Unsupervised Anomaly Detection for Automotive
CAN Bus on the Intel Loihi

Rashedul Islam Shahanur Alam
Department of Electrical and Department of Electrical and
Computer Engineering Computer Engineering
University of Dayton University of Dayton
Dayton, Ohio, USA Dayton, Ohio, USA
islamm24@udayton.edu alamm8@udayton.edu

Simon Khan
Air Force Research Laboratory
Rome, NY, USA
simon.khan@us.af.mil

Abstract—Detecting anomalies and faults swiftly and
accurately is essential in many applications, such as healthcare,
infrastructure, industry, and security. In most of these
applications, the available power for running an anomaly
detection system is very limited. This is especially the case for
modern smart and electric vehicles, which have an increasing
amount of electronics. These vehicles have Electronic Control
Units (ECUs) that communicate with each other through the
Controller Area Network (CAN) bus. The Controller Area
Network, however, is not very secure, so bad actors can do severe
damage, putting the lives of drivers and passengers at risk. Thus,
low-power anomaly detection is essential for both security and
reliability. Deep learning networks have demonstrated proficiency
in anomaly identification. However, their implementation on
conventional Central Processing Units (CPUs) and Graphics
Processing Units (GPUs) incurs significant energy consumption.
To overcome this limitation, we propose a low-power approach for
placing security directly in the network hardware. An
autoencoder-based real-time anomaly detector trained through
unsupervised learning is seamlessly mapped onto the Intel Loihi
spiking neuromorphic processor. Our proposed anomaly detector
used significantly less power than a CPU or GPU and showed the
best accuracy and F-1 score to detect anomalies compared to the
alternative spiking approaches. The proposed anomaly detection
system consumed about 20,000 and 700 times less energy than a
CPU and GPU respectively. To the best of our knowledge, this is
the first low-power, unsupervised anomaly detection system using
the Loihi or any other neuromorphic processor. The results of this
work will apply to other anomaly detection applications, as well as
other spiking neuromorphic processors, resulting in a universally
applicable extreme low-power anomaly detection platform.

Keywords—CAN bus, Intel Loihi, Unsupervised, Autoencoder,
Low power, Anomaly detection

I. INTRODUCTION

Anomaly detection is a technique that concerns identifying
patterns in data that deviate from the expected behavior. The

Chris Yakopcic Nayim Rahman
Department of Electrical and Department of Electrical and
Computer Engineering Computer Engineering
University of Dayton University of Dayton
Dayton, Ohio, USA Dayton, Ohio, USA
cyakopcicl @udayton.edu rahman12@udayton.edu

Tarek Taha
Department of Electrical and
Computer Engineering
University of Dayton
Dayton, Ohio, USA
tarek.taha@udayton.edu

accuracy of detection, precision, and faster diagnosis of such
anomaly events are necessary for reducing significant damage
and cost. Anomaly detection has a wide range of applications,
including fraud detection in credit card transactions, loan
processing, medical applications in health condition monitoring,
detecting cyber security intrusions, and identifying faults in
machinery. Machine learning algorithms (supervised and
unsupervised) show tremendous success in anomaly detection
operations, such as isolation forest [1], support vector machine
[2], and k-means clustering [3]. In recent years, deep learning
networks have shown more efficiency in detecting anomalies
than traditional machine learning-based systems [4].

This paper focuses on developing a deep learning-based
vehicular anomaly detection system. Modern automotive
vehicles comprise up to 100 Electronic Control Units (ECUs)
[5]. These ECUs control various car functions, such as steering,
braking, engine, airbag, traction, and cruise control. ECUs share
their information through a vehicle network called the
Controller Area Network (CAN). The CAN bus is popular
among major car manufacturers because it uses a standardized
serial communication protocol for car control systems. It is
known for being reliable, fast, and simple to setup [6]. The ECU
gets updated data from sensors and executes different
instructions to monitor the vehicle's status [7]. Since the CAN
bus uses a broadcast protocol, the messages have no source and
destination information. It does not support authentication and
encryption. Therefore, it is easy for an attacker to attack the
CAN bus and control the car through an external device or
Bluetooth communication. Any attack on one ECU can
immediately carry through to other ECUs. A corrupt ECU can
seriously affect the passengers, drivers, and the surrounding
environment. Therefore, anomaly detection must be integrated
within the CAN environment to detect unwanted messages and
enable a higher level of security.

