

Unsupervised Anomaly Detection for Automotive

CAN Bus on the Intel Loihi

Rashedul Islam

Department of Electrical and

Computer Engineering

University of Dayton

Dayton, Ohio, USA

islamm24@udayton.edu

Shahanur Alam

Department of Electrical and

Computer Engineering

University of Dayton

Dayton, Ohio, USA

alamm8@udayton.edu

Chris Yakopcic

Department of Electrical and

Computer Engineering

University of Dayton

Dayton, Ohio, USA

cyakopcic1@udayton.edu

Nayim Rahman

Department of Electrical and

Computer Engineering

University of Dayton

Dayton, Ohio, USA

rahman12@udayton.edu

Simon Khan

Air Force Research Laboratory

Rome, NY, USA

simon.khan@us.af.mil

Tarek Taha

Department of Electrical and

Computer Engineering

University of Dayton

Dayton, Ohio, USA

tarek.taha@udayton.edu

Abstract—Detecting anomalies and faults swiftly and

accurately is essential in many applications, such as healthcare,

infrastructure, industry, and security. In most of these

applications, the available power for running an anomaly

detection system is very limited. This is especially the case for

modern smart and electric vehicles, which have an increasing

amount of electronics. These vehicles have Electronic Control

Units (ECUs) that communicate with each other through the

Controller Area Network (CAN) bus. The Controller Area

Network, however, is not very secure, so bad actors can do severe

damage, putting the lives of drivers and passengers at risk. Thus,

low-power anomaly detection is essential for both security and

reliability. Deep learning networks have demonstrated proficiency

in anomaly identification. However, their implementation on

conventional Central Processing Units (CPUs) and Graphics

Processing Units (GPUs) incurs significant energy consumption.

To overcome this limitation, we propose a low-power approach for

placing security directly in the network hardware. An

autoencoder-based real-time anomaly detector trained through

unsupervised learning is seamlessly mapped onto the Intel Loihi

spiking neuromorphic processor. Our proposed anomaly detector

used significantly less power than a CPU or GPU and showed the

best accuracy and F-1 score to detect anomalies compared to the

alternative spiking approaches. The proposed anomaly detection

system consumed about 20,000 and 700 times less energy than a

CPU and GPU respectively. To the best of our knowledge, this is

the first low-power, unsupervised anomaly detection system using

the Loihi or any other neuromorphic processor. The results of this

work will apply to other anomaly detection applications, as well as

other spiking neuromorphic processors, resulting in a universally

applicable extreme low-power anomaly detection platform.

Keywords—CAN bus, Intel Loihi, Unsupervised, Autoencoder,

Low power, Anomaly detection

I. INTRODUCTION

Anomaly detection is a technique that concerns identifying

patterns in data that deviate from the expected behavior. The

accuracy of detection, precision, and faster diagnosis of such

anomaly events are necessary for reducing significant damage

and cost. Anomaly detection has a wide range of applications,

including fraud detection in credit card transactions, loan

processing, medical applications in health condition monitoring,

detecting cyber security intrusions, and identifying faults in

machinery. Machine learning algorithms (supervised and

unsupervised) show tremendous success in anomaly detection

operations, such as isolation forest [1], support vector machine

[2], and k-means clustering [3]. In recent years, deep learning

networks have shown more efficiency in detecting anomalies

than traditional machine learning-based systems [4].

This paper focuses on developing a deep learning-based

vehicular anomaly detection system. Modern automotive

vehicles comprise up to 100 Electronic Control Units (ECUs)

[5]. These ECUs control various car functions, such as steering,

braking, engine, airbag, traction, and cruise control. ECUs share

their information through a vehicle network called the

Controller Area Network (CAN). The CAN bus is popular

among major car manufacturers because it uses a standardized

serial communication protocol for car control systems. It is

known for being reliable, fast, and simple to setup [6]. The ECU

gets updated data from sensors and executes different

instructions to monitor the vehicle's status [7]. Since the CAN

bus uses a broadcast protocol, the messages have no source and

destination information. It does not support authentication and

encryption. Therefore, it is easy for an attacker to attack the

CAN bus and control the car through an external device or

Bluetooth communication. Any attack on one ECU can

immediately carry through to other ECUs. A corrupt ECU can

seriously affect the passengers, drivers, and the surrounding

environment. Therefore, anomaly detection must be integrated

within the CAN environment to detect unwanted messages and

enable a higher level of security.

