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Abstract

We analyze the sample complexity of single-
loop quadratic penalty and augmented La-
grangian algorithms for solving nonconvex
optimization problems with functional equal-
ity constraints. We consider three cases, in
all of which the objective is stochastic, that
is, an expectation over an unknown distribu-
tion that is accessed by sampling. The nature
of the equality constraints differs among the
three cases: deterministic and linear in the
first case, deterministic and nonlinear in the
second case, and stochastic and nonlinear in
the third case. Variance reduction techniques
are used to improve the complexity. To find a
point that satisfies e-approximate first-order
conditions, we require O(e~?) complexity in
the first case, O(¢ %) in the second case, and
O(¢7?) in the third case. For the first and
third cases, they are the first algorithms of
“single loop” type that also use O(1) sam-
ples at each iteration and still achieve the
best-known complexity guarantees.

1 INTRODUCTION

Augmented Lagrangian and quadratic penalty algo-
rithms have been a mainstay for solving nonlinear opti-
mization problems for several decades (Hestenes, 1969;
Powell, 1969; Fiacco and McCormick, 1968; Bertsekas,
2014). We consider the nonlinear programming tem-

plate:
1.1
zeX ( )

where f : R — R and ¢ : R — R™. Historically,
algorithms for (1.1) are analyzed for the case of non-
linear and nonconvex f and c. Typical results show

min f(x) subject to ¢(x) =0,
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asymptotic iterate convergence with local linear or su-
perlinear rate guarantees. In the last two decades,
with the influence of the emerging field of data sci-
ence, there has been wider interest in global conver-
gence rates, including sublinear rates. Nonasymptotic
convergence rate analyses of augmented Lagrangian
method (ALM) and quadratic penalty method (QPM)
for nonlinear programming in both convex (Lan and
Monteiro, 2013, 2016; Xu, 2017, 2021) and noncon-
vex cases (Hong, 2016; Xie and Wright, 2021; Li et al.,
2021; Lin et al., 2022a; Lu, 2022; Huang and Lin, 2023;
Kong et al., 2023; Sun and Sun, 2021; He et al., 2023)
are surprisingly recent.

With large data sets fueling many recent advances in
machine learning and data sciences, stochastic algo-
rithms for solving (1.1) have become a necessity. These
algorithms generally work with a single-sample or a
mini-batch of the full dataset at each iteration. In
many applications, even one pass over the data can
be prohibitive. Unconstrained and simple-constrained
versions of (1.1), where c¢(z) is absent, have been
solved with stochastic projected gradient algorithms
for convex or nonconvex f (Lan, 2020; Davis and
Drusvyatskiy, 2019; Cutkosky and Orabona, 2019). In
this paper, we focus on three subclasses of (1.1) in
which ¢(z) is nontrivial, so that projection onto the
feasible set of (1.1) is too expensive to be practical.

In all problems considered in this paper, the objec-
tive f has expectation form, so we restate (1.1) more
narrowly as follows:

grgréi)rcl {f(z):= Eg[f(m,f)]} subject to ¢(x) =0, (1.2)
where f: R — R and c: R* — R™ are functions with
Lipschitz continuous gradients that can be nonconvex,
while the set X C R? is closed and convex. The func-
tion f maps R? x Z to R, where Z is the sample space
with £ € E and ¢ is distributed according to P=. E¢ is
the expectation over the distribution of . (We some-
times abbreviate E¢ as E when the context is clear.)

Three cases. We consider three instances of the
template (1.2), motivated by applications in machine
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learning and data science.
L. Let c(z) := Az — b and X = RY, yielding
i =E[f
min {f(z) := E[f(z,€)]}
subject to Ax = b,

where A € R™*?, This problem arises in the
context of distributed optimization where the lin-
ear constraints enforce consensus (Hong et al.,
2018; Hong, 2016). It also arises in resource al-
location (Boyd et al., 2011, Section 7.3), reformu-
lations of problems involving the composition of
convex or nonconvex functions with linear oper-
ators, and other contexts (see also (Hong, 2016,
Section 1.1)). Oracle accesses in this case require
stochastic gradients of f and matrix multiplica-
tions by A and AT. We denote by § > 0 the
smallest nonzero eigenvalue of AT A, so that

|ATA|| > V6||A|| for all A\ € Range(A). (1.3)

II. In the second case, ¢ : R? — R™ is a deterministic
nonlinear function, yielding

min { f(x) := E[f(z,€)]}
subject to c¢(x) =0,

(IT)

with X C R? a closed, convex set. Prob-
lems of this type arise in optimization prob-
lems with partial differential equation (PDE) con-
straints (Kupfer and Sachs, 1992; Rees et al.,
2010; Curtis et al., 2021). The oracle access re-
quires stochastic gradients of f, and evaluations
of constraint function and gradient, ¢ and Ve.

ITI. The third problem has the constraint ¢ as a non-
linear function defined as an expectation

min { f(x) := Ee[f(2,€)]},
subject to c(x) = E¢[é(x, ()] =0,

where é : R? x Z — R™, with Z being the
sample space and X C R¢ is closed and con-
vex. The oracle access requires stochastic gradi-
ents and stochastic function evaluations for both
objective and constraint. This problem is mo-
tivated by recent applications of neural network
training with output constraints, in such tasks
as out-of-distribution detection or fair machine
learning (Katz-Samuels et al., 2022; Liu et al.,
2020; Dener et al., 2020; Zafar et al., 2019).

(I11)

Problems (I), (II), (IIT) are studied in Sections 2, 4.2,
and 3, respectively. Inequality constraints can be ac-
commodated into (IT) and (IIT) via the use of slack
variables, which can be constrained to be nonnegative
by membership in an appropriately defined set X.

First-order stationarity. We say that = is e-
stationary for (1.2) if there exists A € R™ such that

d(Vf(Z)+ Ve(z) T\, =Nx (Z)) < e,

PP

where d(z,C) = mingec || — y|| is the distance func-
tion and Nx (Z) is the normal cone to X at Z. This is
the same first-order stationarity definition as in Sahin
et al. (2019); Li et al. (2021); Lin et al. (2022a); Li
et al. (2023) and generalizes Xie and Wright (2021) to
the case when X is present in the problem formulation.

We say that T is an e-stationary point in expectation
if (1.4) holds in expectation and we consider oracle
(defined in the sequel) and sample complexities.

Augmented Lagrangian and Quadratic Penalty.
Augmented Lagrangian methods were proposed to
overcome both the theoretical and practical draw-
backs of quadratic penalty (QP) approaches (Hestenes,
1969). Instances of ALM are traditionally equipped
with stronger guarantees than QPM; they incorporate
dual updates that help with feasibility guarantees and
subproblem conditioning (Bertsekas, 2014). However,
for existing nonasymptotic analyses in the nonconvex
cases, the literature does not reflect these advantages.
In the deterministic case, the existing analyses for
ALM with best-known guarantees require the penalty
parameters to increase rapidly to infinity, so the dual
step size effectively needs to decay (Sahin et al., 2019;
Li et al., 2021). The only work to our knowledge with
a constant dual step size and penalty parameter is Xie
and Wright (2021), which has worse complexity than
the methods with growing penalty parameters and de-
caying dual step sizes.

Since constant penalty parameter and constant dual
step sizes are the main features of ALM, we focus on
a version of ALM for problem (I) that uses constant
penalty parameters and constant dual step sizes. For
the more general problems, we focus on QP-based al-
gorithms and their extensions to ALM-type algorithms
with small dual step sizes.

Oracle model. We assume throughout to have ac-
cess to an unbiased oracle for gradients, a standard
setting used for example in (Arjevani et al., 2022;
Cutkosky and Orabona, 2019). That is, there exists
Vf(x,€) such that

Ee[Vf(2,€)] = Vf(z),

N N 1.5
Ee||V f(x,€) — Vf(y,9)|?* < L?||z — y|>. (5

Algorithmic Approaches and Contributions.
We handle the functional constraints via two classi-
cal approaches: quadratic penalty and augmented La-
grangian (Bertsekas, 2014; Nocedal and Wright, 2006).



Ahmet Alacaoglu, Stephen J. Wright

These algorithmic frameworks normally require solu-
tion of subproblems at every iteration. Instead of
solving these subproblems exactly, we perform one
stochastic gradient descent step on each subproblem,
yielding an overall approach that is single-loop in na-
ture. This technique is also known as linearization in
the context of ALM and QPM (Ouyang et al., 2015).
To obtain improved sample complexity guarantees, we
also use variance reduction techniques (see Cutkosky
and Orabona (2019)). Our main aim in the paper is
to provide simple and easily implementable single-loop
algorithms for the described problem classes with op-
timal or best-known complexity results.’

In the case of linear constraints studied in Section 2,
we use constant penalty parameter and constant dual
step sizes for an ALM with variance reduction. In this
case, we show the complexity O(e~?) which is optimal
(up to a log factor) even for unconstrained, smooth,

stochastic optimization (Arjevani et al., 2022).

With functional constraints, consistent with the lit-
erature on deterministic instances of our template,
we use increasing penalty parameters with quadratic
penalty (and decreasing dual step sizes with ALM in
Section 4.1). We show O(e~4) complexity with deter-
ministic constraints in Section 4.2 and O(¢~5) com-
plexity with stochastic constraints in Section 3.

Besides being single-loop and requiring only O(1) sam-
ples at each iteration, each iteration of our algorithms
requires only simple projections and simple vector op-
erations. We do not require complicated auxiliary sub-
problems to be solved. As a consequence, our sample
complexity and computational complexity results are
essentially the same.

