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Abstract—Federated Learning (FL) has garnered significant
attention for its potential to protect user privacy while enhancing
model training efficiency. For that reason, FL has found its
use in various domains, from healthcare to industrial engineer-
ing, especially where data cannot be easily exchanged due to
sensitive information or privacy laws. However, recent research
has demonstrated that FL protocols can be easily compromised
by active reconstruction attacks executed by dishonest servers.
These attacks involve the malicious modification of global model
parameters, allowing the server to obtain a verbatim copy of
users’ private data by inverting their gradient updates. Tackling
this class of attack remains a crucial challenge due to the strong
threat model. In this paper, we propose a defense mechanism,
namely OASIS, based on image augmentation that effectively
counteracts active reconstruction attacks while preserving model
performance. We first uncover the core principle of gradient
inversion that enables these attacks and theoretically identify the
main conditions by which the defense can be robust regardless
of the attack strategies. We then construct our defense with
image augmentation showing that it can undermine the attack
principle. Comprehensive evaluations demonstrate the efficacy of
the defense mechanism highlighting its feasibility as a solution.

Index Terms—Federated Learning, Privacy, Deep Neural Net-
works, Reconstruction Attack, Dishonest Servers

I. INTRODUCTION

In recent years, Federated Learning (FL) has developed into
a well-respected distributed learning framework that promotes
user privacy with high model performance. By design, FL
authorizes collaborative training of a global model between
millions of users without revealing any of their locally trained,
private data. It is an iterative protocol where, in each round, a
central server distributes the most up-to-date global model to
an arbitrary subset of users that train locally and communicate
their model updates back to the server. These model updates
include the gradients that are calculated based on the global
model and the local training data. The central server then
averages these model updates to form a new global model
to distribute in the next round.

With a disruptive privacy-centric design, FL has been re-
garded as an auspicious solution for applying machine learning
to the healthcare sector, particularly in scenarios where sharing
medical data between different sites is intractable due to strict
privacy protection policies such as the Health Insurance Porta-
bility and Accountability Act (HIPAA) [1] and General Data
Protection Regulation (GDPR) [2]. Numerous studies have
proposed FL for medical image analysis, utilizing data such
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as X-rays, MRIs, and PET scans from different hospital sites
while complying with privacy laws [3]-[8]. This innovative
approach is not limited to healthcare; FL is also making
significant strides in industrial engineering. For instance, in
urban environment image sensing, research has shown that
FL makes it easier to perform a time-series analysis of indus-
trial environment factors obtained from multiple sensors and
unmanned aerial vehicles (UAVs) across different companies
while maintaining confidential data privacy [9]-[12]. Beyond
these applications, FL is also stimulating advancements in
diverse domains such as control systems, autonomous vehicles,
and smart manufacturing [13]-[15], showcasing the versatility
and broad impact of a privacy-preserving learning framework.

However, the promise of privacy for clients in FL has
been constantly challenged [16]. Recent work [17]-[24] has
investigated a strong and practical threat model in which the
server can be actively dishonest, such that it is capable of
maliciously modifying the global model before dispatching it
to the users. This threat model has instigated several active
reconstruction attacks in which an FL server can perfectly
reconstruct some data points in a users’ training data [17],
[18], [24]. These attacks exploit a fundamental concept that
the gradients in the local model updates sent by users may
contain complete and memorized individual data points. These
gradients can later be inverted by the server to reveal such
data points. As an actively dishonest adversary, the server
can strategically manipulate the weights of the global model
to maximize the number of individual data points that can
be reconstructed from the users’ gradients. For that reason,
although the training data is said to never leave a users’ device,
it can still be reconstructed, thereby refuting the claim of
privacy-preservation in FL.

Given such a strong adversary, defending against this class
of active reconstruction attacks is challenging. Until now, a
mitigation approach for FL-based attacks focused on obfuscat-
ing the gradients via a Differential Privacy (DP) mechanism,
such as DPSGD [25], that formally bounds the privacy leakage
by adding calibrated noise to the gradients. However, previous
work [17], [18] has shown that to prevent an attacker from
discerning the content of reconstructed data, the user must
add a significant amount of DP noise to the gradients that
unfortunately degrades the overall model performance.

