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Abstract

Nearly all practical neural models for classifica-
tion are trained using cross-entropy loss. Yet this
ubiquitous choice is supported by little theoret-
ical or empirical evidence. Recent work (Hui
& Belkin, 2020) suggests that training using the
(rescaled) square loss is often superior in terms of
the classification accuracy. In this paper we pro-
pose the “squentropy” loss, which is the sum of
two terms: the cross-entropy loss and the average
square loss over the incorrect classes. We provide
an extensive set of experiments on multi-class
classification problems showing that the squen-
tropy loss outperforms both the pure cross entropy
and rescaled square losses in terms of the classifi-
cation accuracy. We also demonstrate that it pro-
vides significantly better model calibration than
either of these alternative losses and, furthermore,
has less variance with respect to the random ini-
tialization. Additionally, in contrast to the square
loss, squentropy loss can typically be trained us-
ing exactly the same optimization parameters, in-
cluding the learning rate, as the standard cross-
entropy loss, making it a true “plug-and-play” re-
placement. Finally, unlike the rescaled square
loss, multiclass squentropy contains no parame-
ters that need to be adjusted.

1. Introduction

As with the choice of an optimization algorithm, the choice
of loss function is an indispensable ingredient in training
neural network models. Yet, while there is extensive theoret-
ical and empirical research into optimization and regulariza-
tion methods for training deep neural networks (Sun, 2019),
far less is known about the selection of loss functions. In
recent years, cross-entropy loss has been predominant in
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training for multi-class classification with modern neural
architectures. There is surprisingly little theoretical or em-
pirical evidence in support of this choice. To the contrary,
an extensive set of experiments with neural architectures
conducted in (Hui & Belkin, 2020) indicated that training
with the (rescaled) square loss produces similar or better
classification accuracy than cross entropy on most classi-
fication tasks. Still, the rescaled square loss proposed in
that work requires additional parameters (which must be
tuned) when the number of classes is large. Further, the
optimization learning rate for the square loss is typically
different from that of cross entropy, which precludes the use
of square loss as an out-of-the-box replacement.

In this work we propose the “squentropy” loss function
for multi-class classification. Squentropy is the sum of
two terms: the standard cross-entropy loss and the average
square loss over the incorrect classes. Unlike the rescaled
square loss, squentropy has no adjustable parameters. More-
over, in most cases, we can simply use the optimal hyper-
parameters for cross-entropy loss without any additional
tuning, making it a true “plug-and-play” replacement for
cross-entropy loss.

To show the effectiveness of squentropy, we provide com-
prehensive experimental results over a broad range of bench-
marks with different neural architectures and data from NLP,
speech, and computer vision. In 24 out of 34 tasks, squen-
tropy has the best (or tied for best) classification accuracy, in
comparison with cross entropy and the rescaled square loss.
Furthermore, squentropy has consistently improved cali-
bration, an important measure of how the output values of
the neural network match the underlying probability of the
labels (Guo et al., 2017). Specifically, in 26 out of 32 tasks
for which calibration results can be computed, squentropy
is better calibrated than either alternative. We also show
results on 121 tabular datasets from (Ferndndez-Delgado
et al., 2014). Compared with cross entropy, squentropy has
better test accuracy on 86 out of 121 tasks, and better cal-
ibration on 65 datasets. Finally, we show that squentropy
is less sensitive to the randomness of the initialization than
either of the two alternative losses.

Our empirical evidence suggests that in most settings, squen-
tropy should be the first choice of loss function for multi-
class classification via neural networks.
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2. The squentropy loss function

The problem we consider here is supervised multi-class
classification. We focus on the loss functions for training
neural classifiers on this task.

Let D = (x;,y;)I, denote the dataset sampled from a
joint distribution D(X, ). For each sample i, x; € X is
the input and y; € Y = {1,2,...,C} is the true class
label. The one-hot encoding label used for training is
ey = [0,...,\1/,0,...,0]T € RY. Let f(x;) € RY
denote the logits y(output of last linear layer) of a neural net-
work of input @;, with components f;(x;), j =1,2,...,C.
Let p; ; = efi(®@d)/ ch:l efi(®:) denote the predicted prob-
ability of x; to be in class j. Then the squentropy loss
function on a single sample x; is defined as follows:

C
1
lsqen(wi; y’L) = - logpi,yi (wz) + m , Z f]($1)2
J=13#yi
(H

The first term — log p; ., (@;) is simply cross-entropy loss.
The second term is the square loss averaged over the incor-
rect (j # y;) classes.

The cross-entropy loss is minimized when f,, (x;) — oo
while f;(x;) — —oo or at least stays finite for j # y;.
By encouraging all incorrect logits to go to a specific point,
namely 0, it is possible that squentropy yields a more “stable”
set of logits — the potential for the incorrect logits to behave
chaotically is taken away. In other words, the square loss
term plays the role of a regularizer. We discuss this point
further in Section 4.2.

Dissecting squentropy. Cross entropy acts as an effective
penalty on the prediction error made for the true class y;, as
it has high loss and large gradient when p; ,, is close to zero,
leading to effective steps in a gradient-based optimization
scheme. The “signal” coming from the gradient for the in-
correct classes is weaker, so such optimization schemes may
be less effective in driving the probabilities for these classes
to zero. Squentropy can be viewed as a modification of the
rescaled square loss (Hui & Belkin, 2020), in which cross
entropy replaces the term ¢( f,, (x;) — M)? corresponding
to the true class, which depends on two parameters ¢, M
that must be tuned. This use of cross entropy dispenses with
the additional parameters yet provides an adequate “signal”
for the gradient for a term that captures loss on the “true”
class.

