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Abstract—Detecting anomalies and faults swiftly and 

accurately is essential in many applications, such as healthcare, 

infrastructure, industry, and security. In most of these 

applications, the available power for running an anomaly 

detection system is very limited. This is especially the case for 

modern smart and electric vehicles, which have an increasing 

amount of electronics. These vehicles have Electronic Control 

Units (ECUs) that communicate with each other through the 

Controller Area Network (CAN) bus. The Controller Area 

Network, however, is not very secure, so bad actors can do severe 

damage, putting the lives of drivers and passengers at risk. Thus, 

low-power anomaly detection is essential for both security and 

reliability. Deep learning networks have demonstrated proficiency 

in anomaly identification. However, their implementation on 

conventional Central Processing Units (CPUs) and Graphics 

Processing Units (GPUs) incurs significant energy consumption. 

To overcome this limitation, we propose a low-power approach for 

placing security directly in the network hardware. An 

autoencoder-based real-time anomaly detector trained through 

unsupervised learning is seamlessly mapped onto the Intel Loihi 

spiking neuromorphic processor. Our proposed anomaly detector 

used significantly less power than a CPU or GPU and showed the 

best accuracy and F-1 score to detect anomalies compared to the 

alternative spiking approaches. The proposed anomaly detection 

system consumed about 20,000 and 700 times less energy than a 

CPU and GPU respectively. To the best of our knowledge, this is 

the first low-power, unsupervised anomaly detection system using 

the Loihi or any other neuromorphic processor. The results of this 

work will apply to other anomaly detection applications, as well as 

other spiking neuromorphic processors, resulting in a universally 

applicable extreme low-power anomaly detection platform. 

Keywords—CAN bus, Intel Loihi, Unsupervised, Autoencoder, 

Low power, Anomaly detection 

I. INTRODUCTION  

Anomaly detection is a technique that concerns identifying 

patterns in data that deviate from the expected behavior. The 

accuracy of detection, precision, and faster diagnosis of such 

anomaly events are necessary for reducing significant damage 

and cost. Anomaly detection has a wide range of applications, 

including fraud detection in credit card transactions, loan 

processing, medical applications in health condition monitoring, 

detecting cyber security intrusions, and identifying faults in 

machinery. Machine learning algorithms (supervised and 

unsupervised) show tremendous success in anomaly detection 

operations, such as isolation forest [1], support vector machine 

[2], and k-means clustering [3]. In recent years, deep learning 

networks have shown more efficiency in detecting anomalies 

than traditional machine learning-based systems [4]. 

This paper focuses on developing a deep learning-based 

vehicular anomaly detection system. Modern automotive 

vehicles comprise up to 100 Electronic Control Units (ECUs) 

[5]. These ECUs control various car functions, such as steering, 

braking, engine, airbag, traction, and cruise control. ECUs share 

their information through a vehicle network called the 

Controller Area Network (CAN). The CAN bus is popular 

among major car manufacturers because it uses a standardized 

serial communication protocol for car control systems. It is 

known for being reliable, fast, and simple to setup [6]. The ECU 

gets updated data from sensors and executes different 

instructions to monitor the vehicle's status [7]. Since the CAN 

bus uses a broadcast protocol, the messages have no source and 

destination information. It does not support authentication and 

encryption. Therefore, it is easy for an attacker to attack the 

CAN bus and control the car through an external device or 

Bluetooth communication. Any attack on one ECU can 

immediately carry through to other ECUs. A corrupt ECU can 

seriously affect the passengers, drivers, and the surrounding 

environment. Therefore, anomaly detection must be integrated 

within the CAN environment to detect unwanted messages and 

enable a higher level of security.  