In this paper, we propose a new defense, OASIS, to Offset
this class of Active reconStructlon attackS. As there are differ-
ent strategies to manipulate the global model for conducting
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Figure 1: Overview design of OASIS. Top: Standard active reconstruction attack with malicious model modifications perfectly
reconstructing training samples. Bottom: OASIS in place with augmented data to defend the active reconstruction attacks. The
resulting reconstruction is a linear combination of images, effectively hiding the content of training samples. Note: Rotation

is not the only transformation within OASIS.

this attack, it is imperative to figure out how to tackle the
attack in principle so that the defense is robust regardless
of the manipulation strategies. We first analyze the attack
surface and determine the core vulnerability in the gradient
updates that enables the memorization of individual training
samples. By doing so, we generalize the existing attacks by
discovering the conditions under which a dishonest server
can conduct gradient inversion to reconstruct users’ data. We
then intuitively show how to undermine those conditions and
mitigate the impact of the attacks.

From the attack principle, we show that the users can
preprocess their training data in a way that prevents the
samples from being revealed via gradient inversion, effectively
countering this class of active reconstruction attacks. A mecha-
nism for such preprocessing is image augmentation [26], [27].
This includes adding augmented versions of an image, such
as rotated, flipped, and sheared counterparts to the training
data before computing the gradients. By doing this, OASIS
aims to have the gradients memorize a linear combination
of the original image and its augmented versions, instead of
memorizing any individual images. As a result, inverting these
gradients would reconstruct what appears to be an overlap of
multiple images, thereby effectively preventing the server from
discerning the content of the reconstructed images, as shown in
Figure 1. Since image augmentation is used to improve model
generalization [28], we safely maintain the performance of
FL with this countermeasure. Our analysis shows that OASIS
opens a new approach to protect users’ data from gradient
inversion without suffering the utility loss as in DP.
Contributions. Our key contributions are as follows:

o We analyze the attack surface and determine the key

principle behind gradient inversion that enables active

reconstruction attacks. From that, we theoretically show
how to tackle this class of attack, regardless of how the
attacker manipulates the global model parameters.

o Based on the attack principle, we present OASIS as a
suite of image augmentations. To our knowledge, this
mechanism stands as the first general and scalable de-
fense against active reconstruction attacks via gradient
inversion by actively dishonest servers in FL.

e We thoroughly analyze the effectiveness of OASIS
through experiments with respect to attack success rate
and augmentation type. We also show how OASIS main-
tains model performance.

Organization. The paper’s structure is as follows: Section II
provides a primer on FL, image augmentation, and the main
augmentations used. Section III presents the threat model,
attack principle, and our OASIS defense. Section IV presents
an in-depth experimental analysis and results supporting our
defense. Section V discusses related research on reconstruction
attacks and existing defenses. Section VI concludes the paper,
summarizing our key findings.

II. PRELIMINARIES

In this section, we summarize the FL process while also
describing the benefits of image augmentation during training.

A. Federated Learning

Depending on how training data is distributed among the
participants, there are two main versions of FL: horizontal
and vertical. In this paper, we focus on a horizontal setting
in which different data owners hold the same set of features
but different sets of samples. We denote f,, : R — R* as a
k-class neural network model that is parameterized by a set of



weights w. The goal of f,, is to map a data point z € R to
a vector of posterior probabilities f,,(x;) = ) over k classes.

FL is an iterative learning framework for training a global
model f,, on decentralized data owned by N different users
{u; }jvzl A central server coordinates the training of f,, by
iteratively aggregating gradients computed locally by the users.
Let t € [0, be the current iteration of the FL protocol, and
w? be the set of parameters at iteration ¢. At iteration ¢ = 0, the
global w? is initialized at random by a central server. At every
iteration ¢, a subset of M < N users is randomly selected
to contribute to the training. Each of the selected users u;
obtains f,,¢« from the central server and calculates the gradients
GY% for f, using their local training batch D;. In specific,
G% = Vi L(Dj,w') where L is a loss function. Then, each
u,; uploads its gradients to the central server. With a learning
rate 1), the server averages these gradients to update the global
model’s parameters as follows:

M
1
GH:KEE:Gy wt = wt — nG? (1)
j=1

The training continues until f,,: converges.

B. Image Augmentation

Image augmentation is a very useful technique in deep
learning that allows for the expansion of a training dataset with
artificially generated data. Given a dataset of images, augment-
ing each image using rotation, shearing, or flipping yields a
new expanded dataset for training. This added preprocessing
helps increase model generalization and avoid overfitting by
altering the makeup of data and adding it to the training set
[26], [27]. With more data to train, the model is less prone to
memorize the data, but generalize the pattern between the data.
In turn, increased model generalization fends to lead to higher
model performance. Image augmentation has been widely used
in datasets like ImageNet [29] and CIFAR-10 [28].