Modern vehicles have many sensors that produce a large

amount of data, and thus needs an anomaly detection system that

is fast but consumes low power. Using CPUs or GPUs is for this

would not be efficient as they are either not fast enough at

network processing or consume too much power. For instance,

a state-of-the-art GPU can consume about 200 W of power while

computing at full load. A solution to this problem is to use

neuromorphic processors to implement anomaly detection at

extremely low power. Intel's Loihi is an example of a recent

neuromorphic processor and consumes approximately 100 mW

of power [8]. This computation efficiency is realized by its

ability to mimic human cognitive systems for information

processing. One of the critical features of neuromorphic

processors is their ability to handle spiking neural networks

(SNNs), which closely emulate the spiking behavior of the brain.

This paper presents a spiking neural network-based anomaly

detection algorithm using the Intel Loihi neuromorphic

processor. We then evaluated the anomaly detection system for

malicious packets on the automotive CAN bus.

To the best of our knowledge, this is the first unsupervised

anomaly detection application implemented on the Loihi. We

emulated our system using Nengo [9], which is a framework to

solve neural network-based problems on neuromorphic

hardware. This work is also the first-ever anomaly detection

application implemented in neuromorphic hardware. Given the

extreme advantage of novel spiking neural network hardware

in terms of both energy efficacy and portability, this is very

capable system to carry out security processes within complex

but vulnerable in-vehicle computing networks.

The rest of the paper is organized as follows: related

anomaly detection work in non-spiking and spiking systems is

discussed in Section II. Section III discusses the background for

this work. Section IV describes the dataset and the

preprocessing required for our experiment. Section V

introduces the autoencoder network. Section VI discusses the

experimental setup for our system. Section VII analyzes the

results, and Section VIII concludes the paper.

II. RELATED WORKS

In recent years, autonomous electric vehicles (EVs) have

become very popular, and their use has increased rapidly. The

rapid growth of EVs also increased the targets of cyberattacks

on the CAN bus. Therefore, security of autonomous cars is

crucial. Besides the automotive industry, the anomaly detection

system has uses in finance, healthcare, and cybersecurity

applications. Many research papers have looked at anomaly

detection applications in recent years, most of which are pure

software-based implementations without considering hardware

mapping. In this section, some of the most relevant works are

described briefly.

Hossain et al. [10] proposed a Long Short-Term Memory

(LSTM) based anomaly detection technique that successfully

classifies malicious messages from normal messages. They

experimented on their own data with different hyper-parameter

values and achieved around 99.99% detection accuracy. Seo et

al. [11] demonstrate a GAN-based intrusion detection system

(GIDS) consisting of a discriminator and generator. This model

achieved an average of 98% accuracy in detecting unknown

data. Song et al. [12] proposed a deep convolutional neural

network (DCNN) based intrusion detection system in which

they modified the Inception-ResNet model. The authors used a

frame builder to extract a 29-bit identifier from a recent

sequence of 29 CAN messages for training. They achieved a

detection precision of 1.0 for DoS types of anomalies and 0.99

for other anomalies. Kwak et al. [13] highlight the significance

of cosine similarity as a feature to detect and classify attacks

from datasets. They achieved 98.93% and 99.18% accuracy for

the KIA Soul and 99.43% and 99.49% for the HYUNDAI YF

Sonata, respectively, in driving and stationary conditions.

Jaoudi et al. [14] proposed a convolutional autoencoder to

detect anomalies. The author converted the network into an

SNN and showed that the network successfully detected

anomalies.

Besides in-vehicle applications, there are many other

anomaly detection applications in industrial, commercial, and

healthcare institutions. Roth et al. [15] presented a method

called PatchCore, which uses a maximally representative

memory bank of nominal patch features to find defective parts

in industrial manufacturing. The authors investigated the

importance of locally aware patch features to show the changes

in anomaly detection. Their methods achieved a 99.6%

AUROC score on the MVTec AD benchmark. Vanini et al. [16]

presented the development and validation of the risk

management process using various fraud detection models.

Alfardus et al. [17] presented a machine learning-based

intrusion detection system with various algorithms like K-

nearest neighbors, Random Forest, Support Vector Machine,

and Multilayer perceptron and compared their accuracy. The

accuracy of the proposed system is 100% for impersonation and

DoS attacks and 99% for fuzzy attacks.

Zanatta et al. [18] proposed structural health monitoring

(SHM) using spiking neural networks (SNNs) in MEMS data

to detect infrastructural damages in a motorway bridge. They

trained a Long Short-Term SNN (LSNN) with an e-prop

algorithm and Backpropagation Through Time (BPTT).

Dennler et al. [19] demonstrate spiking neural network (SNN)

based vibration analysis, which is compatible with analog-

digital neuromorphic circuits. They implemented a three-layer

SNN on the Induced Bearing Fault (IBF) and Run-to-Failure

Bearing Fault (R2F) datasets to detect anomalies from vibration

data in an unsupervised fashion.

