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Abstract

We consider stochastic unconstrained bilevel opti-
mization problems when only the first-order gra-
dient oracles are available. While numerous opti-
mization methods have been proposed for tackling
bilevel problems, existing methods either tend to
require possibly expensive calculations regarding
Hessians of lower-level objectives, or lack rigor-
ous finite-time performance guarantees. In this
work, we propose a Fully First-order Stochastic
Approximation (F2SA) method, and study its non-
asymptotic convergence properties. Specifically,
we show that F2SA converges to an e-stationary
solution of the bilevel problem after e/ 2, €5/2,
and €3/? iterations (each iteration using O(1)
samples) when stochastic noises are in both level
objectives, only in the upper-level objective, and
not present (deterministic settings), respectively.
We further show that if we employ momentum-
assisted gradient estimators, the iteration com-
plexities can be improved to ¢5/2, ¢=%/2, and
€3/2, respectively. We demonstrate even supe-
rior practical performance of the proposed method
over existing second-order based approaches on
MNIST data-hypercleaning experiments.

1. Introduction

Bilevel optimization (Colson et al., 2007) arises in many
important applications that have two-level hierarchical struc-
tures, including meta-learning (Rajeswaran et al., 2019),
hyper-parameter optimization (Franceschi et al., 2018; Bao
et al., 2021), model selection (Kunapuli et al., 2008; Giovan-
nelli et al., 2021), adversarial networks (Goodfellow et al.,
2020; Gidel et al., 2018), game theory (Stackelberg et al.,
1952) and reinforcement learning (Konda & Tsitsiklis, 1999;
Sutton & Barto, 2018). Bilevel optimization can be gener-
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ally formulated as the following minimization problem:

:Ivléig(l F(z) := f(z,y"(z))

st. y*(z) € arg min g(z,y), P)
y€ER%

where f and g are continuously differentiable functions and
X C R% is a convex set. The outer objective F' depends
on x both directly and also indirectly via y* (), which is a
solution of the lower-level problem of minimizing another
function g, which is parametrized by z. Throughout the
paper, we assume that X = R (that is, there are no explicit
constraints on ) and that g(z, y) is strongly convex in y, so
that y* () is uniquely well-defined for all z € X.

Among various approaches to (P), iterative procedures have
been predominant due to their simplicity and potential scal-
ability in large-scale applications. Initiated by (Ghadimi &
Wang, 2018), a flurry of recent works study efficient itera-
tive procedures and their finite-time performance for solving
(P), see e.g., (Chen et al., 2021; Hong et al., 2020; Khanduri
et al., 2021; Chen et al., 2022; Dagréou et al., 2022; Guo
et al., 2021; Sow et al., 2022; Ji et al., 2021; Yang et al.,
2021). The underlying idea is based on an algorithm of
(stochastic) gradient descent type, applied to F', that is,

T+l = Tk — akVF(xk),

with some appropriate step-sizes {«y }. Direct application
of this approach requires us to compute or estimate the
so-called hyper-gradient of F' at x, which is

VEF(z) =V f(z,y"(2)) = Vi,g(z,y"(2))
Viya(@,y" (€))7 Yy fz,y" (). (D)

There are two major obstacles in computing (1). The first
obstacle is that for every given x, we need to search for
the optimal solution y* (z) of the lower problem, which re-
sults in updating the lower variable y multiple times before
updating z. To tackle this issue, several ideas have been
proposed in (Ghadimi & Wang, 2018; Hong et al., 2020;
Chen et al., 2021) to effectively track y*(z) without waiting
for too many inner iterations before updating z (we discuss
this further in Section 1.2). Following in the spirit of this ap-
proach, we show that a single-loop style algorithm can still
be implemented using only first-order gradient estimators.
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The second obstacle, which is the main focus of this work,
centers around the presence of second-order derivatives of g
in (1). Existing approaches mostly require an explicit extrac-
tion of second-order information from g with a major focus
on estimating the Jacobian and inverse Hessian efficiently
with stochastic noises (Ji et al., 2021; Chen et al., 2022; Da-
gréou et al., 2022). We are particularly interested in regimes
in which such operations are costly and prohibitive (Mehra
& Hamm, 2021; Giovannelli et al., 2021). Some existing
works avoid the second-order computation and only use the
first-order information of both upper and lower objectives;
see (Giovannelli et al., 2021; Sow et al., 2022; Liu et al.,
2021b; Ye et al., 2022). These works either lack a com-
plete finite-time analysis (Giovannelli et al., 2021; Liu et al.,
2021b) or are applicable only to deterministic functions (Ye
et al., 2022; Sow et al., 2022).

Our goal in this paper is to study a fully first-order approach
for stochastic bilevel optimization. We propose a gradient-
based approach that avoids the estimation of Jacobian and
Hessian of g, and finds an e-stationary solution of F' using
only first-order gradients of f and g. Further, the number
of inner iterations remains constant throughout all outer
iterations of our algorithm. We provide a finite-time analysis
of our method with explicit convergence rates. To our best
knowledge, this work is the first to establish non-asymptotic
convergence guarantees for stochastic bilevel optimization
using only first-order gradient oracles.

1.1. Overview of Main Results

The starting point of our approach is to convert (P) to an
equivalent constrained single-level version:

min flryy) st g(x,y) —g"(x) <0, (P)

z€X, yeR%Y
where g*(z) := g(x,y*(x)). The Lagrangian £ for (P*)
with multiplier A > 0 is

La(z,y) = f(z,y) + Mgz, y) — g% (2))-

We can minimize L) for a given A by, for example, running
(stochastic) gradient descent. As noted in (Ye et al., 2022),
the gradient of £ can be computed only with gradients of
f and g, and thus the entire procedure can be implemented
using only with first-order derivatives. In fact, such a refor-
mulation has been attempted in several recent works (e.g.,
(Liu et al., 2021a; Sow et al., 2022; Ye et al., 2022)). How-
ever, the challenge in handling the constrained version (P’)
is to find an appropriate value of the multiplier A. Unfortu-
nately, the desired solution * = arg min,, F(z) can only
be obtained at A = oo (this is a consequence of the fact that
the so-called constraint qualifications (Wright et al., 1999)
are not satisfied for (P’)). However, with A = oo, £ (x,y)
has unbounded smoothness which prevents us from employ-
ing gradient-descent style approaches. For these reasons,

none of the previously proposed algorithms can obtain a
consistent estimator for the original problem min, F'(x)
without access to second derivatives of g.

Nonetheless, we find that (P’) is the key to deriving a con-
sistent estimator that converges to an e-stationary point of
F'in finite time without access to second derivatives. The
main idea is to start with an initial value A\ = A\g > 0 and
gradually increase it on subsequent iterations: At iteration
k, A\ = O(kb) for some b € (0,1]. The success of this
approach depends crucially on the growth rate captured by
the parameter b. On one hand, fast growth of \; removes
the bias quickly. On the other hand, fast growth of Ay forces
a fast decay of step-sizes due to the growing nonsmoothness
of Ly, , which slows down the overall convergence.

Our main technical contribution is to characterize an explicit
growth rate of \j that optimizes the trade-off between bias
and step-sizes, and to provide a non-asymptotic convergence
guarantee with explicit rates for the proposed algorithm.

» We propose a fully first-order method, F2SA, for
stochastic bilevel optimization. F2SA is a single-loop
style algorithm: For every outer variable update we
only update inner variables a constant number of times.

» We characterize explicit convergence rates of F2SA in
different stochastic regimes. It converges to an e-
stationary-point of (P) after O(e=3-%), O(e=2%), or
O(e~19) iterations if both V f and Vg contain stochas-
tic noise, if only access to V f is noisy, or if we are in
deterministic settings, respectively. These complexities
can be improved to O(e~2%), O(e2), or O(e~19), re-
spectively, if momentum or variance-reduction tech-
niques are employed. The crux of the analysis is to
understand the effect of the value of multipliers Ay on
step-sizes, noise variances, and bias.

* We demonstrate the proposed algorithm on a data
hyper-cleaning task for MNIST. Even though our theo-
retical guarantees are not better than existing methods
that use second-order information, we illustrate that
F2SA can even outperform such methods in practice.

1.2. Related Work

Bilevel optimization has a long and rich history since its
first introduction in (Bracken & McGill, 1973). A num-
ber of algorithms have been proposed for bilevel optimiza-
tion. Classical results include approximation descent (Vi-
cente et al., 1994) and penalty function method (Ishizuka
& Aiyoshi, 1992; Anandalingam & White, 1990; White &
Anandalingam, 1993) for instance; see (Colson et al., 2007)
for a comprehensive overview. These results often deal
with several special cases of bilevel-optimization and only
provide asymptotic guarantees. Note that the penalty func-
tion methods in (Ishizuka & Aiyoshi, 1992; Anandalingam
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& White, 1990; White & Anandalingam, 1993) discuss
the landscape within the infinitesimal neighborhood of lo-
cal minimizers, and their results cannot imply practical

approaches to find a stationary point non-convex objectives
F.

Recently, several papers study gradient-based optimization
methods for bilevel optimization and its non-asymptotic
analysis. The first non-asymptotic analysis of a double-loop
algorithm was given in (Ghadimi & Wang, 2018), where an
inner problem finds an approximate solution of y*(x) given
x, which is used to evaluate an approximation of VF'(z).
Furthermore, (Ghadimi & Wang, 2018) uses the Neuman
series approximation to estimate the Hessian inverse when
we only have access to the stochastic oracles of second-order
derivatives.

The paper (Ghadimi & Wang, 2018) was followed by a flurry
of work that improved their result in numerous ways. For
instance, (Hong et al., 2020; Chen et al., 2021; 2022; Ji et al.,
2021) develop a single-loop style update by properly choos-
ing two step-sizes for the inner and outer iterations, along
with the improved sample complexity, i.e., the total num-
ber of accesses to first and second-order stochastic oracles.
The overall convergence rate is further optimized by using
variance-reduction and momentum techniques (Khanduri
et al., 2021; Dagréou et al., 2022; Guo et al., 2021; Yang
et al., 2021; Huang & Huang, 2021). We do not aim to com-
pete with the convergence rates obtained from this line of
work, since all of these method have access to second-order
derivatives, even though some computational cost might
be saved if good automatic differentiation packages (Mar-
gossian, 2019) are available. Rather, we avoid the needs
for second-order information altogether, allowing a simple
algorithm with low per-iteration complexity for large scale
applications.

The results most closely related to ours can be found in (Ye
et al., 2022; Sow et al., 2022). (Sow et al., 2022) considers
a primal-dual approach for (P”), but their main focus is to
get a biased solution when g is only convex (not strongly
convex), so the lower-level problem may have multiple so-
lutions. Their analysis is restricted to the case in which the
overall Lagrangian is strongly-convex in x (which is not
usually guaranteed) and they do not provide any guarantees
in terms of the true objective F'. More recent work in (Ye
et al., 2022) is the closest to ours, but they only consider
deterministic gradient oracles, and do not provide conver-
gence guarantees in terms of F'. Moreover, they prove a
convergence guarantee of O(k~'/4), whereas we show an
improved guarantee of O(k”/ 3) in the deterministic case.