Our work focuses on three main transformations: rotation,
shearing, and flipping. In each augmentation scenario, we
consider a 2D image I where I(i,j) denotes the pixel value
at coordinates (i,7). Rotation includes tilting an image’s
pixels by an angle 6. We define major rotation angles as
the maximum degrees of each respective quadrant in an x-y
coordinate system (i.e., 90°, 180°, and 270°). Minor rotation
angles are described as any angle < 90°. More formally, an
image I’ can be constructed from I as follows:

I'(i,7) = I(icos(0)—jsin(0),isin(0)+j cos(0)) Vi,j (2)

where 6 is the angle in which an image is rotated.

Flipping includes reflecting an image on its x-axis (vertical
flip) or its y-axis (horizontal flip). A horizontally flipped image
I’ can be constructed from I as follows:

Similarly, a vertically flipped image I’ can be constructed from
I as follows:

I'(i,§) = 1(i,—j) Vi,j “4)

Shearing is projecting a point or set of points within an
image in a different direction. A sheared image I’ can be
constructed from I as follows:

I'(i,5) = I(i + g, j)
where p is the shear factor controlling the shearing intensity.

III. OASIS — A PROPOSED DEFENSE

This section describes our proposed defense, OASIS, against
active reconstruction attacks via gradient inversion in FL. In
order to devise an effective defense, we analyze the attack
surface to determine the core vulnerability of the system and
how the attacks exploit it in principle. We then propose OASIS
to prevent such exploitation, effectively tackling this class of
attacks, regardless of how they are implemented.

Vi, j (&)

A. Generalizing Active Reconstruction Attacks via Gradient
Inversion

Threat Model. We examine a server that is dishonest and aims
to reconstruct the private data of a targeted user. As discussed
in previous work [17], [18], a dishonest server is capable
of making malicious modifications to w before dispatching
it to the users at any iterations. These modifications can
include changing and/or adding model parameters. However,
the modification should be minimal to avoid detection.

For this attack, the adversary places a malicious fully-

connected layer consisting of n attacked neurons in the neural
network model f,,, so that inverting the gradients of these
neurons would recover the users’ data. Generally, the attack
becomes less effective when the layer is placed deeper in
the neural network. For the purpose of devising a robust
defense, we consider a strong adversary who can place the
malicious layer directly right after the input layer. The layer
is parameterized by a weight matrix W € R™*? and a bias
vector b € R™. Denoting D = {z; € Rd}jB:1 as the local
training data of a targeted user where B is the batch size, the
goal of the attack is to reconstruct the data points in D via
the malicious layer. Our defense, OASIS, aims to minimize
the quality of reconstruction, regardless of how the malicious
layer (W, b) is determined by the adversary.
Attack Vector Analysis. We aim to generalize state-of-the-art
active reconstruction attacks by deducing their core principle.
Suppose that the malicious layer is updated based on one
single-input x; € R%, for each neuron i, the gradients of the
loss with respect to the weights, and biases will be

0Ly 0L
oW, b,

where L, is shorthand for £(x¢, (W,b)). All the gradients

oL, oL\ "
oW, b ) J .,

are then uploaded to the server. As shown in [17], [18], [30],
with a ReLU activation function, the server can perfectly
reconstruct x; by dividing the gradients as follows:

LN\ T AL,
(8@) ow, Lt (6)




where ¢ is the index of a neuron that is activated by the
input x; and %—i‘ = (. In other words, knowing the gradients
(gvﬁvt , %ﬁt) of a particular input sample x; allows perfect
reconstruction of that sample via gradient inversion.

However, in practical FL, when the malicious layer is
updated based on a batched input D = {xj}le where
B > 1, all derivatives are summed over the batch dimension.
In particular, the gradients of the malicious layer that the server
receives will instead be:

n

i=1
When the server performs the same inversion computation as
Equation (6) on this summed gradient, it will reconstruct
5 -1
oL;
0b; ,

j=1 J

Eoc;
oW,

which is proportional to a linear combination of the samples
that activated neuron ¢. The coefficient for each sample in
the linear combination depends on how much the sample
contributes to the loss £. Reconstructing such a combination
may not be able to reveal the content of each individual input
sample, thereby hindering the impact of the attack.

To circumvent the problem of summed gradients, the CAH
attack proposed by [17] chooses the parameters for (W, b) that
maximize the likelihood that each attacked neuron is activated
by only one sample in the batch. The rationale behind this is
that if ¢ is activated only by one data point x;, then

Sooc; GoL;\ (9L, oL

Lo W, 4= 9b; | \OW, 0Ob;

Jj=1 Jj=1
since g‘f[} = 0 and %ﬁj = 0 for data points xz;(j # t) that
do not activate the neuron ¢. After obtaining (g‘f[}, , %i}" ), the

server can reconstruct x; by Equation (6).