All the works described above are implemented in pure

software only form for various anomaly detection applications.

Only a few experiments have been reported that have been

implemented in hardware. For example, Bauer et al. [20]

proposed a real-time classification of ECG data on the Dynamic

Neuromorphic Asynchronous Processor (DYNAP). They used

a spiking recurrent neural network, which consists of three

different neuronal populations. The authors converted ECG

signals into sequential events by using the sigma-delta encoding

scheme. Their system showed 91.3% anomaly detection on the

test set and consumed less than 722.1 µW power. Chen et al.

[21] presented an autonomous anomaly recognition and

detection (AnRAD) framework inspired by the human

neocortex system to detect anomalies in traffic. They used a

likelihood-ratio test to detect anomalies. Ussa et al. [22]

proposed a hybrid neuromorphic framework for object tracking

and classification. They embedded their system in an FPGA and

interfaced with a TrueNorth (TN) chip. They compared their

framework’s performance with DART and SLAYER. They

showed it also consumed low power, ranging from 5 to 14 mW.

However, there is no neuromorphic hardware-based on an in-

vehicle anomaly detection system available for automobiles.

III. BACKGROUND

A. Spiking Neural Network (SNN)

In the human brain, neurons send signals using spikes of

electrical activity through axons and collect signals from

dendrites to exchange information. Neurons communicate

through an extensive, interconnected network of synapses. A

spiking neural network is a neural network model that mimics

the human brain’s computational mechanisms [23].

In a spiking neural network, each neuron actively monitors

incoming spikes and assigns weights based on synaptic values.

If the cumulative effect of these weighted spikes surpasses a

threshold value, it will send a spike to connected neurons and

initiate communication. After a spike, the neuron voltage is reset

to a predetermined value. The training process in SNN involves

adjusting the weights to optimize the network’s ability to

recognize the pattern and respond to the input spike. Both

presynaptic and postsynaptic spikes play a crucial role in the

training phase. Fig. 1 illustrates the structural components and

functionality of a spiking neuron.

Fig. 1. Spiking Neural Network [24].

B. Intel Loihi Neuromorphic Hardware

Neuromorphic processors are specialized microprocessors.

These processors are designed to mimic the structure and

functionality of the human brain's neural networks. One of the

critical features of neuromorphic processors is their ability to

handle spiking neural networks (SNNs), which closely emulate

the spiking behavior of neurons in the human brain. This event-

driven approach allows for more efficient processing, as

computations occur only when relevant spikes or signals are

present.

Intel's Loihi was released in 2018 to support the properties

of biological neural networks at extreme efficiency [25]. It is a

60 mm2 neuromorphic chip fabricated using Intel's 14-nm

FinFET process technology. The chip features include

hierarchical connectivity, synaptic delay, and dendrite

compartments. A total of 6.02 billion transistors and 128

neuromorphic cores constitute the Loihi chip. Each chip has

three x86 processors to support Von Neumann processing. Each

core contains 1024 neuronal compartments, and a 32-bit

spiking-based message system holds communication between

the cores, which enables efficient communication between

them. It has a programmable synaptic learning system that

supports various learning rules by evolving synaptic states. This

learning engine has unique features and the power to implement

spiking neural networks. The Loihi chip is available in multiple

systems: Kapoho Bay, Nahuku, and Pohiki Springs [26].

IV. DATASET

A. CAN Bus Dataframe

The CAN is a standard communication protocol used in

automotive vehicles. The data between the ECUs is shared

through this network. Table I shows the standard format of a

CAN data frame. The description of the data frame is as follows:

Table I: Format of CAN data frame [27].

Field Name Bit Size

Bus Idle
C

A
N

 D
at

a
fr

am
e

SOF 1

Arbitration

Field

RTR 1

ID 11

Control Field

DLC 4

r0 1

IDE 1

Data Field 0,1,2,---,63

CRC Field
CRC Seq. 15

CRC Delimiter 1

ACK Field
ACK 1

ACK Delimiter 1

Bus Idle

INT 3

EOF 7

1. SOF – Start of Frame. It informs the start of messages.
2. Arbitration field – Consists of two values, ID and RTR. ID

is the header of the frame. When multiple ECUs transmit

data simultaneously, the data is prioritized using the ID.