The second term in (1) pushes all logits f;(x;) corresponds
to false classes j # y; to 0. Cross entropy attains a loss
close to zero on term 4 by sending f,, (x;) — oo and/or
fj(®;) = —oo for all j # y;. By contrast, squentropy
“anchors” the incorrect logits at zero (via the second term)
while driving f, (€;) — oo (via the first term). Then the

predicted probability of true class p; ,, (z;) will be close
fy; (®4)

0 efyie(mi)_i_c_l

1 more slowly than for cross entropy. When the training

process is terminated, the probabilities p; ,, (z;) tend to be
less clustered near 1 for squentropy than for cross entropy.
Confidence in the true class thus tends to be slightly lower
in squentropy. We see the same tendency toward lower
confidence in the fest data, thus helping calibration.

for squentropy, which possibly approaches

In calibration literature, various post-processing methods,
such as Platt scaling (Platt et al., 1999) and temperature
scaling (Guo et al., 2017), also improves calibration by re-
ducing p; ., below 1, while other methods such as label
smoothing (Miiller et al., 2019; Liu et al., 2022) and focal
loss (Mukhoti et al., 2020) achieve similar reduction on the
predicted probability. While all these methods require addi-
tional hyperparameters, squentropy does not. We conjecture
that calibration of squentropy can be further improved by
combining it with these techniques.

Relationship to neural collapse. Another line of work
that motivates our choice of loss function is the concept of
neural collapse (Papyan et al., 2020). Results and observa-
tions for neural collapse interpose a linear transformation
between the outputs of the network (the transformed fea-
tures f;(«;)) and the loss function. They show broadly
that the features collapse to a class average and that, under
a cross-entropy loss, the final linear transformation maps
them to rays that point in the direction of the corners of the
simplex in R®. (A modified version of this claim is proved
for square loss in (Han et al., 2021).) Our model is missing
the interposing linear transformation, but these observations
suggest roughly that cross entropy should drive the true log-
its fy, (x;) to oo while the incorrect logits f;(x;) for j # v;
tend to drift toward —oo, as discussed above. As noted
earlier, the square loss term in our squentropy loss function
encourages f;(x;) for j # y; to be driven to zero instead
— a more well defined limit and one that may be achieved
without blowing up the weights in the neural network (or by
increasing them at a slower rate). In this sense, as mentioned
above, the squared loss term is a kind of regularizer.

Confidence calibration. We use the expected calibration
error (ECE) (Naeini et al., 2015) to evaluate confidence cal-
ibration performance. It is defined as E,,[|P(§ = y|p) — pl],
where p and y correspond to the estimated probability and
true label of a test sample @. ¥ is the predicted label given by
argmax; p;. It captures the expected difference between
the accuracy P(§j = y|p) and the estimated model confi-
dence p. Because we only have finite samples in practice,
and because we do not have access to the true confidences
Puue for the test set (only the labels y), we need to replace
this definition with an approximate ECE. This quantity is cal-
culated by dividing the interval [0, 1] of probability predic-
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tions into K equally-spaced bins with the k-th bin interval to
be (221, £]. Let By, denote the set of test samples (z;, §j;)
for which the confidence p; ,, predicted by the model lies
in bin k. (The probabilities p; ; are obtained from a softmax
on the exponentials of the logits f;(x;).) The accuracy of
this bin is defined to be acc(By) = ﬁ Y ien, L0 = i),
where y; is the true label for the test sample x; and g; is the
model prediction for this item (the one for which p; ; are
maximized over j = 1,2,...,C). The confidence for bin
k is defined empirically as conf(By) = ﬁ > ien,, Piyi-
We then use the following definition of ECE:

o~ 1B
ECE = Z Tk lacc(By) — conf(By)]| . 2)

k=1

This quantity is small when the frequency of correct clas-
sification over the test set matches the probability of the
predicted label.

3. Experiments

In this paper we consider three loss functions, our proposed
squentropy, cross entropy and the (rescaled) square loss
from (Hui & Belkin, 2020). The latter is formulated as
follows:

C
(i) = & (06 Ule) =P+ Y filw)?

J=1%y:
3

where t and M are positive parameters. (t = M = 1 yields
standard square loss.) We will point out those entries in
which values t > 1 or M > 1 were used; for the others,
we set t = M = 1. Note that following (Hui & Belkin,
2020), the square loss is directly applied to the logits, with
no softmax layer in training.

We conduct extensive experiments on various datasets.
These include a wide range of well-known benchmarks
across NLP, speech, and vision with different neural ar-
chitectures — more than 30 tasks altogether. In addi-
tion, we evaluate the loss functions on 121 tabular datasets
(Fernandez-Delgado et al., 2014). In the majority of our
experiments, training with squentropy gives best test perfor-
mance and also consistently better calibration results.

Training scheme. In most of experiments we train with
squentropy with hyperparameter settings that are optimal for
cross entropy, given in (Hui & Belkin, 2020). This choice
favors cross entropy. This choice also means that switching
to squentropy requires a change of just one line of code.
Additional gains in performance of squentropy might result
from additional tuning, at the cost of more computation in
the hyperparameter tuning process.

Datasets. We test on a wide range of well-known bench-
marks from NLP, speech and computer vision. NLP datasets
include MRPC, SST-2, QNLI, QQP, text8, enwik8, text5s,
and text20. Speech datasets include TIMIT, WSJ, and Lib-
rispeech. MNIST, CIFAR-10, STL-10 (Coates et al., 2011),
CIFAR-100, SVHN (Netzer et al., 2011), and ImageNet
are vision tasks. See Appendix A of (Hui & Belkin, 2020)
for details of most of those datasets. (The exceptions are
SVHN, STL-10, and CIFAR-100, which we describe in Ap-
pendix A of this paper). The 121 tabular datasets are from
(Fernandez-Delgado et al., 2014) and they are mostly small
datasets — 90 of them have < 5000 samples. The feature
dimension is small (mostly < 50) and most datasets are
class-imbalanced.