On the other hand, [18] proposes the RTF attack in which
the reconstruction can be carried out by considering the differ-
ence between two successive neurons’ gradients, with respect
to some specific parameters (W, b). Specifically, the server can
strategically choose (W, b) so that, given the gradients

ZB: OL; 0L,

= ow; 7_j:1 0b;
of neuron ¢ and

Eoor;, & oL

= Wiy’ = 0bit1

of neuron ¢ + 1, the difference between them can reveal the
gradients ( g‘f[; , %ﬁ_‘) of a particular sample x, that activates
neuron ¢. With this, Equation (6) can perfectly reconstruct that

sample x;.

From this analysis, we can observe the underlying principle

. : ALy OLy
of these attacks: as long as the gradients W ot of

one individual sample z; can be extracted from the summed
gradients

n

ZoL; oL,
o ow; = 0b; .
with %ﬁf # 0, that sample x; can be perfectly reconstructed

by gradient inversion via Equation (6). Therefore, the attack
strategies specifically involve choosing (W, b) that optimizes
the chance of extraction, thus improving reconstruction quality.
Defense Intuition. By this principle, to effectively defend
against such attacks, it is essential to prevent the leaking of any
individual data points’ gradients from the summed gradients,
regardless of how the parameters (W, b) are chosen. With this
in mind, we establish the following proposition:

Proposition 1. Given a sample xy € D, if there exists an
x} € D such that x; and x; activate the same set of neurons
in the malicious layer, then the adversary cannot extract

oL, oL,
oW, ob;

with %‘g_‘ # 0 from

5 or
2w,

n

i~ Ob;
Jj=1
Proof. There are two cases in which the adversary is able to

oL, DL S 0Ly
RITR 6bi> with Zzt 7 0 from

i=1

obtain (

" 0L, 0L,
— OW; “— Ob;
j=1 j=1

i=1
(1) There exists an ¢ € {1,2,...,n} s.t.

[ OLy 0Ly
~ \ oW, b
This means that the neuron ¢ is activated only by z;, thus
contradicting the fact that z; and z} activate the same set of
neurons.

(2) There exists a subset D C D \ z; such that the adversary
can determine

B oL, & oL,
L QW,;" £~ O,
Jj=1 =1

oL; oL;
ow;’ x;D ob;

z;€D
and
DD S
;] 0b;
z;E€EDUx, z;€DUx,
from

n




To be able to obtain

0L ;
> W

z;€EDUx, v

oL,
ob;

r;€DUx,

it must be that z; activates neuron 4. This also means that
activates neuron ¢ (since x; and x} activate the same set of
neurons) and that z; € D. But in order to get

oL; oL;
< OW," o= O

T;€

there must be a neuron that is activated by samples in D,
which includes z}, and is not activated by x;. This contradicts
the fact that z; and «} activate the same set of neurons. [J

Intuitively, suppose that for every z; € D, we find a data
point z; such that z; and z; always activate the same set of
neurons, and then we add z} to D. From Proposition 1, it can
be inferred that the best that the attacker can do is extracting

0L, | 0L, L, 0L
ow, 0w, ob;  0Ob;
from the summed gradients
o OL; N OL
= ow; = 0b;

i=1
Hence, it could only reconstruct a linear combination of z;
and x}. If the linear combination does not reveal the content
of x,, then the proposed defense is successful.

B. Image Augmentation as a Defense

From the previous attack principle and defense intuition,
we devise a robust defense mechanism as follows. For every
x¢ € D, we find a set of data points X such that x; and every
a2’ € X, activate the same set of neurons. Then, we construct
a new local training dataset:

B
ﬁ:DuUXg (7)
t=1
If D is labeled then the data points in X, are given the
same label as ;. The user will use D’ instead of D for
the FL process, so that an active reconstruction attack can
only reconstruct a linear combination of z; and 2’ € Xj.
This mechanism is illustrated in Figure 1. The defense is
considered effective if it satisfies two conditions: (1) using
D’ does not heavily reduce the training performance, and (2)
a linear combination of x; and =’ € X does not reveal the
content of x;.

To find X7 that activates the same set of neurons as x;, we
propose using image augmentation [27] where X contains the
transformations of x;, such as rotation, shearing, or flipping.
As noted in [28], image augmentation can be used to teach a
model about invariances in the data domain. For that reason,
training with image augmentation makes the model invariant
to the transformations of images. In other words, the model

&
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Figure 2: Example visual representation of PSNR values.
Images with lower PSNR tend to have worse reconstruction
quality compared to images with higher PSNR.

should exhibit similar behavior (i.e., similar patterns of neuron
activations) given different transformations of an image. As a
result, z; and images in X, are more likely to activate the
same set of neurons. Our experiments in Section 4, especially
Figures 7-12, further support this claim by showing that the
reconstructed image is a linear combination of the transformed
and the original, which is caused by z; and X activating the
same set of neurons.

