
Beamspace ESPRIT-D for Joint 3D Angle and
Delay Estimation for Joint Localization and

Communication at MmWave
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Abstract—In this paper, we address the complex task of

estimating the parameters for multiple propagation paths of

realistic millimeter wave (mmWave) channels at a reasonable

computational complexity while maintaining high accuracy,

which is required for precise positioning in joint localiza-

tion and communication systems. We introduce an innova-

tive method termed ESPRIT-D – beamspace Estimation of

Signal Parameters via Rotational Invariance Techniques with a

Dictionary based solution. It exploits a model for the mmWave

multipath channel accounting for filtering effects, represented as

a 5D tensor to extract azimuth and elevation angles of departure

and arrival through beamspace ESPRIT, while retrieving the

delay estimates by a greedy sparse recovery method. Our

evaluation, based on realistic channels generated through ray-

tracing simulations, demonstrates an average angular error

below 0.01� for line-of-sight (LoS) and 0.1� for non-line-of-

sight (NLoS) cases, respectively. The delay accuracy achieves an

average of 3e�10
s. Compared with state-of-the-art (SOTA), our

algorithm exhibits a 10⇥ improvement in estimation accuracy.

I. INTRODUCTION

Large antenna arrays and bandwidths employed by
mmWave multiple-input multiple-output (MIMO) communi-
cation systems lead to the possibility of achieving remarkably
precise estimations of multipath parameters, which can be
exploited for high accuracy positioning [1]. This accuracy
usually comes, however, at the cost of a high computational
complexity in the channel estimation procedure. This limi-
tation is especially relevant when computing high-resolution
3D time domain channel estimates [2].

Research on joint angle and delay estimation has addressed
the need for manageable complexity without compromising
accuracy. Some recent works have leveraged the mmWave
channel sparsity [3]–[5]. The multidimensional orthogonal
matching pursuit (MOMP) algorithm [3], [6], addresses the
complexity issue associated with large-scale tensor multipli-
cation by distributing tensor atoms across multiple dimen-
sions. The algorithm proposed in [4] capitalizes on both the
sparsity and low-rank nature of the channel matrix, exploiting
a multi-rank aware sparse recovery strategy. The low-rank
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property is also explored in [5], which formulates the channel
estimation problem as a low-rank sensing problem and solves
it through the generalized conditional gradient alternating
minimization algorithm. Tensor decomposition techniques
were also exploited for mmWave channel estimation [7]–[10].
In [7], the frequency domain received signal is modeled as a
third-order tensor which admits canonical polyadic decompo-
sition (CPD), and the channel estimates are obtained by maxi-
mizing correlations with the decomposed tensors. Beamspace
estimation of signal parameters via rotational invariance
techniques (ESPRIT), following tensor decomposition, is the
basis for extracting channel parameters in [8]–[10]. While
most of the previous work exploiting tensor decomposition
assumes the use of a uniform linear array (ULA), which sim-
plifies decomposition and reduces the complexity, the authors
of [10] consider a uniform rectangular array (URA) and focus
on low complexity for tensor decomposition. URAs are also
considered in [11], which introduces a beamspace multiple
signal classification (MUSIC) algorithm with a multi-spectral
peak search method to facilitate the searching process.

All prior work presents several notable shortcomings: 1)
the assumption of ULA in the system models [2], [4], [5],
[7]–[9], [12], which can lead to complexity issues when
transitioning to applications requiring URAs, since this tran-
sition results in an exponential dimensionality increase. 2)
While certain methods, including those based on ESPRIT
[4], [8]–[12], appear theoretically sound, they may not be
practical, as the effect of pulse shaping and filtering is
missing in the considered discrete time equivalent channel
model. 3) Some recent compressed sensing based methods
which account for filtering effects [3], [6] exhibit reduced
complexity with respect to prior work [2], but they can still
encounter complexity challenges in specific scenarios with
large arrays. 4) Instead of using realistic channels, some
work conducts experiments for evaluation using artificially
controlled channels fulfilling specific probability distributions
[4], [5], [7]–[12], which limits their applicability when con-
sidering real scenarios where these assumptions do not hold.

