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Abstract—A common failure mode for policies trained with
imitation is compounding execution errors at test time. When the
learned policy encounters states that are not present in the expert
demonstrations, the policy fails, leading to degenerate behavior.
The Dataset Aggregation, or DAgger approach to this problem
simply collects more data to cover these failure states. However,
in practice, this is often prohibitively expensive. In this work, we
propose Diffusion Meets DAgger (DMD), a method that reaps
the benefits of DAgger but without the cost, for eye-in-hand
imitation learning problems. Instead of collecting new samples
to cover out-of-distribution states, DMD uses recent advances
in diffusion models to synthesize these samples. This leads to
robust performance from few demonstrations. We compare DMD
against behavior cloning baseline across four tasks: pushing,
stacking, pouring, and hanging a shirt. In pushing, DMD achieves
80% success rate with as few as 8 expert demonstrations, where
naive behavior cloning reaches only 20%. In stacking, DMD
succeeds on average 92% of the time across 5 cups, versus 40%
for BC. When pouring coffee beans, DMD transfers to another
cup successfully 80% of the time. Finally, DMD attains 90%
success rate for hanging shirt on a clothing rack.

I. INTRODUCTION

Imitation learning is an effective way to train robots for new
tasks. However, even when testing policies in environments
similar to those used for training, imitation learning suffers
from the well-known Compounding Execution Errors problem:
small errors made by the policy lead to out-of-distribution
states, causing the robot to make even bigger errors (com-
pounding errors) [56].

One solution to this problem is via manual collection of
expert-labeled data on states visited by the learner, a strategy
popularly known as Dataset Aggregation or DAgger [56].
However, DAgger [56] is challenging to put into practice:
it requires an expert operator to supervise the robot dur-
ing execution and guide it to recover from failures. Many
alternatives have been proposed, e.g. [35, 36], but they all
require collecting more expert data. In this paper, we pursue an
alternate paradigm: automatically generating observations and
action labels for out-of-distribution states. By replacing data
collection with data creation, we improve the sample efficiency
of imitation learning. In fact, data creation was Pomerleau’s
original solution to this problem [52]. We revisit, improve,
and automate his solution from 30 years ago using modern
data-driven image generation methods.

We target imitation learning problems in the context of eye-
in-hand setups (i.e. setups where images come from a camera
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Fig. 1: Eye-in-hand Imitation learning with DMD: A common failure mode
in an imitation learning setting is the problem of poor generalization due to
compounding execution errors at test time as shown in (a). This can be solved
by collecting more expert data to cover these off-trajectory states as shown
in (b) however, this is an expensive process. Our proposed approach is to
synthesize data instead of collecting it (c). Magenta arrow represents small
perturbation (�p) to the trajectory. Cyan arrow represents label (ãt) for this
out-of-distribution observation. We use a state-of-the-art diffusion model to
take images It from expert demonstrations (d, left) and generate realistic off-
trajectory images Ĩt (d, right). Note the distance between the grabber and
the apple denoted by the green line. This synthetic data augments expert
demonstrations for policy learning, leading to more robust policies.

mounted on the robot hand), which are becoming increasingly
more popular [64, 78, 85]. Given a behavior cloning trajectory
⌧ collected from an expert, we design generative models to
synthesize off-distribution states and compute corresponding
action labels. For example, in the object pushing applica-
tion shown in Figure 1, this corresponds to generating off-
center views of the object from the good expert trajectory ⌧ .
Specifically, we learn a function f(It,�p) that synthesizes the
observation Ĩt at a small perturbation �p to the trajectory at
time step t. �p lets us compute the ground truth action label ãt
for this out-of-distribution observation. We augment the expert
demonstration ⌧ with multiple off-distribution samples (Ĩt, ãt)
along the trajectory.

As we have access to the entire trajectory, one option is to

https://sites.google.com/view/diffusion-meets-dagger


realize f(It,�p) using NeRFs [48, 86]. While NeRFs work
very well for view synthesis in computer vision, we find
they are not suitable for the synthesis task at hand because
of the inevitable deformations in the scene as the gripper
manipulates the objects. We thus switch to using diffusion
models, and this change leads to high-quality image synthesis
even when the scene deforms during manipulation. Computing
action labels for these samples present yet another challenge
(Figure 5). The labels should align with progress towards the
goal. We thus investigate different schemes for sampling �p’s
and computing action labels ãt.

We present experiments that evaluate the aforementioned
design choices in developing a data creation framework to
supercharge eye-in-hand imitation learning. The framework
is tested in four settings: non-prehensile pushing, stacking,
pouring, and hanging a shirt. Across all tasks, we see a
sizeable improvement over vanilla behavior cloning, demon-
strating the effectiveness of our framework Diffusion Meets
DAgger (DMD). For the task of non-prehensile pushing, DMD
achieves 80% success rate given only 8 expert demonstrations,
while behavior cloning (BC) reaches only 20%. It also out-
performs a NeRF-based augmentation method [86] by 50%.
For the task of stacking cups on a box, DMD achieves a
success rate of 93% on average across three training cups,
and 85% success for two unseen cups. In comparison, BC only
reaches 36% and 45% success rates, respectively. For the task
of pouring coffee beans into a cup, DMD succeeds 80% of
the time, while BC falls short at 30%. Finally, DMD achieves
a success rate of 90% for the hanging shirt task, improving
upon the 20% success rate for BC.