Architectures and hyperparameter settings. We choose
various modern neural architectures, including simple fully-
connected networks, convolutional networks (TCNN(Bai
et al.,, 2018), Resnet-18, VGG, Resnet-50 (He et al.,
2016), EfficientNet(Tan & Le, 2019)), LSTM-based net-
works (Chen et al., 2016) (LSTM+CNN, LSTM+Attention,
BLSTM), and Transformers (Vaswani et al., 2017) (fine-
tuned BERT, Transformer-XL, Transformer, Visual trans-
former). See Table 1 for detailed references. We follow
the hyperparameter settings given in Appendix B of (Hui
& Belkin, 2020) for the cross-entropy loss and the square
loss (other than SVHN, STL-10, and CIFAR-100), and use
the algorithmic parameters settings of the cross entropy for
squentropy in most cases. The exceptions are SVHN and
STL-10, where squentropy and square loss have a smaller
learning rate (0.1 for cross entropy while 0.02 for squen-
tropy and square loss). More details about hyperparameter
settings of SVHN, STL-10, CIFAR-100 are in Appendix B.

Metrics. For NLP, vision and 121 tabular datasets, we
report accuracy as the metric for test performance. For
speech dataset, we conduct the automatic speech recognition
(ASR) tasks and report test set error rates which are standard
metrics for ASR. Precisely, for TIMIT, we report phone
error rate (PER) and character error rate (CER). For WSJ
and Librispeech, we report CER and word error rate (WER).
ECE is the metric to measure the calibration results for all
datasets. For speech datasets, we report calibration results
for the acoustic modeling part. See Table 1 shows the results
of NLP, speech and vision datasets. Figure 2 show results
of 121 tabular datasets. In addition, we provide reliability
diagrams (DeGroot & Fienberg, 1983; Niculescu-Mizil &
Caruana, 2005) to visualize the confidence and accuracy of
each interval and see details in Section 3.2.

Remarks on Table 1. For the results of square loss,
we use rescaled square loss with ¢ > 1 or M > 1 for
TIMIT(PER) (t = 1,M = 15), WSJ (t = 1, M = 15),
Librispeech (t = 15, M = 30), CIFAR-10 and CIFAR-100
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Table 1. Test performance (perf(%): accuracy for NLP& Vision, error rate for speech data) and calibration: ECE(%).

. Squentropy  Cross-entropy  Square loss
Domain Model Task perf | ECE perf | ECE  perf | ECE
MRPC 84.0 | 79 821 13.1 83.8 | 14.0

SST-2 942 | 70 939 6.7 94.0 | 19.8

fine-tuned BERT QNLI 910 | 7.3 90.6 7.4 90.6 | 4.2

(Devlin et al., 2018) QQP 89.0 | 2.2 88.9 5.8 88.9 | 2.8

text5 852 | 124 845 | 149 84.6 | 46.7

text20 81.2 | 10.5 80.8 | 16.2 80.8 | 69.2

Transformer-XL text8 715 39 728 5.8 73.2 | 57.6

NLP (Dai et al., 2019) enwik8 770 | 48 715 9.3 76.7 | 64.5
v enwik8 (subset) 48.9 | 10.7 48.6 189 473 | 70.6

. MRPC 714 | 32 709 7.1 71.7 | 3.5

(Lcizyet/:felzlgfg) QNLI 793 | 72 790| 76 793|130

’ QQpP 835 | 24 83.1 3.2 834 | 16.5

MRPC 705 | 52 694 6.3 73.2 | 16.3

(HLeS; hf:; C%I\ll 6 QNLI 760 | 41 760 | 23 760 | 20.5

’ QQp 845 | 51 844 7.2 84.3 | 24.6

Attention+CTC TIMIT (PER) 19.6 | 0.7 20.0 3.1 20.0 | 2.8

(Kim et al., 2017) TIMIT (CER) 321 | 1.6 334 3.3 325 | 4.3

VGG+BLSTMP WSJ (WER) 5.5 3.2 5.3 5.0 51 5.3

Speech (Moritz et al., 2019) WSIJ (CER) 2.9 3.2 2.5 5.0 24 5.3
VGG+BLSTM Librispeech (WER) 7.6 7.1 8.2 2.7 8.0 7.9

(Moritz et al., 2019) Librispeech (CER) 9.7 7.1  10.6 2.7 9.7 7.9

Transformer WSJ (WER) 3.9 2.1 4.2 4.3 4.0 4.4

(Watanabe et al., 2018) Librispeech (WER) 9.1 4.2 9.2 4.9 9.4 5.1

TCNN (Bai et al., 2018) MNIST 978 | 14 97.7 1.6 97.7 | 75.0

Resnet-18 CIFAR-10 855 | 89 84.7| 100 84.6 | 134

(He et al., 2016) STL-10 67.7 | 21.2 689 | 26.1 654 | 40.3

W-Resnet CIFAR-100 775 | 109 76.7 | 179 76.5 | 12.7

(Zagoruyko & Komodakis, 2016)  CIFAR-100 (subset)  43.5 | 188 41.5 | 40.3 41.0 | 23.8

Vision Visual transformer CIFAR-10 993 | 1.9 99.2 3.8 993 | 7.2
VGG SVHN 93.0 | 48 93.7 5.7 92.5 | 65.4

Resnet-50 ImageNet (acc.) 76.3 | 63 76.1 6.7 76.2 | 8.2

(He et al., 2016) ImageNet (Top-5acc.) 932 | NJ/A 93.0 | N/A 93.0 | N/A

EfficientNet ImageNet (acc.) 76.4 | 6.8 770 5.6 746 | 7.9

(Tan & Le, 2019) ImageNet (Top-5 acc.) 93.0 | N/A 933 | N/A 92.7 | N/A

(t =1, M = 10), and ImageNet (¢t = 15, M = 30). All oth-
ers are the standard square loss. Note that WSJ (WER) and
WSJ (CER) share the same ECE number as they share one
acoustic model. (Similarly for Librispeech.) Additionally,
since ECE numbers are not available for Top-5 accuracy, the
corresponding entries (ImageNet, Top-5 acc.) are marked
as “N/A”.

For the empirical results reported in Table 1, we discuss gen-
eralization / test performance in Section 3.1 and calibration
results in Section 3.2. Results for 121 tabular datasets are re-
ported in Section 3.3. We report the average accuracy/error
rate (for test performance) and average ECE (for model
calibration) of 5 runs with different random initializations
for all experiments. We report the standard derivation of

this collection of runs in Section 3.4.