Modern vehicles have many sensors that produce a large
amount of data, and thus needs an anomaly detection system that
is fast but consumes low power. Using CPUs or GPUs is for this
would not be efficient as they are either not fast enough at
network processing or consume too much power. For instance,
a state-of-the-art GPU can consume about 200 W of power while
computing at full load. A solution to this problem is to use
neuromorphic processors to implement anomaly detection at
extremely low power. Intel's Loihi is an example of a recent
neuromorphic processor and consumes approximately 100 mW
of power [8]. This computation efficiency is realized by its
ability to mimic human cognitive systems for information
processing. One of the critical features of neuromorphic
processors is their ability to handle spiking neural networks
(SNNs), which closely emulate the spiking behavior of the brain.
This paper presents a spiking neural network-based anomaly
detection algorithm using the Intel Loihi neuromorphic
processor. We then evaluated the anomaly detection system for
malicious packets on the automotive CAN bus.

To the best of our knowledge, this is the first unsupervised
anomaly detection application implemented on the Loihi. We
emulated our system using Nengo [9], which is a framework to
solve neural network-based problems on neuromorphic
hardware. This work is also the first-ever anomaly detection
application implemented in neuromorphic hardware. Given the
extreme advantage of novel spiking neural network hardware
in terms of both energy efficacy and portability, this is very
capable system to carry out security processes within complex
but vulnerable in-vehicle computing networks.

The rest of the paper is organized as follows: related
anomaly detection work in non-spiking and spiking systems is
discussed in Section II. Section III discusses the background for
this work. Section IV describes the dataset and the
preprocessing required for our experiment. Section V
introduces the autoencoder network. Section VI discusses the
experimental setup for our system. Section VII analyzes the
results, and Section VIII concludes the paper.

II. RELATED WORKS

In recent years, autonomous electric vehicles (EVs) have
become very popular, and their use has increased rapidly. The
rapid growth of EVs also increased the targets of cyberattacks
on the CAN bus. Therefore, security of autonomous cars is
crucial. Besides the automotive industry, the anomaly detection
system has uses in finance, healthcare, and cybersecurity
applications. Many research papers have looked at anomaly
detection applications in recent years, most of which are pure
software-based implementations without considering hardware
mapping. In this section, some of the most relevant works are
described briefly.

Hossain et al. [10] proposed a Long Short-Term Memory
(LSTM) based anomaly detection technique that successfully
classifies malicious messages from normal messages. They
experimented on their own data with different hyper-parameter
values and achieved around 99.99% detection accuracy. Seo et
al. [11] demonstrate a GAN-based intrusion detection system

(GIDS) consisting of a discriminator and generator. This model
achieved an average of 98% accuracy in detecting unknown
data. Song et al. [12] proposed a deep convolutional neural
network (DCNN) based intrusion detection system in which
they modified the Inception-ResNet model. The authors used a
frame builder to extract a 29-bit identifier from a recent
sequence of 29 CAN messages for training. They achieved a
detection precision of 1.0 for DoS types of anomalies and 0.99
for other anomalies. Kwak et al. [13] highlight the significance
of cosine similarity as a feature to detect and classify attacks
from datasets. They achieved 98.93% and 99.18% accuracy for
the KIA Soul and 99.43% and 99.49% for the HYUNDAI YF
Sonata, respectively, in driving and stationary conditions.
Jaoudi et al. [14] proposed a convolutional autoencoder to
detect anomalies. The author converted the network into an
SNN and showed that the network successfully detected
anomalies.

Besides in-vehicle applications, there are many other
anomaly detection applications in industrial, commercial, and
healthcare institutions. Roth et al. [15] presented a method
called PatchCore, which uses a maximally representative
memory bank of nominal patch features to find defective parts
in industrial manufacturing. The authors investigated the
importance of locally aware patch features to show the changes
in anomaly detection. Their methods achieved a 99.6%
AUROC score on the MVTec AD benchmark. Vanini et al. [16]
presented the development and validation of the risk
management process using various fraud detection models.
Alfardus et al. [17] presented a machine learning-based
intrusion detection system with various algorithms like K-
nearest neighbors, Random Forest, Support Vector Machine,
and Multilayer perceptron and compared their accuracy. The
accuracy of the proposed system is 100% for impersonation and
DoS attacks and 99% for fuzzy attacks.