There are also other lines of work that study a simpler ver-
sion of the bilevel problem which has no coupling between
two variables x and y (e.g., see (Ferris & Mangasarian, 1991;
Solodov, 2007; Jiang et al., 2022)). In (Amini & Youse-

fian, 2019a;b), the Lagrangian formulation is exploited with
iteratively increasing multiplier. Note that the nature of
single-variable bilevel formulation is different from (P) as
the former is only interesting when the lower-level prob-
lem allows a multiple (convex) solution set. To our best
knowledge, the idea of iteratively increasing A; with its
non-asymptotic guarantee is new in the context of solv-
ing (P), and has the merit of avoiding (possibly) expensive
second-order computation.

2. Preliminaries

We state several assumptions on (P) to specify the prob-
lem class of interest. We consider (P) with the following
assumptions on objective functions:

Assumption 1. The functions f and g satisfy the following
conditions.

1. f is continuously differentiable and /¢ ;-smooth .
2. g is continuously differentiable and [, ; -smooth.

3. Foreveryz € X, ||V, f(Z,y)|| <l forally.

We focus on well-conditioned bilevel optimization prob-
lems, i.e., when F(z) is well-defined, continuous and
smooth. The following assumption has been standard
for well-conditioned bilevel problems (Ghadimi & Wang,
2018):

Assumption 2. The following holds for g:

1. There exists an p, > 0 such that forall z € X, g(Z, y)
is u4 strongly-convex in y.

2. g is two-times continuously differentiable, and Vg is
l42-Lipschitz jointly in (z, y).

We assume that we can access first-order information of
objective functions only through stochastic gradient oracles:
Assumption 3. We access the gradients of objective
functions via unbiased estimators V f (z, y; (), Vg(z, y; ¢)
depending on random variables { and ¢, respectively,
where E[V f(,y:¢)] = Vf(x,y) and E[Vg(x,y: ¢)] =
Vg(z,y). The variances of stochastic gradient estimators
are bounded:

E[|Vf(z,y;¢) = Vf(z,9)|?]
E[|Vg(z,y;8) — Vg(z,y)|]

IN
o

g

)

IN
N

g

Throughout the paper, we assume that Assumptions 1-3 hold
unless specified otherwise. We use the following definition
as the optimality criteria for solving (P).

Definition 2.1 (e-stationary point). A point z is called e-
stationary if ||V F(z)||?> < ¢, where VF is defined in (1).
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Notation. We say a; < by, if aj, and by decreases (or in-
creases) in the same rate as k — o0, i.e., limyg_ o ag/bx =
©(1). Throughout the paper, || - || denotes the Euclidean
norm on finite dimensional space.

3. Algorithm

In this section, we develop an algorithm that converges to
a stationary point of the bilevel problem (i.e., a stationary
point of F'(z) = f(x,y*(x))) and makes use only of gradi-
ents of f and g. Recall the equivalent formulation (P’). To
see how we can avoid second-order derivatives, we observe
the gradient of V.Lj:

VxEA(%y) = V:vf(xvy) + )‘(vwg<x7y) - v9*<x))7
vy[:)\(xvy) = vyf(xvy) + )\Vyg(x,y)

Note that

Vg () = Vag(z,y*(z)) + Vay" (2)Vyg(z, y*(2))
= ng(x,y*(x)),

due to the optimality condition for g at y*(z). Thus, we
could consider optimizing £ (x, y) by introducing an aux-
iliary variable z that chases y*(z), and setting up an al-
ternative bilevel formulation (P) with outer-level objective
Lx(2', z), outer variable 2’ = (z,y), and inner variable
z. However, such an approach settles in a different land-
scape from that of F'(x), resulting in a bias. The question is
how tightly we can control this bias without compromising
too much smoothness of the alternative function £, which
affects the overall step-size design and noise variance.

To control the bias, we need a better understanding of how
the functions £ and F'(z) are related. Let us introduce an
auxiliary function £3 defined as:

L3 (z) :=min Ly(z,y).
y

Note that if A > 2l 1/p,, then for every 7 € X, £1(Z,y)
is at least (Apy/2) strongly-convex in y, and therefore its
minimizer y5 (z) is uniquely well-defined:

yi(z) = argmin £3 (2, y). 2

Since F(x) = limy_o L3 () for every z € X, we could
expect that £3(z) is a well-defined proxy of F'(z) for suf-
ficiently large A > 0. The following lemma confirms this
intuition.

Lemma 3.1. Foranyxz € X and A\ > 2151 /1y, VL () is
given by

Ve La(z, Yy (2) = Va f (2, yx())
+ )‘(V:L’g(xa y;([)ﬁ)) - Vmg(mv y*(x)))

Algorithm 1 F2sa
Input: step sizes: {ay, Y}, multiplier difference sequence:
{8k}, inner-loop iteration count: T', step-size ratio: &, ini-
tializations: Ao, g, Yo, 20

1: fork=0..K —1do

2k,0 < Zks> Yk,0 < Yk
fort =0...T —1do

Kt
Zkt4+1 < 2kt — ’Ykhgz

k
Ykat1 < Ykt — ak(hp) + Aehlh)
end for

Zk+1 < 2k,T> Yk+1 < Yk, T

Tpt1 < T — gak(hl;x + )‘k?(h];:ry - hlgzz))
9: Ak41 ¢ Mg + Ok

10: end for

AN A

Furthermore, we have

IVF(z) = VLX(z)[] < Cx/A,

where C, = 74lfi£9’1 (lf@ + 72”}’?;9‘2).

Importantly, VL3 (z) can be computed only with first-order
derivatives of both f and g. Thus any first-order method
that finds a stationary point of L3 (x) approximately follows
the trajectory of = updated with the exact VF'(x), with a
bias of O(1/\).

Our strategy is to use VL3 (z) as a proxy to VF(z) for
generating a sequence of iterates {xy }. Accordingly, we in-
troduce sequences {yy.} and {z; } that approximate y} (v)
and y* (zy,), respectively. We gradually increase A with k,
so that the bias in the sequence {xz\} converges to 0.

Our Fully First-order Stochastic Approximation (F2SA3)
method is shown in Algorithm 1. We emphasize that the
method works with stochastic gradients that are independent
unbiased estimators of gradients, i.e.,

k, ,
hgt o= Vyg(r, 2505 95°), By = Vo f(@r, yrs ¢570),

ht = V(@ Yrts 03 My = Vag(Tk, Yrg1; Oy ),
Wy = Vo f (@, Yrr1: () s = Vag(@r, ziy15 65,).

The algorithm can set 7" = 1 in conjunction with an appro-
priate choice of £, allowing a fully single-loop update for
all variables.

3.1. Step-Size Design Principle

We describe how we design the step-sizes for Algorithm 1
to achieve convergence to a e-stationary point of F. Sev-
eral conditions must be satisfied. As will be shown in the
analysis, with (At /2)-strong convexity of £y, in y, one-
step inner iteration of yj, ; is a contraction mapping toward
Y1, Withrate 1 — O(ug % ). Henceforth, we often use the
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Yk e
Yk+1
.—S.y wk
Vik-1
0(1/Ay—y)

0(1/4;)

Figure 1: y;, should move faster than y3 (%) moves, and
stay within O(1/Ag)-ball around y3 ().

notation Sy := axA, which is the effective step-size for
updating yy. For simplicity, we denote y3 ;, := y3, (2x) and
Yi =y (zn).

We now describe the specific rules. Since the step size for
xy, is essentially £y, and since we may need to traverse an
arbitrary distance from the initial point z to the optimal
value of z, we need ay, = 2(1/k). On the other hand, since
Br = ayp A\ is the effective step size for updating yy, we
need S, < O(1/ly1) = O(1). Together, these observations
imply that the maximum rate of growth for A\, cannot exceed

o(k).

Second, note that |21 — || is (roughly) proportional to
IVF(ze)|| + Cx/Ak + Mellye — 3kl + Aellze — viell-

This rate is optimized when ||y, —y3 ¢ || < [[2x—yi [l < A2
Thus, the ideal growth rate for Ay is [|yx — y3 ,||'/2 or
|z — y;||/2. We will design the rate of convergence of yj,
and z; to be the same, i.e., O < ~;. For instance, when
we have stochastic noises in the gradient estimate of g, i.e.,
o2 > 0, the expected convergence rate of ||y, — 5, ||° is
O(Br), since the sequence is optimized for strongly convex

1/4

functions. This suggests A\, < 3,7/~ as the ideal rate of

growth for Ag.

The crux of Algorithm 1 is how well y; (and z;) can chase
yx, (zx) (resp. y*(xx)) when x; and A, are changing at
every iteration. We characterize first how fast y3 (z) moves
in relation to the movements of A and .

Lemma 3.2. Forany Ao > Ay > 2l¢1/pg and x1, 22 € X,
we have
2(A2— M) 1o

<— +l)\,0||332 _$1||a

195, (1) = 3, ()] < =520

for some Iy o < 3lg1/pg.

For Algorithm 1 to converge to a desired point, y; should
move sufficiently fast toward the current target yy , every it-
eration, dominating the movement of target g3 ,. that results

Algorithm 2 F3sA
Input: step sizes: {ay, Y}, multiplier difference sequence:
{8k}, momentum-weight sequence {n;}, step-size ratio: ¢,
initialization: A\, Zg, Yo, 20
1: fork=0..K —1do
2 Zky1 < 2k — WhE,
3 Yk+1 < Y — ak(iLI}y =+ Akill;y)
4 Tp1 — TR — fak(ﬁ,lfcm + )\k(iLk — bk )
5
6

9Ty grz
)‘k-‘rl — A + 0k
: end for

from updates to xy and Ay (see Figure 1). At a minimum,
the following condition should hold (in expectation):

lye+1 = va sl < llve = v3 p—1ll-

Since [|yx+1 — ¥ & [|* can be bounded with T-steps of 1 —
O(f148k) contractions, starting from y,, we require

(1= O(TugB) llye = yakll* < lyr — yx k|l

Now, applying the bound in Lemma 3.2, the minimal condi-
tion is given by:

lvsi—1 — varll < Uro/tg) - (6k/A3) + Inollze — 21
< TugBrllye — yx p—1ll-

Note that [|yx11 — y5 || should decay faster than A, . Oth-
erwise, the bias in updating x; using yy, (to estimate VL3 )
is larger than Ag|lyx+1 — yX .||, and this amount might
blow up. Also, it can be easily seen that ||z, — z4_y|| =
Q(EBkllyk — Y3 x—1)- We can thus derive two simple con-
ditions:

L 0.1 B 5 < 0:(1)

where O (1) are instance-dependent constants. If \j grows
in some polynomial rate, then dx /A, = O(1/k) and the
first condition is satisfied provided that 8, = Q(1/k). The
second condition indicates the number of inner iterations T’
required for each outer iteration. We can set 7' = 1 (thus
making the algorithm single-loop) by setting ¢ sufficiently
small. Alternatively, we can set £ = 1 choose 7" > 1 to
depend on some instance-specific parameters.

3.2. Extension: Integrating Momentum

Given the simple structure of Algorithm 1, we can inte-
grate variance-reduction techniques to improve the overall
convergence rates. One relevant technique is the momentum-
assisting technique of (Khanduri et al., 2021) for stochastic
bilevel optimization. To simplify the presentation, we con-
sider a fully single-loop variant by setting 7' = 1.
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To apply the momentum technique, we only need to replace
the simple unbiased gradient estimators h with momentum-
assisted gradient estimators h. For instance, h’“ can be
defined with a proper momentum weight sequence 7, €
(0, 1] as follows:

hE =V, g(xk, z1; o)
+ (1 — ) (55_1 — Vyg(@p—1, 2k—1; ¢§)) .