 

 

Modern vehicles have many sensors that produce a large 

amount of data, and thus needs an anomaly detection system that 

is fast but consumes low power. Using CPUs or GPUs is for this 

would not be efficient as they are either not fast enough at 

network processing or consume too much power. For instance, 

a state-of-the-art GPU can consume about 200 W of power while 

computing at full load. A solution to this problem is to use 

neuromorphic processors to implement anomaly detection at 

extremely low power. Intel's Loihi is an example of a recent 

neuromorphic processor and consumes approximately 100 mW 

of power [8]. This computation efficiency is realized by its 

ability to mimic human cognitive systems for information 

processing. One of the critical features of neuromorphic 

processors is their ability to handle spiking neural networks 

(SNNs), which closely emulate the spiking behavior of the brain. 

This paper presents a spiking neural network-based anomaly 

detection algorithm using the Intel Loihi neuromorphic 

processor. We then evaluated the anomaly detection system for 

malicious packets on the automotive CAN bus.  

To the best of our knowledge, this is the first unsupervised 

anomaly detection application implemented on the Loihi. We 

emulated our system using Nengo [9], which is a framework to 

solve neural network-based problems on neuromorphic 

hardware. This work is also the first-ever anomaly detection 

application implemented in neuromorphic hardware. Given the 

extreme advantage of novel spiking neural network hardware 

in terms of both energy efficacy and portability, this is very 

capable system to carry out security processes within complex 

but vulnerable in-vehicle computing networks.   

The rest of the paper is organized as follows: related 

anomaly detection work in non-spiking and spiking systems is 

discussed in Section II. Section III discusses the background for 

this work. Section IV describes the dataset and the 

preprocessing required for our experiment. Section V 

introduces the autoencoder network. Section VI discusses the 

experimental setup for our system. Section VII analyzes the 

results, and Section VIII concludes the paper. 

II. RELATED WORKS  

In recent years, autonomous electric vehicles (EVs) have 

become very popular, and their use has increased rapidly. The 

rapid growth of EVs also increased the targets of cyberattacks 

on the CAN bus. Therefore, security of autonomous cars is 

crucial. Besides the automotive industry, the anomaly detection 

system has uses in finance, healthcare, and cybersecurity 

applications. Many research papers have looked at anomaly 

detection applications in recent years, most of which are pure 

software-based implementations without considering hardware 

mapping. In this section, some of the most relevant works are 

described briefly. 

Hossain et al. [10] proposed a Long Short-Term Memory 

(LSTM) based anomaly detection technique that successfully 

classifies malicious messages from normal messages. They 

experimented on their own data with different hyper-parameter 

values and achieved around 99.99% detection accuracy. Seo et 

al. [11] demonstrate a GAN-based intrusion detection system 

(GIDS) consisting of a discriminator and generator. This model 

achieved an average of 98% accuracy in detecting unknown 

data. Song et al. [12] proposed a deep convolutional neural 

network (DCNN) based intrusion detection system in which 

they modified the Inception-ResNet model. The authors used a 

frame builder to extract a 29-bit identifier from a recent 

sequence of 29 CAN messages for training. They achieved a 

detection precision of 1.0 for DoS types of anomalies and 0.99 

for other anomalies. Kwak et al. [13] highlight the significance 

of cosine similarity as a feature to detect and classify attacks 

from datasets. They achieved 98.93% and 99.18% accuracy for 

the KIA Soul and 99.43% and 99.49% for the HYUNDAI YF 

Sonata, respectively, in driving and stationary conditions. 

Jaoudi et al. [14] proposed a convolutional autoencoder to 

detect anomalies. The author converted the network into an 

SNN and showed that the network successfully detected 

anomalies. 

Besides in-vehicle applications, there are many other 

anomaly detection applications in industrial, commercial, and 

healthcare institutions. Roth et al. [15] presented a method 

called PatchCore, which uses a maximally representative 

memory bank of nominal patch features to find defective parts 

in industrial manufacturing. The authors investigated the 

importance of locally aware patch features to show the changes 

in anomaly detection. Their methods achieved a 99.6% 

AUROC score on the MVTec AD benchmark. Vanini et al. [16] 

presented the development and validation of the risk 

management process using various fraud detection models. 