Furthermore, using image augmentation as a defense also
satisfies the above-mentioned two conditions. First, using
image augmentation maintains the training performance as it
was originally designed to improve model generalization and
reduce overfitting. Second, as we shall demonstrate in Section
4, a linear combination of an image x; and its transformations
yields an unrecognizable image, thereby protecting the original
content of x;.

IV. EXPERIMENTAL ANALYSIS

This section evaluates the performance of our defense
with various experiments to shed light on how OASIS can
offset state-of-the-art active reconstruction attacks while still
maintaining the model training performance.

A. Experimental Settings

We conduct two state-of-the-art active reconstruction at-
tacks, namely Robbing the Fed (RTF) [18] and Curious
Abandon Honesty (CAH) [17], against our OASIS defense on
two datasets ImageNet [31] and CIFAR100 [32]. For these
attacks, we adopt the implementation from https://github.com/
JonasGeiping/breaching. To capture how OASIS mitigates the
success rate of the attacks, similar to previous work [18],
[30], we use the Peak Signal-to-Noise Ratio (PSNR) value
to measure the quality of a reconstructed image with respect
to the original image. Higher PSNR values indicate better
reconstruction quality, thus higher attack success rates. Figure
2 illustrates a visual representation of PSNR values. Our goal
is to minimize the PSNR values of reconstructed images.
Furthermore, we visually compare the reconstructed images
when using OASIS against their respective original images to
demonstrate how OASIS protects the content of the dataset.
Finally, we measure model performance for each augmentation
method on each dataset. OASIS is expected to impose a
negligible trade-off on the performance of training models.
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Figure 6: PSNR values of images reconstructed by the CAH attack w.r.t different transformations and different batch sizes on
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SH = Shearing, MR = Major Rotation, and MR + SH = Major Rotation + Shearing)

For a fair evaluation, the attacks are first configured to have
the highest success rate. As discussed in the threat model
in Section III-A, the malicious layer is appended right after
the input layer. Furthermore, the attack performance depends
on the number of attacked neurons n, and the batch size B.
Generally, it is straightforward that the reconstruction attacks
perform worse with larger batch sizes. We experiment with two
batch sizes: B = 8 for evaluating against strong attacks, and
B = 64 for a more realistic training configuration. We conduct
preliminary experiments to find the hyperparameters that result
in the strongest attacks. Specifically, we test the attacks with
various batch sizes and numbers of attacked neurons, and re-
port the average PSNR value over the images reconstructed by
RTF and CAH in Figures 3 and 4, respectively. As previously
stated, the reconstruction attacks perform worse with larger
batch sizes, and that behavior is illustrated in Figures 3 and 4.
For each batch size, we choose the number of attacked neurons
n that yields the highest average PSNR.

As can be seen in Figure 3, the RTF attack’s optimal settings
for ImageNet with a batch of 8 occur with 900 attacked
neurons yielding an average PSNR value of 127.9 dB. The
optimal settings for a batch of 64 occur with 800 attacked
neurons yielding an average PSNR value of 91.63 dB. For
CIFAR100, we see the optimal settings for a batch of 8 and
64 are 500 and 600 attacked neurons yielding average PSNR
values of 147.72 dB and 121.72 dB, respectively.

We test for the optimal settings of the CAH attack in

a similar manner in Figure 4. For ImageNet, a batch of 8
with 100 attacked neurons produces an average PSNR value
of 147.93 dB and a batch of 64 with 700 attacked neurons
produces an average PSNR value of 97.38 dB. CIFAR100
was treated the same as before. A batch of 8 along with 300
attacked neurons results in an average PSNR value of 70.54
dB while a batch of 64 with 600 attacked neurons yields an
average PSNR value of 40.02 dB.

OASIS Implementation. As for constructing D’ in Equation
7, we test with various methods of image augmentation,
including rotation, shearing, and flipping, and observe how
each of them impacts the performance of OASIS. We describe
how the transformations are implemented as follows. In the
case of major rotation, every image in D was rotated three
different times at angles of 90°, 180°, and 270°, following
Equation 2, to generate three transformed images for D’. For
minor rotation, we rotate each image three different times at
angles of 30°,45°,60°.