Other quantities ﬁfy, ﬁgy, ﬁfw, Bg$y, iLgm are defined simi-
larly, with the same momentum-weight sequence. We defer
the full description of those quantities to Appendix C. The
version of our algorithm that incorporates momentum is
called Faster Fully First-order Stochastic Approximation
(F3sR); it is described in Algorithm 2, where we simply
replace h with h. Note that we have additional moment-
weight parameters {ny, }.

4. Main Results

In this section we provide non-asymptotic convergence guar-
antees of the proposed algorithms. For Algorithm 1, we
prove in Theorem 4.1 that the weighted sum of |V F(zy)||?
in expectation is bounded from above. By choosing suitable
step sizes, the estimate yields a convergence rate. Depen-
dence on stochastic noises is explicated in Corollaries 4.2.
Similar results with better convergence rates and weaker
assumptions are proved for Algorithm 2; see Theorem 4.3
and Corollary 4.4.

4.1. Main Result for Algorithm 1

Two mild assumptions are required for exploiting the
smoothness of i3 ().

Assumption 4. The gradient with respect to x is bounded
for functions f and g:

1. Forevery g, ||V f(z,9)|| <lfoforallz € X.

2. For every ¥,

Vag(z,g)|| <lgoforallz € X.

Assumption 5. f is two-times continuously differentiable,
and V2 is I o-Lipschitz in (z,y).

The smoothness of y3(z) is used to keep the number
of effective inner iterations constant throughout all outer-
iterations, as in (Chen et al., 2021).

Before we state our convergence result, let us define some
additional notation. We denote the second-moment bound of
the z update, zy 1 —xk, as M := max(l7 o +07%,1; o +07).
We also denote [, o = max(1,[),,0) and l* 1= l>\0 1 where
Ao is the starting value of Lagrange multiplier.

We are now ready to state our main results for Algorithm 1.

Theorem 4.1. Suppose that Assumptions 1 - 5 hold, and pa-
rameters and step-sizes are chosen such that g > 2171/ 4
and

< < < 3
A < i < min (4191 4Tﬂg> Ok S o GV
§ ~\ "1 O T,u B
T < Cellg - max (ZQJZE,O? 1*71 M) )\k 1‘2
(3b)

for all k > 0 with a proper absolute constant c¢ > 0. Then
forany K > 1, the iterates generated by Algorithm 1 satisfy

K-1
> CarB[|[VF ()% < Ox(1 Z&am
k=0

k
where Op(1) are instance-dependent constants.
The proof of Theorem 4.1 is given in Appendix B. At a high

level, our analysis investigates the decrease in expectation
(with k) of the potential function V}, defined by

Vk: :(F(;Uk) — F*) + lg}l)\k”yk? - yj\k (Q}’k)”Q
Akl .
+ S iy ()|, “

where F'* is the minimum value of F' and 3 and y* are
given in (2) and (P), respectively. That is, in addition to
the decrease in values of I and z; — y; which have been
standardized in literature, we track the error between y;, and
Yx, (1) since y5 , is the key to compute true VF'(zy,) only
with gradients. It is also shown in the proof that the right
scaling factor for the tracking errors is Op ().

We now describe how we design step sizes. Note that the
conditions (3a) are standard conditions on the step sizes
for gradient-based methods with smooth functions. The
conditions (3b) arise from the double-loop nature of the
problem, as discussed in Section 3.1. In accordance with
the step-size design rule (3), we propose the following:

T = max (32, (cepy) ! max (lg,lli,o, \/Ml*;)) )

c c
=1, — 70“’ — 77, 5
S=hon= G T o ko) )
and for the multiplier increase sequence {Jy },
. [ Tug
§; = min ( 16 /\ /\k> (6)

with some rate constants a, ¢ € [0,1] and a > ¢. We design
the starting value \o of the Lagrange multiplier and the
constants as

2051

4
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1 1
Cy = -, Co = —.
! Ngké_c 2/\0'“9% ¢

@)

These choices simplify the convergence rate analysis, but
any set of choices can be used as long as it satisfies (3). With
the choices above, we can specify the rate of convergence
in three different regimes of stochastic noises.

Corollary 4.2. Suppose that the conditions of Theorem 4.1
hold, with step-sizes designed as in (5), (6), and (7). Let
R be a random variable drawn from a uniform distribution
over {0, ..., K — 1}. Then the following convergence results
hold after K iterations of Algorithm 1.

(a) If stochastic noises are present in both upper-level
objective f and lower-level objective g (i.e., G‘J%, 03 >
0), then by setting a = 5/7 and ¢ = 4/7 in (5) and (7),

we obtain E[|VF (zg)||?] < ];gz/f

(b) If stochastic noises are present only in f (ie., a]% > 0),
02 = 0), then by setting a. = 3/5 and ¢ = 2/5 in (5)

and (7), we obtain E[|VF (zr)||?] < ‘8%,

(c) If we have access to exact information about f and g
(i.e., O'J% = ag = 0), then by setting a = 1/3 andc =0
in (5) and (7), we obtain |V F(z)||? = ©&%

As these results show, stronger convergence results can be
proved when noise is present in fewer places in the problem.
If stochastic noise is present only in the upper-level rather
than in both levels, the rate can be improved from O(k~2/7)
to O(k~2/5). In deterministic settings (no noise), we get a
rate of O(k~2/3). This rate compares to the O(k~!) rate
that can be obtained with second-order based methods.

4.2. Main Result for Algorithm 2

When we use the momentum-assisting technique, we require
the stochastic functions to be well-behaved as well.

Assumption 6. Assumption 1 holds for f(z,y;¢) and
g(x,y; @) with probability 1.

One technical benefit of the momentum technique is that
now we no longer require the bounded-gradient assumption
w.r.t. x (Assumption 4) or the smoothness of Hessian of f
(Assumption 5) for the analysis, as we no longer make use of
the smoothness of yy. We show the following convergence
result for Algorithm 2.

Theorem 4.3. Suppose Assumptions 1-3 and 6 hold. If
step-size parameters are chosen such that \g > 21y 1/,
and

1
< < — < —
/Bk_fyk_lfil afak_lFla
Hg 5k<ﬂg6k
£ e o< M (8)

- &
max | 2B TR el 2 ) <<,
Vk—1 Hg

no=m =1, 0x/v = o(1), (8b)

with proper absolute constants c¢,c, > 0, then for any
K > 1, the iterates generated by Algorithm 2 satisfy

K-1
> EaE[|VF (zi)|°] < O:(1 Zfak)\ 2

k=0

2
A
—l—OP(JJ%) ) Z M1 + OP(O—S) ) Z Wk+1 k
k

+0s(1),
Vi Ak Tk »(1)

where Op(1) are instance-dependent constants.

The proof of Theorem 4.3 appears in Appendix C. We in-
troduce the following step-size design, consistent with (8).

Co

Gy -2
Qg e+ ko)™ Vi EE ne = (k+1)
(9a)
. 21

T L = ()

lg,ll 0 a Hg

12 2l
Ko > 2 max ( g, b1y [ 2020 )

Hg Hg

8 8

Cy = ¢ Ca = 1—a> (9¢)

tgko tgAokq

with some rate constants a, ¢ € [0,1] and a > ¢. As a corol-
lary, we can obtain faster convergence rates for Algorithm 2
than Algorithm 1.

Corollary 4.4. Suppose the conditions of Theorem 4.3 hold.
Suppose that Algorithm 2 is run with step-sizes are designed
as in (9). Let R be a random variable drawn from a uni-
form distribution over {0, ..., K — 1}. Then the following
convergence results hold after K iterations of Algorithm 2.

(a) If stochastic noises are present in both upper-level
objective [ and lower-level objective g (i.e., U? 0 >
0), then by setting a = 3/5 and ¢ = 2/5 in (9), we

obtain E[||VF(xg)|]?] < 1138’2/@

(b) If stochastic noises are present only in f (ie., 0]20 > 0),
O’; = 0), then by setting a = 1/2 and ¢ = 1/4 in (9),

we obtain E[||VF (z)|%] =< ljg%fﬁ

(c) If we have access to exact information about f and g
(i.e., U)% = og = 0), then by setting a = 1/3 andc =0
in (9), we obtain |VF(xx)||* < 1;%%

The improvements in rates are different in different stochas-
ticity regimes. For instance, the sample complexity required
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Figure 2: Outer objective (validation) loss with label corruption rate: (a) p = 0.1, (b) p = 0.3.

to achieve e-stationary point is O (¢~ 7/2) without momen-
tum and O (¢~%/2) with momentum — a factor of O(e)
improvement — when stochastic noises are present in both
levels. In contrast, when stochastic noises are only in the
upper-level objective, then the overall sample complexity
is tightened from Op (¢ ~5/2) to O (e72), an O(e~%5) im-
provement. Whether Algorithm 2 achieves the optimal sam-
ple complexity for fully first-order methods is an interesting
topic for future work.

4.3. Discussion

Because our algorithms do not access second-order deriva-
tives of g, their iteration convergence rate is slower, decreas-
ing from O(k~'/?) (e.g., (Chen et al., 2021)) to O(k—2/7)
for algorithms without momentum and from O (k~%/3) (e.g.,
(Khanduri et al., 2021)) to O(k~2/%) for algorithms with
momentum. This is not unexpected since we use less infor-
mation. Our experiments, perhaps surprisingly, do not show
a slowdown in the convergence speed. In fact, first-order
methods even outperform existing methods that use second-
order information of g, as we show in Section 5. We add
that in practice, if a bias of O(1/\?)-bias in the solution
is not critical to the overall performance, then we can set
Ak = )\ constant at all iterations and choose more aggres-
sive step-sizes, e.g, ay, =< k12~ =< k=2 as in (Chen
et al., 2021). Such a strategy yields faster convergence to a
certain biased point.

When deterministic gradient oracles are available, the au-
thors in (Ye et al., 2022) employed the so called dynamic-
barrier method (Gong et al., 2021) to decide the value
of X\x at every iteration, based on ||V g(zk, 2k+1) —
Vy9(Tk, Ye+1)||- Such an approach requires precise knowl-
edge of the latter quantity, which is not available in stochas-
tic settings. Our result shows that a simple design of

polynomial-rate growth of Ay is sufficient; an adaptive
choice is not needed for good practical performance. Fur-
ther, the convergence rate reported in (Ye et al., 2022) is
k—1/4, while our result guarantees k~2/3 convergence rate
in deterministic settings.

5. Numerical Experiment

We demonstrate the proposed algorithms on a data hyper-
cleaning task involving MNIST (Deng, 2012). We are
given a noisy training set Dygin = {(&;,¥;)}7-,; with
the label y; being randomly corrupted with probability
p < 1. We are also given a small but clean validation
set Dyar := {(24,y:)}1™,. The goal is to assign weights to
each training data point so that the model trained on the
weighted training set yields good performance on the valida-
tion set. This task can be formulated as bilevel opimization
problem, as follows:

Sy Wi, yis w*)

s.t. w* € arg mui)n S oMU, G w) + c||lw]|*

min
A

where o(-) is a sigmoid function, {(x, y;w) is a logistic
loss function with parameter w and c is a regularization
constant. We use n = 19000 training samples and m =
1000 clean validation samples with regularization parameter
c = 0.01. We do not include momentum-assisted methods
in our discussion, since we do not observe a significant
improvement over the F2SA approach of Algorithm 1 .