Alfardus et al. [17] presented a machine learning-based 

intrusion detection system with various algorithms like K-

nearest neighbors, Random Forest, Support Vector Machine, 

and Multilayer perceptron and compared their accuracy. The 

accuracy of the proposed system is 100% for impersonation and 

DoS attacks and 99% for fuzzy attacks.  

Zanatta et al. [18] proposed structural health monitoring 

(SHM) using spiking neural networks (SNNs) in MEMS data 

to detect infrastructural damages in a motorway bridge. They 

trained a Long Short-Term SNN (LSNN) with an e-prop 

algorithm and Backpropagation Through Time (BPTT). 

Dennler et al. [19] demonstrate spiking neural network (SNN) 

based vibration analysis, which is compatible with analog-

digital neuromorphic circuits. They implemented a three-layer 

SNN on the Induced Bearing Fault (IBF) and Run-to-Failure 

Bearing Fault (R2F) datasets to detect anomalies from vibration 

data in an unsupervised fashion. 

All the works described above are implemented in pure 

software only form for various anomaly detection applications. 

Only a few experiments have been reported that have been 

implemented in hardware. For example, Bauer et al. [20] 

proposed a real-time classification of ECG data on the Dynamic 

Neuromorphic Asynchronous Processor (DYNAP). They used 

a spiking recurrent neural network, which consists of three 

different neuronal populations. The authors converted ECG 

signals into sequential events by using the sigma-delta encoding 

scheme. Their system showed 91.3% anomaly detection on the 

test set and consumed less than 722.1 µW power. Chen et al. 



 

 

[21] presented an autonomous anomaly recognition and 

detection (AnRAD) framework inspired by the human 

neocortex system to detect anomalies in traffic. They used a 

likelihood-ratio test to detect anomalies. Ussa et al. [22] 

proposed a hybrid neuromorphic framework for object tracking 

and classification. They embedded their system in an FPGA and 

interfaced with a TrueNorth (TN) chip. They compared their 

framework’s performance with DART and SLAYER. They 

showed it also consumed low power, ranging from 5 to 14 mW. 

However, there is no neuromorphic hardware-based on an in-

vehicle anomaly detection system available for automobiles. 

III. BACKGROUND 

A. Spiking Neural Network (SNN) 

In the human brain, neurons send signals using spikes of 

electrical activity through axons and collect signals from 

dendrites to exchange information. Neurons communicate 

through an extensive, interconnected network of synapses. A 

spiking neural network is a neural network model that mimics 

the human brain’s computational mechanisms [23]. 

In a spiking neural network, each neuron actively monitors 

incoming spikes and assigns weights based on synaptic values. 

If the cumulative effect of these weighted spikes surpasses a 

threshold value, it will send a spike to connected neurons and 

initiate communication. After a spike, the neuron voltage is reset 

to a predetermined value. The training process in SNN involves 

adjusting the weights to optimize the network’s ability to 

recognize the pattern and respond to the input spike. Both 

presynaptic and postsynaptic spikes play a crucial role in the 

training phase. Fig. 1 illustrates the structural components and 

functionality of a spiking neuron. 

 
Fig. 1. Spiking Neural Network [24]. 

B. Intel Loihi Neuromorphic Hardware  

Neuromorphic processors are specialized microprocessors. 

These processors are designed to mimic the structure and 

functionality of the human brain's neural networks. One of the 

critical features of neuromorphic processors is their ability to 

handle spiking neural networks (SNNs), which closely emulate 

the spiking behavior of neurons in the human brain. This event-

driven approach allows for more efficient processing, as 

computations occur only when relevant spikes or signals are 

present. 