1.1 Related Works

Algorithms for nonlinear programming have been
studied for many decades, but recent years have seen
more focus on the case of functions defined as expecta-
tions. There is focus also on algorithms that identify
an approximate solution in some finite time, expressed
in terms of a parameter ¢ > 0 that quantifies the in-
exactness in the solution of the problem. For ease of
presentation we discuss the related works separately
for each of our three special cases.

Problem (I): Nonconvex stochastic optimiza-
tion with linear constraints. Complexity of
ALM in the case of deterministic f is studied in many
works; see for example Zhang and Luo (2020, 2022);

1Such a goal is nontrivial and not always achievable. See
e.g., Ji et al. (2022) and Zhang et al. (2020) for different
settings where one currently needs multiple loops for best
complexity and research for single-loop methods is active.

Hong (2016); Hong et al. (2018). A complexity of
O(e7?) is typical for identifying a point Z that satisfies
first-order conditions e-approximately in the sense of
(1.4), for some X\. Among the works mentioned, Hong
(2016); Hong et al. (2018) focus on the unconstrained
case and Zhang and Luo (2020, 2022); Zhang et al.
(2022) focus on the case in which additional polyhe-
dral constraints (or more general nonlinear functional
constraints with further assumptions) are present, re-
quiring error bounds to estimate distances to the op-
timal set. One feature of the methods in these works
is that both the penalty parameter and the dual step
size in ALM are constant.

With nonconvex and stochastic objective, Huang et al.
(2019) obtained complexity O(e~?) with additional as-
sumptions such as A having a full rank, large batch
sizes depending on accuracy &, and a uniform upper
bound on |V f(z)||?. (The latter often does not hold
for problems in the form (I).) See Sec. 2.2 for the
details and how we address these shortcomings?.

The work of Zhang et al. (2021) focuses on a
consensus-optimization instance of (I) with noncon-
vex stochastic objective, and uses gradient tracking
and the variance-reduction approach from Cutkosky
and Orabona (2019) to obtain O(e~?) complexity. We
achieve the same rate for a more general problem than
consensus optimization; see for instance (Hong, 2016,
Sec. 1), (Boyd et al., 2011, Section 7) for a “sharing
problem” example or Bot and Nguyen (2020), for stan-
dard splitting approaches to represent composite op-
timization problems as linearly constrained optimiza-
tion. Our ALM type method is more general and dif-
ferent from the problem-specific method of Zhang et al.
(2021).

Problem (II): Nonconvex stochastic optimiza-
tion with nonlinear deterministic constraints.
For this problem, Shi et al. (2022) analyzes an algo-
rithm similar to ours except that the penalty parame-
ter is fixed (ours is variable) and depends on the pre-
defined number of iterations K. Their approach in-
volves an initial stage of finding a feasible point of the
nonconvex constraint and has complexity O(s~%). We
show that the initial stage is unnecessary when we use
variable parameters that depend on the current iter-
ate k. The sequential quadratic programming (SQP)
method of Curtis et al. (2021) has sample complex-
ity 6(5*4), but this paper does not address iteration
complexity or computational complexity directly. In
addition, each iteration requires solution of a linear
system, a more expensive operation than the vector
operations required at each iteration of an ALM.

2The same limitations are present in (Lin et al., 2022b,
Thm. 5.6).
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Problem (I11): Nonconvex stochastic optimiza-
tion with nonlinear stochastic constraints.
The two works building on a regularization idea for
solving problem (III), with inequality constraints in-
stead of equalities, are Boob et al. (2022) and Ma et al.
(2020). Both assume the existence of a strictly feasible
solution, so their applicability to equality constraints
is not clear. Both describe a complexity of O(¢7°%) on
a slightly weaker assumption on Lipschitz continuity
of the gradient. The algorithms of these papers have
a double loop structure, compared to the single-loop
algorithm that we analyze.

The recent independent work of Li et al. (2023) con-
sidered a similar idea of using STORM estimator for
this problem to obtain complexity O(¢~%). In contrast
to us, they analyzed an inexact ALM. Apart from the
complicated structure of a double loop method, an im-
portant drawback of this approach is that termination
rule of the inner loop is generally not implementable.
This is because the number of required iterations of the
inner loop depends on the optimal value of the sub-
problems, variance upper bounds or other unknown
values®. The other alternative for termination of the
inner loop requires computing first order stationarity,
which in turn requires the computation of full gradi-
ents, an operation that is not practical with stochastic
algorithms. By contrast, single-loop any-time algo-
rithms like ours have a straightforward implementa-
tion both conceptually and in practice.

Notation. To improve readability, we use standard
asymptotic notations such as O, 2, < in the main
text by suppressing universal constants. The distance
between a point x € R™ and a set C C R"” is denoted
as d(z,C) = mingec ||z — y||. Any-time refers to an
algorithm that does not require setting € in advance.

2 LINEAR CONSTRAINTS:
PROBLEM (1)

2.1 Algorithm and the Main Result

In this section, we address (I), restated here as

min {f(z) :=E[f(2,€)]} subject to Az =b, ()
for which the augmented Lagrangian is

L,(w, ) = f(x) + (A Ax = b) + £} Az = b|%,

3(Li et al., 2023, Lemma 5) suggests that optimal value
of subproblems can be replaced by other values such as the
diameter of balls containing the iterates, upper bound of
function values or the parameter of regularity-condition (&
in (A5) in our notation, v in (Li et al., 2023, Assumption
3)) to set the number of inner iterations. Unfortunately,
these values are also normally unknown.

for parameter p > 0. We describe and analyze a lin-
earized ALM given in Algorithm 1, in which a single
step of stochastic gradient descent replaces the min-
imization of augmented Lagrangian with respect to
the primal variable. This algorithm can be seen as a
variance-reduced version of ALM with constant step
sizes, studied in the deterministic setting by Hong
(2016). Due to stochasticity in the objective, we
use a variance-reduced estimator of V f(xy) based on
sampling of the oracle Vf(z;,&) for i = 0,1,...,k;
see (1.5) for the oracle description. The output of the
algorithm (denoted as Z in Thm 2.1), after running for
K iterations, is a randomly selected primal-dual pair,
ie., (z3, ;) where k is selected uniformly at random
from {1,2,...,K}.

In this section, we obtain optimal complexity results
with constant penalty parameter / dual step size p in
ALM. The latter feature of the algorithm is the main
challenge in the analysis, and is the reason for our
separate focus on the linearly constrained case.

We make the following assumptions in this case (see
also (1.5)):

e[|V f(u,&) = Vf(©,0))? < L}|lu -],
Ee||Vf(x,6) = V(@) <V,
f(z) 20, Vz.

(A1)

The first assumption in (A1) is Lipschitz continuity
of the gradients on average (also called mean-square
smoothness, see (Arjevani et al., 2022, eq. (4))) while
the second is a standard variance bound. By Jensen’s
inequality, the first inequality in (A1) also implies that
IV f(u) = Vf(v)|| < L¢lju —v|. The last assumption
in (A1), also made in Hong (2016) is without loss of
generality”.

In the following subsection, we prove the following re-
sult, stated informally here for simplicity. The choices
of parameters p, oy, and 1y, and the full result appear
as Theorem 2.4 and Corollary B.5.

Theorem 2.1 (Informal). With the assumptions
in (A1) and suitable choices of Ny, p, axt1 as in (2.1),
Algorithm 1 outputs (T, \) such that

E|Vf(Z)+ATN| <e and E|AZ —b|| <e,
after K = O(e™3) iterations, thus requiring O(c~3)
evaluations of stochastic gradients of f.

Remark 2.2. An important aspect of this result,
which is critical for ALM, is that the penalty param-
eter and the dual step size p is a constant and in-
dependent of final accuracy € or iteration counter k.

4As mentioned in (Hong, 2016, footnote 1, pg 5) this
assumption is essentially equivalent to lower boundedness

of f.
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Algorithm 1 Stochastic Linearized Augmented Lagrangian Method with Variance Reduction for (I)

1: Input: Initialize Ao, xo, go arbitrarily and au, p, nx as in (2.2).
2: for k=0,1,... do

3 Tpg1 = ok — et (g6 + AT + pAT(ACCk —b))

4: )‘k-‘rl = At + p(A{Ek_H - b) ~

5. Sample £x1+1 ~ Pz and set gry1 = Vf(Trt1,Ek+1) +

6: end for

(1 — aws1)(gk — V£ (@, Err1))

The choices ay,n are independent of € and they de-
pend on k because of the stochastic setting we focus
on. The independence from ¢ is critical to ensuring
that a certain potential function can increase only by
a controlled amount at every iteration, which in turn
is important for lower boundedness of the expected
potential. Further explanations appear in Section 2.2.

2.2 Analysis

We use the following parameters which are written
with asymptotic notations for readability (recall (1.3)
and (Al)). We suppress only universal constants; full
specifications are provided in (B.19).

Ly

P ko= Q(poly(671)),
"= (T, + AP 21)
n
= = 12112
=k + ko) /3 log(k + ko)’ k-

We start with a lemma that analyzes a single iteration
of the algorithm. This lemma constructs a potential
function Y, that we show later to be non-increasing in
expectation, up to a small error. Due to the combina-
tion of ALM with constant dual step sizes/penalty pa-
rameters and the use of variance-reduction techniques,
each with complicated constants, the coefficients in
this lemma are rather involved. We only provide the
orders of some terms, which suffice to convey the cen-
tral ideas in the lemma.