3.1. Empirical results on test performance

Our results show that squentropy has better test performance
than cross entropy and square loss in the majority of our
experiments. The perf(%) numbers in Table 1 show the test
accuracy of benchmarks of the NLP and vision tasks, and
error rate for the speech tasks. Squentropy behaves the best
in 24 out of 34 tasks. We also report the numbers for subsets
of enwik8 and CIFAR-100. Compared with full datasets of
these collections, squentropy seems to gain more when the
datasets are small.
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Figure 1. Confidence histograms (top) and reliability diagrams (bottom) for a Wide Resnet on CIFAR-100. See Table 1 for its test
accuracy. The Confidence histogram gives the portion of samples in each confidence interval, and the reliability diagrams show the
accuracy as a function of the confidence. The ECE numbers are percentages as in Table 1. Left: Squentropy, Middle left: cross entropy,
Middle right: Rescaled square loss, Right: Standard square loss. We see that models trained with squentropy are better calibrated, while
cross entropy suffers from overconfidence and the standard square loss is highly underconfident.

Applicability and significance. Table 1 shows improve-
ments for squentropy across a wide range distributions from
the NLP, speech, and vision domains. On the other hand, the
improvement on one single task often is not significant, and
for some datasets, squentropy’s performance is worse. One
reason may be our choice to use the optimal hyperparameter
values for cross entropy in squentropy. Further tuning of
these hyperparameters may yield significant improvements.

3.2. Empirical results on calibration

In this section we show model calibration results, measured
with ECE of the models given in Table 1. The ECE numbers
for NLP, speech, and vision tasks are also shown in Table 1.

Squentropy consistently improves calibration. As can
be seen in and Table 1, in 26 out of 32 tasks, the calibration
error (ECE) of models trained with squentropy is smaller
than for cross entropy and square loss, even in those cases
in which squentropy had slightly worse test performance,
such as WSJ, STL10, and SVHN.

Besides using ECE to measure model calibration, we also
provide a popular form of visual representation of model
calibration: reliability diagrams (DeGroot & Fienberg, 1983;
Niculescu-Mizil & Caruana, 2005), which show accuracy
as a function of confidence as a bar chart. If the model is
perfectly calibrated, i.e. P(4; = y;|p;) = p;, the diagram

should show all bars aligning with the identity function. If
most of the bars lie below the identity function, the model
is overconfident as the confidence is mostly larger than
corresponding accuracy. When most bars lie above the
identity function that means the model is underconfident as
confidence is smaller than accuracy. For a given bin k, the
difference between acc(By) and conf(By,) represents the
calibration gap (orange bars in reliability diagrams — e.g.
the bottom row of Figure 1).

In Figure 1 we plot the confidence histogram (top) and the
reliability diagrams (bottom) of Wide Resnets on CIFAR-
100, trained with four different loss functions: squentropy,
cross entropy, rescaled square loss (with ¢ = 1, M = 10),
and standard square loss (t = 1, M = 1). The confidence
histogram gives the percentage of samples in each confi-
dence interval, while the reliability diagrams show the test
accuracy as a function of confidence.

In the reliability diagrams of Figure 1 bottom, the orange
bars, which represent the confidence gap, start from the top
of the blue (accuracy) bar. We show conf(Bj,) — acc(By)
for all intervals in all reliability diagram plots. Note that
for intervals where confidence is smaller than accuracy, the
orange bars go down from the top of the blue bars, such
as the one in the right bottom of Figure 1. More reliability
diagrams for other tasks are given in Appendix C.
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Squentropy vs. cross entropy. If we compare the dia-
grams of squentropy and cross entropy, the bars for squen-
tropy are closer to the identity function; cross entropy ap-
parently yields more overconfident models. The gap for
squentropy is also smaller than cross entropy in most confi-
dence intervals.

121 tabular datasets 121 tabular datasets
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Loss functions  Squentropy  Cross entropy  Square loss
Avg accuracy 82.5% 82.1% 81.0%
Avg ECE 10.9% 11.8% 17.5%

Figure 2. Test accuracy and model calibration of 121 tabular
datasets from (Fernandez-Delgado et al., 2014) trained with a
3 layer (256-256-256) fully connected network. The results for
each dataset are averaged over 5 runs with different random initial-
izations. Left: Test accuracy (larger is better). Right: Calibration
error ECE (smaller is better). The top figures plot the results of
squentropy and cross entropy, while the bottom figures plot the
results of squentropy and the (rescaled) square loss. Test accu-
racy/ECE for each dataset are tabulated in Appendix D.

Standard square loss leads to underconfidence. We also
plot the reliability diagrams for training with the standard
square loss on the right ones of Figure 1. We see that it is
highly underconfident as the confidence is smaller than 0.1
(exact number is 0.017) for all samples. Note that the square
loss is directly applied to the logits f;(x;), and the logits
are driven to the one-hot vector e, then the probabilities
p;,; formed from these logits are not going to be close to
the one-hot vector. The “max”™ probability (confidence) will
instead be close to ﬁ which is small when C'is large.
Rescaling helps with calibration. The second-from-right
bottom diagram in Figure 1 shows the results of training
with the rescaled square loss (t = 1, M = 10) on CIFAR-
100. This minimization problem drives the logits of true

class closer to M, making the max probability approach
M

m - a much larger value than for standard square

loss, leading to better calibration. However, squentropy can

avoid extra rescaling hyperparameters while achieving even

smaller values of ECE.

3.3. Additional results on 121 Tabular datasets

Additional results for 121 small, low dimensional, and class-
imbalanced tabular dataset, obtained with 3-layer fully-
connected networks, are shown in Figure 2. For all these
cases, following the setting in (Arora et al., 2019), we use
gradient descent and run 3000 epochs with learning rate
0.01. The “square loss” function used here is in fact rescaled
version with parameters ¢ = 1 and M = 5.

Figure 2 shows that for most datasets, squentropy has
slightly better test accuracy and significantly smaller ECE
than cross entropy or square loss. Squentropy has the best
test accuracy in 63 out of 121 tasks and best calibration in
46 tasks. If only compare with cross entropy, squentropy is
better in 86 tasks on accuracy, and is better on calibration
in 65 tasks. Test accuracy and ECE for each dataset in this
collection are tabulated in Appendix D.