Zanatta et al. [18] proposed structural health monitoring
(SHM) using spiking neural networks (SNNs) in MEMS data
to detect infrastructural damages in a motorway bridge. They
trained a Long Short-Term SNN (LSNN) with an e-prop
algorithm and Backpropagation Through Time (BPTT).
Dennler et al. [19] demonstrate spiking neural network (SNN)
based vibration analysis, which is compatible with analog-
digital neuromorphic circuits. They implemented a three-layer
SNN on the Induced Bearing Fault (IBF) and Run-to-Failure
Bearing Fault (R2F) datasets to detect anomalies from vibration
data in an unsupervised fashion.

All the works described above are implemented in pure
software only form for various anomaly detection applications.
Only a few experiments have been reported that have been
implemented in hardware. For example, Bauer et al. [20]
proposed a real-time classification of ECG data on the Dynamic
Neuromorphic Asynchronous Processor (DYNAP). They used
a spiking recurrent neural network, which consists of three
different neuronal populations. The authors converted ECG
signals into sequential events by using the sigma-delta encoding
scheme. Their system showed 91.3% anomaly detection on the
test set and consumed less than 722.1 uW power. Chen et al.

[21] presented an autonomous anomaly recognition and
detection (AnRAD) framework inspired by the human
neocortex system to detect anomalies in traffic. They used a
likelihood-ratio test to detect anomalies. Ussa et al. [22]
proposed a hybrid neuromorphic framework for object tracking
and classification. They embedded their system in an FPGA and
interfaced with a TrueNorth (TN) chip. They compared their
framework’s performance with DART and SLAYER. They
showed it also consumed low power, ranging from 5 to 14 mW.
However, there is no neuromorphic hardware-based on an in-
vehicle anomaly detection system available for automobiles.

III. BACKGROUND

A. Spiking Neural Network (SNN)

In the human brain, neurons send signals using spikes of
electrical activity through axons and collect signals from
dendrites to exchange information. Neurons communicate
through an extensive, interconnected network of synapses. A
spiking neural network is a neural network model that mimics
the human brain’s computational mechanisms [23].

In a spiking neural network, each neuron actively monitors
incoming spikes and assigns weights based on synaptic values.
If the cumulative effect of these weighted spikes surpasses a
threshold value, it will send a spike to connected neurons and
initiate communication. After a spike, the neuron voltage is reset
to a predetermined value. The training process in SNN involves
adjusting the weights to optimize the network’s ability to
recognize the pattern and respond to the input spike. Both
presynaptic and postsynaptic spikes play a crucial role in the
training phase. Fig. 1 illustrates the structural components and
functionality of a spiking neuron.

Pre-Synaptic
Neuron

Spiking Neuron

Pos-Synaptic
Potential

Output
spike

Membrane
Potential

Synapse
Fig. 1. Spiking Neural Network [24].

B. Intel Loihi Neuromorphic Hardware

Neuromorphic processors are specialized microprocessors.
These processors are designed to mimic the structure and
functionality of the human brain's neural networks. One of the
critical features of neuromorphic processors is their ability to
handle spiking neural networks (SNNs), which closely emulate
the spiking behavior of neurons in the human brain. This event-
driven approach allows for more efficient processing, as
computations occur only when relevant spikes or signals are
present.

Intel's Loihi was released in 2018 to support the properties
of biological neural networks at extreme efficiency [25]. It is a

60 mm? neuromorphic chip fabricated using Intel's 14-nm

FinFET process technology. The chip features include
hierarchical connectivity, synaptic delay, and dendrite
compartments. A total of 6.02 billion transistors and 128
neuromorphic cores constitute the Loihi chip. Each chip has
three x86 processors to support Von Neumann processing. Each
core contains 1024 neuronal compartments, and a 32-bit
spiking-based message system holds communication between
the cores, which enables efficient communication between
them. It has a programmable synaptic learning system that
supports various learning rules by evolving synaptic states. This
learning engine has unique features and the power to implement
spiking neural networks. The Loihi chip is available in multiple
systems: Kapoho Bay, Nahuku, and Pohiki Springs [26].

IV. DATASET
A. CAN Bus Dataframe

The CAN is a standard communication protocol used in
automotive vehicles. The data between the ECUs is shared
through this network. Table I shows the standard format of a
CAN data frame. The description of the data frame is as follows:

Table I: Format of CAN data frame [27].

