the two most robust transformations: major rotation

and shearing. This integration is able to render the reconstruc-

tion by CAH unrecognizable with low PSNR. Specifically,

with ImageNet (Figure 6a), it significantly decreases the PSNR

of reconstructed images from above 125 dB to below 25 dB.

The same effect is also exhibited with CIFAR100 (Figure 6b).

C. Visual Reconstructions

We visually demonstrate the resulting reconstruction from

the attacks. The goal is to show that, with our OASIS defense,

the attacks indeed reconstruct a linear combination of an image

and its transformations, effectively confirming the claims in

Section III-B. Moreover, it shows that the linear combination

Figure 7: Left: Raw input images. Right: Reconstruction result

with major rotation.

Figure 8: Left: Raw input images. Right: Reconstruction result

with minor rotation.

yields the reconstructed image unrecognizable, protecting the

content of the input images.

Rotation. Figures 7 and 8 illustrate the reconstruction from

the RTF attack with major rotation and minor rotation being

used as augmentations from OASIS, respectively. We can see

that the reconstructed images are an overlap of the original

images and their respective rotations. As previously discussed

in Figure 5, major rotation is the most effective transformation

with the lowest PSNR for reconstruction, and we can see in

Figure 7 that the reconstructed images are unrecognizable.

Although the reconstruction with minor rotation has higher

PSNR, Figure 8 shows that it is still challenging to discern

the original images from the reconstructed ones.

Shearing. Figure 9 presents the reconstruction from the RTF

attack with shearing being used as augmentation for OASIS.

Figure 9: Left: Raw input images. Right: Reconstruction result

with shearing.



Figure 10: Left: Raw input images. Right: Reconstruction

result with horizontal flipping.

Figure 11: Left: Raw input images. Right: Reconstruction

result with vertical flipping.

We can see that the original image and its sheared version

overlap one another in the reconstruction, thereby hindering

the attacker from making out the original. This also explains

the low PSNR of shearing in Figure 5.

Flipping. Figures 10 and 11 illustrate the reconstruction from

the RTF attack with horizontal flipping and vertical flipping

being used as augmentation for OASIS, respectively. We

can see that they did not defend as well against the attack

compared to rotation and shearing. A linear combination of an

original image and its horizontally or vertically flipped version

only generates a reflection of the original, thus the original

image is still revealed in the reconstruction. Figures 10 and 11

show that some images are reflected in the reconstruction. This

means that flipping, when used alone, is not the best suited

transformation to defend against this class of attacks. However,

using flipping in combination with a strong transformation

such as rotation or shearing may yield better results.

Integrating Major Rotation and Shearing. As previously

discussed in Figure 6, an integration of multiple

transformations is needed to counter the CAH attack.

Figure 12 illustrates the reconstruction from CAH when both

major rotation and shearing are used in OASIS. It can be

seen that all the reconstructed images are unrecognizable and

it is impossible to identify any original image from them.

This behavior is consistent with the results in Figure 6.

In summary, major rotation and an integration of major

rotation and shearing result in the strongest defense against

the RTF and CAH attacks, respectively. Additionally, OASIS

has been shown to be scalable as it maintains low PSNR on

Figure 12: Left: Raw input images. Right: Reconstruction

result with an integration of major rotation and shearing.

reconstructed images for both small and large batch sizes.

We further note that it is not trivial to extract the original

image from such an overlap of multiple transformed images

without any prior knowledge about certain characteristics of

the original image. Although the server might know about

certain augmentations being used as a defense, it does not

know the specific parameters of the transformations (e.g.,

shearing intensity). Previous research has shown that, even

with a mild blurry image, it is very challenging to practically

reconstruct the original image without knowing the blurring

kernel and padding [33], while our defense uses far more

complicated and multiple transformations.

D. Gradient Inversion Attack on Linear Models.

In addition to the RTF [18] and CAH [17] attacks, we

evaluate our OASIS defense against a reconstruction attack

on linear models that was discussed in [18], [30]. The attack

assumes a very restrictive setting where the model is a single-

layer and is trained with a logistic regression loss function.

Furthermore, the images in each training batch D are assumed

to have unique labels. As users upload their local model

updates, the server simply inverts the gradient of each neuron

to reconstruct the training images.

Figure 13 illustrates the effectiveness of our OASIS defense

in reducing the reconstruction quality of this attack. Since

this is a single-layer model, adding transformed images to the

training batch guarantees that xt and X ′

t
activate the same

neuron, for all xt ∈ D. Hence, each reconstructed image

will be a linear combination of xt and X ′

t
. Moreover, such

a linear combination hides the content of the original image

(as discussed in Section IV). Therefore, Figure 13 shows that

all five transformations yield reconstruction with low PSNR

for both datasets and both batch sizes. We can also see that

rotation and shearing have better defensive performance than

flipping, corroborating our findings in Section IV.

E. Impact of OASIS on Model Performance

We measure the effect of using OASIS on the training

models as it alters the input dataset for training. For this

experiment, we train ResNet-18 models [34] on ImageNet and

CIFAR100, then compare the final testing accuracies when

training with and without OASIS. In particular, when training

with OASIS, we replace each training batch D with D
′ as
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(a) ImageNet. Left: B = 8. Right: B = 64
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Figure 13: PSNR values of images reconstructed by the gradient inversion attack on linear models w.r.t different transformations

and different batch sizes on ImageNet and CIFAR100. The green triangle denotes the average PSNR over all reconstructed

images. (WO = Without OASIS, MR = Major Rotation, mR = Minor Rotation, SH = Shearing, HFlip = Horizontal Flip, and

VFlip = Vertical Flip)

mentioned in Section III-B. The result for each transformation

is shown in Table I.