Table 2. Standard deviation of test accuracy/error. Smaller number
is bolded. CE is short for cross-entropy.

Model Dataset Squentropy  CE Square loss
MRPC 0.285 0.766 0.484
SST-2 0.144 0.173 0.279
. QNLI 0.189 0.205 0.241
fine-tuned BERT QQP 0050 0063  0.045
text5 0.132 0.167 0.147
text20 0.131 0.08 0.172
text8 0.149 0.204 0.174
Transformer-XL enwik8 0156 0102 0228
MRPC 0.315 0.786 0.484
+/§t?2$?on QNLI 0.198 0.371 0.210
QQP 0.408 0.352 0.566
MRPC 0.289 0.383 0.322
I;(S:Eg QNLI 0.154 0.286 0.173
QQP 0.279 0.161 0.458
Attention TIMIT (PER) 0.332 0.249 0.508
+CTC TIMIT (CER) 0.232 0.873 0.361
VGG+ WSJ (WER) 0.147 0.249 0.184
BLSTMP WSJ (CER) 0.082 0.118 0.077
VGG+ Libri (WER) 0.117 0.257 0.126
BLSTM Libri (CER) 0.125 0.316 0.148
Transformer WSJ (WER) 0.186 0.276 0.206
Libri (WER) 0.168 0.232 0.102
TCNN MNIST 0.151 0.173 0.161
Resnet-18 CIFAR-10 0.147 0.452 0.174
STL-10 0.413 0.376 0.230
‘W-ResNet CIFAR-100 0.164 0.433 0.181
Visual Transformer CIFAR-10 0.070 0.075 0.063
VGG SVHN 0.283 0.246 0.307

I-Net (Top-1) 0.029 0.045 0.032
I-Net (Top-5) 0.098 0.045 0.126
I-Net (Top-1) 0.099 0.122 0.138
I-Net (Top-5) 0.092 0.089 0.089

Resnet-50

EfficientNet

3.4. Robustness to initialization

To evaluate the stability of the model trained with the loss
functions considered in this paper, we report the standard
deviation of the accuracy/error rate with respect to the ran-
domness in initialization of weights for NLP, speech, and
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Figure 3. Decision boundary along different epochs for test samples. We fix all random seeds to be the same for all cases and hence the
test set is exactly the same. (Thus, we display legends only in the bottom-row figures). Color coding indicates the calculated probability
of class label to be 1, according to the scale on th eright. The white line between red and blue areas indicates the decision boundary. We
train a 3-layer fully connected network with 12 units in each layer, for a 2-class spiral data set in R?. There are 1000 samples for training
and 500 samples for test, and we train for 1000 epochs, yielding a training accuracy of 100% for all loss functions. Test accuracies are
squentropy: 99.9%, cross entropy: 99.7%, square loss: 99.8%. Top: squentropy. Middle: cross entropy. Bottom: square loss. Columns

show results after 100, 500, and 1000 epochs, respectively.

vision tasks. Standard deviation is over 5 runs with different
random initializations; see Table 2 for results. The standard
derivation of squentropy is smaller in the majority of the
tasks considered, so results are comparatively insensitive to
model initialization.

4. Observations

As mentioned previously, we conjecture that the square
term of squentropy acts as an implicit regularizer and in
this section we provide some observations in support of
this conjecture. We discuss the decision boundary learnt
by a fully-connected network on a 2-class spiral data prob-
lem (the “Swiss roll”) in Section 4.1, and remark on the
weight norm of the last linear layer of several networks in
Section 4.2.

4.1. Predicted probabilities and decision boundary

Using a simple synthetic setting, we observe that the de-
cision boundary learned with squentropy appears to be
smoother than that for cross entropy and the square loss.
We illustrate this point with a 2-class classification task with
spiral data and a 3-layer fully-connected network with pa-
rameter 6. This setup enables visual observations. Given
a sample ; € R? and labels y; € {1,2}, and the one
hot encoding y; = [0,1] or y; = [1,0], we solve for
weights 0 to define functions fi(x;) and fo(x;) corre-
sponding to the two classes. For any x;, we then pre-
dict a probability of x; being classified as class 1 as fol-
lows: p(z;) := ef1(®@) /(ef1(@) 4 f2(=:)) Samples are
assigned to class 1 if f;; > f;2 and to class 2 other-
wise. The decision boundary is the set of points for which

{z| fi(®) = fo(2)} or {z|p(zi) = 1/2}.

We see from Figure 3 that the decision boundary obtained
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with squentropy is smoother than those learnt with both
cross entropy and square loss. This appears to be true
throughout the training process, on this simple example.
Meanwhile, the margin (distance from training points to the
decision boundary) is also larger for squentropy in many
regions. Together, the large margin and smooth decision
boundary imply immunity to perturbations and could be
one of the reasons for the improved generalization resulting
from the use of squentropy (Elsayed et al., 2018).
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Figure 4. Weight norm along training. We train a Resnet-18
on CIFAR-10 (calibration error, ECE: Squentropy: 8.9%, cross
entropy: 10.0%) and STL-10 (ECE: Squentropy: 21.2%, cross
entropy: 26.1%), a wide Resnet on CIFAR-100 (ECE: Squentropy:
10.9%, cross entropy: 17.9%), and show the norm of the last linear
layer’s weights. These are the same experiments as given in Table
1.

4.2. Weight norm

Neural classifiers trained with cross-entropy loss suffer from
overconfidence, causing miscalibration of the model (Guo
et al., 2017). Our calibration results in Figure 1 and Sec-
tion C show evidence of this phenomenon. As can be seen
in the confidence histogram of cross entropy — the (1, 2)
figure in Figure 1 — the average confidence p,, (x;) for
the predicted label in cross entropy is close to 1. This fact
suggests that the logits f,, (;) of true class are close to oo,
while the logits of the incorrect classes approach —oo. Such
limits are possible only when the weights of last linear layer
have large norm. To quote (Mukhoti et al., 2020), “cross-
entropy loss thus inherently induces this tendency of weight
magnification in neural network optimisation.”