Field Name Bit Size
Bus Idle
SOF 1
Arbitration RTR 1
?E) DLC 4
& | Control Field r0 1
§ IDE 1
<Zt Data Field 0,1,2,---,63
©) CRC Seq. 15
CRC Field
CRC Delimiter 1
ACK 1
ACK Field
ACK Delimiter 1
Bus Idle
INT 3
EOF 7

1. SOF — Start of Frame. It informs the start of messages.

2. Arbitration field — Consists of two values, ID and RTR. ID
is the header of the frame. When multiple ECUs transmit
data simultaneously, the data is prioritized using the ID.
The lower the ID, the higher the priority. RTR stands for
single Remote Transmission Request. When another node
requires information, the RTR bit is dominant. All the
nodes receive the request and the responding data.

3. Control field — The control field consists of three fields:
IDE, r0, and DLC. The Identifier Extension (IDE) bit is
dominant when transmitting a standard CAN identifier
with no extension. A bit is reserved (r0) for future
purposes. DLC holds 4-bit data containing the number of
bytes (0 to 8) transmitted.

4. Data field — This field contains the data content being
transmitted. It can hold up to 8 bytes of data.

5. CRC field — CRC stands for Cyclic Redundancy Check,
which is used for error detection.

6. ACK field — This field acknowledges the transmitted error-
free data the node receives.

7. EOF — End of the frame (EOF) indicates the end of the
transmitted message [28].

This work uses the CAR hacking dataset the Hacking and
Countermeasure Research Lab (HCRL) developed. This dataset
includes five files. One is attack-free, and the four others contain
normal messages in addition to injected messages. Injected
messages are introduced by connecting the CAN protocol
through an onboard diagnostic port (OBD-II) from a vehicle.
The four attack types are DoS (Denial-of-Service), fuzzy,
spoofing the drive gear, and spoofing the RPM gauge. CAN
messages are sent every 0.3 ms for a DoS attack containing a
CAN ID of 29 zero bits, the dominant CAN ID. The goal of these
types of attacks is to consume network availability. The fuzzy
attack is almost the same as the DoS. They injected random
CAN ID and data values every 0.5 ms to construct a fuzzy attack.
The fuzzy attack aims to cause the vehicle to malfunction.
Spoofing of the drive gear and RPM gauge was performed by
injecting messages every 1 ms of a specific CAN ID. These
attacks can harm the drive gear and RPM gauge by deceiving
the ECUs [29].

B. Data Pre-processing

The dataset has five attributes: Timestamp, the recorded
message time in seconds; CAN ID, the CAN message identifier
in HEX format; DLC, the length of data bytes up to 8; DATA
[0~7], the transmitted payload data value; and flag, whether the
data is normal or an attack. For our work, the unnecessary parts
are removed from the dataset during preprocessing. We used
‘arbitration’ and data fields of CAN messages in our
experiments as they captured the most valuable information of
CAN messages. The data field consists of 8 bytes. If any one of
the data fields is missing, then the information is padded with
zero. Additionally, any null values within the data are
substituted with zeros. The CAN bus data field is in hexadecimal
format and converted into decimals for this experiment. The
dataset is normalized by utilizing standard scores. We created a
Python function to generate sequential data patterns for training
and testing. The Python function uses time steps, ID, and data
field values as inputs and converts them to sequences.

V. AUTOENCODER NETWORK MODELS

AutoEncoders (AE) are a generative neural architecture
that can encode an input feature space to a bottleneck layer in
the encoding state, and the decoding state learns to regenerate
inputs in the output layer. A conceptual diagram of a simple
autoencoder technique is presented in Fig. 2. The encoder
section learns to compress the data samples into a lower-
dimensional latent space at the bottleneck layer (Z). The
decoder section learns to regenerate the input feature space at
the output. Once the AE is trained, it becomes a very efficient
machine for detecting anomalies. The AE network model is

trained by backpropagation of error to minimize the
reconstruction error of the decoder, according to the loss
function in Eq. (1).

£(x,X) = ||1X - X||? (1)
Encoder Bottleneck Decoder
X X
Sf(WX+b) VA gWTZ + b))
min{Loss(X,X")}

Fig. 2. Schematic block diagram of an autoencoder.

Decoder

Encoder

Fig. 3. Block diagram of a fully connected autoencoder.

The same technique can be applied for layer-wise data flow
computation for autoencoders with multiple hidden layers. In
this experiment, a fully connected Autoencoder (AE) is
implemented in a spiking neural network for anomaly
detection, as shown in Fig. 3. The inputs compressed in the
encoder section produce the encoding at the bottleneck layer.
Using the encoding at the bottleneck, the decoder section
reconstructs the input.