II. RELATED WORK

A. Imitation Learning

Behavior cloning (BC), or training models to mimic expert
behavior, has been a popular strategy to train robots over the
last many decades [51, 52, 58], and has witnessed renewed
interest in recent times [29, 88]. [56] theoretically and empir-
ically demonstrate the compounding execution error problem
(small errors in the learner’s predictions steer the agent into
out-of-distribution states causing the learner to make even
bigger errors) and propose a Dataset Aggregation (DAgger)
strategy to mitigate it.

Over the years, researchers have sought to improve the
basic BC and DAgger recipe in several ways [4, 27]. [19,
62, 64, 78, 85] devise ways to ease and scale-up expert data
collection, while [84] design ways to collect demonstrations
in virtual reality. [35, 36] devise ways to simplify DAgger
data collection. [14, 61] model the multiple modes in expert
demonstrations, while [49] employ a non-parametric approach.
Researchers have also shown the effectiveness of pre-trained
representations for imitation learning [49, 75]. [13, 46, 82, 86]
employ image and view synthesis models to synthetically aug-
ment data. Complementary to our work, [11, 46, 82] focus on
generalization across objects via semantic data augmentation
by adding, deleting and editing objects in the scene.

[18, 32, 50, 86] pursue synthetic data augmentation to ad-
dress the compounding execution error problem. [18, 32, 50]
conduct these augmentation in low dimensional state spaces.
[50] develops a principled way to sample these augmentations.
Closest to our work, Zhou et al. [86]’s SPARTN model train
NeRF’s on demonstration data to synthesize out-of-distribution
views. NeRF assumes a static scene. Thus, SPARTN can’t
reliably synthesize images when the scene undergoes deforma-
tion upon interaction of the robot with the environment. Our
use of diffusion models to synthesize images gets around this
issue and experimental comparison to SPARTN demonstrate
the effectiveness of our design choice.

B. Image and View Synthesis Models

Recent years have witnessed large progress in image gener-
ation [20, 26, 54, 63, 65]. This has led to a number of applica-
tions: text-conditioned image generation [5, 22, 53, 54, 57, 83],
image and video inpainting [10, 44, 47], image to image
translation [28] and generation of novel views for objects and
scenes from one or a few images [34, 42, 70, 73, 81]. While
diffusion models have proven effective at image synthesis
tasks, Neural Radiance Fields (NeRFs) [48] excel at view
interpolation tasks. Given multiple (20 – 100) images of a
static scene, vanilla NeRFs can effectively interpolate among
the views to generate photo-realistic renders. Researchers
have pursued NeRF extensions that enable view synthesis
from few images [7, 21, 76, 80] and even model deforming
scenes [9, 67]. In general, NeRFs are more effective at inter-
polation problems, while diffusion models excel at problems
involving extrapolation (e.g. synthesizing content not seen at
all) or where exactly modeling changes in 3D is hard (e.g.
deforming scenes). As our work involves speculating how the
scene would like if the gripper were at a different location, we
adopt a diffusion based methods. We show comparison against
a NeRF based method as well.

C. Diffusion Models and Neural Fields for Robot Learning

Effective generative models and neural field based repre-
sentations have been used in robotics in other ways than for
data augmentation. Researchers have used diffusion models for
representing policies [1, 14, 37, 38, 72], generating goals or
subgoals [6, 11, 31], offline reinforcement learning [3, 43, 72],
planning [30, 40, 41, 74], behaviorally diverse policy gener-
ation [25], predicting affordances [77], and skill acquisition
from task or play data [12]. Neural fields have been used to
represent scenes for manipulation [39, 71] and navigation [2].

III. APPROACH

A. Overview

Given task data D, imitation learning learns a task policy ⇡.
The task data comprises a set of trajectories ⌧i, each consisting
of a sequence of image action pairs, (It, at). Policy ⇡ is trained
using supervised learning to regress action at from images
It. In this paper, we consider manipulation of objects using
an eye-in-hand camera, where input images It correspond to
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Fig. 2: DMD System Overview: Our system operates in three stages. a) A diffusion model is trained, using task and play data, to synthesize novel views relative
to a given image. b) This diffusion model is used to generate an augmenting dataset that contains off-trajectory views (Ĩ12 , Ĩ22 ) from expert demonstrations.
Labels for these views (cyan arrows) are constructed such that off-trajectory views will still converge towards task success (right). Images with a green border
are from trajectories in the original task dataset. Purple-outlined images are diffusion-generated augmenting samples. c) The original task data and augmenting
dataset are combined for policy learning.

views from a wrist camera, and the actions at are the relative
end-effector poses between consecutive time steps.

When trained with few demonstrations, ⇡ exhibits poor
online performance upon encountering states not covered by
the expert demonstrations. To address this issue, as shown in
Figure 2, our approach generates an augmented dataset D̃ and
trains the policy jointly on D̃ [ D. Augmented samples are
specifically generated to be out-of-distribution from D, thus
helping the policy to generalize. D̃ is generated through a
conditional diffusion model f that synthesizes a �p-perturbed
view Ĩt of an image It from a given trajectory ⌧ : Ĩt =
f(It,�p). We use action labels in the trajectory ⌧ to compute
the action label ãt for this perturbed view. The design of the
conditional diffusion model is described in Section III-B, and
the procedure for sampling augmenting images and computing
action labels is detailed in Section III-C.

B. Diffusion Model for Synthesizing �p Perturbed Views
The function f(It,�p) is realized using a conditional

diffusion model that is pretrained on large Internet-scale data.
Specifically, we adopt the recent work from Yu et al. [81]
and finetune it on data from D. As shown in Figure 2(a),
the model produces image Ib by conditioning on a reference
image Ia taken by camera a and a transformation matrix aTb

that maps points in camera b’s frame to camera a’s frame.
By representing the desired �p as the transformation between
two cameras (aTb = �p), and using images from D as the
reference images (Ia ⇠ D), the learned model can generate
the desired perturbed views for augmenting policy learning.