Guo et al. (2017) comment that weight decay, which cor-
responds to adding a penalty term to the loss consisting of
the sum of squares of the weights, can produce appreciably
better calibration while having a minimal effect on test error;
see the rightmost diagram in Figure 2 of (Guo et al., 2017).

In (Mukhoti et al., 2020; Liu et al., 2022), the authors point
out how focal loss proposed in (Lin et al., 2017) improves
calibration by encouraging the predicted distribution to have
higher entropy, thus implicitly regularizing the weights. Fig-
ure C.1 of (Mukhoti et al., 2020) compares weight norm and
final logit values between cross entropy and the focal loss,
showing that the latter are significantly smaller. We perform
a similar experiment, showing in Figure 4 the weight norm
of the final-layer weights for three examples from Table 1
as a function of training steps. We observe that the weight
norm for the model trained with squentropy is much smaller
than the norms for the same set of weights in the model
trained with cross entropy, along the whole training process.

5. Rescaled squentropy

Consider the following rescaled version of squentropy:

C
o
lsqen(wia yi) = - logpi,yi (wz) + C_1 Z fj(mi)27
J=1j#y;
“4)

which introduces a positive factor « into the second term
of (1). Here a = 0 corresponds to standard cross-entropy
loss while o« = 1 yields the squentropy loss (1). Limited
computational experiments show that when o = .1, scaled
squentropy gives even better results for some tasks in Ta-
ble 3, with significant improvements for such examples as
TIMIT (CER), STL-10 and CIFAR-100, but slight degra-
dation in other examples, such as ImageNet (ResNet-50).
Table 3 is a full report of all experiments we ran for are all
we ran for scaled squentropy.

Table 3. Test accuracy/error rate, and scaled sqen is short for
rescaled squentropy. CE is short for cross-entropy.

Task Scaled sqen  Squentropy CE  Square loss
texts 85.3 85.2 84.5 84.6
text20 81.5 81.2 80.8 80.8
TIMIT(PER) 19.0 19.6 20.0 20.0
TIMIT(CER) 29.6 32.1 334 325
WSI(WER) 53 5.5 53 5.1
WSIJ(CER) 2.6 29 2.5 24
Librispeech(WER) 7.8 7.6 8.2 8.0
Librispeech(CER) 10.0 9.7 10.6 9.7
CIFAR-10 86.0 85.5 84.7 84.6
STL-10 69.5 67.7 68.9 65.4
CIFAR-100 78.7 71.5 76.7 76.5
SVHN 93.8 93.0 93.7 92.5
ImageNet (Resnet-50) 76.2 76.3 76.1 76.2
ImageNet (EfficientNet) 76.5 76.4 77.0 74.6

6. Summary, thoughts, future investigations

As with the selection of an optimization procedure, the
choice of the loss function is an ineluctable aspect of train-
ing all modern neural networks. Yet the machine learning
community has paid little attention to understanding the
properties of loss functions. There is little justification, the-
oretical or empirical, for the predominance of cross-entropy
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loss in practice. Recent work (Hui & Belkin, 2020) showed
that the square loss, which is universally used in regression,
can perform at least as well as cross entropy in classification.
Other works have made similar observations: (Rifkin, 2002;
Sangari & Sethares, 2015; Que & Belkin, 2016; Demirkaya
et al., 2020). While several alternative loss functions, such
as the focal loss (Lin et al., 2017), have been considered
in the literature with good results, none have been adopted
widely. Even the hinge loss, the former leader in the popu-
larity contest for classification losses, is barely used outside
the context of Support Vector Machines.

In this work we demonstrate that a simple hybrid loss func-
tion can achieve better accuracy and better calibration than
the standard cross entropy on a significant majority of a
broad range of classification tasks. Our squentropy loss
function has no tunable parameters. Moreover, most of
our experiments were conducted in a true “plug-and-play”
setting using the same algorithmic parameters in the op-
timization process as for training with the standard cross-
entropy loss. Performance of squentropy can undoubtedly
be further improved by tuning the optimization parameters.
Furthermore, various calibration techniques can potentially
be applied with squentropy in the same way they are used
with cross entropy.

Thus, from a practical point of view, squentropy currently
appears to be the natural first choice to train neural models.

By no means does it imply that we know of fundamental
reasons or compelling intuition indicating that squentropy
is the last word on the choice of loss functions for classifica-
tion. One of the main goals of this work is to encourage both
practitioners and theoreticians to investigate the properties
of loss functions, an important but largely overlooked aspect
of modern Machine Learning.
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A. Datasets

Datasets used in our tests include the following.

e CIFAR-100: (Krizhevsky et al., 2009) consists of 50, 000 32x32 pixel training images and 10, 000 32 x 32 pixel test
images in 100 different classes. It is a balanced dataset with 6, 00 images of each class.

e SVHN: (Netzer et al., 2011) is a real-world image dataset obtained from house numbers in Google Street View images
and it incorporates over 600,000 digit images with labeles. It is a good choice for developing machine learning and
object recognition algorithms with minimal requirement on data preprocessing and formatting.

e STL-10: (Coates et al., 2011) is an image recognition dataset mainly for developing unsupervised feature learning
as it contains many images without labels. The resolution of this dataset is 96x96 and this makes it a challenging
benchmark.

See Appendix A of (Hui & Belkin, 2020) for details of other datasets.

Table 4. Hyper-parameters for CIFAR-100, SVHN, and STL-10.
Epochs training w/

Model Task Hyper-parameters squentropy | square loss | CE
. Ir=0.1, layer=28
Wide-ResNet | CIFAR-100 wide-factor=20, batch size: 128 200 200 200
Ir=0.1 for cross-entropy
VGG SVHN 1r=0.0.02 for squentropy and square loss 200 200 200
Resnet-18 | STL-10 1r=0.1 for cross-entropy 200 200 | 200
for squentropy and square loss Ir=0.02

B. Hyperparameters

Detailed hyperparameter settings for CIFAR-100, SVHN, and STL-10 are shown in Table 4. For the other tasks, we follow
the exact same settings as provided in Appendix B of (Hui & Belkin, 2020).