For ImageNet [31], we extract a subset of 10 classes: tench,

English springer, cassette player, chain saw, church, French

horn, garbage truck, gas pump, golf ball, and parachute3. Then,

we evaluate the model performance on classifying those 10

classes. Using our ResNet-18 architecture, we train for 100

epochs with an Adam optimizer at a learning rate of 0.001

and weight decay of 10−5.

With regard to CIFAR100 [32], we use its original clas-

sification task with 100 classes. Again, using our ResNet-18

architecture, we train for 120 epochs with an Adam optimizer

at a learning rate of 0.001 and weight decay of 10−2.

TABLE I: Comparing model accuracy (%) when training with

and without OASIS

Transformation
Dataset

ImageNet CIFAR100

Major Rotation 92.6 74.3

Minor Rotation 92.6 74.1

Shearing 95.4 73.7

Horizontal Flip 94.0 75.1

Vertical Flip 94.8 74.3

Major Rotation + Shearing 90.9 74.6

Without OASIS 94.8 75.2

Across all the transformations, OASIS does not impose

any major degradation on the model accuracy. The accuracy

is still maintained over 90% on ImageNet, and drops at

most 1.5% on CIFAR100. The reason for this is that image

augmentation methods are originally developed for improving

the generalization and reducing overfitness of ML models.

From this, the claims made in Section IV-A are confirmed.

V. RELATED WORK

Data Reconstruction Attacks. Reconstruction attacks have

been one of the main topics of interest in ML security and pri-

vacy. Over the decade, various kinds of reconstruction attacks

have been proposed, including class-wise representation-based

attacks [35]–[37] and optimization-based attacks [38]–[40].

3https://github.com/fastai/imagenette

Figure 14: Reconstruction result of RTF against the defense

in [41]. The content of the original images is revealed in the

reconstruction. Left: Raw input images. Right: Reconstruction.

However, in the context of FL, most of these attacks are not

able to exploit the full capability of dishonest servers. Recent

work [17], [18] devises a new class of active reconstruction

attacks that has been shown to significantly outperform prior

attacks by having the dishonest server manipulate the global

model parameters to its advantage. For that reason, this new

class of attack remains a critical and practical threat for FL.

Our work focuses on devising a general defense that effectively

protects user data against these attacks. From analyzing the

underlying principle of gradient inversion, our defense OASIS

is designed to minimize reconstruction quality.

Current Defenses. Presently, there is no existing defense that

can defend against active reconstruction attacks via dishonest

servers. In general, previous defenses utilize a threat model

with an honest-but-curious server that is substantially weaker

than our threat model which includes an actively dishonest

server. Several defense mechanisms have been proposed to

tackle data reconstruction attacks in general, but they remain

ineffective in countering the versions presented in this paper.

Through gradient compression and sparsification methods, the

work in [37], [38] pruned gradients with negligible magnitudes

to zero. Nonetheless, even in a case where the majority of the

gradients are pruned, data extracted is still recognizable [17].

Gao et al. [41] leverage image augmentation in their

proposed defense, but it can only tackle optimization-based



attacks. In particular, the defense replaces each image in the

dataset with a transformed image so that the objective function

of the attacks becomes more difficult to solve. However, it

fails to counter the active reconstruction attacks since their

principle (Section III-A) still applies: if an attacked neuron is

activated only by one transformed image, the image would be

reconstructed. To support this claim, we conduct an experiment

in which we launch the RTF attack [18] against this defense

and illustrate the resulting reconstruction in Figure 14 (we

adopt the implementation of [41] from https://github.com/

gaow0007/ATSPrivacy). As can be seen, the reconstruction

reveals the content of the original input images. Therefore,

defenses against optimization-based reconstruction attacks are

not robust against these active reconstruction attacks if they

do not address the attack principle of gradient inversion.

In [17], [18], the authors evaluate the use of DP as a defense,

and show that it imposes a major degradation on the model

accuracy and the reconstructed images are still recognizable.

Our OASIS defense is proven to effectively counter this new

class of attacks as it tackles the core attack principle. More-

over, OASIS imposes minimal impact on model performance.

VI. CONCLUSION

In this paper, we have revealed the key principle behind

active reconstruction attacks in Federated Learning (FL) and

have theoretically shown how to tackle this class of attacks.

With machine learning foundations in data preprocessing, we

have proposed OASIS, a novel method to augment images

in a way such that an actively dishonest server is unable

to memorize individual gradient parameters, but a linear

combination of an image and its augmented counterparts. In

doing so, we offset the active reconstruction attacks, rendering

reconstructions unrecognizable. To address FL’s promise of

maintaining model performance, we also demonstrate that the

expansion of a labeled dataset through augmentation preserves

and, in some cases, improves model performance. From our

evaluation, OASIS stands as a general, viable, and scalable

solution to truly promote and reinforce the guarantees of

FL. Although the use of image augmentation makes OASIS

confined to the image domain, we note that the attack principle

that we uncover in Section III-A is not limited to any data

types. Future work will focus on finding alternative methods

besides image augmentation to implement an effective defense

for tabular and textual data.
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