The lower the ID, the higher the priority. RTR stands for

single Remote Transmission Request. When another node

requires information, the RTR bit is dominant. All the

nodes receive the request and the responding data.
3. Control field – The control field consists of three fields:

IDE, r0, and DLC. The Identifier Extension (IDE) bit is

dominant when transmitting a standard CAN identifier

with no extension. A bit is reserved (r0) for future

purposes. DLC holds 4-bit data containing the number of

bytes (0 to 8) transmitted.

Pre-Synaptic
Neuron

∑
Spike

Generation

w1

w2

w3

w4

wn…
…

Membrane
Potential

Output
spike

Synapse

Pos-Synaptic
Potential

Spiking Neuron

4. Data field – This field contains the data content being

transmitted. It can hold up to 8 bytes of data.
5. CRC field – CRC stands for Cyclic Redundancy Check,

which is used for error detection.
6. ACK field – This field acknowledges the transmitted error-

free data the node receives.
7. EOF – End of the frame (EOF) indicates the end of the

transmitted message [28].

This work uses the CAR hacking dataset the Hacking and

Countermeasure Research Lab (HCRL) developed. This dataset

includes five files. One is attack-free, and the four others contain

normal messages in addition to injected messages. Injected

messages are introduced by connecting the CAN protocol

through an onboard diagnostic port (OBD-II) from a vehicle.

The four attack types are DoS (Denial-of-Service), fuzzy,

spoofing the drive gear, and spoofing the RPM gauge. CAN

messages are sent every 0.3 ms for a DoS attack containing a

CAN ID of 29 zero bits, the dominant CAN ID. The goal of these

types of attacks is to consume network availability. The fuzzy

attack is almost the same as the DoS. They injected random

CAN ID and data values every 0.5 ms to construct a fuzzy attack.

The fuzzy attack aims to cause the vehicle to malfunction.

Spoofing of the drive gear and RPM gauge was performed by

injecting messages every 1 ms of a specific CAN ID. These

attacks can harm the drive gear and RPM gauge by deceiving

the ECUs [29].

B. Data Pre-processing

The dataset has five attributes: Timestamp, the recorded

message time in seconds; CAN ID, the CAN message identifier

in HEX format; DLC, the length of data bytes up to 8; DATA

[0~7], the transmitted payload data value; and flag, whether the

data is normal or an attack. For our work, the unnecessary parts

are removed from the dataset during preprocessing. We used

‘arbitration’ and data fields of CAN messages in our

experiments as they captured the most valuable information of

CAN messages. The data field consists of 8 bytes. If any one of

the data fields is missing, then the information is padded with

zero. Additionally, any null values within the data are

substituted with zeros. The CAN bus data field is in hexadecimal

format and converted into decimals for this experiment. The

dataset is normalized by utilizing standard scores. We created a

Python function to generate sequential data patterns for training

and testing. The Python function uses time steps, ID, and data

field values as inputs and converts them to sequences.

V. AUTOENCODER NETWORK MODELS

 AutoEncoders (AE) are a generative neural architecture

that can encode an input feature space to a bottleneck layer in

the encoding state, and the decoding state learns to regenerate

inputs in the output layer. A conceptual diagram of a simple

autoencoder technique is presented in Fig. 2. The encoder

section learns to compress the data samples into a lower-

dimensional latent space at the bottleneck layer (Z). The

decoder section learns to regenerate the input feature space at

the output. Once the AE is trained, it becomes a very efficient

machine for detecting anomalies. The AE network model is

trained by backpropagation of error to minimize the

reconstruction error of the decoder, according to the loss

function in Eq. (1).

ℓ(𝑋, 𝑋́) = ||𝑋 − 𝑋́||2 (1)

Fig. 2. Schematic block diagram of an autoencoder.

Fig. 3. Block diagram of a fully connected autoencoder.

The same technique can be applied for layer-wise data flow

computation for autoencoders with multiple hidden layers. In

this experiment, a fully connected Autoencoder (AE) is

implemented in a spiking neural network for anomaly

detection, as shown in Fig. 3. The inputs compressed in the

encoder section produce the encoding at the bottleneck layer.

Using the encoding at the bottleneck, the decoder section

reconstructs the input.

During the training of an autoencoder, it learns the

correlations among the features in the data. It can reconstruct a

known or unknown dataset. The training dataset has lower

reconstruction errors as the features become familiar over the

training period. It creates higher reconstruction errors for

unknown data. This work calculates the vector distance L

between the input and predicted output using equation (2) for

every sample, where ai and bi are the input and predicted output

vector, respectively. We took the value of L as a threshold to

detect anomalies.

 L= max (|𝑏𝑖 − 𝑎𝑖|) (2)

f(WX+b) Z g(WTZ + b')

X X '
Encoder Bottleneck Decoder

min{Loss(X,X’)}

For anomaly detection, the incoming data passes through

the network, and we calculate the vector distance. During

inference operations, if the magnitude of the vector distance is

greater than L, it identifies the test sample as an anomaly, and

if the distance is less than L, it identifies it as normal.