During the training of an autoencoder, it learns the
correlations among the features in the data. It can reconstruct a
known or unknown dataset. The training dataset has lower
reconstruction errors as the features become familiar over the
training period. It creates higher reconstruction errors for
unknown data. This work calculates the vector distance L
between the input and predicted output using equation (2) for
every sample, where a; and b; are the input and predicted output
vector, respectively. We took the value of L as a threshold to
detect anomalies.

L=max (|b; — a;|) 2

For anomaly detection, the incoming data passes through
the network, and we calculate the vector distance. During
inference operations, if the magnitude of the vector distance is
greater than L, it identifies the test sample as an anomaly, and
if the distance is less than L, it identifies it as normal.

VI. EXPERIMENTAL SETUP

Fig. 4 presents the workflow of the proposed system for
anomaly detection. At first, we trained the AE network with a
training dataset. Next, the trained AE network is converted into
a spiking AE network. After conversion, the spiking AE
network was retrained with the same training dataset and
trained weights. Finally, the required optimization was
performed to map the trained spiking AE into the Loihi
processor. The deep neural network model was first trained in
Keras, then converted into spiking form by utilizing the
NengoDL tool [30], and then mapped on the Loihi using
NengoLoihi [31]. NengoDL and NengoLoihi are frameworks
for building, testing, and deploying neural networks on
different hardware.

Input . Convert ANN
Sample E> Train ANN E> Model to SNN

U

Intel Loihi <:| Optimization <:| Retrain SNN

Fig. 4. Workflow of the proposed anomaly detection.

In this experiment, we implemented four models. The
models are toe-to-toe, fully connected networks. Model-1
consists of six hidden layers as 128—64—16—16—64—128.
The dimensions of hidden layers in Model-2 and Model-3 are
128—64—64—128 and 128—128 respectively. Model-4 is a
non-spiking Artificial Neural Network (ANN) model that has
the same architecture as Model-1.

The ANN training was performed using Keras in
conventional backpropagation algorithms. We used 50,000
samples as a training dataset and 6,000 samples as a testing
dataset. The attack-free normal dataset is used for training
purposes, whereas the DoS, fuzzy, and gear data are used for
testing. We used the optimizer RMSprop, loss of mean squared
error, and learning rate of 0.0001 in the optimization process.
The ReLU activation function is used in all layers of the AE
network. To convert the Keras-based network into a spiking
neural network, we used the NengoDL library. NengoDL
captures information from the autoencoder (AE) during the
conversion process. The NengoDL model is then transformed
into an SNN-Autoencoder (SNN-AE) form, where adjustments
are made to the weights and biases for adaptation. For mapping
the SNN network on the Loihi chip, the ReLU neurons needed
to be substituted with spike rate encoded Loihi-spiking ReLU
neurons.

For SNN optimization, different firing rates were examined.
For lower firing rates, the activities of Loihi neurons closely
resemble those of ReLU and LIF neurons. However, at higher

firing rates, there is a significant difference between ReLU and
LIF neurons [32]. Nengo uses a synaptic value as a low pass
filter for noise reduction and smoothing spikes in the output.
We used a synaptic value of 0.05 in this experiment. We
retrained the SNN-AE to map the network into the Loihi
simulator. Finally, the retrained SNN-AE is ready to run on the
Loihi chip using the Nengo Loihi library.

As mentioned earlier, our anomaly detection system is
developed using the Nengo framework. We modified our
application to run on the Loihi neuromorphic processor. Nengo
can run applications on both CPU and neuromorphic hardware.
If the Nengo framework doesn’t detect the targeted hardware,
it will simulate the entire process on the CPU. This simulation
will provide the exact result if the application is running on
neuromorphic hardware.

We utilized an estimation tool developed by Nengo for
energy consumption evaluation. In addition to estimating Loihi's
energy consumption, this tool can provide data for commercially
available CPUs and GPUs for estimating energy for certain
operations [33].