Lemma 2.3. Let the assumptions in (A1) hold. Set
0, Mk, g as (2.1). For the iterates of Alg. 1, we have

7]
EYir1 < EY; — B Elg, — V(2|

+ (ﬂl,k+1 + ﬂ?,kJrl)Eka+1 — $k||2 (22)
+ wy + vV,
where
m
Yit1 = Lp(Trt1, Akt1) + QLHAxk—H —b|?
Mhe+-2
2 2
277k:+1 ||‘Tk+1 B xk”Qk+1 + B17k+1 ka—‘rl - $k||
+ lgrs1 — V(@)
CMk4-1

6(1+c1) 2m ) 9
+ + v
(B4 22 g — 9o

with ¢ >0, c=121L% , m =< Lif, and

L 1
= I —1 =0 f —1 _
517k r+ Miet15 ﬁ?,k ( S + Mg+ 20k ’

31 +c) 2
wg = TEkaJrl = 2rp + xkfl‘lQ,Lleﬂ
m 2
— TEHMH =2z + Tp—1l1g, 4
2
n=o (?Z) . Q=T pATA =0,

At a high level, the lemma requires us to show that ()
Bikt1+B2k+1 < 0, (i) wy < 0and (ii5) > pe | v < 00
to obtain that the function Y} is non-increasing in ex-
pectation up to a small error (see (2.3)). The pa-
rameter choices of (2.1) with constants chosen as in
in (B.19) can be shown to achieve the required prop-
erties, by a tedious but straightforward analysis.

The main theorem of this section utilizes the single-
iteration inequality described in Lemma 2.3 to show
that both scaled iterate differences and variance term
are small. Approximate stationarity follows in view
of Theorem 2.1 via standard reductions described in
Corollary B.5. We provide a proof sketch to illustrate
the main ideas; details are deferred to Section B.3.

Theorem 2.4. Let the assumptions in (A1) hold and
suppose that ng and the other algorithmic parameters
are chosen as in (2.1) (see also (B.19)). Then, for the
iterates of Algorithm 1, we have for any K > 1 that

N \

+
Z gt (er = 2= )| + lgs—1 = V f (zr-1)|1?]
O(K

2/3)

Proof sketch. In the result of Lemma 2.3, we use the
parameter choices given in (2.1) to obtain

EY41 < EY; — Ellzgrr — x|

1
167541

— L gk — V f () | + 0k V2.

. (2.3)

Note that by the choices of 7, ax and the definition of
vk, we have that Y7, v, = O(1). By adjusting (2.3)
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and summing for k£ > 1, we obtain

K+1
NK+1 5 )
32 ;; (Ellzx — zp—1lI* + Ellgi—1 — V[ (2x-1)[?)

1 "
<EY; + — — 2, — 2
SEYi 4 gl — ol + T llo — V£ (o)
—EYk11 +0(1).

To ensure that the the right-hand side is upper
bounded by a constant, we need to show EYj,; is
lower bounded. This is not immediate, because our
use of a constant dual step size blocks the derivation
of a uniform upper bound on the norm of dual variable
M. Lack of monotonicity of EY}, also prevents us from
using the estimates available in deterministic cases; see
Hong (2016). In Lemma B.8, we show that the almost
monotonicity of EY} given in (2.3) is sufficient to show
lower boundedness. This fact leads to the result. [

With this result, we can use the standard reductions of
Corollary B.5 to prove Theorem 2.1. It is worth noting
that most of the estimations in the analysis would sim-
plify if we were to fix all ), ay, at values that depend on
the final iterate K (or equivalently £). However, such
choices would not suffice to show lower boundedness of
EY};, mentioned above, which is necessary to obtain the
right constants. Our use of variable step sizes also al-
lows us to derive an “any-time” algorithm with no need
to set an accuracy ¢ in advance. For example, Huang
et al. (2019) needed to assume uniform boundedness
of ||V f(zx)||? which trivially implies a lower bound for
the potential; see (Huang et al., 2019, eq. (69)). How-
ever, this assumption does not hold normally and the
limitations of bounded gradient assumption are well-
known; see, for example, (Yang et al., 2023, Section
3), Faw et al. (2022). Our analysis does not need this
restriction to obtain a lower bound for the potential.

3 STOCHASTIC CONSTRAINTS:
PROBLEM (1)

3.1 Algorithm and the Main Result

In this section, we address (III), restated here as

min { f(x) := E[f(z,€)]}

subject to ¢;(x) := E¢[¢;(x,()] =0, Vie{l,...,m},
where X is convex and closed, fand ¢;, i =1,2,...,m
are smooth functions, c¢(x) = (c1(x),...,cm(x))", and

Ve is the Jacobian.® The notation Px denotes projec-
tion onto X. In addition to the oracle model described

50ne can consider m = 1 in the first reading for sim-
plicity.

in (1.5), in this section we also have access to Ve; such
that E[Ve;(z,¢)] = Vei(z). We assume that there are
constants f/vf, Ly., and L, such that for all T,Yy, we
have

Ee[|Vf(2,6) = V(.0 < Ly¢llz — %,

EC”VC(I’, C) - Vc(y, C)||2 < LQVCHZE - yH27
Ecllé(e, ¢) — &y, QII* < Leflx —yl*.

These conditions are stronger than mere smoothness

of f,c but are necessary for variance reduction in gen-

eral (Arjevani et al., 2022). Other recent works (for

example, (Boob et al., 2022)) do not use this assump-

tion but obtain a slightly worse complexity result (see
Section 1.1).

(A2)

Algorithm 2 is based on the quadratic penalty function
p m
Qp(x) = f(z) + 5 > (ei(@))?.
i=1

The variance reduced estimator g¢x41 is based on
STORM  (Cutkosky and Orabona, 2019).  The
quadratic terms (¢;(x))? are not in the suitable form
to apply SGD due to their compositional structure.
However, it is a special form for which simply using
independent samples can give an unbiased sample for
the gradient. (This observation appeared in the recent
independent work (Li et al., 2023).) Let us define the
stochastic oracle

VQ,(z,B)
= V(2,€%) +p)_ Veilw, eilw, ¢?)
i=1
where B = (£Y,¢*,¢?) € 2 x Z* with ¢ and ¢* iid.
We then have that E[V f(x,£0)] = Vf(z). Addition-
ally, Vi = 1,2,...,m, we have
EC17C2 [601'('1;’ Cl)éi('xa CQ)]
= Eo [Vei(w, ¢Ee [E(, )]
= Vei(x)e;(x),
where the first step is by independence of ¢! and (2.

Hence, we have EVQ,(z) = VQ,(r). We assume that
there are positive constants o¢, ov., and o, such that

E|Vf(z,&) — Vf(2)|? < o3,
E|Ve(z,€) — Ve(@)|? < 0%,
Elc(z,€) — c(z)|* < oF,

(3.1)

(A3)

a set of assumptions also made in (Boob et al., 2022,
eq. (2.9)). Other assumptions include the following:

IVe@)] < Coer (@)l < Ce,
[Ve(@, Ol < Orer llelm Ol <Cer 4
fn)| < By, V5@ < Coy.

Qp(r) > Q > —o0 Vp,x.
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Algorithm 2 Stochastic Linearized Quadratic Penalty Method with Variance Reduction for (III)

1: Input: Initialize 21 € X and g1 = @Qpl (z1, B1) and o, pr, nk as in Theorem 3.1

2: for k=1,2,... do

3: zpg1 = Px(zk — nrgr)

4: S~ample 524—17 Cli+1~7 CI§+1 to get Brt1 = £€2+1»¢+17C1§+1) € B x Z* where Cé-&-l and CI%—Q—l are i.i.d.
5: VQp(x, ~Bk+1) = Vf(%ﬁ%ﬂ) + PZZ‘Zl Vci(x, Clifl)éi(xv CI%+1)

6:  grt1 = VQpyiy (Tht1, Brg1) + (1 — akt1)(9x — VQpy, (T, Brt1))

7: end for

These boundedness assumptions are widespread for
nonconvex constrained problems, even with determin-
istic objective and constraints, see for example (Sahin
et al., 2019; Lin et al., 2022a; Li et al., 2021).

Under these assumptions, we have that z — Q,, () is
L,,-smooth with L,, = pp(Lvs+m(CeLy.+Cv.L.))
which, for example, we can see by direct calculation on
the gradient. For variance reduction, we use

EB”@QPIC ({E, B) - @ka (ya B)H2

" (3.2)
< Lgk ||J} - y||25

where L2 = Lp?, L:=4L%, +4m?(C?L%,,+ C% L?),
with pr > 1. This can be shown the same way as the
L,, by using (A2) and (A4) (see also (C.3) and (C.2)).

We also use a generalization of the full rank assump-
tion on the Jacobian. Recall that without the set inclu-
sion constraint z € X, this means ||Ve(xy) Te(zy)|| >
dle(zy)|. With constraints, we assume

d(Ve(ar) " e(ar), —Nx () > dlle(zi)].  (A5)

This assumption is common in the existing literature
of deterministic or stochastic algorithms with noncon-
vex functional constraints, see e.g., Sahin et al. (2019);
Li et al. (2021); Lin et al. (2022a); Li et al. (2023). Let
us note that this is implied by assuming LICQ in the
whole space. Bolte et al. (2018) make a similar as-
sumption that they term uniform regularity. Lin et al.
(2022a) considered the relationship of this assump-
tion with Kurdyka-Lojasiewicz and constraint quali-
fications.

We state now the main result for this section.

Theorem 3.1. Let the assumptions in (A2), (A3),
(A4), (A5) hold. Set the parameters of Algorithm 2 as

1 72

= — = k1/5 = -
9Lp(k:—|—l)3/57pk 14 s 041 81(k+1)4/57

Nk

for some p > 1. Then, there exists A such that
Ed(V f(zj_,) + Ve(j ) "A —Nx(z3,,)) <€,
Efle(z; )l <e.

with_number of iterations K of Algorithm 2 bounded
by O(¢=°) and k selected uniformly at random from
{1,...,K}.