Intel's Loihi was released in 2018 to support the properties 

of biological neural networks at extreme efficiency [25]. It is a 

60 mm2 neuromorphic chip fabricated using Intel's 14-nm 

FinFET process technology. The chip features include 

hierarchical connectivity, synaptic delay, and dendrite 

compartments. A total of 6.02 billion transistors and 128 

neuromorphic cores constitute the Loihi chip. Each chip has 

three x86 processors to support Von Neumann processing. Each 

core contains 1024 neuronal compartments, and a 32-bit 

spiking-based message system holds communication between 

the cores, which enables efficient communication between 

them. It has a programmable synaptic learning system that 

supports various learning rules by evolving synaptic states. This 

learning engine has unique features and the power to implement 

spiking neural networks. The Loihi chip is available in multiple 

systems: Kapoho Bay, Nahuku, and Pohiki Springs [26]. 

IV. DATASET 

A. CAN Bus Dataframe 

The CAN is a standard communication protocol used in 

automotive vehicles. The data between the ECUs is shared 

through this network. Table I shows the standard format of a 

CAN data frame. The description of the data frame is as follows: 

Table I: Format of CAN data frame [27]. 

  
  

Field Name Bit Size 

Bus Idle  
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SOF 1 

Arbitration 

Field 

RTR 1 

ID 11 

Control Field 

DLC 4 

r0 1 

IDE 1 

Data Field 0,1,2,---,63 

CRC Field 
CRC Seq. 15 

CRC Delimiter 1 

ACK Field 
ACK 1 

ACK Delimiter 1 

  
  

  

Bus Idle  

INT 3 

EOF 7 

 
1. SOF – Start of Frame. It informs the start of messages. 
2. Arbitration field – Consists of two values, ID and RTR. ID 

is the header of the frame. When multiple ECUs transmit 

data simultaneously, the data is prioritized using the ID. 

The lower the ID, the higher the priority. RTR stands for 

single Remote Transmission Request. When another node 

requires information, the RTR bit is dominant. All the 

nodes receive the request and the responding data. 
3.  Control field – The control field consists of three fields: 

IDE, r0, and DLC. The Identifier Extension (IDE) bit is 

dominant when transmitting a standard CAN identifier 

with no extension. A bit is reserved (r0) for future 

purposes. DLC holds 4-bit data containing the number of 

bytes (0 to 8) transmitted.  
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4. Data field – This field contains the data content being 

transmitted. It can hold up to 8 bytes of data.  
5. CRC field – CRC stands for Cyclic Redundancy Check, 

which is used for error detection. 
6. ACK field – This field acknowledges the transmitted error-

free data the node receives. 
7. EOF – End of the frame (EOF) indicates the end of the 

transmitted message [28]. 

This work uses the CAR hacking dataset the Hacking and 

Countermeasure Research Lab (HCRL) developed. This dataset 

includes five files. One is attack-free, and the four others contain 

normal messages in addition to injected messages. Injected 

messages are introduced by connecting the CAN protocol 

through an onboard diagnostic port (OBD-II) from a vehicle. 

The four attack types are DoS (Denial-of-Service), fuzzy, 

spoofing the drive gear, and spoofing the RPM gauge. CAN 

messages are sent every 0.3 ms for a DoS attack containing a 

CAN ID of 29 zero bits, the dominant CAN ID. The goal of these 

types of attacks is to consume network availability. The fuzzy 

attack is almost the same as the DoS. They injected random 

CAN ID and data values every 0.5 ms to construct a fuzzy attack. 

The fuzzy attack aims to cause the vehicle to malfunction. 

Spoofing of the drive gear and RPM gauge was performed by 

injecting messages every 1 ms of a specific CAN ID. These 

attacks can harm the drive gear and RPM gauge by deceiving 

the ECUs [29].  

B. Data Pre-processing 

The dataset has five attributes: Timestamp, the recorded 

message time in seconds; CAN ID, the CAN message identifier 

in HEX format; DLC, the length of data bytes up to 8; DATA 

[0~7], the transmitted payload data value; and flag, whether the 

data is normal or an attack. For our work, the unnecessary parts 

are removed from the dataset during preprocessing. We used 

‘arbitration’ and data fields of CAN messages in our 

experiments as they captured the most valuable information of 

CAN messages. The data field consists of 8 bytes. If any one of 

the data fields is missing, then the information is padded with 

zero. Additionally, any null values within the data are 

substituted with zeros. The CAN bus data field is in hexadecimal 

format and converted into decimals for this experiment. The 

dataset is normalized by utilizing standard scores. We created a 

Python function to generate sequential data patterns for training 

and testing. The Python function uses time steps, ID, and data 

field values as inputs and converts them to sequences.  