VI. EXPERIMENTAL SETUP

Fig. 4 presents the workflow of the proposed system for

anomaly detection. At first, we trained the AE network with a

training dataset. Next, the trained AE network is converted into

a spiking AE network. After conversion, the spiking AE

network was retrained with the same training dataset and

trained weights. Finally, the required optimization was

performed to map the trained spiking AE into the Loihi

processor. The deep neural network model was first trained in

Keras, then converted into spiking form by utilizing the

NengoDL tool [30], and then mapped on the Loihi using

NengoLoihi [31]. NengoDL and NengoLoihi are frameworks

for building, testing, and deploying neural networks on

different hardware.

Fig. 4. Workflow of the proposed anomaly detection.

 In this experiment, we implemented four models. The

models are toe-to-toe, fully connected networks. Model-1

consists of six hidden layers as 128→64→16→16→64→128.

The dimensions of hidden layers in Model-2 and Model-3 are

128→64→64→128 and 128→128 respectively. Model-4 is a

non-spiking Artificial Neural Network (ANN) model that has

the same architecture as Model-1.

The ANN training was performed using Keras in

conventional backpropagation algorithms. We used 50,000

samples as a training dataset and 6,000 samples as a testing

dataset. The attack-free normal dataset is used for training

purposes, whereas the DoS, fuzzy, and gear data are used for

testing. We used the optimizer RMSprop, loss of mean squared

error, and learning rate of 0.0001 in the optimization process.

The ReLU activation function is used in all layers of the AE

network. To convert the Keras-based network into a spiking

neural network, we used the NengoDL library. NengoDL

captures information from the autoencoder (AE) during the

conversion process. The NengoDL model is then transformed

into an SNN-Autoencoder (SNN-AE) form, where adjustments

are made to the weights and biases for adaptation. For mapping

the SNN network on the Loihi chip, the ReLU neurons needed

to be substituted with spike rate encoded Loihi-spiking ReLU

neurons.

For SNN optimization, different firing rates were examined.

For lower firing rates, the activities of Loihi neurons closely

resemble those of ReLU and LIF neurons. However, at higher

firing rates, there is a significant difference between ReLU and

LIF neurons [32]. Nengo uses a synaptic value as a low pass

filter for noise reduction and smoothing spikes in the output.

We used a synaptic value of 0.05 in this experiment. We

retrained the SNN-AE to map the network into the Loihi

simulator. Finally, the retrained SNN-AE is ready to run on the

Loihi chip using the Nengo Loihi library.

As mentioned earlier, our anomaly detection system is

developed using the Nengo framework. We modified our

application to run on the Loihi neuromorphic processor. Nengo

can run applications on both CPU and neuromorphic hardware.

If the Nengo framework doesn’t detect the targeted hardware,

it will simulate the entire process on the CPU. This simulation

will provide the exact result if the application is running on

neuromorphic hardware.

We utilized an estimation tool developed by Nengo for

energy consumption evaluation. In addition to estimating Loihi's

energy consumption, this tool can provide data for commercially

available CPUs and GPUs for estimating energy for certain

operations [33].

VII. RESULTS AND DISCUSSION

A. Performance Analysis

We implemented four models (Model-1, Model-2, Model-3

as spiking, and Model-4 as non-spiking) for the anomaly

detection experiment. The trained ANN model is converted to

SNN using NengoDL. In the SNNs, the firing rates and synaptic

values are varied to get optimal values for anomaly detection

systems. Fig. 5 shows the impact of firing rates on the anomaly

detection performance of the SNN-AE model. The F-1 score for

the network model-2 is presented as an example in Fig. 5 for

various firing rates. We see that for a firing rate of 50, the system

shows the best F-1 score for different types of anomalies.

Different synaptic values were also examined for the different

models. Fig. 6 represents the F-1 score as the performance of the

model-2 network for different synaptic values. The SNN-AE

model exhibited the best performance on the F-1 score for

Fuzzy, Gear, and DoS, respectively, with scores of 0.98, 0.78,

and 0.78 once the synaptic value and neuron firing rate were set

to 0.05 and 50 respectively. The rest of the experiments were

carried out with a firing rate of 50 and a synaptic value of 0.05.

Table II presents the Precision (P), Recall (R), and F-score (F-

1) of various network models. All the models perform best for

anomaly detection on fuzzy data. Among all the models, model-

2 shows the optimal performance on precision, recall, and F-1

score for fuzzy, gear and DoS anomalies. The performance of

the anomaly detection system changes if the number of hidden

layers changes.