1) Model Architecture: A diffusion model is an iterative
denoiser: given a noisy image xt, diffusion timestep t, it is
trained to predict the noise ✏ added to the image:

L = k✏� ✏✓(xt, t)k22.
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Fig. 3: DMD Architecture: We use the architecture introduced in [81], a
U-Net diffusion model with blocks composed of convolution, self-attention,
and cross attention layers. The conditioning image Ia, and noised target
image Ib are processed in parallel except at cross-attention layers. The pose
conditioning information is injected at cross-attention layers.

It is typically realized via a U-Net [55]. Our application
requires conditional image generation where the conditions
are source image Ia and transformation aTb. Thus, by using
Ib as the diffusion target, and conditioning on Ia and aTb,
the model ✏✓ learns to denoise new views of the scene in Ia
based on the transformation aTb. Finally, rather than directly
denoising in the high-resolution pixel space, the denoising is
done in the latent space of a VQ-GAN autoencoder, E [17, 54].
This gives the final training objective of:

L = ||✏� ✏✓(x
b
t , E(Ia), aTb, t)|| where xb

0 = E(Ib).

Following [81], the pose conditioning information aTb is in-
jected into the U-Net via cross-attention as shown in Figure 3.

2) Model Training: Training the model requires access to
triples: (Ia, Ib, aTb). We process data from D to generate
these triples. Let each trajectory consist of images I1, . . . , IN .
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Fig. 4: Training Examples from the Diffusion Model and Computed
Labels: We visualize generated examples, Ĩ , used to train our policies along
with the computed action label (the arrow is a projection of the 3D action
into the 2D image plane: the arrow pointing up means move the gripper
forward, pointing to the right means move it right). The first row shows
augmenting samples for the pushing task, while the second row shows those
for the stacking task.

We use structure from motion (SfM) algorithms [8, 15, 23,
59, 60, 69] to extract poses for the images in the trajectory
⌧ . This associates each image It in the trajectory with the
(arbitrary) world frame tTw. We can then compute relative
pose between arbitrary images Ia and Ib from a trajectory via
aTb = aTwwTb. We sample random pair of images from the
trajectory to produce triples (Ia, Ib, aTb) that are used to train
the model ✏✓.

As D contains much fewer data than is typically required to
train a diffusion models from scratch, we finetune the model
from Yu et al. [81]. Finetuning with around 50 trajectories
leads to realistic novel view synthesis for our tasks as shown
in Figure 7. We only finetune the diffusion model weights.
The pre-trained VQ-GAN codebooks is kept fixed.

The diffusion model can be finetuned on task data D, task-
agnostic play data [45, 79], or even combinations of task
and play data. Play data in our setups involves moving the
grabber within the workspace and randomly interacting with
the task objects without emphasizing task completion. Access
to random interactions in play data may make it easier for
the diffusion model to synthesize diverse perturbations. We
experiment with these different data sources for training the
diffusion model (Section IV-A4d and Section IV-C2).

C. Generating Out-of-Distribution Images and Labels

1) Sampling Out-of-distribution Images: With the noise
estimation model ✏✓ trained, the image generation function
f(It,�p) is realized by simply letting Ia = It, letting aTb

represent the desired �p, and sampling from the conditional
diffusion model using well-established sampling strategies
[26, 54, 66].

We use f(It,�p) to generate out-of-distribution images
with a very simple strategy for sampling �p. For an image It
from trajectory ⌧ , we sample vectors in a random direction,
with magnitudes drawn uniformly from a pre-defined range for
each task. If the SfM reconstruction recovers the real-world
scale, this range is set to [2cm, 4cm]; otherwise, it is [0.2s, s],
where s is the largest displacement between adjacent frames
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It+2
It+3

Action 
w.r.t It+1 Action 

w.r.t It+3

Expert Trajectory

Fig. 5: The Overshooting Problem: When the generated image Ĩt exceeds
It+1, the inferred action for Ĩt may direct the agent away from task success.
We refer to this as the overshooting problem. At time step t + 1, the view
It+1 has moved to the lower right of It. However, the synthesized sample
Ĩt has moved even further to the right than It+1, but not beyond It+3. Blue
arrow represents action label for Ĩt computed using It+1 as the target; green
arrow represents action label computed using It+3 as the target. Since Ĩt has
overshot It+1, an action taken with It+1 as the next intended target moves
backward, away from the apple, and this labeling is not desirable. Computing
the action with respect to a farther image, say It+3, does not have this issue.

in ⌧ . �p simply corresponds to moving along this randomly
chosen vector.

2) Labeling Generated Images: For each image Ĩt =
f(It,�p) generated from an original image It, we use It+k

as the target for generating the action label. The action label
for Ĩt is simply the action that conveys the agent from the
pose depicted in Ĩt to the pose in It+k.

Using SfM, we obtain camera pose information tTw for time
step t and t+kTw for time step t+k. The synthesized view Ĩt
can be treated as an image taken by a virtual camera whose
pose is represented as tTt̃. The diffusion model synthesizes
perturbed view conditioned on It and tTt̃ , or Ĩt = f(It, tTt̃)
(Section III-B). The action label ãt for Ĩt is then computed as
ãt = t̃Tt+k = t̃Tt tTw (t+kTw)�1. Examples of (Ĩt, ãt) are
shown in Figure 4.