V. AUTOENCODER NETWORK MODELS 

 AutoEncoders (AE) are a generative neural architecture 

that can encode an input feature space to a bottleneck layer in 

the encoding state, and the decoding state learns to regenerate 

inputs in the output layer. A conceptual diagram of a simple 

autoencoder technique is presented in Fig. 2. The encoder 

section learns to compress the data samples into a lower-

dimensional latent space at the bottleneck layer (Z). The 

decoder section learns to regenerate the input feature space at 

the output. Once the AE is trained, it becomes a very efficient 

machine for detecting anomalies. The AE network model is 

trained by backpropagation of error to minimize the 

reconstruction error of the decoder, according to the loss 

function in Eq. (1). 

ℓ(𝑋, 𝑋́) = ||𝑋 − 𝑋́||2                        (1) 

 

Fig. 2. Schematic block diagram of an autoencoder. 

 

Fig. 3. Block diagram of a fully connected autoencoder. 

The same technique can be applied for layer-wise data flow 

computation for autoencoders with multiple hidden layers. In 

this experiment, a fully connected Autoencoder (AE) is 

implemented in a spiking neural network for anomaly 

detection, as shown in Fig. 3. The inputs compressed in the 

encoder section produce the encoding at the bottleneck layer. 

Using the encoding at the bottleneck, the decoder section 

reconstructs the input. 

During the training of an autoencoder, it learns the 

correlations among the features in the data. It can reconstruct a 

known or unknown dataset. The training dataset has lower 

reconstruction errors as the features become familiar over the 

training period. It creates higher reconstruction errors for 

unknown data. This work calculates the vector distance L 

between the input and predicted output using equation (2) for 

every sample, where ai and bi are the input and predicted output 

vector, respectively. We took the value of L as a threshold to 

detect anomalies. 

 L= max (|𝑏𝑖 − 𝑎𝑖|)                                  (2) 

f(WX+b) Z g(WTZ + b')

X X '
Encoder Bottleneck Decoder

min{Loss(X,X’)}



 

 

For anomaly detection, the incoming data passes through 

the network, and we calculate the vector distance. During 

inference operations, if the magnitude of the vector distance is 

greater than L, it identifies the test sample as an anomaly, and 

if the distance is less than L, it identifies it as normal.  

VI. EXPERIMENTAL SETUP 

Fig. 4 presents the workflow of the proposed system for 

anomaly detection. At first, we trained the AE network with a 

training dataset. Next, the trained AE network is converted into 

a spiking AE network. After conversion, the spiking AE 

network was retrained with the same training dataset and 

trained weights. Finally, the required optimization was 

performed to map the trained spiking AE into the Loihi 

processor. The deep neural network model was first trained in 

Keras, then converted into spiking form by utilizing the 

NengoDL tool [30], and then mapped on the Loihi using 

NengoLoihi [31]. NengoDL and NengoLoihi are frameworks 

for building, testing, and deploying neural networks on 

different hardware. 

 
Fig. 4. Workflow of the proposed anomaly detection. 

  In this experiment, we implemented four models. The 

models are toe-to-toe, fully connected networks. Model-1 

consists of six hidden layers as 128→64→16→16→64→128. 

The dimensions of hidden layers in Model-2 and Model-3 are 

128→64→64→128 and 128→128 respectively. Model-4 is a 

non-spiking Artificial Neural Network (ANN) model that has 

the same architecture as Model-1. 