We demonstrate the performance of Algorithm 1 (F2S3)
and the second-order based method (SOBO) with batch
sizes 50 and 500. We note that several existing second-
order methods are in principle the same when momentum
or variance-reduction techniques are omitted (Ghadimi &
Wang, 2018; Hong et al., 2020; Chen et al., 2021), so we use
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the implementation of stocBiO (Ji et al., 2021) as a represen-
tative of the other second-order methods. As a baseline, we
also add a result from training without bilevel formulation
(Without BO), i.e., train on all samples as usual, ignoring
the label corruption. Results are shown in Figure 2.!

Although iteration complexity is worse for first-order meth-
ods than SOBO, we observe that F2SA is at least on par
with SOBO in this example. It can even give superior per-
formance when the batch size is small. We conjecture that
stochastic noises in Hessian become significantly larger than
those in gradients, degrading the performance of SOBO. In
our experiment, we also observe that the use of a truncated
Neumann approximation (Ghadimi & Wang, 2018) for esti-
mating the Hessian-inverse may induce non-negligible bias.
In contrast, our fully first-order method F2SA is much less
sensitive to small batch sizes and free of bias.

6. Conclusion

In this work, we study a fully first-order method for stochas-
tic bilevel optimization and its non-asymptotic convergence
behavior. While we focus on well-conditioned bilevel prob-
lems, there are already several recent work that considers
a more challenging case when the lower-level optimization
problem can be non-strongly-convex and non-smooth Liu
et al. (2021b;a); Arbel & Mairal (2022). The potential ben-
efit of the first-order method over existing second-order
based methods is that it can still be considered to tackle
such scenarios, whereas the formula (1) is only available for
well-conditioned lower-level problems. We believe it is an
important future direction to study a more general class of
(P) beyond strongly-convex lower-level problems with fully
first-order methods. Adding variable-dependent constraints
to the lower-level problem would also lead to an interesting
extension of fully first-order approaches.
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A. Auxiliary Lemmas

All deferred proofs in the main text and appendix are directed to Appendix D.

A.1. Additional Notation

Symbol | Meaning Less than
70| Bound of [V, /]I [V, J] -
lea Smoothness of f
lg0 Bound of ||V ¢

g1 Smoothness of g

fg Strong-convexity of g

lg2 Hessian-continuity of g .

M; | Second-order moment of V f(z,y; () 70 +07

M, Second-order moment of Vg(z,y; ¢) Ioo+o0.

I Hessian-continuity of f (with Assumption 5) .

lpa Smoothness of F'(z) Lo (lf,l + % + %)
gt

Ix0 Lipschitzness of y3 () (for all X\ > 2141 /j14) m

2
Ixa Smoothness of v} (x) (for X > 2l 1 /g with Assumption 5) | 32(lg 2 + AL lf’z)l%
g

1*70 =1+ MAXA>20 s 1 /g l)\70
Lia = maxx>ai,, /u, A1

Table 1: Meaning of Constants

To simplify the representation for the movement of variables, we often use ¢, ¢ and ¢f defined as
@, = Vaf(@r, Ye+1) + Ae(Vag(@h, Y1) — Vag(@n, 2k41)),

4. = Vol @k, yee) + M Vyg(@r, Yre),
qi,t = vyg(xk7zk7t)- (10)

The above quantities are the expected movements of zy, y,(:), z,it) respectively if there are no stochastic noises in gradient

oracles. We also summarize symbols and their meanings for instance-specific constants in Table 1.
A.2. Auxiliary Lemmas

We first state a few lemmas that will be useful in our main proofs.

Lemma A.1. F(x) = f(z,y*(z)) is lp1-smooth where
12, 20lg1l
Ip1 <lso|lp1+ ol 4 Z0gllg2 92’1 9.2 )
lug :ug
Lemma A.2. Forany x,y, A > 0, the following holds:
< 2lga/pglly =y (@) (pa + A min(2g1, 1 2lly — y* (2)])) -

Lemma A.3. Under Assumptions 1, 2 and 5, and \ > 2l 1/ 14, a function y3(x) is I 1-smooth: for any x1,x2 € X, we
have

IVyr(z1) = Vyi(z2)| < Iaallzr — 22|
where 151 < 32(lg2 + A‘llfyg)l;l/ug.

11
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Lemma A.4. For any fixed A > 2lf71/ug, at every k iteration conditioned on Fy,, we have
Elly* (ze+1) — v (@) |12 F] < €282 o (aZE[lIgE11?|Fr] + ajos + Bioy) -

Lemma A.5. At every k" iteration, conditioned on Fy, let vy, be a random vector decided before updating xy,. Then for
any ng > 0, we have

El(ve, y™ (wrr1) =y (@) | Pl < (Gawme + MELZ 1 BRE| o1 Fx]

T faklz,o I fzai
477k 4

o &
) Elllgi||*| 7] + 7 207 + Biod),

where M := max (11220 + JJ%, l;o + 03).

Lemma A.6. Under Assumptions 1-5, at every k™ jteration, conditioned on Fy, let vy, be a random vector decided before
updating xy. Then for any ni, > 0, we have

E[(vk, Y, ,, (@r41) — U, (@) [ Fi] < (6k/ Ak + Eannp + MEIS, 1 BR)E|vk[1*] Fi)

2
N Sagli N &a?

2

v £
) E[llgi]|*|Fx] + Z(aiafc + Broz) +

Skl
Apuz’

where M := max (l%o + 012@, 120+ Uﬁ).

B. Main Results for Algorithm 1

In this section, we prove our key estimate, Theorem 4.1. Our aim is to find the upper bound of Vi, — V, for the potential
function Vi, given in (4). For xj, and y; given in Algorithm 1, the following notations will be used:

Ti = |lyk — i ol? and i = ||k — w1 an

where 3 := Y3, (zk), yj, = y*(2x), and 2" = arg min, F'(x). Recall that y} and y* are given in (2) and (P), respectively.
Using the above notation, the potential function given in (4) can be rewritten as

Al
Vi = (Flax) = F() + Addga e + LT (12

for each k£ € N. In the following three subsections, we find the upper bound of Vi1 — Vy, in terms of Z;, and Jj. The
proof of Theorem 4.1 is given in Section B.4.

B.1. Estimation of F'(z11) — F(xy)

The step size o, is designed to satisfy

1

step-size rule): <
( P ) o S 2£lF,1’

13)

which is essential to obtain the negative term — % gz

role in the proof of Theorem 4.1 in Section B.4.

on the right hand side of (15). This negativity plays an important

On the other hand, we also impose

Hg
< . 14
< 5o (14)

N

(step-size rule):

The terms, [lyr11 — y3 [I* and [|z11 — y;]?

respectively.

, in the upper bound (15) will be estimated in Lemma B.3 and Lemma B.5,

12
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Proposition B.1. Under the step-size rules given in (13), and (14) and A\, > 211/ g, it holds that for each k € N

Sy " TrgoA? . .
E[F(zg41) — F(ox)|Fi] < 1 2IVF(xr)]1? + llgi]1?) + 9372]6 (2llyr+1 — vl + N1zt — will?)
2]
5 5 (afo} + Biog) + 5% 30302, (15)

where qi; is given in (10), and C) := Asolg (lf,l + 2solgr )

u g

Proof. From the smoothness of F',

l
E[F(zg41) — F(ox)|Fi] S E{VF (1), Tht1 — k) + 1;,1 [@pt1 — 2| | Fr)-

As ¢f satisfies E[xy41 — 25| Fi] = argy,

E[F (zky1) = F(ap)| Fr] = —€an(VaF (xr), gi) + ZFT’lE[IIIkH — 21| Fx]

Eay, . - lF,
= *T(HVF(M)HQ + [lgil1? = IVF (xx) — qil1?) + 21]E[|\Ik+1 — x| Fi).

Note that
Ellzxt1 — zxl*) < EZE[|gE|” + €2 (ko F + Bioy),

and thus with (13) we have

ELF (a101) — F (i)l el < ~ S22 [V E ) — 525 g
Eay 5211«“,1

+ 2 IVF (ze) — gil)* +

- 5 (ajo? + Biol).

Next, we bound ||V F(x)) — ¢F| using the triangle inequality:

gk — VF(xp)ll = llgx — VLY, (zx) + VLY, (75) — V(1) ||
<IVaf @k, yrt1) = Ve f @k Y3 )l + Ml Vag(@, Ypt1) — Vag(@r, y3 p) |l
+ Ml Veg(@r, 2k41) — Vag(@r, yi) |l + VLY, (2r) — VF(21)]].

From Lemma 3.1, the term || VL3 (zx) — VF(zx)]| is bounded by Cy/Ax. Combining with the regularity of f and g yields
the following:

lgr — VF(xp)ll < 2lga e llyrsr — va el + lgaAellzer1 — il + Cx /A (16)

Note that A\, > 211 /pg, and thus i1 < Ig 1 Ag.
Finally, from Cauchy-Schwartz inequality (a + b + ¢)? < 3(a? + b? + ¢2), we get

Sa Son o
E[F(ake1) — F(o)l A < =228 [VF@)|? - 23 gE a7
S 302\"2 1 3 1 \2 12 16 Y x |2 fQZF,l 2 2 2 2
+ 5 00N + 38anly 1 Aillzer1 — yill® + 68arly 1 A\pllywsr — Y3 kll” + 5 (o + Bioy)-
The step-size condition (14) concludes our claim. O]

13
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B.2. Descent Lemma for y; towards y} ,

In this section, the upper bounds of 7.1 and ||yx+1 — Yx ok || are provided, respectively, in Lemma B.2 and Lemma B.3. The
following rule is required to ensure that ||yx+1 — yx k+1]|? contracts:

Ok Tﬂkﬂg

(step-size rule): )\k , and 282 M 12 | B < Ty /16. (18)
The first condition holds directly from (3b), and the second condition holds since 55 < 4T1; and also
52 M
= < = Ml
which also holds by (3b) with sufficiently small c.
Lemma B.2. Under the step-size rule (18), it holds that for each k € N
EZs1|Fr] < (1+TBrpg/4) Ellyrsr — 3 xll*[ F]
QZEO ; 5klj2”0 272 2 2 2 2
+0 Elllgf|*1F] + O | 55 | + O ) - (akof + Biioy). (19)
1gT B A g

where 1y, and qi, are given in (11) and (10), respectively.