One might wonder why we don’t just use k = 1? When
sampling �p, we assume that the perturbed observation Ĩt
is within a local region around It. However, some generated
samples can move past the target image It+1 (described
in Figure 5). This causes conflicting supervision, as the
computed action does not make progress toward completing
the task. Using a large k guards against this, leading to
stronger performance downstream, as our experiments verify
(Section IV-A3b).

IV. EXPERIMENTS

We test DMD across four tasks: non-prehensile pushing,
stacking, pouring, and hanging a shirt. The task setups are
shown in Figure 6. Together these tasks test DMD in different
settings: 3DoF action space (pushing, stacking), 6DoF action
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Fig. 6: DMD Robotic Experiments: There are four tasks in total: pushing apple to target location (Section IV-A), stacking five different cups on box
(Section IV-B), pouring coffee beans into a cup (Section IV-C), and hanging shirt on a rack (Section IV-D). We conduct our experiments on a Franka Research
3 robot with a wrist-mounted GoPro Hero 9. We modified VIME’s [78] grabber mount for Franka, allowing the robot to reach end-effector poses without
reaching joint limits.

spaces (pouring, hanging a shirt), generalization to new ob-
jects (stacking), precision in reaching goal locations (pouring,
hanging a shirt).

On the pushing task, we present visual comparisons
to NeRF-based synthesis approach SPARTN [86] in Sec-
tion IV-A2 and in-depth quantitative analysis (ablation of
design choices, offline evaluations) in Section IV-A3. We then
show a variety of online comparisons for the pushing task
in Section IV-A4. Moreover, we compare DMD to behavior
cloning for stacking (Section IV-B), pouring (Section IV-C),
and hanging a shirt (Section IV-D). Finally, we test whether
DMD improves generalization to novel objects and environ-
ment when provided with a diverse task dataset, as described
in Section IV-E. We adopt randomized A/B testing when
making comparisons between different methods to minimize
the effects of unknown environmental factors.

A. Non-prehensile Pushing

1) Experiment Setup:
a) Task, Observation Space, Action Space: We use the

non-prehensile pushing task from VIME [78], which involves
reaching a target object and pushing it to the target location
marked by a red circle. Following Young et al. [78], we use
a grabber as the robot end-effector as shown in Figure 6.
This allows for easy collection of expert demonstrations using
a GoPro mounted on a grabber. Due to the difference in
joint limits between the XArm (used by VIME) and the
Franka Research 3 robot, we redesign the attachment between
the grabber and the robot flange (Figure 6(a)). In this way,
the robot can execute planar push in the typical top-down
configuration, extending the workspace to a wider range of the
table. Observations come from the eye-in-hand GoPro camera.
For pushing, we use the action space used in VIME’s [78]
publicly available code: relative 3D translations of the end-
effector.

b) Task and Play Data: We collect task and play data
using a GoPro mounted on a grabber. The task data include
74 demonstration, and the play data include 36 trajectories.
For task data, an expert pushes the object to a target location.
For play data, we move the grabber around the apple and
push it in different directions. From the GoPro videos, we

obtain image sequences and use structure from motion [23,
69] to extract camera poses tTw. Action at is computed by
computing the relative translation between It+1 and It in It’s
camera frame. Since COLMAP only gives reconstructions up
to an unknown scale factor, we normalize the action to unit
length and interpret it as just a direction.

c) Policy Architecture and Execution: We adopt the ar-
chitecture for the task policy ⇡ from VIME [78] but replace the
AlexNet [33] backbone with an ImageNet pre-trained ResNet-
18 backbone [24]. The policy consists of the ResNet backbone
followed by 3 MLPs that predict the action. This task policy
accepts a center cropped image from the GoPro camera and
outputs the direction in which the camera should move. The
policy is trained by L1 regression to the (unit length) actions
using the Adam optimizer with a learning rate of 1e-4. Actions
are executed on the robot by commanding the robot to go 1cm
in the predicted direction.

d) Baselines: We use vanilla behavior cloning on the
expert data as the baseline as done in past work [78], we
refer to this as BC. We also compare to SPARTN [86] and
evaluate the various design choices. Since there is no publicly
available code from SPARTN, we replicate their procedure
using NerfStudio [68].

2) Visual Comparison of Generated Images: Figure 7
shows the high visual quality of samples generated by the
diffusion model. The model is able to faithfully synthesize
images where the camera is moved left / right, up / down, and
front / back with minimal artifacts.

As shown in Figure 9, we also compare the quality of
diffusion-generated images to those generated using the NeRF
based approach from SPARTN [86]. The moving gripper
breaks the static scene assumption made by NeRF. Thus, [86]
masks out the gripper before training the NeRF. While this
strategy works for the pre-grasp trajectory that Zhou et al.
[86] seek to imitate, it fails when the gripper manipulates
the scene, as in our tasks. Thus, we investigate different
masking schemes: a) no masking, b) masking just the gripper,
c) masking a larger region around the gripper; and show
visualizations in Figure 9.

No masking leads to the worst results as expected. Masking
just the grabber fixes the grabber, but causes the object being
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Fig. 7: Visualization of Perturbed Images Generated by Diffusion Model for Augmenting Policy Learning: In each row, we show Ĩt generated from It
through different camera translations for the tasks of pushing, stacking, pouring, and hanging a shirt.

TABLE I: Comparisons between Diffusion-generated Augmented Dataset
and Standard Augmentation Schemes. The table shows median angle
error (in radians) between predicted and ground-truth translations. Adding
D̃ generated by diffusion models improve performance on top of other
augmentation techniques.

