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Abstract— Reliable localization is an essential capability for
marine robots navigating in GPS-denied environments. SLAM,
commonly used to mitigate dead reckoning errors, still fails in
feature-sparse environments or with limited-range sensors. Pose
estimation can be improved by incorporating the uncertainty
prediction of future poses into the planning process and
choosing actions that reduce uncertainty. However, performing
belief propagation is computationally costly, especially when
operating in large-scale environments. This work proposes a
computationally efficient planning under uncertainty frame-
work suitable for large-scale, feature-sparse environments. Our
strategy leverages SLAM graph and occupancy map data
obtained from a prior exploration phase to create a virtual
map, describing the uncertainty of each map cell using a
multivariate Gaussian. The virtual map is then used as a cost
map in the planning phase, and performing belief propagation
at each step is avoided. A receding horizon planning strategy
is implemented, managing a goal-reaching and uncertainty-
reduction tradeoff. Simulation experiments in a realistic un-
derwater environment validate this approach. Experimental
comparisons against a full belief propagation approach and
a standard shortest-distance approach are conducted.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) are being in-
creasingly used to perform tasks such as inspection, mapping,
and exploration. Since GPS is unavailable underwater, AUVs
must rely on onboard sensors to estimate their position,
making them susceptible to drift. Simultaneous Localiza-
tion and Mapping (SLAM) has been successfully applied
to correct dead reckoning drift. However, SLAM requires
environmental features to lie within the AUV’s field of view.
Therefore, robots operating in feature-sparse environments
or with short-range sensors are especially prone to accu-
mulating pose estimation errors. Thus, executing trajectories
that do not account for robot sensing capabilities leads to
high localization uncertainty. Planning under uncertainty,
however, commonly relies on belief propagation, which is
computationally expensive and can become infeasible to
compute when operating in large-scale environments.

Recent work has focused on reducing map and robot pose
uncertainty during the exploration of unknown environments,
without considering navigation tasks that follow the map-
ping mission [1]. Furthermore, strategies that do consider
goal-reaching tasks commonly assume no prior knowledge
[2] or perfect prior knowledge of the environment. How-
ever, exploration is an imperfect process, and the resulting
maps are corrupted by noise, uncertainty, and incomplete
information, and should be treated accordingly when used
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Fig. 1: Planning under uncertainty example. Top: Gazebo environment
and planning example. Blue star is start location, red cross shows goal
location, pink arrows show candidate place-revisiting actions, and green di-
amond represents goal-reaching candidate action. Bottom: Virtual map and
representative resulting paths using different uncertainty handling strategies.
Shortest Distance is shown in red, Expectation Maximization in blue, and
our proposed strategy in green. The uncertainty growth from executing each
path is illustrated along the path using 95% confidence ellipses.

for subsequent planning queries. Planning to a specified
goal can similarly be corrupted by noise and uncertainty.
Choosing an uninformative trajectory to reach a goal can
lead to substantial uncertainty growth, causing robots to
crash or become ”lost”. Instead of discarding SLAM graph
information after exploration, this information can be used
to assess the uncertainty of the resulting map, informing any
subsequent path planning queries. Moreover, by performing
SLAM during navigation, we can adapt to small changes in
the environment, manage errors from noise, and deal with
incomplete information.

In this paper, we leverage mapping and SLAM graph
information from a prior exploration run and use it to create
a virtual map that will in turn be used to perform efficient
planning under uncertainty, without the need for computa-
tionally demanding online belief propagation. Specifically,
we present a planning under uncertainty scheme for under-
water robots operating at a fixed depth in large-scale feature-
sparse environments. Our main contributions are as follows:

• To our knowledge, the first algorithmic pipeline for un-
derwater robots that uses exploration as a pre-processing
step for planning under uncertainty to specified goals.

• We leverage the resulting SLAM graph and occupancy
map information to produce a useful costmap for com-
putationally efficient planning under uncertainty.

• Realistic simulation experiments, in which receding
horizon planning is used to compare our proposed
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method with shortest-distance and full belief propaga-
tion planning strategies.

The rest of this work is structured as follows. First, Sec.
II describes related works. Next, the problem formulation is
explained in Sec. III, followed by the proposed method in
Sec. IV. Subsequently, results and experiments are presented
in Sec. V. Finally, in Sec. VI conclusions are drawn.