VII. RESULTS AND DISCUSSION

A. Performance Analysis

We implemented four models (Model-1, Model-2, Model-3
as spiking, and Model-4 as non-spiking) for the anomaly
detection experiment. The trained ANN model is converted to
SNN using NengoDL. In the SNNGs, the firing rates and synaptic
values are varied to get optimal values for anomaly detection
systems. Fig. 5 shows the impact of firing rates on the anomaly
detection performance of the SNN-AE model. The F-1 score for
the network model-2 is presented as an example in Fig. 5 for
various firing rates. We see that for a firing rate of 50, the system
shows the best F-1 score for different types of anomalies.
Different synaptic values were also examined for the different
models. Fig. 6 represents the F-1 score as the performance of the
model-2 network for different synaptic values. The SNN-AE
model exhibited the best performance on the F-1 score for
Fuzzy, Gear, and DoS, respectively, with scores of 0.98, 0.78,
and 0.78 once the synaptic value and neuron firing rate were set
to 0.05 and 50 respectively. The rest of the experiments were
carried out with a firing rate of 50 and a synaptic value of 0.05.
Table II presents the Precision (P), Recall (R), and F-score (F-
1) of various network models. All the models perform best for
anomaly detection on fuzzy data. Among all the models, model-
2 shows the optimal performance on precision, recall, and F-1
score for fuzzy, gear and DoS anomalies. The performance of
the anomaly detection system changes if the number of hidden
layers changes.

The sequence data was used to train all four network models
regardless of spiking and non-spiking form. Using a sequence
pattern in training improved the performance of SNN-AE
significantly to achieve a similar performance as obtained in
non-spiking model-4. Fig. 7 shows the F-1 score of all the
models. From Fig. 7, we can see that model-2 shows a balanced
F-1 score at a firing rate of 50.

F-1 Score
© o o o
N £~ [e)} [o.]

o

Firing Rate

Fig. 5. Comparison of the F-1 score according to neuron firing rates for
model-2.

F1-Score
o
o

I
>

Fig. 7. Comparison of the F-1 score between the models for firing rate =50,

and synaptic value =0.05.

Table II: Precision, Recall and F-1 score of different anomaly detection models
for firing rate 50 and synaptic value of 0.05.

Fuzzy Gear DoS

Precision 1.00 1.00 0.61

Model-1 Recall 091 0.71 0.45
F-1 0.95 0.83 0.51

Precision 1.00 1.00 1.00

Model-2 Recall 0.96 0.63 0.63
F-1 0.98 0.78 0.78

Precision 1.00 0.83 0.52

Model-3 Recall 0.99 0.54 0.43
F-1 0.99 0.66 0.47

Precision 1.00 1.00 1.00

Model-4 Recall 1.00 0.76 0.99
F-1 1.00 0.86 0.99

Fig. 8 shows the accuracy of the anomaly detection system
among the models. Model-4 shows anomaly detection accuracy
in a non-spiking autoencoder. In the SNN-AE on Loihi, the
detection accuracy for a fuzzy sample is 100%, equivalent to the
non-spiking performance. However, for gear and DoS, the

F-1 Score

0.
Synaptic Value

Fig. 6. Comparison of the F-1 score according to synaptic values for
model-2.

100

Accuracy (%)
B [e)] [oe]
o o o

N
o

o

Fig. 8. Accuracy of various anomaly detection in different network
models for firing rate 50, and synaptic value.

accuracy decreased in SNN-AE. Model-2 exhibited a balanced
accuracy for various types of anomalies on the Loihi platform.
The anomaly detection accuracy in model-2 is 100, 71.05, and
71.2%, respectively for fuzzy, gear, and DoS.

Our proposed anomaly detection systems outperformed the
network shown in [14]. In [14], the authors achieved 0.82 and
0.64 F-1 scores for fuzzy and DoS scenarios, whereas in our
system, the F-1 score was 0.98 and 0.78, respectively.

B. Energy Analysis in Anomaly Detection Operation

Table III shows the energy consumption per inference
without the overhead (energy required to move data to and from
the device) for all the models of the anomaly detection system
on CPU, GPU, and Loihi. Nengo’s power measurement library,
‘Keras Spiking,” was used to measure the required lower bound
energy without the overhead. From Table I1I, we can see that for
all network models, the energy consumption for Loihi is around
0.17 pJ, which is about 20,000x and 700x% less than the CPU and
GPU respectively defined in the Nengo tools. The energy
consumption among model-1, model-2, and model-3 changes
slightly. The network in Model-4 is implemented in non-
spiking. Thus the Loihi energy and estimation is not applicable
here.

Table I1I: Energy consumption (uJ) per inference among all models.