Remark 3.2. This is an iteration complexity result
that directly translates to O(¢~?) sample complexity
and computational complexity. This is because each
iteration of Algorithm 2 requires one sample of each
stochastic function f, 2 samples of (¢;)™; and each
iteration only involves simple projections to X and
vector operations.

Remark 3.3. It is worth noting that it is straightfor-
ward to get rid of the logarithmic terms in the above
bound by using parameters 7, pi, that depend on the
final iterate. However, this would require an initial
preprocessing stage to get a near-feasible point for get-
ting the best complexity. Shi et al. (2022) used this
approach to study the deterministic constraints set-
ting.

Remark 3.4. We state our results for the constrained
case for simplicity. The extension to the proximal
case, where we have the additional proper convex lower
semicontinuous function instead of the constraint x €
X, is straightforward with our analysis template.

3.2 Analysis

As in the previous section, we start with the one iter-
ation analysis of the algorithm for which we suppress
some of the universal constants for readability. State-
ment of the lemma with details appears in Sec. C.2.

Lemma 3.5. Under the assumptions in (A2), (A3),
(A4), (A5) and the parameters (see also (3.2), (A4))

1
= = T a0 = kl/sv
Mk OLp(k +1)3/5 Pk =P
72
Qg1 =

81(k + 1)%/5’

for some constant p > 1, we have that

THEd (Vf (i) + i Ve(in) Te(wisn), ~Nx (@141))
< ]E[Yk - Yk+1 + |ka (xk+1) - QP}«-H (karl)H + gk+1a

where

Yiy1 = Qppyy (Tr41)

m”gk—&-l - Vka+1(xk+1)||2,
k+1'lk
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Erp1=0 (“”“ - p’““)Q) +0 (ai“) .

,0%4_1771@ Nk

Remark 3.6. The first term of &1 has the order
O(k~7/%) and the second term of &£ has the order
O(k~1), therefore Ele Err1 = O(log(K +1)).

Proof sketch of Theorem 3.1. In view of Remark C.2,
it is easy to see that the only remaining piece we need
on top of Lemma 3.5 is the control over the penalty
parameter changes. For this, we show in Lemma C.3
that

> EIQp (xhr1) = Qpuss (zr41)] = O(1).

k=1

(3.3)

The main idea in this lemma is to use the estimate of
Lemma 3.5 with the uniform upper bound on ||c(x})]|?
from (A4) and take advantage of the decay of |pp —
pr+1| and (A5) to obtain (3.3). Using this estimate in
Lemma 3.5 gives the result. O

4 EXTENSIONS

In this section, we consider two extensions (with de-
tails and proofs given in Sec. D.1 and D.2) and show
how they follow by minor adjustments on our analysis.

4.1 Dual Variable Updates

In the context of nonconvex optimization with non-
convex functional constraints and ALM, the standard
way of incorporating dual updates is to use small step
sizes and large penalty parameters to ensure bound-
edness of the dual variable, see Li et al. (2021); Sahin
et al. (2019); Shi et al. (2022). Rapidly increasing,
unbounded, penalty parameter is then used to ob-
tain feasibility guarantees. One exception is Xie and
Wright (2021) which, unfortunately comes with worse
complexity guarantees for first-order stationarity, com-
pared to Li et al. (2021); Lin et al. (2022a). We con-
sidered the quadratic penalty method in the previous
section for simplicity, but we show in this section that
dual updates can be incorporated as done in Li et al.
(2021); Sahin et al. (2019); Shi et al. (2022), with small
step sizes. The modification compared to Algorithm 2
consists of changing the definition of gx4+1 and incor-
porating a dual update step. In particular, we will
change the step for g1 as

gk+1 = ﬁka+1 (mk+1a )‘k+1a Bk+1)
+ (1= k1) (9k — VQpy (Tk, ks Bry1)),

where

VQ(x, A, B) = V(2,6 + Y Vei(w, ¢
=1

+p Y Veilw,¢éi(x, ).

i=1
We also add the dual update step as

Not2,i = N1, + Vet 1,6 (Tht1, Gogr),s (4.1)

for all ¢ € {1,...,m}. As alluded earlier, dual steps
generally require a decaying step size as v+ (or clip-
ping the contribution of the previous dual parameter
by a constant amount as in Lu (2022)) for getting the
best-known guarantees.
Theorem 4.1. For the algorithm described in Sec-
tion 4.1, let
B 1

9Lp(k 4 1)3/5

v 72

P = = s Qg1 = S a7
Tht = Flog(k + 1)2[E (@, B) T 81k + )45
for some constant p > 1, v > 0. Also let the assump-

tions in (A2), (A3), (A4), (A5) hold. We have that
there exists \ such that

Ed(V f(z4,,) + Vel ) A —Nx(z3,,)) <e,

o pi = pkt/®,

with number of iterations bounded by O(¢=>). More-
over, we also have that Ellc(x; )| <e.

4.2 Deterministic Functional Constraints

In this section, we consider the case when the con-
straints are deterministic. In this case, we set the pa-
rameters accordingly to get the complexity O(e™*).

Theorem 4.2. For Algorithm 2, set
B 1
9Lp(k + 1)1/2
72
81(k + 1)1/2’
for some constant p > 1. Also let the assumptions in
(A2), (A3), (A4), (A5) hold with a deterministic c¢(x).
We have that there exists A such that
E[d(Vf(zj,,) + Vel ) A —Nx(z;,,))] < e,
Elle(zi)ll <,

Mk pi = pk*/*,

Q1 =

with number of iterations bounded by O(c~*).

We note that a similar result with a single-loop algo-
rithm is obtained in Shi et al. (2022) with parameters
depending on the last iteration (or equivalently, on the
final accuracy). This results requires a pre-processing
step to get an almost feasible point to get the com-
plexity O(e~*), which deteriorates to O(¢~°) other-
wise. Hence, obtaining the more favorable complexity
leads to a two-stage approach and also needing to set
the final accuracy. Our approach leads to an algorithm
that is both single stage and any-time.
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5 CONCLUSIONS & OPEN
QUESTIONS

This paper focused on improving the understanding
of single-loop algorithms for stochastic optimization
with functional constraints belonging to three differ-
ent classes highlighted in Section 1. In contrast,
(i) for nonlinearly constrained problems, previous
work relied on double loop algorithms that have non-
implementable stopping criteria for their inner loops
(unless strong assumptions for access to structural con-
stants made), (i) for linearly constrained problems,
previous work relied on increasing batch sizes with re-
strictive assumptions on the gradient norm. Our work
helps overcome these drawbacks and opens up some
directions that we sketch below.

1. An important point that is already emphasized
many times in our manuscript is the following:
the existing analyses for ALM even for determin-
istic and nonlinearly constrained problems require
increasing penalty parameters (or equivalently,
large penalty parameters depending inversely on
the target accuracy) and small dual updates to
obtain best-known complexity guarantees. This
can be observed by the analysis frameworks in
these works which analyze ALM like a quadratic
penalty method with perturbation due to dual pa-
rameter updates. This results in ALM guarantees
to be worse than guarantees for quadratic penalty
methods.

This is also the reason why we used increasing
penalty parameters in our Section 3. On the other
hand, one of the main points for ALM historically
was its ability to work with non-increasing penalty
parameters. Xie and Wright (2021) provided an
analysis with constant penalty parameters, albeit
with a worse complexity guarantee. An important
open question is to analyze ALM with constant
penalty parameters (independent of target accu-
racy €) and large dual step sizes for deterministic,
nonlinearly constrained nonconvex problems and
obtain the best-known O(e73) complexity. This
would also lead the way to design more efficient
stochastic methods, to improve our results.

2. A surprising difficulty for nonconvex problems
with linear constraints is incorporating pro-
jectable constraints on top of linear constraints.
A recent discovery on this context have been the
work of Zhang et al. (2022) that uses error bound
theory and can solve problems with linear con-
straints and projectable constraints with single-
loop methods and optimal complexity. It is inter-
esting to investigate how the results in this paper

can be extended to stochastic case or for problem
with nonlinear and non-projectable constraints.
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1. For all models and algorithms presented, check if
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ting, assumptions, algorithm, and/or model.
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(time, space, sample size) of any algorithm.
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external libraries. [Not Applicable]
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(a) Statements of the full set of assumptions of
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(b) Complete proofs of all theoretical results.
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3. For all figures and tables that present empirical
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(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Not Applicable]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
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the random seed after running experiments
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(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
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4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
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rial or as a URL, if applicable. [Not Applica-
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(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
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with human subjects, check if you include:
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cable]

(¢) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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A PRELIMINARIES

Remarks regarding the stochastic oracle model in (1.5). One possible way to obtain v f as characterized
in (1.5) is to compute V. f(z, &) where f is defined in (1.2). For this quantity to satisfy the requirement in (1.5),
its expectation over £ must be the full gradient. However, this would require the gradient and expectation
operations to be interchangeable, which is not always true, especially in our nonconvex setting. It does however
hold for functions in which the support of £ is finite (that is, finite-sum functions). It also holds under fairly
general conditions for smooth f. We make similar assumptions and apply similar conventions for the constraint
functions ¢ and ¢ and use the oracle model described in this paragraph. It is worth noting that this oracle access is
standard in stochastic optimization with nonconvexity, see e.g., Ghadimi and Lan (2013); Arjevani et al. (2022);
Cutkosky and Orabona (2019); Lan (2020).