Methods BC DMD

No Aug 0.376 0.349
w/ Color jitter 0.381 0.350
w/ Flip 0.356 0.338
w/ Color jitter & Flip 0.355 0.328

manipulated to blur out. Masking a larger region around
the grabber fixes the blurring but also eliminates the object
being manipulated. In contrast, images synthesized using our
diffusion model move the camera as desired without creating
any artifacts.

3) Offline Validation: Out of the 74 expert demonstrations,
we use 24, 23, and 27 trajectories for train, validation, and
test, respectively. As done in past work [78], the baseline
is vanilla behavior cloning on the expert data. Our offline
validation evaluates the policy’s predictions on the test set
using the median angle between the predicted and ground truth
translations as the error metric.

a) Comparison with other data augmentation schemes.:
The goal of this experiment is to compare the effectiveness of
augmenting with diffusion-generated images to standard tech-
niques, such as color jitter and horizontal flip. Table I shows

Fig. 8: Effect of Using Different Future Frames for Labeling Augmenting
Images: We experiment with using different future frame It+k for labeling
the diffusion-generated images. Error decreases as k increases and plateaus
around k = 3. Therefore, we use frame It+3 for labeling Ĩt

that augmenting with out-of-distribution images leads to larger
improvement compared to standard techniques. Comparing the
two columns, we see that adding diffusion-generated images
improve performance in all settings.

b) Overshooting problem, what frame to use?: In order
to mitigate the overshooting problem, we use image It+k, k >
1 to label the augmenting image instead of It+1. Figure 8
shows the effect of this parameter k on policy performance. We
find that labeling with It+1’s pose works worse than labeling
with It+3’s pose and beyond. As the curve plateaus for k > 3
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Fig. 9: Diffusion vs NeRF We visualize perturbed samples generated using DMD and NeRF with different masking strategies. The top row shows images
generated for a forward movement relative to It; the bottom row shows images for a backward movement (a) With no masking, the NeRF reconstructions
of the gripper and apple are degenerate, as they violate the static scene assumption in NeRFs. (b) With a box-mask, the apple is occluded by the mask, and
consequently, missing from the reconstruction. (c) Even with a mask around the end-effector (Grabber-Mask), there are major artifacts in reconstructing the
apple. (d) With ours (Diffusion Model), the model faithfully reconstructs the grabber and apple.

TABLE II: Pushing Online Evaluation Results. (a) DMD outperforms BC across all settings. DMD achieves a 100% success rate when pushing an apple,
greatly exceeding BC’s 30%. It also maintains an 80% success rate with only 8 demonstrations, whereas BC drops to 20%. (b) As shown in Figure 9,
our diffusion model synthesizes higher quality images than NeRFs, especially when scenes undergo deformations. This advantage results in higher task
performance: DMD achieves a 100% success rate, while SPARTN [86] achieves only 50%. (c) Training the diffusion model with additional play data boosts
the task success rate to 100%, compared to 80% when using the model trained only on task data.

(a) DMD vs. BC

Method
Apple White Cup

24 Demo. 16 Demo. 8 Demo. 16 Demo.

BC 30% 50% 20% 80%
DMD 100% 90% 80% 90%

(b) DMD vs. SPARTN [86]

Method
Apple

24 Demo.

SPARTN [86] 50%
DMD 100%

(c) Utility of Play Data

Method Apple

DMD Task Only 80%
DMD Task & Play 100%

and using larger k leads to the exclusion of the last k�1 frames
in each trajectory, we use k = 3 for our online experiments.

4) Online Validation: We conduct 10 trials per method
and randomize the apple start location between trials. To
prevent human biases, we choose the apple start location
before sampling the method to run next. Execution trajectories
can be found on the project website.

a) DMD vs. Behavior Cloning: We take the best model
for BC and DMD from Table I and evaluate them on the robot.
We find the vanilla BC model to get a 30% success rate while
DMD achieves 100% (Table IIa). This significant difference
shows that minor error at each step can accumulate and result
in task failure.

b) DMD with Few Demonstrations: Motivated by the
100% performance of DMD with 24 demonstrations, we ask
how low can the number of demonstrations be? We consider
2 low data settings with 8 and 16 demonstrations. For these
settings, the diffusion model is trained with only play data.
Success rate for these two models on the robot is shown in
Table IIa. Once again DMD outperforms BC and achieves 80%
success even when trained with only 8 demonstrations.

c) DMD vs. SPARTN [86]: Following up on the visual
comparison of augmenting samples from Section IV-A2, we
conduct a head-to-head comparison against SPARTN on the
real robot. SPARTN achieves a success rate of 50% vs. DMD
succeeds 100% of the time (Table IIb). In Figure 10, we
show that while SPARTN diverges from the expert course and
pushes the apple off the table, DMD brings the apple to the
target successfully.

d) Utility of Play Data for Training Diffusion Model:
We also experimentally validate what the choice of the dataset
necessary for training the view-synthesis diffusion model. We
repeat the experiment with 24 demos but vary the diffusion
model that generated the augmenting samples. Using the
diffusion model trained on just task data lead to an 80%
success rate vs. 100% success rate with the diffusion model
trained on a combination of task and play data (Table IIc).
Thus, while just training the diffusion model on task data is
effective (a nice result in practice), performance can be boosted
further by training the diffusion model on play data.

e) Scaling to Other Objects: We test DMD on another
object, a cup. The diffusion model is trained with only cup
play data. Task data include 16 demonstrations. BC is trained
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Fig. 10: Comparison of BC, SPARTN, and DMD for Staying on Course. We show the trajectories executed by BC, SPARTN [86], and DMD over several
steps towards the target. Unlike BC and SPARTN, which gradually deviate from the intended path, DMD maintain its course towards the right and reach the
target successfully. See project website for more execution videos.

only with task data, and DMD is trained additionally with
synthesized images. Similar to apple, we repeat each method
10 times and randomize the cup start location. We choose the
start location before sampling the method to execute. The BC
baseline achieves a success rate of 80% vs DMD achieves a
success rate of 90% (Table IIa).