CPU GPU Loihi
Model 1 3670 128 0.18
Model 2 3620 127 0.17
Model 3 3600 127 0.17
Model 4
(Non-spiking) 2000 100 T

VIII. CONCLUSION

This is the first-ever implementation of an anomaly
detection system on Loihi for in-vehicle applications. Using the
Nengo framework, we convert the neural network to a spiking
neural network and implement our system on the Loihi, which
ensures low energy consumption. This work presented an
autoencoder-based anomaly detection system on the CAN bus
dataset. The results that the proposed anomaly detection system
can detect anomalies successfully. The energy consumption in
per anomaly detection operation on the Loihi is estimated at
about 0.17 pJ, which is 20,000 and 700 times less than CPU
and GPU processors respectively. Although the experiment was
performed for vehicle anomaly detection, the same system can
effectively be used in industrial and commercial anomaly and
fraud detection. In future work, we plan to use online learning
algorithms for on-chip training on the Loihi hardware as there
is growing demand for online and on-chip learning for edge
applications in industry and defense applications to achieve
better performance and be more robust.

ACKNOWLEDGEMENT

This paper has been approved for public release by AFRL
Case Number: AFRL-2024-1728.

REFERENCES

Liu, F.T., Ting, K.M. and Zhou, Z.H., 2012. Isolation-based anomaly
detection. ACM Transactions on Knowledge Discovery from Data
(TKDD), 6(1), pp.1-39.

Chitrakar, R. and Chuanhe, H., 2012, November. Anomaly detection
using Support Vector Machine classification with k-Medoids clustering.
In 2012 Third Asian himalayas international conference on internet (pp.
1-5). IEEE.

Kumari, R., Singh, M.K., Jha, R. and Singh, N.K., 2016, March. Anomaly
detection in network traffic using K-mean clustering. In 2016 3rd
international conference on recent advances in information technology
(RAIT) (pp. 387-393). IEEE.

Chalapathy, R. and Chawla, S., 2019. Deep learning for anomaly
detection: A survey. arXiv preprint arXiv:1901.03407.

Kalutarage, H.K., Al-Kadri, M.O., Cheah, M. and Madzudzo, G., 2019,
October. Context-aware anomaly detector for monitoring cyber attacks on
automotive CAN bus. In Proceedings of the 3rd ACM Computer Science
in Cars Symposium (pp. 1-8).

Zhou, A., Li, Z. and Shen, Y., 2019. Anomaly detection of CAN bus
messages using a deep neural network for autonomous vehicles. Applied
Sciences, 9(15), p.3174.

C. Derse, M. el Baghdadi, O. Hegazy, U. Sensoz, H. N. Gezer and M. Nil,
"An Anomaly Detection Study on Automotive Sensor Data Time Series
for Vehicle Applications," 2021 Sixteenth International Conference on
Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo,
Monaco, 2021, pp. 1-5, doi: 10.1109/EVERS52347.2021.9456629.

(8]

[

[10

[11

[12

[13

[14

[15

[16

(17

[18

[19

[20

[21

22

[23

[24

[25

—

]

—

]

—

[k}

—

—

[t}

—

—

—

—

—

finar

[}

Blouw, P., Choo, X., Hunsberger, E. and Eliasmith, C., 2019, March.
Benchmarking keyword spotting efficiency on neuromorphic hardware.
In Proceedings of the 7th annual neuro-inspired computational elements
workshop (pp. 1-8).

Nengo Online Link: https://www.nengo.ai/keras-
spiking/examples/model-energy.html

Hossain, M.D., Inoue, H., Ochiai, H., Fall, D. and Kadobayashi, Y., 2020.
LSTM-based intrusion detection system for in-vehicle can bus
communications. /EEE Access, 8, pp.185489-185502.

Seo, E., Song, HM. and Kim, H.K., 2018, August. GIDS: GAN based
intrusion detection system for in-vehicle network. In 2018 16th Annual
Conference on Privacy, Security and Trust (PST) (pp. 1-6). IEEE.

Song, H.M., Woo, J. and Kim, H.K., 2020. In-vehicle network intrusion
detection using deep convolutional neural network. Vehicular
Communications, 21, p.100198.

Kwak, B.I.,, Han, M.L. and Kim, H.K., 2021. Cosine similarity based
anomaly detection methodology for the CAN bus. Expert Systems with
Applications, 166, p.114066.

Jaoudi, Y., Yakopcic, C. and Taha, T., 2020, October. Conversion of an
unsupervised anomaly detection system to spiking neural network for car
hacking identification. In 2020 11th International Green and Sustainable
Computing Workshops (IGSC) (pp. 1-4). IEEE.

Roth, K., Pemula, L., Zepeda, J., Scholkopf, B., Brox, T. and Gehler, P.,
2022. Towards total recall in industrial anomaly detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 14318-14328).

Vanini, P., Rossi, S., Zvizdic, E. and Domenig, T., 2023. Online payment
fraud: from anomaly detection to risk management. Financial Innovation,
9(1), pp.1-25.