For flipping, we conduct both horizontal and vertical flip-
ping using Equations 3 and 4, respectively. In regard to
shearing, we follow Equation 5 and shear every image in
D with three different shear factors of 0.55, 1.0, and 0.9 to
generate three transformed images for D’. Each transformation
is implemented with the official PyTorch Vision library! and
the Kornia library?.

Vhttps:// github.com/pytorch/vision. git
2https:// github.com/kornia/kornia.git



B. OASIS Defensive Performance

Figure 5 depicts the effectiveness of our defense in regard
to reducing the reconstruction quality of the RTF attack. Five
transformations are used in this experiment, and it can be seen
from Figure 5 that each of them substantially reduce the PSNR
values of the reconstructed images across all testing scenarios.
Specifically, without OASIS, most of the images reconstructed
by the RTF attack have PSNR ranging from 130 dB to 145
dB at batch size 8, indicating perfect reconstruction. Major
rotation is the most robust transformation such that by adding
rotations at major angles to each image in D, the resulting
reconstruction by RTF only yields PSNR from 15 dB to 20
dB. Thus, the content of each image in D remains hidden.

To understand how the major rotation can invalidate the
RTF attack, we note that the activation of attacked neurons
in RTF depends on a scalar quantity of the input, such as the
average of pixel values [18]. Major rotation imposes minimal
change to this quantity (it does not change the average of
pixel values). Hence, using this transformation for building
X/ ensures that x; and X activate the same set of neurons,
for all x; € D. Furthermore, as we shall see in Section IV-C,
a linear combination of an image and its rotations yields
an unrecognizable image. We also note that flipping does
not change the average of pixel values either, however, this
transformation does not necessarily result in unrecognizable
reconstruction (as shown later in Section IV-C), thus its PSNR
is slightly higher than that of major rotation.

Figure 6 illustrates the performance of OASIS against
the CAH attack. With batch size 64, we observe a similar
result as the previous experiment against RTF in which the
major rotation keeps the PSNR of reconstructed images low.
However, for batch size 8, the major rotation fails to prevent
many images from being perfectly reconstructed. The same
behavior is exhibited through shearing. The core issue here
is that these transformations alone are not enough to prevent
several z; € D from being the sole activation of certain
attacked neurons in CAH, thus the content of those x; is
revealed through reconstruction.

To tackle this issue, we attempt to integrate multiple trans-
formations to increase the likelihood that z; and some images
in X] activate the same set of neurons in the malicious layer.
In other words, the set X, is constructed by more than one
transformation. As shown in Figure 6, we experiment with
integrating the two most robust transformations: major rotation
and shearing. This integration is able to render the reconstruc-
tion by CAH unrecognizable with low PSNR. Specifically,
with ImageNet (Figure 6a), it significantly decreases the PSNR
of reconstructed images from above 125 dB to below 25 dB.
The same effect is also exhibited with CIFAR100 (Figure 6b).

C. Visual Reconstructions

We visually demonstrate the resulting reconstruction from
the attacks. The goal is to show that, with our OASIS defense,
the attacks indeed reconstruct a linear combination of an image
and its transformations, effectively confirming the claims in
Section III-B. Moreover, it shows that the linear combination
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Figure 7: Left: Raw input images. Right: Reconstruction result

with major rotation.
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Figure 8: Left: Raw input images. Right: Reconstruction result
with minor rotation.

yields the reconstructed image unrecognizable, protecting the
content of the input images.

Rotation. Figures 7 and 8 illustrate the reconstruction from
the RTF attack with major rotation and minor rotation being
used as augmentations from OASIS, respectively. We can see
that the reconstructed images are an overlap of the original
images and their respective rotations. As previously discussed
in Figure 5, major rotation is the most effective transformation
with the lowest PSNR for reconstruction, and we can see in
Figure 7 that the reconstructed images are unrecognizable.
Although the reconstruction with minor rotation has higher
PSNR, Figure 8 shows that it is still challenging to discern
the original images from the reconstructed ones.

Shearing. Figure 9 presents the reconstruction from the RTF
attack with shearing being used as augmentation for OASIS.
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Figure 9: Left: Raw input images. Right: Reconstruction result
with shearing.
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Figure 10: Left: Raw input images. Right: Reconstruction
result with horizontal flipping.
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Figure 11: Left: Raw input images. Right: Reconstruction
result with vertical flipping.

We can see that the original image and its sheared version
overlap one another in the reconstruction, thereby hindering
the attacker from making out the original. This also explains
the low PSNR of shearing in Figure 5.