In this paper, we model the 3D mmWave channel ac-
counting for pulse shaping as the summation of tensors
spanning five dimensions. Thereafter, to tackle the task of
estimating angles and delays for multiple propagation paths,



we introduce an innovative method termed ESPRIT-D. This
method combines the strengths of beamspace ESPRIT for
the simultaneous extraction of azimuth and elevation angles
with a dictionary-based sparse recovery solution that targets
delay estimation. Furthermore, the algorithm’s performance is
assessed through ray-tracing simulations, providing a robust
evaluation in the context of realistic channel conditions. The
MOMP-based method exploited in [3], [6], [13]–[16] serves
as the benchmark, as it closely approaches the channel esti-
mation accuracy required for sub-meter accuracy localization
while circumventing the limitations mentioned earlier when
operating with moderate size arrays.

Notations: x, x, and X represent a scalar, a vector, and
a matrix or tensor. [X]i,j means the element at the i-th row
and j-th column of X. Indexing a multidimensional tensor
follows the same rule. XT, X̄, X⇤, and X

† are the transpose,
conjugate, conjugate transpose, and pseudo inverse of X.
Operators “�”, “⌦”, and “< ·, · >” represent the vector
outer product, Kronecker product, and the vector dot product
operations.

II. SYSTEM MODEL

We consider a mmWave MIMO communication system
where a base station (BS) is communicating with a user for
initial access. The transmitter (TX) and receiver (RX) are
equipped with URAs of size Nt = Nx

t ⇥ Ny
t and Nr =

Nx
r ⇥Ny

r . The d-th tap of the time domain channel is

Hd =
LX

`=1

↵`p(dTs � ⌧`)ȧ(✓`)ȧ(�`)
⇤
2 CNr⇥Nt , (1)

where L is the number of paths, ↵` and ⌧` are the com-
plex gain and the delay of the `-th path, p(·) represents
the pulse shaping and filtering effects, Ts is the sampling
period, and ✓` = [cos ✓y` cos ✓

x
` , cos ✓y` sin ✓

x
` , sin ✓y` ]

T and
�` = [cos�y

` cos�
x
` , cos�

y
` sin�

x
` , sin�

y
` ]

T are the direction
of arrival (DoA) and direction of departure (DoD) of the `-th
path, where ✓x` , ✓y` , �x

` and �y
` represent the azimuth angle-

of-arrival (AoA), elevation AoA, azimuth angle-of-departure
(AoD) and elevation AoD. Note that both the azimuth and
elevation angles are in the range [�⇡/2,⇡/2]. Assuming
the array is placed in the yz-plane with a half-wavelength
element spacing, the receive array response is

[ȧ(✓)](nx
r�1)N

y
r +ny

r
=

exp {�j⇡ ((nx
r �1)[✓]2 + (ny

r �1)[✓]3)} , (2)

and ȧ(�) is defined in the same manner. We write ȧ(·) in
the form of Kronecker product as ȧ(✓`) = a(✓x` ) ⌦ a(✓y` )
and ȧ(�`) = a(�x

` ) ⌦ a(�y
` ) for the purpose of tensor

decomposition later, where

[a(✓x` )]nx
r
= exp {�j⇡(nx

r � 1)[✓`]2} ; (3)
[a(✓y` )]ny

r
= exp{�j⇡(ny

r � 1)[✓`]3}; (4)
[a(�x

` )]nx
t
= exp{�j⇡(nx

t � 1)[�`]2}; (5)
[a(�y

` )]ny
t
= exp{�j⇡(ny

t � 1)[�`]3}. (6)

We assume the total number of taps is Nd, and the channel
estimation is realized through the downlink transmission of
a single training sequence of length Q � Nd. For simplic-
ity, we assume that an analog beamforming architecture is
considered at both ends, and the channel is sounded multiple
times by the transmission of the training sequence through
different combinations of training precoders and combiners.
Assuming the analog precoder in use at the given time instant
q is f 2 CNt⇥1, and the analog combiner is w 2 CNr⇥1, the
q-th instance of the received signal is

y[q] = w
⇤
Nd�1X

d=0

Hdf
p

Pts[q � d] +w
⇤
n[q], (7)

where
p
Pt is the transmitted power, s[q] is the q-th instance

of the training signal which satisfies E[s[q]s[q]⇤] = 1, and
n[q] ⇠ N (0 + 0j,KBT (K)