B. Stacking

1) Experiment Setup: Stacking involves reaching a cup,
grasping it, placing it on a black box, and opening the grabber.
This task is similar to the stacking task in VIME [78] and
requires precision in the height direction to move the cup on
the box. The action space is the same as in VIME’s publicly
available code: relative 3D translations of the end-effector.

We use a grabber and collect 50 demonstrations across
three training cups (red dotted box in Figure 6(b)). We obtain
cameras poses using ORB-SLAM3 [8, 15], which recovers the
correct metric scale by using the IMU data from GoPro.

We train the diffusion model on the 50 expert trajectories
and don’t use any play data. Unlike pushing, we do not
need to scale by the largest displacement between adjacent
frames because of metric scale from IMU. To sample out-of-
distribution images, we sample a small translation (with length
between 2cm and 4cm) in a random direction and a small
rotation obtained by sampling yaw, pitch, and roll uniformly
from the range [�10�, 10�], [�10�, 10�], and [�10�, 15�],
respectively.

The policy architecture is the same as that of pushing and is
trained with L1 loss to the normalized ground-truth translation.

TABLE III: Stacking Online Evaluation Results. In the task of stacking a
cup on a box, DMD achieves over 90% success rate for all training cups and
over 80% for the two cups unseen cups and outperforms BC. The diffusion
model is only trained on task data/expert demonstrations. See all execution
videos on project website.

Seen Cups Unseen Cups

Method Blue Red-1 White Red-2 Sprite

BC 10% 10% 90% 40% 50%
DMD (Task Only) 100% 90% 100% 80% 90%

We annotate frames at which the grabber open/close and train
a gripper policy that is shared across all the methods.

2) Online Validation: We evaluate on the three training
cups plus two holdout cups: a larger red cup and a Sprite can
(yellow dotted box in Figure 6(b)). The starting locations of
the objects are randomized and do not necessarily match the
training data.

As shown in Table III, DMD performs better than BC across
both seen and unseen instances. BC often fails to lift the tall
cups above the box and pushes the box forward continuously.
See videos on project website for failure modes. This behavior
might explain the higher success rate of the white cup, which
is shorter and thus easier to lift above the box. By training
on synthesized data, DMD learns to lower the grabber if
approaching the cups too high, and it grasps closer to the
cup bottom so that moving above the box becomes easier. It
succeeds more than BC across all cups.
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TABLE IV: Pouring and Hanging-Shirt Online Evaluation Results. DMD
outperforms BC across both tasks. See all execution videos on project website.
⇤: the two BC numbers are different because they are from two different
pairwise randomized A/B tests: 1) BC vs. DMD (Task & Play) and 2) BC
vs. DMD (Task Only), and experimental conditions (e.g. lighting) may have
been different between when these two tests were conducted.

Pouring Hanging

Method Task & Play Task Only Task & Play

BC 0%⇤ 30%⇤ 20%
DMD 80% 70% 90%

C. Pouring

1) Experiment Setup: As shown in Figure 6(c), this task
requires the robot to reach a blue cup filled with 57 grams of
coffee beans, grasp it, and pour all the beans into a red cup.
Success is determined by the weight of the coffee beans being
the same at the end of each trial. Action space is full 6-DoF.

Task data contain 49 demonstrations, and play data contain
16 trajectories. Diffusion model is trained on both types of
data. Except for an additional MLP-head to predict rotation,
the policy architecture is the same as that of stacking; the
model is trained with L1 loss to the ground-truth translation
and rotation.

During execution, the robot executes the translation and
rotation predicted by the model. Locations of the two cups
are randomized, but the blue cup is always on the same side
of the red cup.

2) Online Validation: DMD succeeds 80% of the time
while BC fails completely. A common failure case for BC is
that as the robot rotates the cup with coffee beans, it does
not move the cup closer to the receiving cup; the blue cup
then drifts further and further from the one on the table. In
contrast, even in the worst trial, DMD can pour 53 grams (i.e.
more than 90%) of the coffee beans. See execution videos on
project website for clear differences between BC and DMD.

We also validate the use of play data for learning an
effective diffusion model. We finetune the diffusion model
with only task data and conduct the same experiment as the
one in the last paragraph. As shown in Table IV, without
training the diffusion model with play data, the downstream
policy maintains a 70% success rate, higher than BC’s 30%.
This shows that, training on task data alone also enables the
diffusion model to synthesize good out-of-distribution images
that improve task performance. Note that the two BC numbers
are different because they are from two different pairwise
randomized A/B tests: 1) BC vs. DMD (Task & Play) and 2)
BC vs. DMD (Task Only), and experimental conditions (e.g.
lighting) may have been different between when these tests
were conducted.

D. Hanging a Shirt

1) Experiment Setup: To hang the shirt, the robot reaches
the hanger and slides the shirt across the table to the edge; it
then grasps the part of the hanger sticking out of the table and
hangs the shirt on the clothing rack. The setup is shown in
Figure 6(d). Action space is full 6-DoF.