A preliminary lemma. The variance reduction technique introduced in Cutkosky and Orabona (2019) uses a
vector gy at each k as a proxy for a gradient of an expectation function. The variable g; accumulates information
from earlier iterations and from many values of the random variables, thus has lower variance than the gradient
evaluated at x; and a single value of the random variable.

We need a lemma to bound the difference between g and the corresponding gradient, as it evolves across
iterations. Here we state this lemma in a general form that can be applied in all the problem formulations
considered in this paper. The lemma includes possibly iteration dependent functions to accommodate situations
in which g represents the gradient of the augmented Lagrangian or quadratic penalty function with an iteration-
dependent penalty parameter. This lemma builds on (Cutkosky and Orabona, 2019, Lemma 5, Theorem 2); see
also Ruszczynski (1987); Mokhtari et al. (2020); Yang et al. (2016) for conceptually similar derivations in other
settings.

Lemma A.1. Let Gi: R" — R”™ and Gy(z,€) be such that B¢[Gy(zy,€)] = Gr(wr), Ee[Grin(zri,8)] =

Gri1(zr11). Define gis1 = Gry1(Thi1, &hv1) + (1 — aiy1)(gr — Grl@h, &ry1)) for k>0 and go € R™. We then
have

Ekllgrt1 — Grpr ()12 < (1= art1)?lgr — Grlaw)|1?
+ TER Gt (Th41, Ee1) — Grgr (T G 1P
+ 42E |G ror1 (Tk, E1) — Gr(@ns Grr) |12
+ 307 11 Bi || Gi(k) — Gr(n, &) 117

where Ey, is the expectation conditioned on all the history up to and including xy1,&k.

Proof. We have, by subtracting Gi11(zk+1) from both sides of the definition of gxy1, that

g1 — G (@rr1) = G (Trr1, Gerr) + (1 — 1) (96 — Gr(@k, Eet1)) — Gt (Ths).

On this identity, we use the simple decomposition

(1= og1)(gk — Grl(@r, &s1)) = (L — aws1) (g — Grlar)) + (1 — apg1) (Gr(an) — Gr(wr, Ert1)),

to obtain

Gir1 — G (@rr1) = (1 — apr1) (g — Gi(@n)) + (Grgr (Trs1, Eet1) — Gry1(Ths1))

+ (1 = agp+1)(Gr(xk) — Gr(Tk, §p+1))-

We next take the squared norm of both sides and expand the right-hand side

lgrs1 — Grra (@)1 = (1 = ars1)?llgx — Gi(i)|?
+2(1 — arg1){gr — Grl(@r), Gt (@rin, 1) — G (Trpn))
+2(1 — 1) (g — Gr(xr), Gr(wg) — Gz, Ekrr))
+ 1Gr1 (@1, &s1) = G (@rgr) + (1 — argr)(Grl(an) — Grlar, &)1, (A1)
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We now take conditional expectation of this equality, where Ej is as defined in the lemma statement:

I? I

Ekllgrt1 — Grgr(@es1)|* = (1 — arg1)?llgr — Gr(zk)

~ ~ A2
+ Eil|Grs1 (@rs1, Err1) — Grgr(@e1) + (1 — oy 1) (Grlan) — Grl@n, &)1 (A2

This equality is because the inner product terms on (A.1) disappear after taking condition expectation: we have
gr. — Gi(x1) is deterministic when we condition on x4, and also Ex[Gry1(Tk11,8k+1) — Gry1(zry1)] = 0 and
Ei[Gr(xr) — Gr(zk, &k+1))] = 0, by the requirements on Gy and G41 given in the lemma.

For the last term on the right-hand side of (A.2), we use Young’s inequalities to obtain

Ei|Grsr (@1, Erp1) — Gryr (@) + (1 — anr) (Grl@r) — Grl(ar, )1
< BB Grir (h41) — Gk(ffk)H2 + 3Ek|\ék+1($k+1,§k+1) - Gk(xk7§k+l)”2
+3aj 1 Bi || Gr (k) — Gr(n, §ern) |1
< OBk || Grr1 (Thr1, Ek1) — Crl(@r, €)1 + 3024 B[ Grl@r) — Grl(ar, Erpn) |12, (A.3)

where the final bound joins the first two terms in the previous bound, by Jensen’s inequality, since
B [Grr (@r11, k1) — Grlan, Eer1)] = Grpa (@rr1) — Gr(an),

For the first term on the right-hand side of (A.3), we add and subtract Gjy1(zx, £x41) and use Young’s inequality
to find that

|G i1 (Ths1s Err1) — Grlzr, &)
7o . ~ ~
< 6||Gk+1($k+1afk+1) — Gr1 @k, & )12 + TN Grg1 (k, Erg1) — G, G ||
Thus (A.3) becomes

Erl|Grr (@1, Erp1) — Gy (@nin) + (1= angr) (Grl@r) — Grlar, )1
< TEL[|Grrt (Th1, Er) — Gt (@, Err) |12
+ 424 |G g1 (@h, k1) — Gr(@, Srp) |12
+ 303 11 Bl G (k) — Grl@, Errr)

By using this inequality to bound the last term on the right-hand side of (A.2), we obtain the result. O

B LINEAR CONSTRAINTS: PROBLEM (I)

B.1 One-step recursion on augmented Lagrangian

We recall the augmented Lagrangian function for (I) as
L,(@, ) = f(x) + (A Az = b) + £} Az = b|%, (B.1)
for p > 0. In this section, we prove the following result concerning the change in EL,(xx, Ax) over one iteration.
Note that the expectation E is with respect to the randomness of &, for £k = 1,2,.... Our result makes use of
the Lipschitz constant of VL, (-, A), which is
L= Ly + pll A% (B.2)
In the rest of this section, we make frequent use of the matrix @, defined by

Qi =, 'T - pAT A. (B.3)
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Lemma B.1. Let the assumptions in (A1) hold. Then for any k > 1, we have that

L 1
ELy(Try1, Aer1) < ELy (g, Ap) + (p - ) El|kt1 — xxl|* + LHlEHgk — Vf(z)|?

1
+ ;]E”/\k-‘rl — /\k||2~

With the definition of Qr+1 as in (B.3), and assuming that niy1 is chosen to ensure that Qi1 > 0, we also
have

E[[ g1 — Al <

SN

<6LfcIE||a:k — 21| + 602V + 60iE|gp_1 — Vf(zr_1)|?
_ _ 2
+ 3E||zpr1 — 275 + .’EkflanL_leJrl +3 (et =) Ella — $k1||2> .

Before proving this result, we state and prove an immediate corollary.

Corollary B.2. Under the same assumptions as Lemma B.1, for any positive constants c1 and cq, and with ny
defined as in (B.19) (where this definition depends on ¢y, c5, and other constants), we have

6(1+ cq)a?
EL,(Tht1, A1) < ELp(wk, Ak) + nk;]EHgk — V(x| + (p(sl)kE|gk1 —Vf(ze-1)|
L 1 (6 4+ ca)(1+ ¢1) L2
+{ =2 - Elzps1 — z)* + f]E||zk —x1|)?
2 2mep po
3(1+cp) 9 6(1+c1)aiV? ¢ 9
+ T]EHT%H — 2z + xk—1||Qz+le+l + T I ;]EH)%H = Akl

Proof of Corollary B.2. The proof is immediate after adding and subtracting %IEH)%.H — A\g||?, using the upper
bound of E|[Ag41 — A||? from Lemma B.1 and Fact B.7 to bound 3(n; ' — 771;&1)2 <yl O

We now return to the proof of Lemma B.1.
Proof of Lemma B.1. By Lipschitz continuity of VL,(-, A), we have
L
,Cp(xk+1, )\k) < Ep(xk, )\k) + <V1L‘,p(mk, )\k?)7xk:+1 — CL’k> + 7p||$k+1 — $k||2. (B.5)

By the definitions of V£, and x4 in Algorithm 1, we have that

(VaLp(@r, i), Thg1 — @) = (g + AT A + pAT (Azg — b), 21 — 23) + (VF(@k) — G Tt — k)

1 k
- |wes1 — zel® + et IV f(zr) — gell® + (e
M1 2 2Nk 1
1 Nk+1
= - |zt — 2l + ot [V (2r) — il
241 2

where the last two terms on the second line are from Young’s inequality. By substituting in (B.5) and collecting
like terms, we obtain
L,

1
£y(@hin Aw) < Lo M) + ( . ) lonss — el + 4 g — Y F)lP. (B.6)
2 2 2

We also have by the definition of £, in (B.1) and Ap4; in Algorithm 1 that
1
Lo(Trt1, Mev1) = Lo(@h41, Ak) = (A1 — Ak, ATpgr — b) = ;||)\k+1 = All?

By using this identity in (B.6), we obtain the first result (B.4) after taking expectation.
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We now bound E||Ax11— Ag H2 to get the second result. By using the definitions of xx 1 and A1 in Algorithm 1,
we obtain

Thy1 =Tk — Mes1 (g + AT Ng + pAT (Azy — b))

=2 — Qhy1(gk + A Apy1 + pAT A(zg, — wp41)) (B.7)
< (’r]kJFII pA A) (l‘k+1 — Z‘k) = —0gk — AT/\k_H. (BS)
Replacing k by k — 1 in this identity, we have
(' — pATA) () — zp—1) = —ge—1 — A" N,
— (77k+1I pAT A) (v — xp—1) + (nk_l - 7715&1) (xp — Tp—1) = —gr—1 — A \p. (B.9)

Subtracting (B.9) from (B.8) (to use a similar technique to one used in Hong (2016); Hong et al. (2018) with the
change of identifying the error coming from iteration-dependent parameters) gives

(Mt = pATA) (s —an — (21— 2-1)) = (7" — Mgy (2 — 2h-1)
= g1 — gk + AT (A — Aeg1): (B.10)

By rearranging, taking squared norm of each side, and using Young’s inequality, we obtain

JAT (A = M) < Bllgk — g1 |> + 3| (n} 1L — pAT A) (wpp1 — 2% — (28 — 2p—1) ||
+3 (771: - 771:+1) llzr — xk—1||2~ (B.11)

For the first term in this bound, by the definition of gr41 from Algorithm 1, we have that

Gkt — Gk = VI (@1, &er1) — V(@0 &r1) + a1 (VF (@k, Ee) — gr)-
By taking squared norms, using Young’s inequality and Lipschitzness of V f (,€) from (A1), we obtain
Ellgrs1 — gxl* < 2L?E\|$k+1 —a|® + 20‘%+1]E|Wf(5€k7§k+1) — gxll?