INr) is the thermal noise at the
q-th time slot, where K is the Boltzmann’s constant, B is
the system bandwidth, and T (K) is the absolute temperature.
Note that if a hybrid architecture with several radio frequency
(RF) chains is considered, it will be possible to simultane-
ously sound the channel with multiple pairs of precoders and
combiners, and the measurement collection process can be
faster. For the analog-only case, the received signal vector is

y = w
⇤ [H0f ,H1f , . . . ,HNd�1f ]

p
PtS+w

⇤n, (8)

where y = [y[1], ..., y[Q]], S is the transmitted signal matrix
defined as

S =

2

6664

s[1] s[2] . . . s[Q]
0 s[1] . . . s[Q�1]
...

...
. . .

...
0 0 . . . s[Q�(Nd�1)]

3

7775
, (9)

and n = [n[1], ...,n[Q]] 2 CNr⇥Q. Let ň = w
⇤n, then (8)

can be written as

y =
p

Ptw
⇤ [H0, ...,HNd�1] (INd ⌦ f)S+ ň. (10)

III. ESPRIT-D FOR JOINT 3D ANGLE AND DELAY
ESTIMATION

A. Background of beamspace ESPRIT

The canonical polyadic (CP) representation of a Zth-order
tensor ⌥ 2 CN1⇥N2⇥...⇥NZ of rank L is written as a linear
combination of the tensor outer products of rank-1 tensors
uz,` [17]:

⌥ =
LX

`=1

�`u1,` � u2,` � · · · � uZ,`, (11)

where uz,` is the rank-1 tensor spanning the z-th dimension
of the `-th tensor product, and �` is the coefficient of the
`-th tensor product. To adapt the CP representation for our
channel estimation problem, uz,` is defined in the form of a
steering vector as uz,` = [ej0!z,` , ej1!z,` , . . . , ej(Nz�1)!z,` ]T,
with !z,` being the frequency component of the z-th di-
mension of the `-th tensor product. A tensor decomposition



method, e.g. CPD in [17], is adopted to derive the estimated
rank-1 tensors, denoted as ûz,`, by solving the optimization
problem assuming the number of summation components
being NL:

min
Ûz

�����⌥�

NLX

`=1

û1,` � · · · � ûZ,`

����� . (12)

Let Ûz = [ûz,1, ..., ûz,NL ], and
(
J
(1)
z =

⇥
INz�1 0(Nz�1)⇥1

⇤

J
(2)
z = [0Nz�1⇥1 INz�1]

, (13)

the shift invariance property can be applied:

J
(1)
z Ûz = J

(2)
z Ûz�z, (14)

where �z’s diagonal elements contain the estimated fre-
quency components !̂z,` for 1  `  NL for the z-th
dimension, i.e., �z = diag[e�j!̂z,1 , ..., e�j!̂z,NL ].

In the context of using beamspace tensors, we define the
beamspace rank-1 tensor u

0
z,` = B

⇤
zuz,` 2 CMz⇥1, where

Bz = [bz,1, ...,bz,Mz ] 2 CNz⇥Mz contains Mz “beams”,
each one of them defined by a vector of length Nz . Using
this identity, (11) becomes⌥ =

PL
`=1 �

0
`u

0
1,`�u

0
2,`�· · ·�u

0
Z,`.

Replacing ûz,` with the beamspace tensor û0
z,` in (12), û0

z,`
can be still acquired via CPD as mentioned above. We denote
the concatenation of the acquired beamspaces tensors of the
z-th dimension as Û

0
z =

⇥
û
0
z,1, ..., û

0
z,NL

⇤
, and it turns out

(14) no longer holds, since J
(1)
z Û

0
z 6= J

(2)
z Û

0
z�z . A way to

restore the shift invariance structure is proposed in [8]. First,
we find �0

z s.t. J
(1)
z Bz = J

(2)
z Bz�

0
z through least square

(LS) estimation:

�
0
z = (J(2)

r Bz)
†
J
(1)
z Bz. (15)

Then, there exists an adjustment matrix

 z = IMz � ([B⇤
z]:,Nz )([B

⇤
z]:,Nz )