II. RELATED WORKS

Incorporating localization uncertainty into the planning
process is important for navigation tasks including explo-
ration and goal-reaching missions. Actively maintaining high
localization accuracy while navigating was first addressed in
[3], by controlling robot motion and sensing actions. Many
mobile robots, including AUVs, rely heavily on perceptual
features to localize in their environment, thus perception
has a substantial impact on pose uncertainty and has been
studied in several works [4], [5], [6]. Moreover, in the
context of SLAM, revisiting previously seen features is
necessary to trigger loop closures and lower uncertainty.
Image saliency was used in underwater active SLAM [7]
to identify uncertainty reducing actions. Some methods [8],
[9] attempt to reduce uncertainty by performing rotational
actions to observe visual features while following a path.
However, only rotational movements are not sufficient to
localize when features are out of sensing range.

Therefore, balancing the trade-off between reducing un-
certainty and completing an exploration or goal-reaching
task is an important part of planning under uncertainty
strategies. To limit deviations from the main path, [7] and
[9] only compute and perform uncertainty reducing actions
when the uncertainty of the robot pose is above a certain
threshold. Most active SLAM motion planning approaches
employ three stages: goal identification, utility computation,
and action selection [10]. Furthermore, the receding horizon
path planning strategy, in which robots execute only a small
portion of each plan prior to replanning, has been used to
solve the active SLAM problem in numerous works [6], [7],
where the continuous feedback of mapping the environment
helps attenuate errors in tracking and perception.

Furthermore, planning under uncertainty has been tack-
led using Partially Observable Markov Decision Process
(POMDP)s [11]. However, POMDP approaches grow expo-
nentially in complexity as the number of actions and obser-
vations increases. To reduce computational burden various
strategies have been proposed. The Belief Roadmap (BRM)
[12] made belief space planning more efficient by factoring
the covariance matrix and combining multiple EKF update
steps. Still, it results in significant computation time for
running on a complex graph in practical problems. Rapidly-
exploring Random Belief Trees (RRBTs) [13] extend the
fast computing Rapidly-exploring Random Tree (RRT)* [14]
framework to take pose uncertainty into account.

In the above methods, performing perception-related belief
propagation is crucial, but often the computational bottle-
neck. Hence, another body of work has focused on de-
veloping dedicated representations of the environment and

the uncertainty for efficient computation. A coarse-resolution
map for rapidly evaluating the information gain of planned
actions was used in [15]. Similarly, working with a reduced
local map instead of a full map was done in [16]. To
avoid online belief propagation, [17] pre-computes and saves
the information content of the environment in a 2D grid
which can be used during the robot’s mission. [18] proposes
a localizability matrix over a probability grid map which
includes localizability index and direction. Yet, this approach
only considers active localization and does not perform path
planning. In [19], the most feature-rich path for a rover is
calculated by analyzing the soil map of Mars, assuming a
constant covariance accumulation rate in feature-rich and
feature-sparse areas. A technique that turns the information
from publicly available maps into a localizability map is
presented in [20]. This approach uses graph SLAM, but does
not incorporate path planning.

Expectation-Maximization (EM) exploration [21], [22],
[23] presents the concept of a virtual map, in which every
map cell’s uncertainty is represented by a multivariate Gaus-
sian, and the map uncertainty resulting from future actions
can be predicted. In our present work, we do not focus on
exploration, but on the subsequent planning to specified goal
states after exploration has been performed. We adapt the
virtual map presented in [21], and use it as an uncertainty
cost map for computationally efficient planning, avoiding the
need for online belief propagation. Additionally, we use a
receding horizon path planning strategy that manages a goal-
reaching and place-revisiting trade-off. In the sections below,
we will describe our proposed planning under uncertainty
framework and its application to underwater navigation with
sonar, demonstrating that it achieves far lower localization
uncertainty and error than a standard shortest-distance ap-
proach, and that the errors obtained are comparable to that
of full-fledged EM belief propagation.

III. BACKGROUND AND PROBLEM FORMULATION

A. Simultaneous Localization And Mapping

We use an incremental graph-based pose SLAM approach.
Thus, the entire robot trajectory is repeatedly estimated,
allowing the robot pose history and map to be corrected
throughout the mission. The motion model is defined by

xi = fi(xi−1,ui) +wi, wi ∼ N (0,Qi), (1)

where xi = [xi, yi, θi] is the state vector describing position
and orientation in SE(2), ui is the control input vector, and
wi is additive process noise with covariance matrix Qi. The
sensor model is given by

zk = hk(xik) + qk, qk ∼ N (0,Rk), (2)

where we obtain measurements zk at pose xi, corrupted by
additive sensor noise qk with covariance matrix Rk.