— 2L2E 211 — wx + 202 Bl (2, Exs1) — V(@02 + 202 1 Ellgy — V()|
< 2L3E wisr — all” + 203, V2 + 202 1 Ellgi — V£ ()|l (B.12)

where V' is the bound on variance from (A1). To obtain the equality in the derivation above, we used the tower
rule: since B¢, [V f(@k,&kv1)] = Vf(ar) and gi, Vf(x)) are deterministic when we are taking the conditional
expectation, thus E(V f(zx, &e41) — V(@) gk — V.f(21)) = 0.

Using the inequality (B.12) in (B.11) (with index k — 1 instead of k), we have after taking expectation that
E[AT (A = Akrn)l* < 6LFEl|zy — 1] + 60V + 60ZE| gr—1 — V f(zr-1)]?
+3E || (g1 I — pATA) (whr — 2p — (24 — 24-1) )|®
+3 (" = npky) Bl — mpa | (B.13)

Since Ar+1 — Ak is in the range of A and 6 is the smallest nonzero eigenvalue of AT A (see also (1.3)), we have
the result after using the definition of Qx4 from (B.3). O

B.2 Omne-step recursion on feasibility and iterate difference

Lemma B.3. Let the assumptions in (Al) hold. For all k > 0, assume that ni+1 is chosen to ensure that
Qr+1 = 0 (where Q41 is defined in (B.3)). Then for any k > 1, we have that

7]}3 A — b))%+ 7E 2
ST [Azq1 — bl 77k 2kt — 2kllo, .,

<
*2

EHA»T —b|]* + fEHka — ze-1llp,
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1 Moo — Moy
= gy Bl — 2zt ol + A2kl % ELE A — Al
I -1 -1 I -1 -1 -2 -2
+ f + nk)-‘rl nk ]E”mk:-‘,-l _ $k||2 + f + nk-i—l nk + nk-i—l M EHIEk _ xk—1||2
2Nk41 2Nk41 Mket1 2Nk 41 2
2 2172
aj, 9 oV
Ellgr—1 — Vf(zrp—1)||" + )
L4 | @i-1)] L it

Before proving this result, we state and prove an immediate corollary.

Corollary B.4. Suppose the assumptions of Lemma B.3 hold and that ¢q, co, c3 are arbitrary positive constants,
with N and m > 0 defined from (B.19) (where the definitions of mi, and m depend on ci, ca, c3, and other
constants). We have

14 2 1 2
——E|Azgyr — b|]* + mEkaJrl — zklQy s

2Nky2
< P E| Az — b||* + LIEH?Ek — ze-1llp,
2Nk41 20,
1 2 C1 2
_ 2nk+1]E||$k+1 — 2.Tk + $k71||Qk+1 + pimEH)\k;+1 - )\kH
1+ 2¢3)L 1+co+c3)L
* (273”]E||37k+1 — x| + H—SHEH% —
Mk+1 Mk+1
2 27,2
Qg 2 osz
+ Ellgr—1 — Vf(zr_ + —.
Fr Bl — V) + ph

Proof of Corollary B.4. The result is immediate after using (B.37a), (B.37b) and (B.37c) in Fact B.7 on the
result of Lemma B.3 and rearranging terms. O

‘We now return to Lemma B.3

Proof of Lemma B.3. For this recursion, we use a similar technique to Hong (2016); Hong et al. (2018), extended
to use variable step sizes. The additional error terms will appear due to using stochastic gradients and variance
reduction in our case, which were not considered in Hong (2016); Hong et al. (2018). We start from (B.10) and
use the definition of A\g41 in Algorithm 1 (that is, Ag11 — A = p(Azk11 — b)) and the definition (B.3) of Qx41
to obtain

gk — gh—1 + pAT (A1 — b) + Qra1 (Thrr — 22 +21) + (77;;+11 — 1y (g — 2p—1) = 0.

We next take the inner product of this expression with zp1 — zp, divide by ni1 and rearrange to get

1
(Azpy1 = b, A(zpy1 — 1)) = —— (k-1 — gk — Qr+1(Th1 — 2Tk + Tp—1), Thy1 — Tk)
Mk+1 Mk+1
-1 —1
n n
+ SR () — g, T — ). (B.14)
Nk+1

We now obtain bounds on four parts of this expression in turn.

1. By using the identity 2(a,b) = ||a||* + ||b||* — ||a — b||* for any vectors a and b, we have that

(Azgp1 — b, A(Tpr1 — 71))
Nk+1

p
ot (lAzgr1 = bl1* + [A(@rgr — 2)I” — || Azg — b]1?)
Nk+1

>

A —b||?2 — || Az — b]?
et ([[Azpqr — bl|> — || Azy — b]]?)
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-1 -1

n -
= P Aw 0% — D Aw — b+ TR (B.15)
21k 42 20k41 2p

where the last step used the definition of Ag4; from Algorithm 1 again, together with addition and subtrac-
tion of a term involving n,;iQ.

2. By using the same identity and the definition (B.3) of Qr+1 > 0, we also have

1
- nT_H<Qk+1($k+1 — 2%k + T_1), Th1 — Th)
1
= _nk+1 <xl€+1 - ka; + Th—1yLTk+1 — xk>Qk+1
1
- e <$k+1 — 2z + xk—lﬂékﬂ + || zhy1 — J:k\lék+1 — |l — xk_1||2Qk+1>
1
< - -2 PN | ——— — 2 — o 2
ST [Tht1 — 221 + 21105, 2 ki1 — 2klD,, + o lzx — 21|,
1, _ _
T3 (Mepy = i ?) ek = @i 1%, (B.16)

where the last step uses (B.3) together with 0 < ng41 < g, i.€.,

o — wx-ilid,,, — oo — ana2

2Met1 k k=111Qk+1 ke k k=111Qy

1, _ _ _ _

5 (ka1 — 2) 2k — xklez +(Tp — TR1, (—nkil + 7 1) PATA(fk - Tk-1))

~ 2
1, _ _
< 5 (771@-21 — 2) |z — $k71H2~

3. By Young’s inequality, we have

=
e
+
=
=
S
—

—1 —1
n -n
M@fk—l — Thy Tyl — Q?k> < |.”L'k - .Z'k,1||2 + ||$k+1 — $k||2) . (B.17>

M1 2Nk 1

4. By Young’s inequality and (B.12) (replacing k by k — 1), we get

1
7E<9k71 — Gk Tk4+1 — $k>
Te+1

1 L
Ellgr — gr—1? + =1

e E Tptr1 — Tk 2
2L et ST (EZa |

1
< oy (LB — |+ 208V2 + 2038911 = V(@ 0)]?)
L
5 Elzke — i) (B.18)
Mk+1

We get the result by taking expectation of (B.14) and substituting from (B.15), (B.16), (B.17), and (B.18). O
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B.3 Main result

In this section, for arbitrary positive values of ci,ca,c3,cs we define the parameters n;, m, p, and oy in the
following way (recall the definitions of Ly and ¢ from (A1) and (1.3)):

c=121L2,

. 1 1 1
m = min (44811)" 32(1 + o —|—03)Lf’ 8(1 +2C3)Lf>

p = max 7(1+Cl),4(6+c4)(1+61)L‘f’168(1+01)L‘f ’

1
=S
1(Ly + pllAll?)

10m\” 20 \* / 10 \* 400 20\* / 50 \°
kO = max ) ) ) 2 ’ ,2
3c1m 3nca Ly 3csLy 3n?cal’ \ en? 3en?
n

e = Tk 1 ko) /3 Tog(k + ko)

2
o = .

(B.19)

We should remark that the constants of these parameters and also constants in other bounds in the paper are
not optimized, since we focus on the dependence on ¢ in this work. The constants certainly could be improved
at the expense of even great complexity in the analysis.