⇤

� (�0
z)

⇤[B⇤
z]:,1[Bz]1,:�

0
z 2 CMz⇥Mz , (16)

s.t. (
 z[B⇤

z]:,Nz = 0Mz⇥1

 z(�0
z)

⇤[B⇤
z]:,1 = 0Mz⇥1

, (17)

hereby  z(�0
z)

⇤
U

0
z =  zU

0
z�

⇤
z holds. Let U0

z = Û
0
zDz ,

where Dz 2 CNL⇥NL is an unknown non-singular matrix.
We now have  z(�0

z)
⇤
Û

0
z =  zÛ

0
zDz�

⇤
z(Dz)�1. The

value of �z = Dz�
⇤
z(Dz)�1 can be determined by LS

estimation:

�̂z = ( zÛ
0
z)

†
 z(�

0
z)

⇤
Û

0
z. (18)

As �zDz = Dz�
⇤
z , the eigenvalues of �̂z , denoted as

eig(�̂z) 2 CNL⇥1, are the estimation of the diagonal ele-
ments of �⇤

z = diag[ej!̂z,1 , ..., ej!̂z,NL ].

B. Beamspace ESPRIT-D for Joint 3D Angle and Delay

Estimation

We first denote the delay response vector w.r.t delay ⌧` as

p(⌧`) = [p(0·Ts � ⌧`), . . . , p ((Nd�1)Ts � ⌧`)]
T
2 RNd⇥1,

(19)
and rearrange the elements in (10) so that it can be reformat-
ted as

y =
LX

`=1

↵`w
⇤
ȧ(✓`)ȧ(�`)

⇤
f p(⌧`)

T
p
PtS+ ň. (20)

Assuming Mr combiners (the mr-th of which is denoted as
wmr ) and Mt precoders (the mt-th of which is denoted as
fmt ) are used to collect M = MrMt measurements, a tensor
containing all the measurements can be written in the outer
product format as

Y =
LX

`=1

W
⇤
ȧ(✓`) �F

T ¯̇a(�`) �↵`

p
PtS

T
p(⌧`) + Ň, (21)

where W = [w1, ...,wMr ], F = [f1, ..., fMt ], and [Y]mr,mt,q

and [Ň]mr,mt,q are the q-th instance of the received signal
and the noise acquired with fmt and wmr . We introduce
Ḣ as the spatial representation of the channel including the
precoder/combiner effects, whose `-th component is

Ḣ` = W
⇤
ȧ(✓`) � F

T ¯̇a(�`), (22)

which can be further extended to a 4D tensor as

Ḣ` = W
⇤
xa(✓

x
` ) �W

⇤
ya(✓

y
` ) � F

T
x ā(✓

x
` ) � F

T
y ā(✓

y
` ), (23)

where Wx =
h
w

(1)
x , ...,w

(Mx
r )

x

i
2 CNx

r ⇥Mx
r and Wy =

h
w

(1)
y , ...,w

(My
r )

y

i
2 CNy

r ⇥My
r are used to build W as Wx⌦

Wy, and Mr = Mx
r M

y
r . Similarly, Fx ⌦ Fy = F, where

Fx =
h
f
(1)
x , ..., f

(Mx
t )

x

i
and Fy =

h
f
(1)
y , ..., f

(My
t )

y

i
. Hereby

Y can be transformed into the form of the outer product of
tensors spreading 5 dimensions:

Y5D =
LX

`=1

W
⇤
xa(✓`

x) �W⇤
ya(✓

y
` )

�F
T
x ā(✓

x
` ) � F

T
y ā(✓

y
` )

� ↵`

p
PtS

T
p(⌧`) + Ň, (24)

and the relationship between Y and Y5D can be acquired as
[Y5D]mx

r ,m
y
r ,mx

t ,m
y
t ,q

= [Y](mx
r�1)My

r +my
r ,(mx

t�1)My
t +mx

t ,q
.