Unseen  
Lab Environment

Test  
Cups

Rectified Image

Generated Image

Fig. 11: In-the-Wild Cup Arrangement Setup: We evaluate DMD on the
in-the-wild cup arrangement task from UMI [15]. The training set for this
task contains 1447 demonstrations across 30 locations and 18 cups. Because
our pre-trained diffusion model operates on non-fish eye images, we work
with center-cropped and rectified images from the Fisheye lens. Baseline and
baseline+DMD operate on these center-cropped rectified images. Evaluation
is done on 5 novel cups in a novel environment (our lab).

TABLE V: In-the-Wild Cup Arrangement Online Evaluation Results.
DMD generalizes better to novel cups in novel environment than vanilla
Diffusion Policy [14], achieving a 64% overall success rate compared to
Diffusion Policy’s 16%. It succeeds in same or more trials across all 5 cups.
See all execution videos on project website.

Method Navy White Mint Red Blue Overall

Diffusion Policy [14] 1/5 1/5 1/5 0/5 1/5 4/25 (16%)
DMD (Task Only) 3/5 3/5 3/5 3/5 4/5 16/25 (64%)

Task data contains 55 demonstrations, and play data con-
tains 24 trajectories. The diffusion model is trained on both
types of data. We divide the hanging task into two sub-tasks:
grabbing the shirt and putting it on the rack. A separate policy
is learned for each task. We use same policy architecture and
loss function as those used in pouring.

During execution, the robot starts with the grabbing policy.
When the network predicts to close the grabber, the grabbing
policy terminates, and the robot switches to the putting-on-
rack policy. The entire process terminates when the top of the
hanger makes contact with the rack pole, signaled by when the
end-effector senses a force greater than 4N . We add some clay
padding to the grabber tips because the hanger is thin, and the
motor is not strong enough to close the grabber completely.

2) Online Validation: As shown in Table IV, DMD
achieves a 90% success rate while BC only succeed in 20%
cases. BC often fails because the robot raises the shirt too
high, and the shoulder part of the hanger hits the pole before
the hook part reaches the pole. On the other hand, DMD learns
to bring the shirt down onto the rack.

E. In-the-Wild Cup Arrangement

The goal of this experiment is to understand a) can DMD
improve performance in the presence of a large number of
diverse demonstrations, b) can DMD improve generalization
of policies to novel objects in novel environments, and c) if
DMD is compatible with policies trained with diffusion [14].

1) Experiment Setup: We leverage a diverse in-the-wild
dataset from the recent Universal Manipulation Interface
(UMI) paper [15]. It introduces a hand-held data collection
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device and an imitation learning framework utilizing Diffusion
Policy [14]. The device captures image observations using a
wrist-mounted GoPro camera.

We adopt the same task definition as the in-the-wild gener-
alization experiment in UMI: placing a cup on a saucer with
its handle facing the left side of the robot. UMI [15] collected
1447 demonstrations across 30 locations and 18 training cups.
We use their publicly available demonstration data and conduct
evaluation in our lab (i.e. novel location) with and without
DMD.

Our evaluation setup is identical to that used in UMI, with
one difference. UMI uses wide field-of-view images obtained
by putting an additional Fisheye lens on the GoPro. Our
diffusion model denoises in the latent space of a VQ-GAN
autoencoder [16] that was pre-trained on the RealEstate10K
dataset [87], which contains non fish-eye images. Therefore,
our diffusion model is constrained to only work well on non-
fish eye images. Thus, we conduct comparisons where both
the baseline and baseline+DMD operate on center-cropped
rectified images shown in Figure 11. We retrain the baseline
diffusion policy from UMI to consume these center-cropped
rectified images. Other than this change, the task policy uses
UMI’s implementation of Diffusion Policy [14] and denoises
6DoF actions.

We test on 5 held-out cups shown in Figure 11. These cups
are not used for expert demonstrations in dataset from [15]. For
each cup, we test 5 different start configurations. We follow
the experiment protocol outlined in [15]: we use pixel masks
to make sure that the starting locations of the cups and saucers
are the same across the two methods.

2) Online Validation: DMD improves upon the vanilla
Diffusion Policy [14] across all novel cups, achieving an
overall success rate of 64%, compared to Diffusion Policy’s
16% success rate (Table V). This improvement shows that
DMD is effective even in the presence of large number (1447)
of diverse demonstrations and also leads to improved perfor-
mance when testing on novel objects in novel environments.
Furthermore, DMD-created data also improves policies trained
via diffusion. One common failure case for the baseline is that
the policy doesn’t reorient the cup correctly, because it fails to
make contact with the cup or its handle. DMD, on the other
hand, successfully pushes the handle to the left side more often
and grasps the cup without tipping it over.

V. DISCUSSION

We developed DMD, a data creation framework that im-
proves the sample efficiency of eye-in-hand imitation learning.
DMD uses a diffusion model to synthesize out-of-distribution
views and assigns them corrective labels. Additional use of
these out-of-distribution views for policy training leads to
more performant policies. DMD leads to large benefits over
traditional behavior cloning across 4 diverse tasks: pushing,
stacking, pouring, and hanging a shirt. DMD attains 80%
success rate from as few as 8 demonstrations in pushing and
reaches an average of 92% success rate across 5 different
cups in stacking. When pouring, it transfers coffee beans

successfully 80% of the time; finally, it can slide a shirt off the
table and put it on the rack with 90% success rate. Together
these tasks test DMD on different aspects: 3DoF action space
(pushing, stacking), 6DoF action spaces (pouring, hanging a
shirt), generalization to new objects (stacking), and precision
in reaching goal locations (pouring, hanging a shirt).