Proof. We can start from

st = 93 al® = Nyrsr = 93kl + 193 kg = 93kl = 2001 = 93 00 YA b1 — ¥A) -
® (i) (it

The upper bound of (7) is given in Lemma B.3 below. To bound (i), we invoke Lemma 3.2 to get

, . 46%
(i6) = Blllyx k41 — ya k1 Fx] < /\2>\2k P+ 12 0Bl ekt — wxl*F]
k+1 3
45k fO 272 2 x
< )\4 Jrf (O%]E[Hfbc” ]JFOékaJrﬂka)

For (7ii), recall the smoothness of y(z) in Lemma A.3, and thus Lemma A.6. By setting v = yy41 — y3 , and
Mk = Tpighe/(16§), and get

(iid) < (20k/ Ak + TBrpg/8 + 2ME*1Z 1 BRE[|yr+1 ]

8l o s 2 5 o o oy, 20k l?”O
+¢& + = ) lagll” + 5 (o + Brog) + ~5 =5
( gT/Bk> || k:” 2( kY f k g) )\z ,LL‘Z);

We sum up the (i), (i), (¢i7) to conclude

ElZp1|Fr] < (1+ 200 /N + TBipig/8 + 2ME12 1 57) Elllyerr — y3 i l°]

212 2 12 .
v ( 75 ) Il +0 ( N | TOER ) (akof + Bior). 0)
k Mg
Lastly, the step-size rule (18) yields our conclusion. 0

Next, we note that o, and Sy, are chosen to satisfy

1
(step size rules): ar < —— and G <
8ls1

21
Bl 1 2

Note that 5, < g — is given from the step-size condition (3a), and oy, < since A\, > Iy 1 / fhg-

8lg1 M\, 1/\;c < 81

14
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Lemma B.3. Under the step-size rule given in (21), it holds that for each k € N

Ellyks1 — yx4ll?[Fk] < (1 = 3Tpg /4T + T(ajos + Bioy). (22)
Proof. Since E[y,(cHl) - ,(:)|}"k] —akquk = -, VyLy, (xk,y,(:)), we have
Eflyy ™" — uS a2 = 1”3l = 200907 0" = w30) + Bl = w717
As we start from \g > Quf/ug, all Ly is (Agpg/2)-strongly convex in y, and we have
o (22150 — 35,017, 5 IVl ) < il i)

Using E(llyy " — i |17 74] < 03V, |12 + o303 + Bio2, have

t+1 t *
(@) - By — v al?1Fe]) < (1= 3ugBi/D Ny — v l? + (ado? + B2o2),

where we use o (I,1 + Arlg1) = arlya + Brlg1 < 1/4if we have (21). Repeating this T' times, we get (22). Note that

Y1 = y;iT) and y = y,io)- O

B.3. Descent Lemma for z;, towards v}

Similar to the previous section, we provide the upper bound of 71 first and then estimate ||z;11 — ;|| that appears in the
upper bound. We work with the following step-size condition:

(step-size rule): 2le,1§2ﬁ,§ < Tugvi/16, (23)

2
This condition holds since 8y < 7, and 85 < and <L (M 2,

Lemma B.4. Under the step-size rule (23), at each k" iteration, the following holds:

3T
mﬁﬂfqu+§%ﬁ-m%H—ﬁWH]

2 2[5
+0<T;7ﬂkW+o@z>m%%w@9 4
g9

Proof. We estimate each term in the following simple decomposition.

l2e+1 = i I® = lzesr — vill® + vk — vill® =2 (zre1 — Vi viss — ¥i) -
o (1) (1)

Lemma 3.2 implies that
(@) : Elllyrsr — vl 1] < B 02 (0i | Vaaul” + afo} + Bioy).
For (4it), we recall Lemma A.5 with v, = 241 — v and g, = Tpgyi/ (86, ), we have
(#4) : (21 = Yis Yrar — Ui) < (Dunepg/8 + MELZ 1 BYE[ 2141 — il ®|Fa]

o} | 280313, anz 1 €, 2 o 2 2
+< 1 + Trig e llg I +Z(O‘k0—f+5kag)‘

The above bounds and Lemma B.5 imply that

T
Emﬂvus(+ ﬁ%+mm%w@»wmﬂ—%wﬂ1

2

4l 1 1
22 2 *,0 T2 | ¢2 2 2 2 2 2
* l * l . 25
T <*’O+ Tpgvr * 2) gkl +¢ (2 + *’0) (akaf +ﬂkgg) (25)

Using (23), we conclude. O

15
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Next, v is chosen to satisfy the following step-size rules:
(step-size rule): Ly < 1/4, Tugye < 1/4, (26)

which directly comes from (3a).
Lemma B.5. If (26) holds, then for each k € N, the following holds:

Ell|ze+1 — yil2[F1] < (1 = 3Tpgvi/4) Ti + Tiio. 27)
Proof. We analyze one step iteration of the inner loop: foreacht =0,--- , 7 — 1,
t+1 * t+1 t t+1 t t
5 = gl = Nz = wil? + 1 = 201 20 = 2050 )
t
= N2 = wil” + RN 17 = 2y 20 = -

Here, 2341 = z,iT) and z, = ,z,(c ). Note that E[nE] = Vyg(xk, z,(:)) Vygk(z,(g )) where gy, (#

expectation,

()) (t)

:= g(k, 2, ’). Taking
El 28 — g1 F] < 1128 = wil? + 21V ar )% + 2202 — 29 (Var (), 28 — up).

The strong convexity and smoothness of g imply the coercivity and co-coercivity (Nesterov et al., 2018), that is,
mas  pgllz” =9l ||v () = VoWl ) < (Var(z”) = Vaulwi), 2 — v
allz” =i gr(z g™ ) < (Var(z, 9r(Wk)s 2" = Yk)-

Note that y; minimizes g (y). Use this to cancel out kang( )||2 yielding

Elll2 — 5121 F] < 120 — yil? + 4202 — (1 = lgami) (Var(2), 28 — yi)
< (1= 3ugme /D)2 — yi|? + 2o,

For this to hold, we need a step-size condition (26). We can repeat this relation for 7" times, and we get (27). O]

B.4. Proof of Theorem 4.1
Recall Vy, given in (4). In what follows, we examine

Vi1 = Vi = F(wg41) — F(or) + Meralg 1 i1 — Melg 1Tk

)\k+1lg,1j B )\klg,l jk

+ 5 k+1 9

Using the estimate of F'(xyy1) — F(z)) given in Proposition B.1 and rearranging the terms, we have

«
EVinr — Vil < 95 [VF(@)? — SSERIa P17 +

)\kTﬁkﬂg
16

fak

&gy
3C’>\)\ + 5 (aia?—i—ﬂza;)

+ g1 EA k11 Zh41 + Yrs1 — yi,kHz = ALy | Fi]

(%)
AT bty oy

3 Uill? = ATkl Fi]

l
+ 97’1 E[ 41 Tk+1 +

(1)
Estimation of (¢): From Lemma B.2, and Ag1 = Ag + 0y yield that

‘ 5T 5 .
() v (14 T3 4 2 Bl = y3alP1] - M

16
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2
Apag

,ugTﬁk:

Ok
A2

12
+0(€°% o) lai1* + O(€%1% o)Ak (aof + Bioy) + O ( ;’30>

g

(i)

Given the step-size rules (18), we obtain
. Ty "
()< M (14 T80 ) Bl — 5l — M + G

The estimation of ||y 41 — ¥} ;. ||* from Lemma B.3 yields that

, AT pg By o g
(i) < =22 T + 0(5213,0)TgT||CIkH2 + (id),
T a 12 1)
= TPl 7 4 (€02 )X gt 2 + O(T + €12 ) A(0do? + fRo%) + O ). =
4 MQT Mg )‘k

Here, we use (1 4+ a/2)(1 — 3a/4) <1 —a/4 fora > 0.

Estimation of (i7): Lemma B.4 yields that

B 5 3T AT )
() < 20 (1 5o 200y DO Y gy g P15 - A

A o?
+O(E212 ) R g2 |2 4+ O(E2 M1 12 ) (0F0? + BRo2) .
T/-Lg’Yk

(iv)

With S, < vk, and thus 0, /A\r, < Tpgvk/32, we have that
. T N .
(i) < v (1 T4 ) Bllanas — il = M+ ()

Similar to the argument for (¢) above, Lemma B.5 yields

8]
T + 0<52zio>’“—5’“||qzn2 +O(EM2 ) (0202 + B202) + O(A) T2,

)\ T/L )4
(ZZ) < k g k
- l [ ,y

4

Plug the bound for (¢) and (i), after rearranging terms, we get

Eay, Eay, o &g
SIVE@IP + 557 - 303N + 25 (afo} + Bioy)

Eay flg,1lf 0Bk flg,1lf . )
-~ |1-0|—7— | -0| —+~ Ellle®2|F
4 ( ( pgT Vi 11T [l 1171 F%]

Aelg T Melg 1T
Mk g,14 Hgﬂkzk Ak g,14 HgTVk A

lgal3o\ 6
O 4 20 tautate} + (4t + 0 2202 ) B
g k

E[Vit1 — Vi|Fe] < -

A crucial step here is to ensure that terms driven by E[||¢¥ ||?] is negative. To ensure this, we require

(step-size rules): &1y 112 (B < c1pug Tk,
ElgalZo < capgT,

17
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for some absolute constants cq, ca > 0, which holds by 8, <~ and (3b) with sufficiently small ¢ > 0. Once this holds,
we can conclude that

AT g Vi . AT pg By
(zp)|I? — ==z — yil1> — !

]E[Vk.H _Vk‘-/—"k] < —7||VF 1 1

lye — v xll?

l 71[2 )
coteey +o (") 8 ot oo + i)
g

+O(T + &12,) - lg1 M(aio? + (BR +72)02).

We can sum over k = 0 to K — 1, and leaving only dominating terms, since y_, 8, /A% = O(1) (because &, /A, = O(1/k)
and Ay, = poly(k)), we have the theorem.

B.S. Proof of Corollary 4.2

We first show that with the step-size design in theorem, A\ = i /(2 ) for all k. To check this, by design, A\g = 70/ (2c0)
and by mathematical induction,

T/’Lq 2 _ T C’Y —2c+a
16 M = 335, (F+ ko) ’
and
- (a—c)ey -1-
k+k 1 k+ky) )< —L(k+k cta,
5o (k4 ko 1) = (ko)) < 0 )

Aslong as —2c+a > —1 — ¢+ a, or equivalently, ¢ < 1 and T' > 32, it always holds that

5 (kg ko + 1) = LR (28)

C
Akt1 = 5 5
Cq A1

Now applying the step-size designs, we obtain the following:

E[|VE(zx)?] 1
1) - - -
];) k+k0 OP( ) g (k+k0)3a—20 +OP Uf ; k+k0 a+c
1
+Op(0’§) ZW—'_OP(l) (29)
k

We decide the rates a, ¢ € [0, 1] will be decided differently for different stochasticity. Let b = a — c. Note that with the step

size deisng, we have A\, = v /(20) = kQ;\BC (k + ko)?~¢ = O(k®). Let R be a random variable uniformly distributed over
0

{0,1, ..., K'}. Note that the left hand side is larger than

K
E+ho)e ZEUVE@o)?] = K= - E[|VF (@g)|?)-

k=1

We consider three regimes:

Stochasticity in both upper-level and lower-level obJectlves o? 2 a > 0. In this case, weseta = 5/7,¢=4/7, and
thus A, = k'/7. The dominating term is 02 - >, (v2Ax) = >, O(k™') = O(log K) and C% - 3_, (ay A, *) = O(log K).
From the left-hand side, we have K1~ = K2/7 Therefore,

IV F ()| =0

log K
K2/7

Stochasticity only in the upper-level: o2 >0, a = 0. Inthis case, we can take a = 3/5,¢ = 2/5. When ag =0, the
dominating term is o¢ - Y, (afA\g) = >, O(k™ ) O(log K) and O(C3) - 3" p(ax).?) = 32, O(k™1) = O(log K).