Now we solve the tensor decomposition problem so that Y5D
can be approximated by the summation of NL vector outer
products, i.e.,

min
Û0

1,...,Û
0
5

�����Y5D �

NLX

`=1

�`
�
�
5
z=1û

0
z,`

�
����� , (25)

where the first 4 dimensions will be associated with
W

⇤
xa(✓

x
` ), W

⇤
ya(✓

y
` ), F

T
x ā(✓

x
` ), and F

T
y ā(✓

y
` ) respectively,

and the last dimension corresponds to the delay domain. Let
the tensor decomposition result be Û

0
z = [û0

z,1, ..., û
0
z,NL

]



Algorithm 1 Beamspace ESPRIT-D
1: Inputs: The received signal in the form of a 5D tensor Y5D

as in (24); Transmitted signal matrix S; The combiner matrices
Wx and Wy that can construct W; The precoder matrices Fx

and Fy that can construct F; The number of taps Nd; The delay
dictionary resolution Gt; The number of channel paths NL to
be estimated.

2: Initialize system parameters:

The rotation matrices J(1)
z and J(2)

z as defined in (13);
The matrices: B1 = Wx, B2 = Wy, B3 = F̄x, B4 = F̄y,
and B5 = S̄;
The number of atoms Nz in u0

z for each dimension: N1 = Mx
r ,

N2 = My
r , N3 = Mx

t , N4 = My
t , and N5 = Q;

The delay dictionary P as in (29);
The tensor decomposition results by solving (25): Û0

z =
[û0

z,1, ..., û
0
z,`, ..., û

0
z,NL

].
3: % Angle estimation

4: for z = [1 : 4] do

5: Calculate the diagonal matrix �0
z as in (15);

6: Calculate the adjustment matrix  z as in (16);
7: Acquire �̂z as in (18), and its eigenvalues eig(�̂z);
8: Estimated frequency components: !̂z = �j ln

⇣
eig

⇣
�̂z

⌘⌘
;

9: if z 2 {1, 2} then

10: Estimated AoAs:

(
✓̂y` =

⇥
sin�1

�
!̂2
⇡

�⇤
`
;

✓̂x` = sin�1
⇣

[!̂1]`
�⇡ cos ✓̂y`

⌘
.

11: else

12: Estimated AoDs:

(
�̂y
` =

⇥
sin�1

�
!̂4
⇡

�⇤
`
;

�̂x
` = sin�1

⇣
[!̂3]`

⇡ cos �̂y
`

⌘
.

13: end if

14: end for

15: % Delay estimation

16: for ` = [1 : NL] do

17: Acquire the estimation of ⌘`p(⌧`) as in (31);
18: Calculate the distributed correlation c as in (32);
19: The index of the estimated delay in P: i` = argmax

i`
c;

20: The estimated delay: ⌧̂` = ẗi` ;
21: end for

22: Calculate gain estimations � as in (34);

following that in Sec. III-A, then the beamspace ESPRIT
can be performed to extract the angular information, while
the delay information needs to be acquired by solving the
sparse recovery problem through a dictionary based method.

Angle estimation: To apply the beamspace model, we
determine Bz for 1  z  4 as B1 = Wx, B2 = Wy,
B3 = F̄x, and B4 = F̄y. The frequency component of the
steering vector in each dimension is defined as:

8
>>><

>>>:

!1,` = �⇡ cos ✓y` sin ✓
x
`

!2,` = �⇡ sin ✓y`
!3,` = ⇡ cos�y

` sin�
x
`

!4,` = ⇡ sin�y
`

, (26)

so that u1,` = a(✓x` ), u2,` = a(✓y` ), u3,` = ā(�x
` ) and u4,` =

ā(�y
` ). Hereby Ḣ` defined in (23) becomes

Ḣ` = �
4
z=1B

⇤
zuz,` ⇡ �

4
z=1û

0
z,`. (27)

Based on beamspace ESPRIT mentioned in (13)-(18), the
frequency components of each dimension are estimated re-
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Fig. 1: An example of channel estimation results of the 5
strongest paths using ESPRIT-D, with the colorbar indicat-
ing the normalized power strength. DoA estimation error
 0.38�; DoD estimation error  0.11�; TDoA estimation
error  3.8e�10 s.

ferring to eig(�̂z)

!̂z,` = �j ln
⇣
[eig(�̂z)]`

⌘
, (28)

and the angle estimates are retrieved using (26).
Delay estimation: Previous work [8]–[11] neglecting the

pulse shaping and filtering effects express the channel at the
k-the subcarrier as H[k] =