The sequence data was used to train all four network models

regardless of spiking and non-spiking form. Using a sequence

pattern in training improved the performance of SNN-AE

significantly to achieve a similar performance as obtained in

non-spiking model-4. Fig. 7 shows the F-1 score of all the

models. From Fig. 7, we can see that model-2 shows a balanced

F-1 score at a firing rate of 50.

Input

Sample
Train ANN

Convert ANN

Model to SNN

Retrain SNNOptimizationIntel Loihi

Table II: Precision, Recall and F-1 score of different anomaly detection models

for firing rate 50 and synaptic value of 0.05.

 Fuzzy Gear DoS

Model-1

Precision 1.00 1.00 0.61

Recall 0.91 0.71 0.45

F-1 0.95 0.83 0.51

Model-2

Precision 1.00 1.00 1.00

Recall 0.96 0.63 0.63

F-1 0.98 0.78 0.78

Model-3

Precision 1.00 0.83 0.52

Recall 0.99 0.54 0.43

F-1 0.99 0.66 0.47

Model-4

Precision 1.00 1.00 1.00

Recall 1.00 0.76 0.99

F-1 1.00 0.86 0.99

Fig. 8 shows the accuracy of the anomaly detection system

among the models. Model-4 shows anomaly detection accuracy

in a non-spiking autoencoder. In the SNN-AE on Loihi, the

detection accuracy for a fuzzy sample is 100%, equivalent to the

non-spiking performance. However, for gear and DoS, the

accuracy decreased in SNN-AE. Model-2 exhibited a balanced

accuracy for various types of anomalies on the Loihi platform.

The anomaly detection accuracy in model-2 is 100, 71.05, and

71.2%, respectively for fuzzy, gear, and DoS.

Our proposed anomaly detection systems outperformed the

network shown in [14]. In [14], the authors achieved 0.82 and

0.64 F-1 scores for fuzzy and DoS scenarios, whereas in our

system, the F-1 score was 0.98 and 0.78, respectively.

B. Energy Analysis in Anomaly Detection Operation

Table III shows the energy consumption per inference

without the overhead (energy required to move data to and from

the device) for all the models of the anomaly detection system

on CPU, GPU, and Loihi. Nengo’s power measurement library,

‘Keras Spiking,’ was used to measure the required lower bound

energy without the overhead. From Table III, we can see that for

all network models, the energy consumption for Loihi is around

0.17 µJ, which is about 20,000× and 700× less than the CPU and

GPU respectively defined in the Nengo tools. The energy

consumption among model-1, model-2, and model-3 changes

slightly. The network in Model-4 is implemented in non-

spiking. Thus the Loihi energy and estimation is not applicable

here.

Fig. 5. Comparison of the F-1 score according to neuron firing rates for

model-2.

Fig. 6. Comparison of the F-1 score according to synaptic values for

model-2.

Fig. 7. Comparison of the F-1 score between the models for firing rate =50,

and synaptic value =0.05.

Fig. 8. Accuracy of various anomaly detection in different network

models for firing rate 50, and synaptic value.

0

0.2

0.4

0.6

0.8

1

Fu
zz

y

G
ea

r

D
o

S

Fu
zz

y

G
ea

r

D
o

S

Fu
zz

y

G
ea

r

D
o

S

Fu
zz

y

G
ea

r

D
o

S

30 50 75 100

F-
1

 S
co

re

Firing Rate

0

0.2

0.4

0.6

0.8

1

Fu
zz

y

G
ea

r

D
o

S

Fu
zz

y

G
ea

r

D
o

S

Fu
zz

y

G
ea

r

D
o

S

Fu
zz

y

G
ea

r

D
o

S

0.001 0.005 0.05 0.1

F-
1

 S
co

re

Synaptic Value

0

0.2

0.4

0.6

0.8

1

Fu
zz

y

G
e

ar

D
o

S

Fu
zz

y

G
e

ar

D
o

S

Fu
zz

y

G
e

ar

D
o

S

Fu
zz

y

G
e

ar

D
o

S

Model-1 Model-2 Model-3 Model-4

F1
-S

co
re

0

20

40

60

80

100

Fu
zz

y

G
ea

r

D
o

S

Fu
zz

y

G
ea

r

D
o

S

Fu
zz

y

G
ea

r

D
o

S

Fu
zz

y

G
ea

r

D
o

S

Model-1 Model-2 Model-3 Model-4

A
cc

u
ra

cy
 (

%
)

Table III: Energy consumption (µJ) per inference among all models.