Lemma 2.3. Let the assumptions in (Al) hold and ny be set as (B.19). For the iterates of Algorithm 1, we
have for k > 1 that

EYet1 < Y — nkQJrlEHQk = VI@e)|? + (Brarr + Borr ) Ellargs — apl” + wi +0r V2, (B.20)
where
m m
Yit1 = Lo(@rq1, Akt1) + 72; | Azpir — b||2 + ™ [ kaékﬂ + BrstllTess — $k||2
+2 +1
_ 2 B .
Clk+1 k1 bt p5 Lf’l]k 9k k
and
(1+02 +83)Lfm (6+C4)(1+01)L? 42(1+01)L? 28mLf
/Bl,k = + + + ,
Mk+1 po o m
L 1+ 2¢3)mL 14L3 1
52,;3:*’)4-( 3) A A
2 277k CNk 277k
3(1 + Cl) 9 m )
wy, = TEHJ%H — 2z + xk71||Q;+le+l — %]Eﬂxkﬂ — 2z + xk71||Qk+1’
6(1+c)af = afm 6oy,  18(L+ec)of  12maf
v = ( 1)k+ k + k+1+ ( 1)k+ i
op Lynkvr po Ly

Proof. We combine the bounds of Corollaries B.2 and B.4 after multiplying the latter by the scalar m of (2.1)
(by noting cancellation of the terms with [|Aj+1 — Ax||? and after adding and subtracting 52 E||g, — V f (z) ||?):

pm 2 m 2
EL A —E|lA —-b —FE —
o(Thi1, k+1)+277k+2 | Azgyq — bl +277k+1 [2e1 — 2kl
pm 2 m 2 Nk+1 2
<EL, (25, M) + L2 F|| Azg, — b))% + —Elag — 2513, — FEE|g, — V
<EL,(x k)+27lk+l |Azy — 0| +27]k e = zr-1llg, — 5~ Ellgr = V£ (@)

L 1+ 2¢3)mL 1
+<p+( aJmly

E Tk — Tk 2
2 2Nk 41 277k+1) I |
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1+ ¢y +c3)L 6+ cs)(14 1) L5
+<( ca +c3) fm+( 4)( 1) L% Ellzn — 2oy |

Mk+1 po
ma? 6(1 + c1)a?
Bl — Vil + (o L) g,y - v (B.22)
Ly po
3(1+¢) 9 m 9
+ TEH%H =2z + 2h-allor gu, mEkaH =22k + zk-1(lg, 4,
6(1 2 2
+ ( (Lte)oi | _apm > Ve, (B.23)
po Lng41

Since this expression looks rather daunting, we take a closer look at the different terms. On a high level, we
see that the terms in the first and second lines telescope. For the terms in the third and fourth lines, and the
terms in the sixth line, we show that our parameter choices make them nonpositive or telescoping. The size of
the terms in the last line can be controlled by the choice of ay. The details will be spelled out in Theorem 2.4.
What remains is to handle the fifth line by variance reduction recursion from Lemma B.6.

We now use the definitions of 3 1, B2, and vy in the statement of the lemma. These terms include not only the
coefficients of E||zy — 1%, E||zx+1 — z£]|?, and V? but also the contribution for the corresponding terms that
will come when we use Lemma B.6 to bound the terms on (B.22), ¢f. (B.31). In particular, with Lemma B.6 to
bound the terms on (B.22), and the definitions of 8 k, 52 k+1, Uk, Wk in the statement of the lemma, we have

m

]E _ 2
ST zk+1 — el

m
ELP($k+1, )\k+1) + 2p7E||A{Ek+1 - sz +
MNk+2

6(1+c 4m
2 Ejgee - V)l + ( Ata), )Engk Vi@l
M1 po Lgny
m m
< EL,(xp, M) + s—E| Azg, — b|]* + El|zy — 213, — LB |\gx — Vf (24)]
20k 41 2 2

2 6(1+4c1) 4dm ) 9
+ —E|gx — Vf(z 2+< + Ellgr_1 — V(25
o Bl = V()] 5 o ) Bl = Vi)

+ Bk 1Bllzess — apl]” + BraElar — zpa||* 4+ wr + vp V2
By adding B x+1E|#k+1 — 2x]|* to both sides and using the definition of Y}, we have the result. O

We continue with the restatement and proof of Theorem 2.4.

Theorem 2.4. Let the assumptions in (A1) hold and supppose that ny, and the other algorithmic parameters are
chosen as in (B.19). Then, for the iterates of Algorithm 1, we have for any K > 1 that

K+1
1 i ) B 21 1 _ A(R-2/3
o 3 Bl ox =P+ s = Vi) ] =0 () = 0 ).

Proof. We start with the result of Lemma 2.3. To show that the terms involving wy, 51 x+1, and B2 41 in the
right-hand side of (B.20) sum up to a nonpositive constant, we will show that

Qr1 =il —pATA -0, (B.24a)
m 3(1 + Cl) T
- =0 B.24b
et Qk+1 20 Qr+1Qr+1 = 0, ( )
L 1+ 2c3)mL 14L% 1
Bkl + Pagr1 = = ( aJmly ! _
2 2Mp+1 CMey1 2Nkt
1 L 64+c)(1+c)L% 4201 +¢1)L%  28mI 1
+( + 2 +c3) fer( 4)( 1) I ( 1) I 8m ;o ’ (B.24c)
M+2 po po Mhe+1 16741

where the definitions of 8; i, S, are given in Lemma 2.3.
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First, we know that (B.24a) is satisfied since 41 < n < 1/(p||A]|?). The positive semidefiniteness condition
(B.24b) is satisfied when m > 7(1;561) (which is ensured by the definition of p) since 3 > (Hécl) and since

1 1
Qi1 = —1— pATA =0 = —— Qg1 — QZ-HQk-H =0,
Mk+1 Me+1

as can be verified by direct substitution of Qy41. We thus have from the definition of wj in Lemma 2.3 that
wg < 0.

Finally, we verify (B.24c). With m, p, ¢ defined in (2.1), and using 77k_iz < Qn,zil, see for example Fact B.7, we
have that

1 1+ 2¢3)mL 14L% 1+co+c3)Lpm  28mL 3
L symbLy 14y (A t+eates)lym [

24 2141 Nkt 1 Mht-2 Mht1 — 16mpy1’
L,  (6+c)d+c)l} 420+a)l} L, Ly
+ + < + < LPv
2 po po 2 2

where the final inequality follows from (B.2). Since the left-hand sides of these two inequalitites sum to 81 x41 +
B2.k+1, (B.24¢) holds if we can show that

L, <
P 8k

= M1 <

oo
~
RS

which is implied by n < 11L n (2.1).

As shown above, we have wy, < 0 with the selected parameters. By substituting this bound together with (B.24c)
into (B.20), we obtain

EYj1 < EY; — El|lzpir — zil — 77’“2—“1E||gk —Vilz)|? + V2, (B.25)

1
167k+1
By adding to both sides 73 Eka — xp—1|* + ZE| gi—1 — Vf(2x—1)||* and rearranging, we get

1
320k 41

Nk 2
< (¥ + o — s+ gt — VS G)IP)
< (it gy llow = w4 T llgw = Vi)

Ellai1 — al? + 5 —Eller — i1 | + P Ell g — V(@) |2 + T Ellgi-1 — Vi (0|

32

— (EYin + g llewss =l + 2 g = T @o)|?) + 02, (B.26)

1
32nNk+1

From the definition oy = cni with n = TR P hoatirigy 1 (B.19), we have 37,7, ;1 /Mk+1 = O(1) and
Yoo ai = O(1). It follows from the definition of vy in Lemma 2.3 that Y ;- vy = O(1). Thus by summing

the inequality (B.26) over k =1,2,..., K and telescoping the right-hand side, we obtain

1
Z —Elries — mul + g5 Bl — mna | + Bk — V@) + §Ellgeos - V)|
k=1
2 m 2
< (En - —Hxl = ol + g — V (o))
— (B + =i — ol + gk - VE@iol) + 0(1)
32Nk 41 4
1
< (IEY1 + gl - ol + %Hgo - Vf(x0)||2) —EYki1 + O(1). (B.27)

For the terms on the left-hand side, we have for k =1,2,..., K, using 0 > nx11 > MK +1, that

1
E —xl? Ellx; — 2
T |2kt1 — 2| +32 2 — 2]
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77k+1 Nk —
35 Ellngia (@esn — @) + 35ElIng (@ — o)
77K+1 — _
2 35 [Ellniy (zres — zu) 1>+ Ellng H(zx — 2e0)l?]

and similarly

LB |gi — V() [P + L Bllger = VS @) |? 2 P [Ellgs = VA@)l? + Bllger = Y @e-)]?]

Thus, by adding successive terms on the left-hand side of (B.27), and using these bounds, we have

Mk+1 Mk
Z 327% Ellzy 41 — k] + 3271[*3”%% — x| + T+E||gk — V()| + 4 Ellge—1 = Vf (k-1
k=1

K+1
1 1 2, 1 2
> 0K Y (32]E||77k (@x = 2p-1) " + ;Ellgr-1 = V f(zr-1)ll > :

By substituting this lower bound into (B.27), joining the constant coefficients in the left-hand side to the O(1)
term on the right-hand side and using —Yx1 = O(1) (by lower boundedness of the potential function to be
shown below in Lemma B.8), we have the result after dividing both sides by nx11K. O

Corollary B.5. Let the assumptions in (A1) hold. With the parameter choices in (B.19), Algorithm 1 outputs
(T, \) such that i
E|Vf(#)+ AN <e, and E||Az —b]| <,

within K = O(e~3) iterations.
Proof. A useful preliminary result is as follows. For k selected uniformly at random from {1,2,..., K}, we have
Bl s — )12+ ln (o = )2 + llgg = V@) 12 + g5y = V(I

K
1 _ _
= = S E [k (@een =zl + I @ =z + gk — £+ lge—s — V@) ]
k=1
9 K+1

< = 2 B [l @n = w )l + g = VS @e-)|)
k=1

= O(K~%/%), (B.28)

where the last step used the result of Theorem 2.4. As a result, the right-hand side of (B.28) is guaranteed to
be less that 2 within K = O(e3) iterations.
To show the stationarity condition, we have by the definition of i1, Ax+1 in Algorithm 1 and the triangle
inequality that (see also (B.7))
Thy1 = Tk — Met1(gk + AT)\k;_A,_l + pATA(a:k — Tky1))
=z (e — V(@) = ok — e (Vi () + AT Xegr + pAT Ay — 2141))

> Vf(@ps1) + AT Apy1 = nlc_il(xk — py1) + pAT A(Tpgr — T)
—(9x = Vf(z1)) + Vf(zrs1) = V(i)
= IV f(@rr1) + AT Nl < s (e — zig) ||+ llge — V@)l + (oI ANP + L) | @r — zrsal],

where, after taking exp@ctation and using k = l% all the terms on the right-hand side are smaller than ¢ in
expectation after K = O(e7?) iterations, due to (B 28) and Jensen’s inequality. Setting z = x;, 41 and A= \;

we thus have E(||Vf(z) + AT)||) <e.

k+1°

It remains to show that [|Az; , — b < e for this same value of k. For any k, since Api1 — A = p(Azpyq — b)),
AMk41 — A is in the range of A. Since § is the smallest nonzero eigenvalue of AT A, we have (see also (1.3))

AT Vet = X)lP = 8l Ak = Ml = 8]l Azgr — b (B.29)



Ahmet Alacaoglu, Stephen J. Wright

By (B.11), together with nkjll - nkjlf —pATA = 0,0 <,y <mi, and Young’s inequality, we have that

6 3
JAT Ak = eI < 3Bllgr — gr—1ll> + —5— (zrtr — zll® + 2w — 2p11?) + — ok — zp—a |
Mie+1 Mie+1

< Ollge = Vf(zi)l? +9llge-1 = V.f(zx-1)* + 9V f(wr) = Vf(zx-1)]?