Since K1~ = O(K?/?), yielding
log K
E[|VF(zg)|I’] = O <K2/5> :

18
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Deterministic case: o7 = 0,02 = 0. Here, we can take a = 1/3, ¢ = 0 with a dominating term Y, (ax A, ?) = O(log K).
Since there is no stochasticity in the algorithm, we have

vl =0 (355 ).

K2/3

C. Main Results for Algorithm 2

We start with a few definitions and additional auxiliary lemmas. We first define the momentum-assisted moving direction of
variables. They can be recursively defined as

Elzc = Vyg(@k, 213 ¢]§) + (1 —n) (ﬁ’;ﬂ — Vy9(zr_1, 2K-1; gbf)) ,
Wy = Vil (ki3 ) + (1= me) (71’;;1 — Vy f(@h1, Y615 C;f)) :

hE, = Vyg(e, e of) + (1 — ) (ﬁ’;y_l — Vyg(@r—1,Yr—1; ¢5’§)) ,
for the inner variable updates, and
Wy o= Vo f(r, yrr1s CF) + (1 — i) (ﬁ’}gl — Vo f (Tr—1, Ys; Cf)) :
hE vy = Vg (@ yrr1; 65) + (1 — nk) (B];;yl — Vag(Tr—1, Yk; ¢§)) ;
hE = Vag(@n, zii1; 05) + (1 — ) (iL];;zl — Vag(r-1, 2k; ¢IZ)> :

for the outer variable update with some proper choice of 7. We also define stochastic error terms incurred by random
sampling:

&l = (hf, + Mehb,) — af,
& = ht —qf, (30)

where ¢}, ¢, ¢f are defined in (10) (we dropped ¢ from subscript since here we consider 7' = 1).

C.1. Additional Auxiliary Lemmas

The following lemmas are analogous of Lemma A .4.
Lemma C.1. At every k iteration conditioned on Fy,, we have
Ellly* (wr+1) — " () |71 F5] < 2612 ok (Elllgi 1| 7] + Elllex]]]) -
Lemma C.2. At every k iteration conditioned on Fy,, we have
272

803150

Armg

Ellya, . @r+1) — 93, (@) 1P| 7] < 4678 poi (Elllgi ]| 7] + Ellex]%]) +

C.2. Descent Lemma for Noise Variances

A major change in the proof is that now we also track the decrease in stochastic error terms. Specifically, we show the
following lemmas.

Lemma C.3.

Efll€i 41 [1”) < (1 = mes1)*(1 + 815 170 E[ R 117] + 2034105
+ 85 1 (1= nerr)® (€ REll gk ]°] + 2R Ellg]°] + vRElllai]1*])
Eflef 117 < (1= mes1)*(1+ 9615 1 BOE[ L] + 20k 41 (0F + AZya07) + 126707
+9615 1 (1 — mi+1)* AR (€2 Mlai 1 + €7l1ek 1 + Nlak|1®)-
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Lemma CA4.
Eflleia 7] < (1= mra1)*(1 + 24019, £ BOE[IER %] + 61511 (0F + Niyr0g) + 80070
+ 24005 1 (1 — mge1) A% (0 llg 1 + ok gk 1” + 1ex)®) + e Cllaill + [1€21%) -
Equipped with these lemmas, we can now proceed as previously in the main proof for Algorithm 1.

C.3. Descent Lemma for z;, towards v

Lemma C.5. Ifyypy < 1/8, then
Elllzk+1 = Y IP1FR] < (1 + opg /DE[|2rr1 — yill*|Fx]

Qailio )2 Jo
+O | —— ) - (Elllg; I°[Fx] + E[l[€]"|Fx])-
Vklg

Proof. As before, we can decompose || zx41 — yi 44| as

21 — Yesr I = l2esr — vill® + 1Wes1 — Vill® — 2(zk41 — Vi Yigr — Ui

snaﬂ—ym2+(r+ )mai—ﬁW+4wwﬂ%H—ym%

1
Yk thg

where we used a general inequality |(a, b)| < c||al|? + L [|b]|>. We can apply Lemma C.1 for ||y}, , — y;||?, yielding the
lemma. O

Lemma C.6. If v, < 1/(16l,1), then

* * Yk z Vi ~
Elllzks1 = vill®1Fx) < (1= vapg/2)Ell|ze — yil*|F) — iHQkH2 +0 <M> E[|1€511%| F])-
9, g

Proof. Note that
2 = will? = llze = v + RNREIP = 2 (%, 21— wi)
< llze =yl + 292 (g1 + 1€701%) — 27 (g 2 — wie) — 27 (& 2 — wi)-

Since gf = V,g(xk, z1) by definition, by coercivity and co-coercivity of strongly-convex functions, we have
* |12 1 z||2 z *
#ollzn — il 7—llakl” ) < (ak> 26 = vk,
g,

and thus, given v, < 1/(16l,,1), we have

T

I, lgill* + 2R ELIER 171 Fx] — 27 (€5, 21 — wi)-
9,

Elllzie1 — yill[Fx) < (1 = 3vkpg/DE[l 2 — v ll*[F] —

Finally, we can use general inequality |(a, b)| < c[la]|? + 7= |b]|* to get

v .
a2 2
1 e — wil +79 €zl

2 (67, 2 — yp) < MM

Plugging this back, with 77 < Z—’“, we get the lemma. O
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C.4. Descent Lemma for y;, towards y3

Lemma C.7. If By < 1/8, then

Elllyrr1 — U ora I21Fr] < (1 + Brptg/DE[|[yrs1 — vi 1l 1F%]
520% #,0 12 ~2112 51%@‘,0
+ 0 “(Elllgi 171 F%] + Elllex]I7|Fx]) + O .

Bklj'g /\%Hﬁ

Proof. As before, we can decompose [[yr11 — y3 1 [|* as

lyrs1 — y;,k+1||2 = lyr+1 — y§k||2 + ||ylt+1 - y;,k”2 = 2(Yrt1 — y:k\,kvy;,kJrl - y;k>

)

* 1 * *
< llykse1r — vrill® + (1 + SBeste ) 10 1 — Ua il + 4Brigllye+1
g

where we used a general inequality |(a,b)| < cllal|* + £ [|b]|%. We can apply Lemma C.2 for ||y} .1 — U3 % since
Britg < 1/16, we get the lemma. O

Lemma C.8. If 5, < 1/(16l,,1), then

Elllyrsr = ya xll?1Fe] < (1= Brpg/2)Elllye — y3 lI71F5] —

~y (2
s i+ o (L2 ) ez

Proof. Note that

lyrsr = w36 l” =l — w3 all* + 205 lgZ1* + 1E211%) — 20 (afs yr — 3 ) — 200 (€ v — Y34

where we used yr41 — yr = qj + €,. Since gf = V, L, by definition, again by coercivity and co-coercivity of
strongly-convex Ly, (¢, -), we have

1

T NAY2 < Yy o
) < = i),

Agpt *
o (242~ 53,
and thus, given oy A\, < 1/(1604,1) and Iy 1 < Aglg 1, we have

. ay,
Elllyr+1 — y3xlI*1Fk] < (1= 3Brpg /DBl 26 — vl *|Fi] — Nl il
9,1

+ 207 K[|} 11| Fr] — 20k E[(E}, yr — Y5 1) | Fr]-

Finally, we can use general inequality |(a, b)| < c[la|? + 75 [|b]|* to get

5#9

9 4oy
20 (€Y, g — Ui ) < lye — vl + 3 B
kg

Plugging this back, with 1, < 1, we get the lemma. O

C.5. Descent Lemma for F'(xy,)

Lemma C.9. If faylp < 1, then

fOék

E[F(zg41) = F(ex)|Fi] < —%IIVF(»%W Elllqi 1| Fx] + 26 - E[|1 €511 Fi]

3£ak

T

(405 A% s = w3 el + 85 1 ARl zrn — will® + CR/A%) -
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Proof. Using the smoothness of F,

F(zp41) — F(zr) < (VF(z), Tpt1 — o) — zi*.

Note that 51 — @, = ax(qf + €7), and thus

o
F(ap) = Flax) € —€ar(VaF(0), qf) — Ear({VaF (0x), &) + 5[z — 2
ga ~T x ~.
< =5 UVF @I + 1k = IVE @) = g 1°) = bor{VaF(ar). &) + Eaflra(lafl)® + 1E1°).

Using |(a,b)| < c|lal|* + 2= |b]|?, we have
(6%
~€an(VE (), &) < ST P () + ol
Finally, recall (16). Using (a + b + ¢)? < 3(a® + b + 02), we have

IVE () = g l? < 3(415 1 AR lym1 — w3 all® + 15 0 AR 2k — will® + CX/A).

Combining all, with {ailp 1 < 1, we get the lemma.

C.6. Decrease in Potential Function

Define the potential function V, as the following:

* l ,1)‘k *
Vi o= F(zr) + lgaMellye — visl® + 25— lze — vil® +

ex||? er|® .
2 AP L I ),

Cnl;f)/k—l ( /\k /\k

with some absolute constant ¢,, > 0. We bound the difference in potential function:

e} oy 3C5
IV F @I - SEllaPim + S S8

b *
e (14 35) I = sasal? + 66l

E[Vis1 — Vil Fi] < —5%

e - y;,kn?)

(4)
l )\k 616 * * *
#2314 25 o = i+ 3€auhudgalonn = 1P = s~ i)

(i)

1 (El& P Efle)RIF )
(P BIEALY oo 70

el T Ak Vh—1 Ak
(443)
1 Ellley, (121 Fe]  E[IeY)?|Fx] n Ak (E[||éi+1|2|fk] B E[||éi2|]:k]>
Cnl?;,l Vi Ak Ve—1Ak cnl;l Yk Ve—1

(iv) (v)

Using Lemmas C.7, C.8, C.5 and C.6, given that §5/Ar < 140k/8, (4) and (4¢) are bounded by

. g Bk
(i) < —=%— lye — v 4l —

200 12 4 (15 0ilfo 0k ppe
+0 | —==Elllgi|* + IlI*| 7] + 5 + Elllex "7 | »

)\k g,1 51@#9 )\k;:u‘g Bkﬂg

2. .272
.. Mgk k il 0 © ~ Yk ~
(i) < — g 2k — yill” — o —lgi* + 0 (Wt* Elllgill” + lleg|1?|Fx] + ™ E[IlekIFIH]) ;

g g
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We can use Lemma C.4 to bound (477), (¢v) and (v). Using the step-size condition given in (8b), we have

Ye—1—7
(1 — M) o L k’Yk—l s < —Mk+1

Yk Vr—1 Yk T 2%

Note that by the same step-size condition, 741 > O(I2 17;), and thus,

2 2 2
Nk+1 112 oy Mt 2 (Wk+1)‘k oy >
111) < — E[|lei||“| Fx] + O(o%) - + O(o?%) - +
(i) < ~ L B[P 7] + (o) - 2L + O(a) - (2 4 O

+0(15 1) - (arllgil® + arllggl* + 1E11*) + A llgil* + 1E11%)) -

Similarly, we can use Lemma C.3 and show that

2 2 2

. Nk+1 ~y (12 2y Mk41 2 (nk+1)‘k 95 >
w) < ———EFE[||e +O(c%) - + O(c?) - +
(iv) <~ B{IELIP1F] +0(F) - SEL +0(o3) - (T 4

+0(g 1)ou - (g l” + 2llexl® + g 11?)