Flipping. Figures 10 and 11 illustrate the reconstruction from
the RTF attack with horizontal flipping and vertical flipping
being used as augmentation for OASIS, respectively. We
can see that they did not defend as well against the attack
compared to rotation and shearing. A linear combination of an
original image and its horizontally or vertically flipped version
only generates a reflection of the original, thus the original
image is still revealed in the reconstruction. Figures 10 and 11
show that some images are reflected in the reconstruction. This
means that flipping, when used alone, is not the best suited
transformation to defend against this class of attacks. However,
using flipping in combination with a strong transformation
such as rotation or shearing may yield better results.
Integrating Major Rotation and Shearing. As previously
discussed in Figure 6, an integration of multiple
transformations is needed to counter the CAH attack.
Figure 12 illustrates the reconstruction from CAH when both
major rotation and shearing are used in OASIS. It can be
seen that all the reconstructed images are unrecognizable and
it is impossible to identify any original image from them.
This behavior is consistent with the results in Figure 6.

In summary, major rotation and an integration of major
rotation and shearing result in the strongest defense against
the RTF and CAH attacks, respectively. Additionally, OASIS
has been shown to be scalable as it maintains low PSNR on

Figure 12: Left: Raw input images. Right: Reconstruction
result with an integration of major rotation and shearing.

reconstructed images for both small and large batch sizes.
We further note that it is not trivial to extract the original
image from such an overlap of multiple transformed images
without any prior knowledge about certain characteristics of
the original image. Although the server might know about
certain augmentations being used as a defense, it does not
know the specific parameters of the transformations (e.g.,
shearing intensity). Previous research has shown that, even
with a mild blurry image, it is very challenging to practically
reconstruct the original image without knowing the blurring
kernel and padding [33], while our defense uses far more
complicated and multiple transformations.

D. Gradient Inversion Attack on Linear Models.

In addition to the RTF [18] and CAH [17] attacks, we
evaluate our OASIS defense against a reconstruction attack
on linear models that was discussed in [18], [30]. The attack
assumes a very restrictive setting where the model is a single-
layer and is trained with a logistic regression loss function.
Furthermore, the images in each training batch D are assumed
to have unique labels. As users upload their local model
updates, the server simply inverts the gradient of each neuron
to reconstruct the training images.

Figure 13 illustrates the effectiveness of our OASIS defense
in reducing the reconstruction quality of this attack. Since
this is a single-layer model, adding transformed images to the
training batch guarantees that x; and X, activate the same
neuron, for all z; € D. Hence, each reconstructed image
will be a linear combination of z; and X;. Moreover, such
a linear combination hides the content of the original image
(as discussed in Section IV). Therefore, Figure 13 shows that
all five transformations yield reconstruction with low PSNR
for both datasets and both batch sizes. We can also see that
rotation and shearing have better defensive performance than
flipping, corroborating our findings in Section IV.

E. Impact of OASIS on Model Performance

We measure the effect of using OASIS on the training
models as it alters the input dataset for training. For this
experiment, we train ResNet-18 models [34] on ImageNet and
CIFAR100, then compare the final testing accuracies when
training with and without OASIS. In particular, when training
with OASIS, we replace each training batch D with D’ as



70| — 50| mg
60| T
50 .140
3 40 Z30
30 o
. 20 5
NN Ll ko
10 = @ == é =g T % T

WO MR mR SH HFlip VFlip WO MR mR SH HFlip VFlip

(a) ImageNet. Left: B = 8. Right: B = 64

701 & 501 2y
60| ° T
40
nﬁso [
Z 40 Z30 o
a a o
3° 20 iii%*
20 s 'y ry
W o e@mE o TFT

WO MR mR SH HFlip VFlip WO MR mR SH HFlip VFlip

(b) CIFAR100. Left: B = 8. Right: B = 64

Figure 13: PSNR values of images reconstructed by the gradient inversion attack on linear models w.r.t different transformations
and different batch sizes on ImageNet and CIFAR100. The green triangle denotes the average PSNR over all reconstructed
images. (WO = Without OASIS, MR = Major Rotation, mR = Minor Rotation, SH = Shearing, HFlip = Horizontal Flip, and

VFlip = Vertical Flip)

mentioned in Section III-B. The result for each transformation
is shown in Table I.