The ANN training was performed using Keras in 

conventional backpropagation algorithms. We used 50,000 

samples as a training dataset and 6,000 samples as a testing 

dataset. The attack-free normal dataset is used for training 

purposes, whereas the DoS, fuzzy, and gear data are used for 

testing. We used the optimizer RMSprop, loss of mean squared 

error, and learning rate of 0.0001 in the optimization process. 

The ReLU activation function is used in all layers of the AE 

network. To convert the Keras-based network into a spiking 

neural network, we used the NengoDL library. NengoDL 

captures information from the autoencoder (AE) during the 

conversion process. The NengoDL model is then transformed 

into an SNN-Autoencoder (SNN-AE) form, where adjustments 

are made to the weights and biases for adaptation. For mapping 

the SNN network on the Loihi chip, the ReLU neurons needed 

to be substituted with spike rate encoded Loihi-spiking ReLU 

neurons. 

For SNN optimization, different firing rates were examined. 

For lower firing rates, the activities of Loihi neurons closely 

resemble those of ReLU and LIF neurons. However, at higher 

firing rates, there is a significant difference between ReLU and 

LIF neurons [32]. Nengo uses a synaptic value as a low pass 

filter for noise reduction and smoothing spikes in the output. 

We used a synaptic value of 0.05 in this experiment. We 

retrained the SNN-AE to map the network into the Loihi 

simulator. Finally, the retrained SNN-AE is ready to run on the 

Loihi chip using the Nengo Loihi library. 

As mentioned earlier, our anomaly detection system is 

developed using the Nengo framework. We modified our 

application to run on the Loihi neuromorphic processor. Nengo 

can run applications on both CPU and neuromorphic hardware. 

If the Nengo framework doesn’t detect the targeted hardware, 

it will simulate the entire process on the CPU. This simulation 

will provide the exact result if the application is running on 

neuromorphic hardware. 

We utilized an estimation tool developed by Nengo for 

energy consumption evaluation. In addition to estimating Loihi's 

energy consumption, this tool can provide data for commercially 

available CPUs and GPUs for estimating energy for certain 

operations [33]. 

VII. RESULTS AND DISCUSSION  

A. Performance Analysis 

We implemented four models (Model-1, Model-2, Model-3 

as spiking, and Model-4 as non-spiking) for the anomaly 

detection experiment. The trained ANN model is converted to 

SNN using NengoDL. In the SNNs, the firing rates and synaptic 

values are varied to get optimal values for anomaly detection 

systems. Fig. 5 shows the impact of firing rates on the anomaly 

detection performance of the SNN-AE model. The F-1 score for 

the network model-2 is presented as an example in Fig. 5 for 

various firing rates. We see that for a firing rate of 50, the system 

shows the best F-1 score for different types of anomalies. 

Different synaptic values were also examined for the different 

models. Fig. 6 represents the F-1 score as the performance of the 

model-2 network for different synaptic values. The  SNN-AE  

model exhibited the best performance on the F-1 score for 

Fuzzy, Gear, and DoS, respectively, with scores of 0.98, 0.78, 

and 0.78 once the synaptic value and neuron firing rate were set 

to 0.05 and 50 respectively. The rest of the experiments were 

carried out with a firing rate of 50 and a synaptic value of 0.05. 

Table II presents the Precision (P), Recall (R), and F-score (F-

1) of various network models. All the models perform best for 

anomaly detection on fuzzy data. Among all the models, model-

2 shows the optimal performance on precision, recall, and F-1 

score for fuzzy, gear and DoS anomalies. The performance of 

the anomaly detection system changes if the number of hidden 

layers changes.  

The sequence data was used to train all four network models 

regardless of spiking and non-spiking form. Using a sequence 

pattern in training improved the performance of SNN-AE 

significantly to achieve a similar performance as obtained in 

non-spiking model-4. Fig. 7 shows the F-1 score of all the 

models. From Fig. 7, we can see that model-2 shows a balanced 

F-1 score at a firing rate of 50. 