2 2 2 2 2
Nk+1 ~2 112 2y Me+1 2 (’f Qa2 & Y 122 2 2)
v) < — E[|le Fil +O0(c2)  ——= 4+ O(l . + 2 Ele + .
(0) < ~BLEIEIFAL + 003) - 2+ 0@ ) - (2B Nagl? + S E el + el
Plugging inequalities for (i) — (v) back and arranging terms, we get
« « 3C? €ay, . lg1 Ak, ..
E[Viess — VilF < ~ 2519 P(@)]2 - S E]lgg 1217 + 2358 _ g, 000) + 212 (i)
1 1 2 X2 2
1 ~z 12 1 . Ak
+ —5—(iii) + 28 E[|| €5 ||| Fr] + —5—(iv) + —5—(v)
Cnlga Cnlyg Cnly
§ag Aielg 119 B x Aklg 1 1g Vi .
< 2BV ()2 = ZE22E0E gy — gk glf? = SRR — g2
4 4 4
Sag _
— SR (1 O(Elgal2 o/ g) — O(Ecs ™))
_ Vi Ak _
— axE[llgg |21 7] (1 = O(c;, 1)) — ?E[quIFIﬂ] (1-0(c,h)
2 121,162
+ 0 Cagan 1,0 91 Tk 4+ noise variance terms,
)\2 3)\3
k Hyg Ak

where noise variance terms are

noise terms =

_ ElEIP1 7] ( o (l516% k) — (enfaul] 1))
9, 9,

Cfllg,l 2’yk/\k
E[[|€;11%|Fk] ( k41 5 5 >
— — Oz ))ak — O(cyl !
ngCn 2’Yk-/\k ( g,l) k ( n g,l/y’g) k
MBI EEIP1F] (41 2 3
— - 0(l — O(cpl
l§,1cn 2,}% ( g,l)’yk (07] g,l/Mg)Wk

1 Mt 2 <771%+1>‘k o7 ))
b ——(0@?)- Tl L o(p2) . (TeraZh .
enl? ) ( @9 ALYk (@) Vi Vi Ak

For the all squared terms, with careful design of step-sizes, we can make the coefficient negative. Specifically, we need
€lg,1lf,o/ug <Leg>1
)

to negate ¢, ’ terms, and

1>np4 > cn'yli(lg,l/:ug)v
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to suppress noise variance terms, as required in our step-size rules (8). Then, we can simplify the bound for the potential
function difference:

o o 52
MVM1—VHEJS—EJWVF@UW+%XﬂgyA£+OU%QMW$ €

1 771%+1 2 (771%+1>‘k o7 ))
b (0@2) ML | o2y Dotk | %k )
pl( (o) L 1 ooy (er g L

Proof of Theorem 4.3 Summing the above over all K = 0 to K — 1, using 0x/ A\, = O(1/k) and 1/ Ak, 6k /vk = o(1), we
obtain Theorem 4.3.

C.7. Proof of Corollary 4.4

Using the step-sizes specified in (9), since A\, = 71 /205 =< k¢, 6 < k2 ¢!, Aslongasa —c — 1 < —c, which is
satisfied if a < 1, we have 0y, /v, = o(1). We can also check that

Ok 1 MgBr  (k+ko)™C
L <(k+ky+ 1)t 97 —
)\k; = ( + 0 + ) < 8 k(l)—(! ?
as long as and ¢ < 1. Given the above, we have
K—1
E[|VF(x)[?] 1
< O05(1) - ————— + Op(
ZO k+k0 — P( ) g (k+k0)3a—20 +0e Uf ; k+k0 —2c—a
1

Again, we consider three regimes:

Stochasticity in both upper-level and lower-level objectives: JJ%, 03 > 0. In this case, we seta = 3/5,¢ = 2/5, and
thus A, = k*/°, which yields

log K

E[IVF(@r)l?) < 57

Stochasticity only in the upper-level: o2 7 >0, o2 = 0. In this case, we can take a = 2/4, ¢ = 1/4, and thus A, < kY4,
which yields

log K

K2/4°

E[|VF (zr)|”] =

Deterministic case: O'J% =0, 0'3 = 0. Here, we can take a = 1/3, ¢ = 0 and since there is no stochasticity in the algorithm,
we have

log K

K?2/3°

IVF(zx)|* =

D. Deferred Proofs for Lemmas
D.1. Proofs for Main Lemmas
D.1.1. PROOF OF LEMMA 3.1

Proof. Let y%(x) := argmin, £ (x,y). Note that V, L (z, y5(x)) = 0, and thus

VL3 (@) = VoLa(z,53(2)) + Vaya (2) T VyLa(@, 93 () = VaLa(z,yi(2).
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To compare this to VF'(x), we can invoke Lemma A.2 which gives

IVE(z) = VoLa(z,yi(2))]|
< 2(g1/pg)llya (@) =y (@) (L1 + A - min2lg 1, 1 2[ly™ (2) = yx(@)]) -

2lf70
ALlg

From Lemma 3.2, we use ||y} (z) — y*(z)|| < , and get

1 4ol 2l ¢ ol
IVF (@) - Valatepi@)] < 3 - 20001 1y, 4 2ithaz ),

2
g Hg

D.1.2. PROOF OF LEMMA 3.2

Proof. Note that £y (x,y) is at least ’\‘—2‘9 strongly-convex in i once A > 27 1 u,. To see this,

Lx(z,y) = fx,y) + Ag(z,9) — g7(2)),
which is at least — 1 + Apg-strongly convex in y. If A > 215 1 /14, this implies at least Ay, /2 strong-convexity of £ (x, )
iny.

By the optimality condition at y (w1) with 21, A1, we have

Vyf(x,yy, (1)) + MVyg(x, 93, (21)) =0,

which also implies that [[g(z1,y3, (1))]| < lf,0/A1. Observe that

Vyf(z2,95, (21)) + A2Vyg(z2, 93, (21))
= (Vyf(z2,93, (21)) = Vyf (21,93, (21))) + Vy [ (21,93, (21))
+ X2(Vyg(@2, 43, (21)) — Vyg(21, 43, (21))) + A2Vyg(21, 43, (21))
= (Vyf(z2, 93, (x1)) = Vy (21,93, (1)) + Aa(Vyg(z2, 93, (21)) — Vyg(z1, 93, (21)))
+ (A2 = A1) Vyg(21, 93, (1)),

where in the last equality, we applied the optimality condition for y3, (x1). Then applying the Lipschitzness of V,, f and
Vyg in z, we have

lto
A1

[V f (22,93, (71)) + A2Vyg(z2, y3, (x))| < lpaller — 22| +lgarellze — 1] + (A2 — A1)

Since Ly, (x2,y) is Aaptg/2-strongly convex in y, from the coercivity property of strongly-convex functions, along with the
optimality condition with y (z2), we have

Ao — A1
A1

)\ng
2

93, (1) =y, (@) | < IV Lxy (22,93, (@) < (L1 + Aalg ) l2n — 2o + l.0-

Dividing both sides by (A2p4/2) concludes the first part of the proof. Note that y* () = limy_ o y3 (). Thus, for any =
and finite A > 2171/ g,

210
Mg

y3(z) —y"(x)] <
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D.2. Proofs for Auxiliary Lemmas

D.2.1. PROOF OF LEMMA A.1

Proof. The proof can be also found in Lemma 2.2 in (Ghadimi & Wang, 2018). We provide the proof for the completeness.

Recall that VF'(x) is given by
VF(z) =V f(x,y"(2)) = Va,9(x,y"(2))Vy,9(x,y" ()" V, (2,57 (2)).
Using the smoothness of functions and Hessian-continuity of g in assumptions, for any x1,x2 € X, we get

l l
V() = TFGa)l < (1 + Loya + 240 ) (fon =2l + 1y (o) = v*))
g g

2

+lgalrollViyg(@n,y™ (21)) 7" = Vi g(@, 5" (22)) 71|

1 — Tal|.

l l 1,11
< (lm + L0+ 9,1) Lollzy — 2l + 2520 51 0
,LLg /u’g Mg

Thus,

fig 2

2

Liolga+ 121 lrolgal
lp,l < l*,O (lf,lJr £,0%9,2 9,1 + f,0tg,1 g,2>

Hg /‘Z
where in the last inequality we used [y 1/pg > 1.

D.2.2. PROOF OF LEMMA A.2

We use a short-hand y* = y*(z).

vzﬁ)\(l‘ay) = fo(xvy) + )\(ng(l',y) - vzg(xvy*))

Check that
VF(I') - vzﬁ)\(x7y) = me($>y*) - vxf(x7y)
~V3,9(@ v )V, ") TV fa,y) = M(Veg(@,y) — Veg(a,y")-
We can rearrange terms for (V,g(z,y) — Vzg(z,y*)) as the following:

Vaeg(2,y) — Vag(z,y*) = Vag(2,y) — Vaeg(@,y") — Vayg(z,y*) T (y — y7)

€1y

(32)

Note that from the optimality condition for y*, V,g(x,y*) = 0 and from V, f(z,y) + AVyg(z,y) = V,L(x,y), we can

express y — y* as

Y=y = —Vyg(@.y) " (Vyg(@.y) — Vyg(2,5") = Vyyg(z.y")(y —y")
TV y) " (VL y) = Ty f(29)
Plugging (32) and (33) back to (31), we have

+

VF(x) = Vo La(z,y) = (Vaf (2,9") = Vaf(2,y)) = Va,9(2,y) Ve, g9(x,y") " (Vy f(2,5%) = Vy f(2,9))

V2,99V, g9(z,y*) "V L(x,y)
— MVaeg(z,y) = Vag(z,y*) = Va,g(z,y")  (y = y*))
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+ A2, 9z, y )V g(x,y") " (Vyg(z,y) — Vyg(z,y*) — Vi, g(x,y") (Y — y*)).
By the smootheness of Vg from Assumption 1, we have
IVy9(z,y) = Vyg(z,y*) = Vi,g9(,y")y =y < lgzlly — vl
When ||y — y*|| is too large, the smoothness of g can be more useful:
IVyg(z,y) = Vyg(z,y*) = Vi, 9"y =y < 2gally -y |-
Similarly, we have

IVag(z,y) — Vag(@,y*) — V2,9(z,y") " (y — y*)|| < min (Ig2lly — y* |1 2.1 lly — v*]) -

On the other hand, by smootheness of f, we also have
IVaf(z,y") = Vaf (@9l <lpally =7l IVyf (@ 97) = Vy fl, )l < lpally =yl
We can conclude that
IVF(x) = Vala(z,y) + Va,9(z,y" ) Vy,9(z,y") 'V, L(z,y)|
S+ lga/plly =yl + A+ g1/ pe)lly — vl minly 2y — y™|], 205,1)-
We know that [, 1 /11, > 1 and thus, we have

IVF(2) = Vola(z,y) + Va,9(x, 4" ) Va,g(x,y*) ' VyLz,y)|
<2(lg1/pg)lly = y*|| (g1 + A -min(2l1,lg2lly — ¥ 1),

yielding the lemma.
D.2.3. PROOF OF LEMMA A.3
Proof. Lipschitzness of y3(x) is immediate from Lemma 3.2. By the optimality condition for Vy3(z), we have
VyLa(z,yx(x)) = Vy f(z, 93 (2)) + AVyg(z, y3(x)) = 0.
Taking derivative with respect to =, we get
(Vi f (293 (2) + AV, g(2, 43 (2) VA (2) = —(V3, f (2,95 (2)) + AV3,9(2, 43 (2)))-
As X > 2ly1 /14, the left-hand side is positive definite with mininum eigenvalue larger than A4 /2, and we have

Vi) = = (V3030 + Thoai@) (520 + Vaei) )

To get the smoothness result, we compare this at x1 and x5, yielding

A * * * * *
%HWA(M) = Via(@2)ll < (2 + Mg2) (o1 = 22| + llya(z1) — yx(@2)|) max [Vyx(2)]]

+ (L2 + Ng2)([[21 — 22l + [[yX (z1) — yX(z2)])
< (g2 + Mg2) (1 + 1x0)%lz1 — 22|

Arranging this, we get

* * l 12
193 6) = Vitenl <32 (U2 4 y2) 2o -,
g
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D.2.4. PROOF OF LEMMA A.4
Proof. This is immediate from Lipschitz continuity in Lemma 3.2 with sending Ay = A5 to infinity.