Let X = {xT
i=0} be the set of poses from time 0 to

time T . C contains all constraints between robot poses. For
each pair of poses defining a constraint ⟨i, j⟩ ∈ C, the
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error eij between observed transformation zij and predicted
transformation ẑij is defined as:

eij(xi,xj) = zij − ẑij(xi,xj), (3)

ẑij(xi,xj) = x⊤
i xj . (4)

The SLAM problem can be represented as a nonlinear least
squares problem [24]:

X ∗ = argmin
X

∑
⟨i,j⟩∈C

Fij , Fij = e⊤ijΩijeij , (5)

where Fij denotes the negative log-likelihood function of
one constraint between xi and xj , and Ωij is the information
matrix. The SLAM system aims to find a set of robot poses
which minimize the total observation error.
B. Virtual Map

Unlike occupancy grid maps, the virtual map [23] encodes
map cell uncertainty (represented by a multivariate Gaussian)
instead of occupancy probability. Let the virtual map V =
{vi} be the set of possible observations located at each
map cell vi ∈ R2, distributed as N (vi,Σvi

), where vi =
[xi, yi] is the cell location and Σvi

is the corresponding
covariance matrix. When initializing a virtual map, a prior
with conservatively high initial uncertainty is imposed on all
map cells.

The map cell covariances are updated based on the current
estimate of the trajectory Xold and the history of measure-
ments Z .

q(V) = p(V|X old,Z) (6)

The maximum posterior probability estimate for the virtual
map can thus be computed by

V∗ = argmax
V

p(V|X old,Z). (7)

It is assumed that measurements are assigned to maximize
the likelihood

Z = argmax
Z

h(X ,V). (8)

By measuring environmental features, we can derive the
transformations between poses with overlapping observations
using Iterative Closest Point (ICP). We essentially aim to
minimize the closeness of measurements using ICP-based
pose SLAM. For more details regarding virtual map pose
covariance computation, the reader should consult [23].
C. Problem Statement

In this paper, the problem of autonomously navigating
to a goal location under pose uncertainty is addressed. We
adapt the virtual map, previously used for exploration, to
accommodate planning under uncertainty to specified goals.
We leverage SLAM information from a prior exploration run
to compute uncertainty values offline and store them in the
form of a virtual map V . We then focus on finding a path
to a goal that curbs the growth of uncertainty using pose
SLAM and the covariance information from our virtual map.
Specifically, the virtual map is used as a cost map during
the planning stage to estimate future uncertainty, and the
SLAM graph is maintained and updated to help mitigate dead
reckoning errors and to update our occupancy map used for
planning, as the prior map is imperfect.

Fig. 2: System overview: SLAM information from a prior exploration run
is used to initialize the current SLAM instance and build a virtual map
offline. The motion planner takes the accompanying occupancy map and
searches for candidate paths. The utility of each candidate path is assessed
using the virtual map. The chosen path and the current robot pose are then
passed to the guidance module, which provides the desired velocity vector
to follow the desired path. The low-level PID controller takes the desired
velocity values and defines the required thruster forces.

IV. METHODOLOGY

In this section, we explain our proposed framework, the
system overview can be observed in Fig. 2. First, SLAM
information from a prior exploration run is taken and used
to initialize our current SLAM instance and build our virtual
map V . The motion planner takes the occupancy map M
from SLAM and searches for candidate paths P = {Xc}.
Then, the utility of each candidate path is assessed using the
virtual map. The chosen path Xd and the current robot pose
x are then passed to the pure pursuit guidance module, which
in turn provides the appropriate desired velocity vector u to
follow the desired path. The low-level PID controller takes
the desired velocity values and defines thruster forces τ .

A. Sonar SLAM

To estimate the location of the robot, we use the same
graph-based pose SLAM framework as in [23]. The sen-
sory inputs include an Inertial Measurement Unit (IMU),
a Doppler Velocity Log (DVL), and a sonar image. The
sonar image is first processed using Constant False Alarm
Rate (CFAR) detection [25] to identify returns from the
surrounding environment. All CFAR-extracted features in
the image are converted to Cartesian coordinates.The SLAM
factor graph is denoted as

f(Θ) = f 0(Θ0)
∏
i

fO
i (Θi)