Our experiments reveal the benefits of the various parts
of DMD over past approaches. The use of diffusion models
to synthesize images allows DMD to generate augmenting
images for manipulation tasks involving a non-static scene.
Prior work [86] used NeRFs instead of diffusion models,
restricting generation to samples from only the pre-grasp part
of the demonstration. We showcase the advantages of diffusion
models over NeRFs through qualitative results in Figure 9 and
real robot experiments in Section IV-A4c.

We also tested which type of data: task data, play data, or a
combination of both, should be used for training the diffusion
model. We found all versions to outperform behavior cloning
(Section IV-A4d, Table III, and Table IV). This suggests two
practically useful results. First, DMD can be directly used to
improve a task policy, i.e. the task data itself can be used to
finetune a novel-view synthesis diffusion model, augmenting
the task dataset to improve performance. Second, we can
utilize play data, which may be simpler to collect than task
data.

DMD also has several limitations. DMD assumes that the
generated states are recoverable, i.e. there exists an action that
can return to the expert distribution. This is not always true, for
example, when the robot rotates the cup at the wrong location
and the coffee beans spill. However, DMD can still be useful
if it can bring the system back to in-distribution states before
the system spirals into irrecoverable state.

Possible future directions include: learning diffusion mod-
els that can predict highly discontinuous object dynamics,
generating out-of-distribution states of non-visual modalities
(e.g. forces), and finding ways to assign action labels in
situations where they cannot be derived from relative camera
transformation Code, data and models are publicly available
on the project website.

ACKNOWLEDGMENTS

We give special thanks to Kevin Zhang for 3D printing the
attachment for us. This material is based upon work supported
by the USDA-NIFA AIFARMS National AI Institute (USDA
#2020-67021-32799) and NSF (IIS-2007035).

REFERENCES

[1] Suzan Ece Ada, Erhan Oztop, and Emre Ugur. Diffusion
policies for out-of-distribution generalization in offline
reinforcement learning. IEEE Robotics and Automation
Letters, 2024.

[2] Michal Adamkiewicz, Timothy Chen, Adam Caccavale,
Rachel Gardner, Preston Culbertson, Jeannette Bohg, and
Mac Schwager. Vision-only robot navigation in a neural
radiance world. IEEE Robotics and Automation Letters,
7(2):4606–4613, 2022.

https://sites.google.com/view/diffusion-meets-dagger


[3] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum,
Tommi Jaakkola, and Pulkit Agrawal. Is conditional
generative modeling all you need for decision-making?
arXiv preprint arXiv:2211.15657, 2022.

[4] Brenna D Argall, Sonia Chernova, Manuela Veloso,
and Brett Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57
(5):469–483, 2009.

[5] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,
Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila,
Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-
to-image diffusion models with an ensemble of expert
denoisers. arXiv preprint arXiv:2211.01324, 2022.

[6] Kevin Black, Mitsuhiko Nakamoto, Pranav Atreya,
Homer Walke, Chelsea Finn, Aviral Kumar, and Sergey
Levine. Zero-shot robotic manipulation with pre-
trained image-editing diffusion models. arXiv preprint
arXiv:2310.10639, 2023.

[7] Valts Blukis, Taeyeop Lee, Jonathan Tremblay, Bowen
Wen, In So Kweon, Kuk-Jin Yoon, Dieter Fox, and Stan
Birchfield. Neural fields for robotic object manipulation
from a single image. arXiv preprint arXiv:2210.12126,
2022.

[8] Carlos Campos, Richard Elvira, Juan J. Gómez, José
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[56] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the four-
teenth international conference on artificial intelligence
and statistics, pages 627–635, 2011.

[57] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Sali-
mans, et al. Photorealistic text-to-image diffusion models
with deep language understanding. Advances in Neural
Information Processing Systems, 35:36479–36494, 2022.

[58] Stefan Schaal. Learning from demonstration. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 9, 1996.

[59] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016.

[60] Johannes Lutz Schönberger, Enliang Zheng, Marc Polle-
feys, and Jan-Michael Frahm. Pixelwise view selection
for unstructured multi-view stereo. In European Confer-
ence on Computer Vision (ECCV), 2016.

[61] Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty
Altanzaya, and Lerrel Pinto. Behavior transformers:
Cloning k modes with one stone. In Advances in Neural
Information Processing Systems (NeurIPS), volume 35,
pages 22955–22968, 2022.

[62] Nur Muhammad Mahi Shafiullah, Anant Rai, Haritheja
Etukuru, Yiqian Liu, Ishan Misra, Soumith Chintala, and
Lerrel Pinto. On bringing robots home. arXiv preprint
arXiv:2311.16098, 2023.

[63] Jascha Sohl-Dickstein, Eric Weiss, Niru
Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium
thermodynamics. In International conference on
machine learning, pages 2256–2265. PMLR, 2015.

[64] Shuran Song, Andy Zeng, Johnny Lee, and Thomas
Funkhouser. Grasping in the wild: Learning 6dof closed-
loop grasping from low-cost demonstrations. Robotics
and Automation Letters, 2020.

[65] Yang Song and Stefano Ermon. Generative modeling by
estimating gradients of the data distribution. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 32, 2019.

[66] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,

Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential
equations. arXiv preprint arXiv:2011.13456, 2020.

[67] Shih-Yang Su, Frank Yu, Michael Zollhöfer, and Helge
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