 CPU GPU Loihi

Model_1 3670 128 0.18

Model_2 3620 127 0.17

Model_3 3600 127 0.17

Model_4

(Non-spiking)
2000 100 ----

VIII. CONCLUSION

This is the first-ever implementation of an anomaly

detection system on Loihi for in-vehicle applications. Using the

Nengo framework, we convert the neural network to a spiking

neural network and implement our system on the Loihi, which

ensures low energy consumption. This work presented an

autoencoder-based anomaly detection system on the CAN bus

dataset. The results that the proposed anomaly detection system

can detect anomalies successfully. The energy consumption in

per anomaly detection operation on the Loihi is estimated at

about 0.17 µJ, which is 20,000 and 700 times less than CPU

and GPU processors respectively. Although the experiment was

performed for vehicle anomaly detection, the same system can

effectively be used in industrial and commercial anomaly and

fraud detection. In future work, we plan to use online learning

algorithms for on-chip training on the Loihi hardware as there

is growing demand for online and on-chip learning for edge

applications in industry and defense applications to achieve

better performance and be more robust.

ACKNOWLEDGEMENT

This paper has been approved for public release by AFRL

Case Number: AFRL-2024-1728.

REFERENCES

[1] Liu, F.T., Ting, K.M. and Zhou, Z.H., 2012. Isolation-based anomaly
detection. ACM Transactions on Knowledge Discovery from Data
(TKDD), 6(1), pp.1-39.

[2] Chitrakar, R. and Chuanhe, H., 2012, November. Anomaly detection
using Support Vector Machine classification with k-Medoids clustering.

In 2012 Third Asian himalayas international conference on internet (pp.
1-5). IEEE.

[3] Kumari, R., Singh, M.K., Jha, R. and Singh, N.K., 2016, March. Anomaly

detection in network traffic using K-mean clustering. In 2016 3rd
international conference on recent advances in information technology
(RAIT) (pp. 387-393). IEEE.

[4] Chalapathy, R. and Chawla, S., 2019. Deep learning for anomaly
detection: A survey. arXiv preprint arXiv:1901.03407.

[5] Kalutarage, H.K., Al-Kadri, M.O., Cheah, M. and Madzudzo, G., 2019,
October. Context-aware anomaly detector for monitoring cyber attacks on

automotive CAN bus. In Proceedings of the 3rd ACM Computer Science
in Cars Symposium (pp. 1-8).

[6] Zhou, A., Li, Z. and Shen, Y., 2019. Anomaly detection of CAN bus

messages using a deep neural network for autonomous vehicles. Applied
Sciences, 9(15), p.3174.

[7] C. Derse, M. el Baghdadi, O. Hegazy, U. Sensoz, H. N. Gezer and M. Nil,

"An Anomaly Detection Study on Automotive Sensor Data Time Series
for Vehicle Applications," 2021 Sixteenth International Conference on

Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo,
Monaco, 2021, pp. 1-5, doi: 10.1109/EVER52347.2021.9456629.

[8] Blouw, P., Choo, X., Hunsberger, E. and Eliasmith, C., 2019, March.
Benchmarking keyword spotting efficiency on neuromorphic hardware.

In Proceedings of the 7th annual neuro-inspired computational elements
workshop (pp. 1-8).

[9] Nengo Online Link: https://www.nengo.ai/keras-
spiking/examples/model-energy.html

[10] Hossain, M.D., Inoue, H., Ochiai, H., Fall, D. and Kadobayashi, Y., 2020.

LSTM-based intrusion detection system for in-vehicle can bus
communications. IEEE Access, 8, pp.185489-185502.

[11] Seo, E., Song, H.M. and Kim, H.K., 2018, August. GIDS: GAN based

intrusion detection system for in-vehicle network. In 2018 16th Annual
Conference on Privacy, Security and Trust (PST) (pp. 1-6). IEEE.

[12] Song, H.M., Woo, J. and Kim, H.K., 2020. In-vehicle network intrusion

detection using deep convolutional neural network. Vehicular
Communications, 21, p.100198.

[13] Kwak, B.I., Han, M.L. and Kim, H.K., 2021. Cosine similarity based
anomaly detection methodology for the CAN bus. Expert Systems with
Applications, 166, p.114066.

[14] Jaoudi, Y., Yakopcic, C. and Taha, T., 2020, October. Conversion of an

unsupervised anomaly detection system to spiking neural network for car

hacking identification. In 2020 11th International Green and Sustainable
Computing Workshops (IGSC) (pp. 1-4). IEEE.