∏
j

fLC
j (Θj),

where variables Θ contain 3-DOF robot poses and f 0 denotes
the initial factor graph. The odometry factor fO defines
the relative motion between two consecutive poses from
persistent odometry measurements obtained by DVL/IMU
dead reckoning. Loop closure factors fLC are obtained by
identifying non-sequential scan matches, applying Iterative
Closest Point (ICP) [26] between the current sonar keyframe
and frames inside a given search radius. ICP is initialized
using a DVL/IMU dead reckoning pose estimate and further
optimized using consensus set maximization [27], helping
ICP to avoid local minima. Loop closure outliers are rejected
by evaluating point cloud overlap and applying Pairwise
Consistent Measurement Set Maximization (PCM) [28]. At
the back end, we employ the GTSAM [29] implementation
of iSAM2 [30], which is merged with dead reckoning to
provide a high-frequency state estimate. Occupancy mapM
is updated and used for path planning.
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Algorithm 1: Place-revisiting actions

Input: Occupied cells O, number of place-revisiting actions
Npr, revisiting radius rpr, minimum separation distance dpr,
shortest path to goal Xsd, number of clusters k

Output: Apr,R ← ∅
M = {m1,...,k} ← ComputeKMeans(O, k)
for i← 1 to k do
C ← {(xi+ rpr cos(θ), yi+ rpr sin(θ), θ) | θ ∈ [0, 2π)}
R ← R∪ {C}

while |Apr| < Npr do
a∗ ← argminri∈R ||ri −Xsd||2
d∗ ← mingi∈Apr |a∗ − gi|
if d∗ ≤ dpr then
Apr ← Apr ∪ a∗

R ← R \ {a∗}
return Candidate place-revisiting actions Apr

B. Motion Planning

Global trajectory optimization in a large-scale planning
problem is computationally expensive, and may require re-
planning as the trajectory is executed. Therefore, we apply a
receding horizon path planner, which also performs trajectory
tracking and incorporates perceptual feedback. Inspired by
many active SLAM motion planning approaches [10], we
employ three stages: goal identification, utility computation,
and action selection. Action selection and path planning
are treated as tightly coupled problems. We consider two
different action types, one type for lowering uncertainty
(place-revisiting), and another for reaching the mission goal
(shortest-distance). Place-revisiting actions look for poses
that can lower uncertainty by revisiting locations the robot
has previously observed, triggering SLAM loop closures.
Shortest-distance actions represent locations that lay on the
shortest feasible path to the goal. Fig. 1a depicts place-
revisiting actions as pink arrows and the shortest-distance
action as a green diamond.

First, a finely discretized roadmap is generated at the
beginning of the mission. The boundaries of the roadmap are
defined, and edges are pruned out if obstacles are discovered.
The A* algorithm [31] is used to find the shortest path
from the start position to the final mission goal without
colliding with known obstacles. Afterward, the shortest-
distance action set Asd is defined by choosing targets at
user-defined distances dsd from the current position along
the identified shortest distance path. For safety, the distance
to the waypoints should be less or equal to the robot sensing
range to avoid collision with possible new obstacles and
refrain from unnecessary replanning. Likewise, traversing
large featureless distances should be prevented to avoid large
uncertainty growth.

The place-revisiting action set Apr is defined following
Algorithm 1. The target locations are chosen by identifying
action candidates that are close to the shortest path while
observing occupied cells. These poses have the potential
of triggering SLAM loop closures while avoiding large
deviations from the desired path. First, occupied cells in

the occupancy map are identified and clustered using the
k-means algorithm. Afterward, candidate goals are sampled
along the boundary of a circle centered at each cluster origin
with a radius rpr that is user-specified. We then choose the
candidates that are closest to the shortest path. Finally, the
A* search algorithm is used to find paths from the current
position to the final goal, each path passing through one
place-revisiting waypoint.

From the candidate paths P identified, one is chosen using
the utility function defined in Sec. IV-C. Once the desired
path Xd is identified, and the vehicle arrives at the place-
revisiting or shortest-distance target location, the planning
strategy is repeated until the robot arrives at its final goal.

C. Utility evaluation

We define the utility function used to choose the desired
path Xd = argmaxX∈P U(XT :T+N ) as follows:

U(XT :T+N ) =−
n∑

i=1

log det(Σvi
)− αd(XT :T+N ). (9)

The uncertainty metric used here is the sum of the log-
determinant of the covariance matrices of the virtual map
cells Σvi that will be encountered by the chosen path. The
entire path from the current position to the target position
is considered. In addition to the uncertainty term, a distance
cost weighted by α is added to encourage a trade-off between
traveling and uncertainty reduction. A path will be discarded
and recomputed if it is found to be blocked by an obstacle.