C. More reliability diagrams

We provide the reliability diagrams for more tasks. Note that the values given for ECE (Expected calibration error as defined
in (2) and the smaller the better) in these plots are percentages as in Table 1.
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Figure 5. Reliability diagrams for a pretrained BERT on text5 data. Left: squentropy, middle: cross-entropy, right: square loss.
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Figure 6. Reliability diagrams for a pretrained BERT on text20 data. Left: squentropy, middle: cross-entropy, right: square loss.
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Figure 7. Reliability diagrams for a Transformer-XL on enwik8. Left: squentropy, middle: cross-entropy, right: square loss.
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Squentropy: TIMIT

1.0
B Outputs
Gap
0.8
ECE: 0.7

>0.6
9
e
=1
o
I+
<04

Figure 9. Reliability diagrams for a Attention+CTC model on TIMIT. Left: squentropy, middle: cross-entropy, right: square loss.

g

Squentropy: WSJ

1.0 Cross-entropy: TIMIT

Square loss: TIMIT

EEE Outputs
Gap

0'%. 0.2 0.4 0.6 0.8 1.0
Confidence

Cross-entropy: WSJ

1.0

B8 Outputs
Gap

o' ~

Rescaled square loss: WS)

1.0 1.0 1.0
@A Outputs B Outputs 88 Outputs
Gap
0.8
ECE: 3.2
0.6 ‘
O
e
3
9]
O
P4

IN
IS

0.2

og.

Figure 10. Reliability diagrams for a VGG+BLSTMP model on WSJ. Left: squentropy, middle: cross-entropy, right: scaled square loss.
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Squentropy: MNIST
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Figure 12. Reliability diagrams for a TCN on MNIST. Left: squentropy, middle: cross-entropy, right: square loss.
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Figure 13. Reliability diagrams for a Resnet18 on CIFAR-10.Left: squentropy, middle: cross-entropy, right: scaled square loss.
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loss.
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Figure 15. Reliability diagrams for a Resnet18 on STL10. Left: squentropy, middle: cross-entropy, right: square loss.
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Figure 16. Reliability diagrams for a VGG on SVHN. Left: squentropy, middle: cross-entropy, right: square loss.
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D. Results for 121 tabular datasets

We list the test accuracy and calibration results (ECE) of each tabular dataset in Tables 5, 6 and 7. Note that the square loss
of in those tables are all rescaled square loss defined in Equation (3). witht = 1, M = 5.

Table 5. Test accuracy (Acc)/ECE for 121 tabular datasets
Squentropy | Cross-entropy | Rescaled square

Dataset Acc ECE | Acc ECE | Acc  ECE
abalone 66.0 3.9 67.9 14.1 68.3 13.8
acute-inflammation 96.4 3.8 91.3 4.7 95.8 4.3
acute-nephritis 100.0 1.7 | 100.0 3.0 | 100.0 4.8
adult 84.0 4.7 85.1 5.7 85.1 10.7
annealing 94.3 3.6 | 933 39 94.4 4.1
arrhythmia 68.1 214 | 670 245 | 684 17.3
audiology-std 72.6 263 | 73.0 26.0 | 70.3 29.7
balance-scale 97.2 5.0 96.3 3.8 96.5 4.0
balloons 95.6 237 | 954 214 | 90.0 25.8

bank 89.9 4.1 89.8 7.7 89.2 10.6

blood 816 11.7 | 81.9 7.0 81.7 16.6
breast-cancer 76.8 26.6 | 75.6 24.5 75.5 27.5
breast-cancer-wisc 98.0 4.8 97.6 49 97.1 4.5
breast-cancer-wisc-diag 99.5 3.5 99.2 34 98.8 2.2
breast-cancer-wisc-prog 89.6 163 | 879 157 | 89.0 19.3
breast-tissue 83.3 179 | 84.1 17.1 83.6 19.2

car 1000 04 | 100.0 04 | 100.0 2.3

cardiotocography-10clases 87.7 63 | 87.8 7.3 87.2 39
cardiotocography-3clases 94.8 4.0 | 949 55 94.7 4.6

chess-krvk 86.6 3.7 87.8 1.8 86.1 16.0
chess-krvkp 998 04 | 99.7 0.5 99.8 0.7
congressional-voting 659 9.7 65.7 9.2 65.1 18.3

conn-bench-sonar-mines-rocks | 90.6 11.7 | 914 10.2 91.4 13.1
conn-bench-vowel-deterding 9.6 2.7 99.1 1.9 98.9 9.3

connect-4 894 33 | 89.0 5.1 89.7 6.6
contrac 5777 13.6 | 58.6 304 | 58.0 353
credit-approval 89.1 94 884 11.7 | 88.6 14.3
cylinder-bands 819 131 | 841 148 | 839 17.8
dermatology 97.6 4.7 97.2 4.4 97.3 3.5
echocardiogram 85.0 176 | 849 17.8 | 844 19.3
ecoli 88.2 124 | 88.1 7.8 88.2 9.8
energy-yl 97.3 42 | 975 4.2 97.3 3.0
energy-y2 97.2 4.4 96.7 5.3 96.4 4.0
fertility 94.6 233 | 934 263 | 90.0 194
flags 60.1 27.1 | 584 313 | 574 20.6
glass 78.7 187 | 781 254 | 78.1 20.8
haberman-survival 80.3 122 | 79.8 179 | 79.7 22.9
hayes-roth 858 54 | 84.1 114 | 83.7 13.6
heart-cleveland 625 320 | 62.1 325 | 64.6 25.7
heart-hungarian 853 176 | 84.8 16.0 | 854 19.2
heart-switzerland 438 504 | 43.6 477 | 464 44.4
heart-va 42.1 46.0 | 464 54.1 | 420 479
hepatitis 774 18.1 | 753  20.6 | 84.5 14.8
hill-valley 66.0 142 | 719 363 | 71.1 40.2
horse-colic 859 133 | 844 13.9 | 86.0 14.2
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Table 6. Test accuracy (Acc)/ECE for 121 tabular datasets