PL
`=1 ↵`ȧ(✓`)ȧ(�`)⇤e�j2⇡k�f⌧` ,

where �f denotes the subcarrier spacing. In such cases,
beamspace ESPRIT remains applicable considering B5 =
IK with K being the number of subcarriers, and !5,l =
�2⇡�f⌧`. In our model, however, the delay response p

does not follow the formulation of a steering vector, and
the decomposed vectors of the 5th dimension should be
converted into delay estimates. Consequently, a dictionary
based method emerges as the most viable solution to estimate
the delay through sparse recovery. We first construct the delay
dictionary P as:

P =
⇥
p(ẗ1), . . . ,p(ẗGt)

⇤
, (29)

where Gt determines the dictionary resolution, and the g-th
column is the delay response w.r.t time ẗg = (g � 1) · NdTs

Gt
.
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Fig. 2: CDF of estimation errors based on a total of 200 channels: (a) CDF of angular error for LoS paths. (b) CDF of angular
error for NLoS paths; (c) CDF of error in the TDoA.

From (24) and (25), we know that ↵`
p
PtS

T
p(⌧`) corre-

sponds to �`û0
5, and k�`k / k↵`

p
PtS

T
p(⌧`)k. As we

now focus on delay estimation, we treat ↵`
p
PtS

Tp(⌧`)
�`

as
⌘`ST

p(⌧`), which can be approximated by û
0
5. The delay

information for the `-th path can be estimated by solving the
sparse recovery problem:

min
x`

kPx` � ⌘`p(⌧`)k , (30)

where ⌘`p(⌧`) is obtained by LS estimation:

\⌘`p(⌧`) = (SST)†Sû5,`. (31)

We calculate the distributed correlation of P and ⌘`p(⌧`) as

c = P
⇤ \⌘`p(⌧`), (32)

then the maximum projection gives the index of the support
of the sparse vector x` as

i` = argmax
i`

c, (33)

so the delay estimation is given by ⌧̂` = ẗi` .
Finally, let � = [�1, ..., �NL ]

T, then �` can be retrieved by
solving (34) via LS estimation:

min
�

��vec(Y5D)�
⇥
vec(�5z=1ûz,1), ..., vec(�

5
z=1ûz,NL)

⇤
�
�� .

(34)
The ESPRIT-D algorithm, as outlined in Algorithm 1,
exhibits spatial complexity of O

⇣P4
z=1 NzMz +N5G

⌘
,

where each Nz corresponds to the response vector length, Mz

relates to number of beams, and G depends on the resolution
of the dictionary for the delay. In comparison to the time-
domain dictionary based channel estimation methods [2],
which suffer from a spatial complexity of O

⇣Q5
z=1 NzGz

⌘

with each Gz linked to dictionary resolution along the
dimension, resulting in exponential complexity growth with
finer resolutions, our proposed method offers a much more
practical and manageable computational approach. Our im-
plementation of ESPRIT-D in MATLAB can be found in [18].

IV. SIMULATION RESULTS

In this section, we present the 5D channel estimation
results based on realistic ray-tracing channels simulated by
Wireless Insite [19]. The MOMP algorithm without DoA then
retrieving DoA [14], [16] is taken as the baseline, since it
exhibits lower complexity than the original MOMP [3], [6].
The MATLAB code developed to obtain the results shown in
this section can be found in [18].

Ray-tracing setup: We consider a realistic outdoor en-
vironment for vehicular communication, where an active car
equipped with 4 communication arrays at a height of 1.6 m, is
communicating with a roadside unit (RSU). The 4 arrays on
the vehicle are facing front, back, right, and left, respectively,
to make sure at least one of them receives signals with
sufficient power strength for channel estimation. The RSU
array is located at a known location of [120,�21.0034, 5].
The ray-tracing simulation operates at a carrier frequency of
73 GHz, with other parameters chosen as in [20]. A total
of 200 scenes are generated, where the active car is placed
randomly within the rectangular area from [5,�12.75] to
[220,�1.75]. We set the number of output paths for each
channel to 25.