D. Virtual Map Adaptation

In contrast to the original implementation of virtual maps,
we compute virtual map values only once at the start of a
planning run. First, the SLAM graph and occupancy map
information from a prior SLAM exploration run are loaded.
Then, the past trajectory information Xold is used to estimate
virtual map covariances Σvi

. Even though we can use
the same map resolution for path planning and uncertainty
estimation, it was shown in [21] that a lower resolution
virtual map provides similar performance but permits faster
belief propagation. In the interest of computational efficiency
and fair experimental comparisons, we discretize the virtual
map to be as coarse as possible, while still capturing the
essential geometric features of the robot’s workspace.

V. EXPERIMENTS AND RESULTS

A. Experiment Setup

To validate the proposed planning under uncertainty
framework, we present experimental results from a high-
fidelity AUV simulation operating at a fixed depth in dif-
ferent environments. The simulation setup ran on a Lambda
Workstation with an AMD 3970X 32-core processing unit
and 256GB RAM, running Ubuntu 18.04, ROS Melodic,
and Gazebo (our planning implementation is serialized and
every trial used only a single core). The vehicle used in
the simulations is the RexROV2 from UUV Simulator [32].
The simulated sonar operates at 5 Hz, has 30 meter range,
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(a) Marina environment. (b) Fish farm environment.

(c) Bridge-tunnel environment.

Fig. 3: Virtual maps for all three simulation environments: including
planning start (blue star) and all goal positions (numbered red x’s).

and has a horizontal aperture of θ = [−65◦, 65◦]. Zero-
mean Gaussian noise is added to range and bearing sonar
measurements: σr = 0.2 m, σθ = 0.02 rad. Linear velocity
values are obtained from a simulated Doppler Velocity Log
(DVL) and angular measurements are obtained from a sim-
ulated Inertial Measurement Unit (IMU) at 50 Hz and 7 Hz
respectively. Likewise, zero-mean Gaussian noise is added
with σx = σy = 0.1 m/s and σθ = 0.015 rad.

Three environments were designed to simulate realistic
large-scale scenarios where an AUV might operate. The first
environment, a marina, was inspired by Penn’s Landing in
Philadelphia, the second scenario is an offshore fish farm
containing six cylindrical fish pens, and the third scenario
is a bridge-tunnel system, inspired by the Chesapeake Bay
bridge-tunnel. As a preprocessing step, each environment
was fully explored while performing sonar SLAM as pre-
sented in Sec. IV-A [23]. Our AUV was teleoperated inside
its simulated environment to efficiently complete the explo-
ration task, during which a globally deformable occupancy
grid map was constructed based on local submaps [33]. This
representation anchors a local submap to each SLAM pose
keyframe, allowing for efficient map recomputation when a
trajectory segment is changed. The trajectories used for each
exploration can be observed in the video attachment. The
SLAM graph and occupancy map information were saved
and later reloaded to build the virtual map and use our
planner. The occupancy grid map was downsampled from
0.2m to 2m in cell size to produce the virtual map.

Each scenario has one start location and three different
goal locations. Each run consisted of the robot navigating
from a start to a goal location, and was repeated for 100
trials. The results shown are the average values of all
the trials executed. Additionally, we compare our planner

Fig. 4: Marina results: goals 1, 2, 3 shown from top to bottom.

framework with two other strategies, Shortest Distance (SD)
and Expectation-Maximization (EM). The SD planner just
follows the shortest viable A* path to the goal. The EM
planner uses the same receding horizon style from Sec. IV-
B, however, it employs full Expectation-Maximization belief
propagation as in [23] to choose each intermediate goal.

For our experiments, we chose to have one shortest-
distance action Nsd = 1 at dsd = 25 m distance, and
five place revisiting actions Npr = 5 each iteration. The
place revisiting radius was defined at rpr = 15 m. The
distance weight was experimentally chosen and set to α =
3. To evaluate our planning framework, we recorded the
pose uncertainty of the current robot pose, computed as
det(Σxi)

1
3 , and the pose error, computed via RMSE, across

all trials as functions of distance traveled.

B. Results Comparison

In our results, SD refers to the Shortest Distance planner,
EM refers to the Expectation-Maximization planner, and VM
refers to our proposed planner, which uses a virtual map as
a costmap to approximate belief propagation.