Dataset Squentropy | Cross-entropy | Rescaled square
Acc ECE | Acc ECE | Acc ECE
ilpd-indian-liver 772 127 | 753 229 | 759 25.7
image-segmentation 96.8 54 | 947 6.5 94.8 6.9
ionosphere 983 7.0 | 98.2 5.5 97.2 6.2
iris 972 39 | 97.1 4.3 98.0 2.9
led-display 752 107 | 753 5.2 74.9 8.3
lenses 76.6 20.8 | 684 215 | 80.0 17.8
letter 988 1.1 | 98.6 1.2 98.4 16.6
libras 931 49 | 929 5.7 92.5 12.9
low-res-spect 95.9 4.0 95.2 5.0 94.2 7.7
lung-cancer 60.6 27.1 | 547 404 | 629 40.4
lymphography 89.2 64 87.1 7.1 91.3 8.0
magic 883 55 89.1 53 89.2 8.3
mammographic 819 94 | 833 8.0 83.4 14.6
miniboone 81.7 203 | 815 203 | 779 27.2
molec-biol-promoter 879 114 | 78.6 9.9 85.5 14.8
molec-biol-splice 879 71 842 10.8 | 87.2 8.2
monks-1 854 140 | 83.6 13.5 | 87.2 14.6
monks-2 729 69 | 899 12.8 | 959 14.5
monks-3 934 6.7 | 916 7.6 92.0 94
mushroom 100.0 0.0 | 100.0 0.0 | 100.0 0.7
musk-1 952 33 | 946 6.3 95.6 4.9
musk-2 100.0 1.1 | 100.0 0.2 | 100.0 0.7
nursery 100.0 0.1 | 100.0 0.0 | 100.0 2.7
oocytes_merluccius_nucleus 4d | 85.1 35 86.6 104 | 87.1 14.4
oocytes_merluccius_states_2f 954 32 | 952 6.3 95.2 4.6
oocytes_trisopterus_nucleus 2f | 89.0 54 89.7 9.2 89.0 10.7
oocytes_trisopterus_states_5b 97.1 43 97.1 4.6 97.3 3.7
optical 996 0.9 | 993 1.2 99.0 6.6
ozone 977 45 97.5 3.9 97.1 31
page-blocks 97.7 2.2 97.5 2.3 97.1 1.8
parkinsons 97.0 29 | 979 5.8 97.4 42
pendigits 99.8 0.2 | 99.8 0.3 99.9 6.1
pima 799 208 | 780 224 | 774 24.6
pittsburg-bridges-MATERIAL | 79.7 154 | 804 158 | 89.1 14.0
pittsburg-bridges-REL-L 682 302 | 66.2 283 | 733 36.5
pittsburg-bridges-SPAN 732 310 | 699 308 | 73.7 34.6
pittsburg-bridges-T-OR-D 90.1 193 | 90.0 245 | 895 17.9
pittsburg-bridges-TYPE 634 348 | 633 33.0 | 66.7 39.7
planning 779 234 | 756 335 | 76.8 31.7
plant-margin 851 44 84.0 59 82.9 55.7
plant-shape 743 78 | 739 139 | 70.6 49.1
plant-texture 853 31 84.3 6.2 82.6 52.8
post-operative 739 352 | 704 347 | 622 353
primary-tumor 50.0 27.7 | 498 385 | 485 24.0
ringnorm 98.6 1.7 98.5 2.1 98.1 1.5
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Table 7. Test accuracy (Acc)/ECE for 121 tabular datasets

Dataset Squentropy | Cross-entropy | Rescaled square
Acc  ECE | Acc ECE | Acc ECE
seeds 100.0 4.0 | 99.0 6.3 98.6 59
semeion 95.4 23 | 949 3.5 94.8 10.7
soybean 92.2 34 | 908 39 91.3 17.5
spambase 95.6 4.1 95.4 4.6 95.0 4.9
spect 76.8 373 | 754 417 | 76.2 422
spectf 793 182 | 829 17.1 | 838 21.8
statlog-australian-credit 612 241 | 645 340 | 664 34.1
statlog-german-credit 80.3 15.7 | 79.1 212 | 79.6 23.1
statlog-heart 869 18.0 | 864 154 | 859 18.8
statlog-image 99.3 14 | 99.1 14 98.8 4.1
statlog-landsat 93.3 5.8 93.0 6.8 92.7 2.7
statlog-shuttle 99.8 0.5 | 99.8 0.5 99.8 3.7
statlog-vehicle 87.5 7.8 86.9 9.7 86.8 11.9
steel-plates 78.8 9.7 | 785 14.4 | 78.7 10.2
synthetic-control 99.1 2.1 99.1 2.0 98.7 4.9
teaching 651 299 | 63.0 305 | 639 37.2
thyroid 98.5 20 | 97.6 2.6 97.9 14
tic-tac-toe 99.8 0.3 99.8 0.2 99.8 0.6
titanic 78.6 12,6 | 784 4.2 78.9 13.6
trains 100.0 34.1 | 904 27.2 | 80.0 53.0
twonorm 98.2 2.0 | 98.1 2.6 97.7 2.0
vertebral-column-2clases | 91.2 8.5 91.1 8.6 91.3 13.1
vertebral-column-3clases | 88.0 154 | 86.6 15.1 | 87.1 16.1
wall-following 96.1 22 | 958 32 95.7 1.7
waveform 86.5 9.0 | 86.8 11.2 | 86.9 12.0
waveform-noise 85.4 94 85.4 11.9 | 86.1 14.1
wine 100.0 3.3 | 100.0 3.0 | 100.0 29
wine-quality-red 68.8 232 | 689 266 | 69.3 19.7
wine-quality-white 65.0 199 | 659 253 | 655 17.2
yeast 633 214 | 63.1 299 | 63.5 18.8
700 92.0 48 | 919 3.9 91.4 9.1
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