Communication system setup: We consider the 4 arrays
of size Nr = 8 ⇥ 8 on the active car, and the array of size
Nt = 16 ⇥ 16 on the RSU. The transmitted pilot length is
Q = 50 and the transmitted power is set to Pt = 40 dBm. The
system operates at a carrier frequency of fc = 73 GHz using
the bandwidth of B = 1 GHz. We use a raised cosine filter for
pulse shaping with the roll-off factor of 0.2. The number of
delay taps is fixed to Nd = 48. Random precoding/combing
is adopted, and a total of 64 measurements are collected
at the RX under the temperature of T (K) = 300 K (noise
power: �84 dBm). In terms of the delay dictionary for delay
estimation, Gt = Nd ⇥ 4 = 320 is set for sufficiently fine
resolutions, i.e., ẗg+1 � ẗg = 2.5e�10 s. For all later results,
we assume the number of paths to be estimated is NL = 5.

Results: We first show an example of channel estima-
tion results for the 5 strongest paths using ESPRIT-D, as
depicted in Fig. 1, where the square boxes overlap with “+”



markers, and the diamond boxes overlap with “⇤” markers,
representing accurate estimations for both AoAs and AoDs.
The average estimation errors for AoA and AoD are 0.06�

and 0.02�, respectively. The 3D angular estimation error is
calculated by ✏('̂) = cos�1(< '̂,' >), which are 0.10�

and 0.04� in average for DoA and DoD estimations in the
instance. In addition, as we assume an unknown clock offset,
the delay estimation results are represented by time difference
of arrival (TDoA) (s) w.r.t the shortest path in the channel,
and the estimation error is 2.84e�10 s on average.

The cumulative distribution function (CDF) plots in Fig.
2 illustrate the estimation errors of angular and TDoA es-
timations based on the 200 channels, where the LoS paths
and NLoS paths are analyzed separately. ESPRIT-D achieves
an angular accuracy of 0.04� for 90% of the LoS cases, and
an accuracy of 2.35� (AoAs) / 1.20� (AoDs) for 90% of
the NLoS cases. AoD estimations exhibit a higher accuracy
compared to AoA estimations, primarily due to the larger
array employed at the RSU. TDoA estimation with ESPRIT-
D keeps the errors mostly  4.57e�9 s. This level of preci-
sion is particularly valuable for applications such as vehicle
positioning. Compared with results using MOMP [16], the
proposed method brings an improvement of more than 10⇥
on average for both the angular and delay estimations. Note
that outliers with significant deviations from the ground truth
persist, possibly attributed to the intricacies of real-world
outdoor channels, such as large power attenuation (� 30 dB)
for NLoS paths within a LoS channel [16].

V. CONCLUSION

In this paper, we have formulated the 3D time-domain
mmWave channel, accounting for pulse shaping, as a 5D
tensor. Then, our proposed ESPRIT-D algorithm combines
beamspace ESPRIT with a dictionary-based sparse recovery
approach to enable joint 3D angle and delay estimations
for multiple signal paths. This method effectively mitigates
the complexity issue and outperforms the MOMP algo-
rithm described in [16], which approximates the accuracy
requirements for vehicle localization but employs a two-stage
strategy that does not estimate all parameters simultaneously
due to complexity concerns. According to statistical results
acquired based on realistic simulated channels, our algorithm
attains angular accuracy of 0.04� for 90% of the LoS cases,
with angles of arrival (AoAs) and angles of departure (AoDs)
at 2.35� and 1.20�, respectively, for 90% of the NLoS cases.
Additionally, the delay estimation brings an accuracy at the
level of 4.57e�9 s. Notably, our algorithm achieves accuracy
levels 10⇥ higher than the SOTA algorithms.

REFERENCES

[1] F. Jiang, Y. Ge, M. Zhu, and H. Wymeersch, “High-dimensional
channel estimation for simultaneous localization and communications,”
in 2021 IEEE Wireless Communications and Networking Conference

(WCNC). IEEE, 2021, pp. 1–6.
[2] K. Venugopal, A. Alkhateeb, N. G. Prelcic, and R. W. Heath, “Channel

estimation for hybrid architecture-based wideband millimeter wave
systems,” IEEE Journal on Selected Areas in Communications, vol. 35,
no. 9, pp. 1996–2009, 2017.
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