1) Marina Environment: The virtual map for the marina
environment can be observed in Fig. 3a, where the blue
star represents the start location, and the red crosses depict
goal locations. Pose error and uncertainty results for each
goal location can be observed in Fig. 4. VM and EM
planners achieve a similarly low uncertainty performance,
while SD uncertainty grows unbounded. Goal 3 results in
Fig. 4 (bottom) show VM and EM manage to reduce the
initial robot pose error, while SD does not. Surprisingly,
goal 1 results in Fig. 4 (top) reveal VM achieves a more
stable low pose error performance than EM, likely due to
EM having an erroneous loop closure. Goal 2 results in Fig.
4 (middle) convey that EM has the best pose error result,
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Fig. 5: Fish farm results: goals 1, 2, 3 shown from top to bottom.

while VM has intermediate performance, still better than SD.
Here, VM likely missed an opportunity to lower pose error
by not predicting and achieving a SLAM loop closure.

2) Fish Farm Environment: The virtual map for the fish
farm environment with start (blue star) and goal locations
(red cross) can be seen in Fig. 3b, and corresponding
results can be observed in Fig. 5. Resembling the previous
experiment, VM and EM achieve a similarly low uncertainty
performance while SD uncertainty has a higher and less
stable uncertainty result. Fig. 5 (top) shows that for goal 1
the SD planner manages to reduce its pose error, before pose
error spikes up again. Likewise, Fig. 5 (bottom) shows that
for goal 3 the SD planner manages to lower the pose error
after a spike, potentially due to a coincidental loop closure.
However, EM and VM still achieve lower pose error than
SD in all three scenarios, with EM being slightly superior.

3) Bridge-tunnel Environment: The virtual map and rele-
vant locations for the bridge-tunnel environment are shown in
Fig. 3c, and results are shown in Fig. 6. For all three targets,
VM performance is similar to EM, while SD uncertainty
grows unbounded and exhibits higher pose estimation errors.

4) Result Summary: Fig. 1 shows example paths achieved
by each planner, where the ellipses represent the evolution
of uncertainty. It is clear that the VM and EM paths are
similar in error and uncertainty; they both keep close to
features in the environment and achieve low uncertainty
by triggering SLAM loop closures. VM and EM perform
drastically better lowering uncertainty than the SD planner.
Lastly, Table I shows the amount of time it takes to evaluate
each candidate action and choose the appropriate desired
path. In the SD planner, only one path is assessed and
chosen. In our proposed VM planner and in the EM planner,
6 candidate actions are assessed each iteration. The results
show the average time of every utility evaluation performed

Fig. 6: Bridge-tunnel results: goals 1, 2, 3 shown from top to bottom.

Computation Time (sec)
EM VM SD

(µ) (σ) (µ) (σ) (µ) (σ)
Marina 1 3.3553 0.1446 0.0041 0.0001 0.0015 0.0002
Marina 2 2.9324 0.0598 0.0039 0.0002 0.0014 0.0002
Marina 3 3.1507 0.1396 0.0040 0.0001 0.0015 0.0004

Fish Farm 1 5.4149 0.2094 0.0057 0.0001 0.0023 0.0001
Fish Farm 2 4.9547 0.1768 0.0054 0.0001 0.0021 0.0001
Fish Farm 3 5.4370 0.2138 0.0057 0.0001 0.0023 0.0001

Bridge-Tunnel 1 6.2699 0.0744 0.0069 0.0001 0.0027 0.0001
Bridge-Tunnel 2 6.4998 0.1647 0.0070 0.0001 0.0027 0.0001
Bridge-Tunnel 3 6.1624 0.1358 0.0067 0.0001 0.0026 0.0002

TABLE I: Computation time comparison: we give the mean and standard
deviation of the utility evaluation time required in each experiment.

in all 100 trials. As expected, SD planner has the fastest
computation time while EM has the slowest. It can be seen
that EM takes 3 orders of magnitude more time than VM,
while VM and SD maintain the same order of magnitude.

VI. CONCLUSION

This paper presents a computationally efficient planning
under uncertainty framework for underwater robots oper-
ating in large-scale feature-sparse environments. We adapt
the concept of virtual maps, a product of a robot’s initial
exploration of a new environment, using them as costmaps
to avoid expensive online belief propagation while planning.
A receding horizon motion planning strategy is implemented
for planning to specified goals in a manner that is compatible
with real AUV operations. The advantages of the proposed
framework are demonstrated in a realistic underwater sim-
ulation. Results show a decrease in uncertainty and pose
error compared to a standard shortest-distance approach.
Furthermore, our approach is much faster than full belief
propagation, while still maintaining low uncertainty and pose
error. We aim for future work to extend this strategy to 3D
planning scenarios, and to perform virtual map updates to
accommodate important changes in the environment.
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