Elly* (zrr1) =y (@) IP1Fe] < & oEllorsr — @l*| 7]
< 1208 (RE[|gi|I*|Fi] + aiof + Biog).

D.2.5. PROOF OF LEMMA A.5

Proof. We can use the smoothness property of y*(z) as in (Chen et al., 2021), which is crucial to control the noise variance
induced from updating x. We can start with the following:

(Vks Y1 — Yn) = (U, VY (2r) (Th11 — T1))
+ (U, Y (1) — ¥ (2r) = VY (2r) (Th1 — x1))-

On the first term, taking expectation and using (a, b) < c[la||? + 5|6/,

E[(vg, VY™ (@r) (k1 — z1)) | Fk] = —EaE[(vk, Vy* (1) qi ) | Fi]

o * €T
< gouncEllo PIF] + By ) 1)

faklio

< awmE[|Jvk]|*|Fe] + E{llgi 71 7],

where we used the Lipschitz continuity of y*(x). For the second term, using smoothness of y* (),

El{vr, v" (wr+1) — y*(@8) — VY (21) (@h41 — 1)) [ Fi]

l* 1
< PRl ol — 21
l*,l

1
“=FE [ ( Lealloel? + 77— ) - l@rg1 — zll?| Fr
4 l*,l

IN

2
Loy - E [llon — a1 2177 174

S 2 2 2 2 2
+ Z (O(k:E[Hq/f” ] + akaf + /Bkag) 5
where Fj, is a sigma-algebra generated by stochastic noises up to k" iteration and vy,. Note that

E [llzr — wrl*| 7] < €20RE [[lg8]1*1Fi] + €% (akoF + Biog),

and from boundedness of V. f and Vg in Assumption 4, we have o ||gi || < arlyo + 28kly,0. With My = 13, + o7,
M, = l;,o + 03, and M = max(My, M), we get

E [|lzr — zpp |1 F] < 26%(Mpa + 2M,87) < AMELE | 3,

which yields
El{ox, y" (wr+1) =y (2) = Vy™ (@) (@rs1 = 21)) | Fi]
< M€ BB unlPIFi) + & (oZEIIGE IV + oo + Bo?)
Combining all, we obtain the desired result. O
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D.2.6. PROOF OF LEMMA A.6
Proof. We can start with the following decomposition:
<Uk7y§k+1<xk+1) - yf\k (z)) = (Uk,y§k+1($k+1) - yik(fﬂkﬂ))

+ (vr, VY3, (21) (Trp1 — 1))
+ <Ukayf\k(l‘k) - ?Jf\k (zx) — Vyf\k (xk)(xk-i-l - xk)>

For the second and third terms, we can apply the smoothness of y () similarly in the proof in D.2.5.

On the first term, taking expectation and using (a, b) < c[la||? + 5|6/,

* * 1 * *
B[k, Y3, 1, (@41) = Y3, (@r1)) | Fi] < cE[l|vg]1*] + 1o EllyXe,, (@) = Y, (@) [17]

13 B
A AR 1

< cE[]lox]|*] +

)

2
g
where we applied Lemma 3.2. Take ¢ = f\—i, getting

.00k
AL

. . Ok
El{vk, .., (@rt1) — U5, (@41)) [ Fi] < )\*kE[Hvk 1] +
Adding this with bounds on other two terms, we get the lemma.

D.3. Proofs for Auxiliary Lemmas with Momentum
D.3.1. PROOF OF LEMMA C.1
Due to Lipschitz continuity of y*(z), we have
Ellly* (zx+1) — y* (@) %] < &2 oElllwrrs — ll’]
< €20i L3 oElllak + e l%] < 2620l o (Eflla11*] + EflI&F]1°]).
D.3.2. PROOF OF LEMMA C.2

Using Lemma 3.2, we have

B3, ., @r41) = 3, @0 < 30— + 28 oBlllowss — o))
k7 k+1
2 2792 (|2 S (|2 861%
< 4620312 o EllgE %) + ENEEI®) + S5
k

D.3.3. PROOF OF LEMMA C.3

We can start with unfolding the expression for E[[|é7, ,|1?].
Ellleg 117 = B[RS — gt )1%]
= E[IVyg(@r1s 200 0571 + (L= i) (BE = Vyg(@r, 215 05) = a4 [17]
= E[|(1 = mi+1)e; + Vyg(@rs, 2ne15 65H)
+ (1= 1) (g — Vyg(an, 213 65)) = g all”]
= (1= e *EIEEI]) + Ellne (Vyg (@i, 2015 9571 = a741)
+ (1= 1) (Vyg(@rr, 2r1s 0571) = Vyg(an, 215 85 + ai — gk 1)1

In the last equality, we used
E[E[(&;, Vyg(@hr1, 21413 051) = g 1) | Fien]] = 0,
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E[E[(&, Vyg(r, 23 65 7) = ¢7) | Frsa]] = 0.

Also note that
El|Vyg(zre1, 2e415 05TY) — gia1P] < 02,
from the variance boundedness (Assumption 3). We also observe that
E[||Vyg(@psr, zie15 05 TH) = Vyg(an, 215 S5 < 053 lzwsr — 2nl® + lzern — 2?)
= U521 (Eaillai + &ill* +illai + exl®),
due to Assumption 6. The same inequality holds for g7, , — ¢;:
Elllgisy — aill*) < 5 1 (Eakllak + &kl + villai + &)
Now we plug these inequalities and using ||a + b|> < 2(||a||* + ||b]|*) multiple times, we have
Efll€i 41 [I”) < (1 = mms1)*(1 + 815 B[R] + 2034105
+ 8051 (1 = mk41)? (ERE[lgR]°] + €2 eRE[€X]1%] + vE[ll4;]]) -

Similarly, we can repeat similar steps for ¢}, 41 To simplify the notation, with slight abuse in notation, we let @, ¢) =
Vo f @k, yr; €) + M Vyg(@r, yr; ¢). Note that g = E[g} (¢, ¢)]. Then we can get a similar bound for E[||é}, , [|?]:

EH|ék+1”2] <(1- nk+1)2E[||ékH2] + 2nﬁ+1E[IIqZ+1(<§“, ¢§+1) - QZ+1||2]
+2(1 = 1)’ Bl (g (G 0 ™) — gl (¢ o) + () — i) P

Using the variance bound similarly, we have

E[IIQZH(C;““, éf’ZH) - (I/'Z+1||2] < CTJ% + )‘i+102~
Then, we unfold the last term such that
Elll(g8 1 (¢ oy ™) = af (G oy ™) + (g — a4y )]

=E[(Vyf (@rr1, 10T = Vi f (@ yes ) + Vo f (@r,uk) — Vi f (Trs1, Yrt1))
+ Me(Vyg (@t Yia 1505 ) = Vyg(@n, v 65 T1) + Vyg(@n, yk) — Vyg(@a1, Yrs1))
+ 06 (Vyg(@re1 yes 1508 T) = Vyg(@rsr, Ynr1) + Vg (@i, k) — Vyg(@e, yes o5 )17

<1201 + 15 28 (lekrn — 2ll” + llywen — wel?) + 12670,

< 24(17 0, + 15 1B gk 12 + €211k 1 + Nl 1 + 1eg1?) + 1203075

‘We note that we set \j, > 2lf,1/ug, and thus I7 1 < Arlg 1. In total, we get
Efllef 117 < (1= miegn)®(1+ 9615 1 BRE[IEF]1%] + 2011 (0F + Aipr0) + 24070,
+96(1 — mry1)*12 1 SR (EE I + E21eE ) + [l 1)
D.3.4. PROOF OF LEMMA C.4

%, letus define ¢§ (¢, ¢) := Va f(k, Yrt1; Q) + M(Vag (Ths Y415 8) = Vg (Th, 28415 0))-
We note that ¥, ¢¥ are sampled after y4 1, 21,41 is updated but before x}, is updated. Hence,

E[E[<éi7q/f+l (C£+17 ¢§+1) - qg+1>|]:7/€+1]] = 07
E[E[(eF, af (G5 &5 ™) = ai) | Fra]] = 0.

Thus, following similar procedure, we have

Ellei 1 l1%] = Ellgip (G o5 ™) + (1 —meaa) (i + & — b (G 657) — i)

Similarly to the case for [|&}, |
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< (1= )l + 20k Elllak 1 (G 657 — @ity l?]
+2(1 = M) Bl (g2 (G 057 — af (G 00™) + (6 — ai ) I1P):

Note that

Ellge 1 (G o5 ™) — iy 1P
= E[||(wa(xk+1, Yk+2; Cf“) - V:vf(xk-&-ly Yrk+2))

+ Mo (Vag(@rrt, yrr2: 05 = Vag(@rsr, ynr2)) + Me(Vaog(@ra1s 2et2; 05 T) — Vag(@rs1, 2142)) ]

< 3(0? + )\%03).
Finally, we have

E[[(qf11 (G5 o™ — gi (G, o5 ™) + (af — g |17]
= El(Vaf (@hs1, Ynr2; ) = Ve f @, Urr1: G + Vo f (@, Ykr1) — Vi f (Ti1, Yny2)
+ M (Vag (@1, Yryzs 05 = Vag(@r, Yrr1; 85 + Vag(@r, yet1) — Veg(@ri1, vki2)
+ Me(Vag(@rs1, 2h42; 05 T) = Vag(@h, 2rr1; 05T1) + Vag(@r, 2641) — Vag(Trr1, 242)
+ 6,(Vyg(
(Vag(

+ 08 (Vo g(Tht1, 2h42;

)
)
yI( @1, Yrre) + Vaeg(@r, Yrt1) — Vaeg(@r, Yrr1; 05))

Tr+1, Yk+25 ¢Z+1) - (
OFTYY = Vog(zrr1, 2kr2) + Vaeg(h, 2k11) — Vaeg(@r, 25413 65)

k 1)
Using Cauchy-Schwartz inequality, we get
Elll(gip (G o8 = ai (G o5 Y) + (6 — gt I1P)
<3001 1 + 15 M) (ks — 2ll® + [lynre — el + l[2rr2 — 2041]%) + 406707
< 12005 AR (€% (lgi1* + 11€511%) + oy (lag 1 + IEX®) +vipa (laill® + 1e511%)) + 406505,

v
v %]

Combining all, we obtain the result.
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