For ImageNet [31], we extract a subset of 10 classes: tench,
English springer, cassette player, chain saw, church, French
horn, garbage truck, gas pump, golf ball, and parachute®. Then,
we evaluate the model performance on classifying those 10
classes. Using our ResNet-18 architecture, we train for 100
epochs with an Adam optimizer at a learning rate of 0.001
and weight decay of 1075,

With regard to CIFARI100 [32], we use its original clas-
sification task with 100 classes. Again, using our ResNet-18
architecture, we train for 120 epochs with an Adam optimizer
at a learning rate of 0.001 and weight decay of 102

TABLE I: Comparing model accuracy (%) when training with
and without OASIS

Transformation Dataset
ImageNet  CIFAR100

Major Rotation 92.6 74.3
Minor Rotation 92.6 74.1
Shearing 95.4 73.7
Horizontal Flip 94.0 75.1
Vertical Flip 94.8 74.3
Major Rotation + Shearing 90.9 74.6
Without OASIS 94.8 75.2

Across all the transformations, OASIS does not impose
any major degradation on the model accuracy. The accuracy
is still maintained over 90% on ImageNet, and drops at
most 1.5% on CIFAR100. The reason for this is that image
augmentation methods are originally developed for improving
the generalization and reducing overfitness of ML models.
From this, the claims made in Section IV-A are confirmed.

V. RELATED WORK

Data Reconstruction Attacks. Reconstruction attacks have
been one of the main topics of interest in ML security and pri-
vacy. Over the decade, various kinds of reconstruction attacks
have been proposed, including class-wise representation-based
attacks [35]-[37] and optimization-based attacks [38]-[40].

3https://github.com/fastai/imagenette
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Figure 14: Reconstruction result of RTF against the defense
in [41]. The content of the original images is revealed in the
reconstruction. Left: Raw input images. Right: Reconstruction.

However, in the context of FL, most of these attacks are not
able to exploit the full capability of dishonest servers. Recent
work [17], [18] devises a new class of active reconstruction
attacks that has been shown to significantly outperform prior
attacks by having the dishonest server manipulate the global
model parameters to its advantage. For that reason, this new
class of attack remains a critical and practical threat for FL.
Our work focuses on devising a general defense that effectively
protects user data against these attacks. From analyzing the
underlying principle of gradient inversion, our defense OASIS
is designed to minimize reconstruction quality.
Current Defenses. Presently, there is no existing defense that
can defend against active reconstruction attacks via dishonest
servers. In general, previous defenses utilize a threat model
with an honest-but-curious server that is substantially weaker
than our threat model which includes an actively dishonest
server. Several defense mechanisms have been proposed to
tackle data reconstruction attacks in general, but they remain
ineffective in countering the versions presented in this paper.
Through gradient compression and sparsification methods, the
work in [37], [38] pruned gradients with negligible magnitudes
to zero. Nonetheless, even in a case where the majority of the
gradients are pruned, data extracted is still recognizable [17].
Gao et al. [41] leverage image augmentation in their
proposed defense, but it can only tackle optimization-based



attacks. In particular, the defense replaces each image in the
dataset with a transformed image so that the objective function
of the attacks becomes more difficult to solve. However, it
fails to counter the active reconstruction attacks since their
principle (Section III-A) still applies: if an attacked neuron is
activated only by one transformed image, the image would be
reconstructed. To support this claim, we conduct an experiment
in which we launch the RTF attack [18] against this defense
and illustrate the resulting reconstruction in Figure 14 (we
adopt the implementation of [41] from https://github.com/
gaow0007/ATSPrivacy). As can be seen, the reconstruction
reveals the content of the original input images. Therefore,
defenses against optimization-based reconstruction attacks are
not robust against these active reconstruction attacks if they
do not address the attack principle of gradient inversion.

In [17], [18], the authors evaluate the use of DP as a defense,
and show that it imposes a major degradation on the model
accuracy and the reconstructed images are still recognizable.
Our OASIS defense is proven to effectively counter this new
class of attacks as it tackles the core attack principle. More-
over, OASIS imposes minimal impact on model performance.

VI. CONCLUSION

In this paper, we have revealed the key principle behind
active reconstruction attacks in Federated Learning (FL) and
have theoretically shown how to tackle this class of attacks.
With machine learning foundations in data preprocessing, we
have proposed OASIS, a novel method to augment images
in a way such that an actively dishonest server is unable
to memorize individual gradient parameters, but a linear
combination of an image and its augmented counterparts. In
doing so, we offset the active reconstruction attacks, rendering
reconstructions unrecognizable. To address FL’s promise of
maintaining model performance, we also demonstrate that the
expansion of a labeled dataset through augmentation preserves
and, in some cases, improves model performance. From our
evaluation, OASIS stands as a general, viable, and scalable
solution to truly promote and reinforce the guarantees of
FL. Although the use of image augmentation makes OASIS
confined to the image domain, we note that the attack principle
that we uncover in Section III-A is not limited to any data
types. Future work will focus on finding alternative methods
besides image augmentation to implement an effective defense
for tabular and textual data.
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