Input 

Sample
Train ANN

Convert ANN 

Model to SNN

Retrain SNNOptimizationIntel Loihi



 

 

Table II: Precision, Recall and F-1 score of different anomaly detection models 

for firing rate 50 and synaptic value of 0.05. 

   Fuzzy Gear DoS 

Model-1 

Precision 1.00 1.00 0.61 

Recall 0.91 0.71 0.45 

F-1 0.95 0.83 0.51 

Model-2 

Precision 1.00 1.00 1.00 

Recall 0.96 0.63 0.63 

F-1 0.98 0.78 0.78 

Model-3 

Precision 1.00 0.83 0.52 

Recall 0.99 0.54 0.43 

F-1 0.99 0.66 0.47 

Model-4 

Precision 1.00 1.00 1.00 

Recall 1.00 0.76 0.99 

F-1 1.00 0.86 0.99 

 

Fig. 8 shows the accuracy of the anomaly detection system 

among the models. Model-4 shows anomaly detection accuracy 

in a non-spiking autoencoder. In the SNN-AE on Loihi, the 

detection accuracy for a fuzzy sample is 100%, equivalent to the 

non-spiking performance. However, for gear and DoS, the 

accuracy decreased in SNN-AE. Model-2 exhibited a balanced 

accuracy for various types of anomalies on the Loihi platform. 

The anomaly detection accuracy in model-2 is  100, 71.05, and 

71.2%, respectively for fuzzy, gear, and DoS.  

Our proposed anomaly detection systems outperformed the 

network shown in [14]. In [14], the authors achieved 0.82 and 

0.64 F-1 scores for fuzzy and DoS scenarios, whereas in our 

system, the F-1 score was 0.98 and 0.78, respectively. 

B. Energy Analysis in Anomaly Detection Operation 

Table III shows the energy consumption per inference 

without the overhead (energy required to move data to and from 

the device) for all the models of the anomaly detection system 

on CPU, GPU, and Loihi. Nengo’s power measurement library, 

‘Keras Spiking,’ was used to measure the required lower bound 

energy without the overhead. From Table III, we can see that for 

all network models, the energy consumption for Loihi is around 

0.17 µJ, which is about 20,000× and 700× less than the CPU and 

GPU respectively defined in the Nengo tools. The energy 

consumption among model-1, model-2, and model-3 changes 

slightly. The network in Model-4 is implemented in non-

spiking. Thus the Loihi energy and estimation is not applicable 

here. 

 

Fig. 5. Comparison of the F-1 score according to neuron firing rates for 

model-2. 

 

Fig. 6. Comparison of the F-1 score according to synaptic values for 

model-2. 

 

Fig. 7. Comparison of the F-1 score between the models for firing rate =50, 

and synaptic value =0.05. 

 

 

Fig. 8. Accuracy of various anomaly detection in different network 

models for firing rate 50, and synaptic value. 
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Table III: Energy consumption (µJ) per inference among all models. 

 CPU GPU Loihi 

Model_1 3670 128 0.18 

Model_2 3620 127 0.17 

Model_3 3600 127 0.17 

Model_4 

(Non-spiking) 
2000 100 ---- 

VIII. CONCLUSION 

This is the first-ever implementation of an anomaly 

detection system on Loihi for in-vehicle applications. Using the 

Nengo framework, we convert the neural network to a spiking 

neural network and implement our system on the Loihi, which 

ensures low energy consumption. This work presented an 

autoencoder-based anomaly detection system on the CAN bus 

dataset. The results that the proposed anomaly detection system 

can detect anomalies successfully. The energy consumption in 

per anomaly detection operation on the Loihi is estimated at 

about 0.17 µJ, which is 20,000 and 700 times less than CPU 

and GPU processors respectively. Although the experiment was 

performed for vehicle anomaly detection, the same system can 

effectively be used in industrial and commercial anomaly and 

fraud detection. In future work, we plan to use online learning 

algorithms for on-chip training on the Loihi hardware as there 

is growing demand for online and on-chip learning for edge 

applications in industry and defense applications to achieve 

better performance and be more robust.   
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