[15] Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T. and Gehler, P.,

2022. Towards total recall in industrial anomaly detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 14318-14328).

[16] Vanini, P., Rossi, S., Zvizdic, E. and Domenig, T., 2023. Online payment

fraud: from anomaly detection to risk management. Financial Innovation,
9(1), pp.1-25.

[17] Alfardus, A. and Rawat, D.B., 2021, December. Intrusion detection

system for CAN bus in-vehicle network based on machine learning

algorithms. In 2021 IEEE 12th Annual Ubiquitous Computing,
Electronics & Mobile Communication Conference (UEMCON) (pp.
0944-0949). IEEE.

[18] Zanatta, L., Barchi, F., Burrello, A., Bartolini, A., Brunelli, D. and

Acquaviva, A., 2021, June. Damage detection in structural health

monitoring with spiking neural networks. In 2021 IEEE International
Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT) (pp.
105-110). IEEE.

[19] Dennler, N., Haessig, G., Cartiglia, M. and Indiveri, G., 2021, June.
Online detection of vibration anomalies using balanced spiking neural

networks. In 2021 IEEE 3rd International Conference on Artificial
Intelligence Circuits and Systems (AICAS) (pp. 1-4). IEEE.

[20] Bauer, F.C., Muir, D.R. and Indiveri, G., 2019. Real-time ultra-low power

ECG anomaly detection using an event-driven neuromorphic processor.
IEEE transactions on biomedical circuits and systems, 13(6), pp.1575-
1582.

[21] Chen, Q., Qiu, Q., Li, H. and Wu, Q., 2013, November. A neuromorphic
architecture for anomaly detection in autonomous large-area traffic

monitoring. In 2013 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD) (pp. 202-205). IEEE.

[22] Ussa, A., Rajen, C.S., Pulluri, T., Singla, D., Acharya, J., Chuanrong,

G.F., Basu, A. and Ramesh, B., 2023. A hybrid neuromorphic object

tracking and classification framework for real-time systems. IEEE
Transactions on Neural Networks and Learning Systems.

[23] Zheng, S., Qian, L., Li, P., He, C., Qin, X. and Li, X., 2022. An

introductory review of spiking neural network and artificial neural

network: From biological intelligence to artificial intelligence. arXiv
preprint arXiv:2204.07519.

[24] Dutta, S., Schafer, C., Gomez, J., Ni, K., Joshi, S., & Datta, S. (2020).

Supervised Learning in All FeFET-Based Spiking Neural Network:
Opportunities and Challenges. Frontiers in Neuroscience, 14.
https://doi.org/10.3389/fnins.2020.00634.

[25] Davies, M., Srinivasa, N., Lin, T.H., Chinya, G., Cao, Y., Choday, S.H.,

Dimou, G., Joshi, P., Imam, N., Jain, S. and Liao, Y., 2018. Loihi: A

neuromorphic manycore processor with on-chip learning. Ieee Micro,
38(1), pp.82-99.

https://www.nengo.ai/keras-spiking/examples/model-energy.html
https://www.nengo.ai/keras-spiking/examples/model-energy.html
https://doi.org/10.3389/fnins.2020.00634
https://doi.org/10.3389/fnins.2020.00634

[26] Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G.A.F.,
Joshi, P., Plank, P. and Risbud, S.R., 2021. Advancing neuromorphic

computing with loihi: A survey of results and outlook. Proceedings of the
IEEE, 109(5), pp.911-934.

[27] Cook, J. A., and J. S. Freudenberg. "Controller area network (CAN)."
EECS 461 (2007): 1-5.

[28] HPL, S.C., 2002. Introduction to the controller area network (CAN).
Application Report SLOA101, pp.1-17.

[29] Song, H.M., Woo, J. and Kim, H.K., 2020. In-vehicle network intrusion

detection using deep convolutional neural network. Vehicular
Communications, 21, p.100198.

[30] Nengo Online Link: https://www.nengo.ai/nengo-dl/simulator

[31] Nengo Online Link: https://www.nengo.ai/nengo-loihi/

[32] Nengo Online Link: https://www.nengo.ai/nengo-
loihi/v1.0.0/examples/keras-to-loihi.html

[33] B. Degnan, B. Marr and J. Hasler, "Assessing Trends in Performance per
Watt for Signal Processing Applications," in IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 58-66, Jan.
2016, doi: 10.1109/TVLSI.2015.2392942.

https://www.nengo.ai/nengo-dl/simulator
https://www.nengo.ai/nengo-loihi/
https://www.nengo.ai/nengo-loihi/v1.0.0/examples/keras-to-loihi.html
https://www.nengo.ai/nengo-loihi/v1.0.0/examples/keras-to-loihi.html