Alfardus, A. and Rawat, D.B., 2021, December. Intrusion detection
system for CAN bus in-vehicle network based on machine learning
algorithms. In 2021 IEEE 12th Annual Ubiquitous Computing,
Electronics & Mobile Communication Conference (UEMCON) (pp.
0944-0949). IEEE.

Zanatta, L., Barchi, F., Burrello, A., Bartolini, A., Brunelli, D. and
Acquaviva, A., 2021, June. Damage detection in structural health
monitoring with spiking neural networks. In 2021 IEEE International
Workshop on Metrology for Industry 4.0 & loT (Metrolnd4. 0&IoT) (pp.
105-110). IEEE.

Dennler, N., Haessig, G., Cartiglia, M. and Indiveri, G., 2021, June.
Online detection of vibration anomalies using balanced spiking neural
networks. In 2021 [EEE 3rd International Conference on Artificial
Intelligence Circuits and Systems (AICAS) (pp. 1-4). IEEE.

Bauer, F.C., Muir, D.R. and Indiveri, G., 2019. Real-time ultra-low power
ECG anomaly detection using an event-driven neuromorphic processor.
IEEE transactions on biomedical circuits and systems, 13(6), pp.1575-
1582.

Chen, Q., Qiu, Q., Li, H. and Wu, Q., 2013, November. A neuromorphic
architecture for anomaly detection in autonomous large-area traffic
monitoring. In 2013 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD) (pp. 202-205). IEEE.

Ussa, A., Rajen, C.S., Pulluri, T., Singla, D., Acharya, J., Chuanrong,
G.F., Basu, A. and Ramesh, B., 2023. A hybrid neuromorphic object
tracking and classification framework for real-time systems. /EEE
Transactions on Neural Networks and Learning Systems.

Zheng, S., Qian, L., Li, P., He, C., Qin, X. and Li, X., 2022. An
introductory review of spiking neural network and artificial neural
network: From biological intelligence to artificial intelligence. arXiv
preprint arXiv:2204.07519.

Dutta, S., Schafer, C., Gomez, J., Ni, K., Joshi, S., & Datta, S. (2020).
Supervised Learning in All FeFET-Based Spiking Neural Network:
Opportunities and Challenges. Frontiers in Neuroscience, 14.
https://doi.org/10.3389/fnins.2020.00634.

Davies, M., Srinivasa, N., Lin, T.H., Chinya, G., Cao, Y., Choday, S.H.,
Dimou, G., Joshi, P., Imam, N., Jain, S. and Liao, Y., 2018. Loihi: A
neuromorphic manycore processor with on-chip learning. leee Micro,
38(1), pp.82-99.

https://www.nengo.ai/keras-spiking/examples/model-energy.html
https://www.nengo.ai/keras-spiking/examples/model-energy.html
https://doi.org/10.3389/fnins.2020.00634
https://doi.org/10.3389/fnins.2020.00634

[26]

[27]
(28]

[29]

Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G.A.F.,
Joshi, P., Plank, P. and Risbud, S.R., 2021. Advancing neuromorphic
computing with loihi: A survey of results and outlook. Proceedings of the
IEEE, 109(5), pp.911-934.

Cook, J. A., and J. S. Freudenberg. "Controller area network (CAN)."
EECS 461 (2007): 1-5.

HPL, S.C., 2002. Introduction to the controller area network (CAN).
Application Report SLOA101, pp.1-17.

Song, H.M., Woo, J. and Kim, H.K., 2020. In-vehicle network intrusion
detection using deep convolutional neural network. Vehicular
Communications, 21, p.100198.

[30] Nengo Online Link: https://www.nengo.ai/nengo-dl/simulator

[31] Nengo Online Link: https://www.nengo.ai/nengo-loihi/

[32] Nengo Online Link: https://www.nengo.ai/nengo-
loihi/v1.0.0/examples/keras-to-loihi.html

[33] B. Degnan, B. Marr and J. Hasler, "Assessing Trends in Performance per
Watt for Signal Processing Applications," in IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 58-66, Jan.
2016, doi: 10.1109/TVLSL.2015.2392942.

https://www.nengo.ai/nengo-dl/simulator
https://www.nengo.ai/nengo-loihi/
https://www.nengo.ai/nengo-loihi/v1.0.0/examples/keras-to-loihi.html
https://www.nengo.ai/nengo-loihi/v1.0.0/examples/keras-to-loihi.html