6 3
+ o (lzrer — 2l + llow — w1 [?) + o — @1
k+1 k+1
As shown in Fact B.7 we have n; < 2m,41 and consequently ﬁ < n% Combining these with Lipschitzness of

Vf and L?e < n;z in the last inequality, we obtain

1AT O = A2 = O(llge = VF @) + llge-r = Vf (@-1)]*
Ity (s = o)l + g (on = 2-2)|2)) (B.30)

Particularly, by (B.28), the last estimate implies

E[AT(x AP = O(K—2/%).

k1

In view of (B.29), this gives
1 Y
E|| Az, — bl < %]EHAT()\;;H = Al = O(K 2/,
As a result, for K = O(¢™?), by Jensen’s inequality we have that E|AZ — b|| < ¢ for Z = Tj 4, as required. [

B.4 Auxiliary results used in the analysis

The following lemma is about control of the variance of the estimator, specializing the preliminary Lemma A.1
for the current purpose.

Lemma B.6. Let the assumptions in (A1) hold and gi, be defined as Algorithm 1. For ¢ such that ay, = cn,% <1,
Nk as in (B.19) and any m,c1, p,d, we have

mai 6(1+ c1)az

+
Lgni41 op
6(1+4c1) 4dm
+
pd Lynk—1

nestEllgn — V()2 + ( ) Ellgi_1 — Vf(zn_1)|?

< 2Bl - Vi@ + ( ) gkt — Vf ()|
Tk

6(14+c¢1) 4m 9

— E -V 2_ Ellgr — V

2Bl ~ V)P - (5 1 Y Bl - V1) B30
1412 42(14c1)L%  28mL

+ f]EHJJkH —x))? + < Ly ! El|z — zx_1]?
CNk+1 95 Nk

2
N (60%-',-1 N 18(1 4 c1)af N 12mai> v
CMk+1 po Ly

Proof. We first recall the result from Lemma A.1. By substituting (Gr(z, ), Gr(z)) = (Vf(x,€), Vf(x)) for all
k, using Lipschitzness of V f(xz, &) and the variance bound in (A1), and taking total expectation, we have

Ellgr1 — VI (@r)|? < (1= ans1)*Ellgr — Vf (@) > + TLIE |lzp1 — ax]|* + 3ad,, V2. (B.32)
Since g1 < 1 by the assumption of the lemma, we have that (1 — ax41)? < 1 — agy1 and therefore
ar1Ellgr — VF(@e)? < Ellgr — Vi (@1)|1? = Ellge+1 — Vi (@rg) |” + TL3E|2ps1 — 2i® + 307, V2. (B.33)

After multiplying the last inequality (replacing k by k — 1) with % and using a% < ay, we obtain

6(1—|—C1) (1—|—C1)

a? 6
p; EE|lgr—1 — Vf(zr1)|? < P (Ellgr—1 — Vf(ze-1)|I* = Ellgs — Vf(z)]?)
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42(1 4 ¢;) L2 18(1 + ¢1)a2V?2
+ 2R N g — a2 + BAE )GV (B.34)
po )
By using ay, = cn, we have from (B.33) that
1
Ne+1Ellge — Vf(zp)|]* < — (EHgk —V@)? = Ellgrs1 — V(@)
+ TLIE | zpq1 — xil|® + 3aﬁ+lv2). (B.35)
Formula (B.37¢) from Fact B.7 sat that —— — L < T2 5 we have
Mk+1 Nk
1 1 1 1
low = Vel = o = VGl + (= ) o = Vol
Cllk+1 Cllk Clk+1 CTk
1 2, NMk+1 2
< —llgr = Vf(@ell® + ——llgr — V(x|
Nk 2

which by substituting in (B.35) yields

1 1
e Ellgr — V(@o)|? < —Elge — VI @) |? + 222 g — VF(@)]> = ——Ellgesr — VS (@re0))?
N 2 CMk+1

7L 302 ,V?
/ L?]EH:ZZ;HJ - $k||2 + AL
Clk+1 CNk+1

_|_

By moving the second term on the right-hand side to the left, then multiplying both sides by 2, we obtain

Ne+1Ellge — Vf(2x)]|?

2/1 1 1413 6a;, V2
<2 (Bl - V@I - Bl - VFerl?) + oL Blo - a4 L 330
¢ \"k M1 CNE41 CNE41
By replacing k by k — 1 and multiplying both sides by 22;0, we get
2meny, 9
7, Ellgre—1 = Vi(@i-1)]
f
am (1 1 28m.L 12ma2Vv?
< — (]E||9k1 — Vi(xe-)|? = —Elgr — Vf(xk)||2> + LRl — w2+ ——— 2
Ly \ k-1 Mk Ly
By using oy <1 (thus az < ag), a = cni, and 7 < 21,41 from (B.37f) in Fact B.7, we have
ma% may mcn,% < 2meny,
Lengsr — Lymksr Lygmgyr = Ly 7
and so by replacing the left-hand side in the previous inequality, we obtain
MOk Bguos — Vo)l
- Th—
Lkt Jk—1 k—1
4dm 1 1 28mL 12ma2V?
< 3 (LBlgus - Vsl = Tl - Vrl?) + ZEE B, — P+ 2
Ly \nk—1 Mk n Lyng
The result follows by combining this bound with (B.34) and (B.36). O

We use the following fact to simplify the coefficients appearing in the analysis (before and after this point).
We do not try to optimize the constants in this result or other parts of the paper since our focus is on the
e-dependence in our bounds. (The constants in this lemma are certainly improvable, since, for simplicity, we
make use of loose inequalities to compare terms of the order log(z + 1) and = for a > 1/3.)
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, it holds that

1<1 - 1)<C1 (B.37a)

Fact B.7. Given n, = (k+k0)1/;’10g(k+ko)

% Nht2  NMkr1) — pm’
B

Mer1 — Mk < Csz’ (B.37b)

2 et 1

Mepr — M- sl
bl Tk o D30T (B.37¢)

2011 M1
B(ne ' — Metr)? < cal (B.37d)
L _ 1 e (B.37¢)

Me+1 Mk 2
M1 < 2Mpt2, (B.37f)

2 2 2 4 6
_ 10m 20 10 400 20 50
where kg = max <<3cm) , (?chLf) , (303Lf) » B IT (cnz) , (Bcn2> ,2>, for any absolute constants

c1,C2,C3,C4 and any positive values of m,n, c.

Proof. For (B.37a), by straightforward computation, we have

11 (k+ko+2)3log(k + ko +2) — (k+ ko + 1)/ log(k + ko + 1)
NMk+2  Mk+1 n
log(k + ko + 2)((k + ko 4+ 2)'/3 — (k + ko 4+ 1)'/3)
U
Y31 2) —1 1
+(k+ko+ ) (og(kz+so+ ) —log(k + ko + ) (B.38)

Here, we have
1

+ <
k+/€0+1) T k+ko+1

log(k 4+ ko +2) — log(k + ko + 1) = log <1

and
1 < 1
(k+ko+2)2/3+ (k+ko+2)(k+ko+1)+ (k+ko+1)2/3 = 3(k+ ko + 1)2/3"

(k+ko+2)? —(k+ko+1)/3 =

With these, (B.38) yields

1 1 log(k + ko + 2) 1 4log(k + ko + 2)
< = < -
T 3(k+ko+1)23n  nlk+ko+1)%/3 7 3(k+ko+1)%/3n

MNk+-2 Mk+1

and hence the desired inequality is implied by % < 2% By using log(k + ko +2) < 5(k + ko + 1)1/6
2

for k > 1, the inequality is implied by ;S—:’;} < (k4 ko + 1)'/? which is implied by ko > (lom) '

3cin

For (B.37b), using the first bound in the previous paragraph and + < —1

e S e we have

12 ( 1 1)<4log(k+k’o+1) 2
Meyr Mo~ Mhal \Tks1 Tk 3n(k 4 ko)?3 npyr’

and the inequality we want to prove is implied by % < coLy. By using log(k + ko + 1) < 5(k + ko)'/©,

0 < (k + ko)"/2 which is implied by ko > (

the assertion is implied by 377?2 ;

20
37]62Lf :
It is straightforward to show (B.37c), (B.37d) by using the same estimates, which we omit for brevity.
For (B.37e), as in the beginning of the proof, we have

1 _i< 1 (1 log(k—i—ko—i-l))
M1 e 0k + ko)?/3 3 7
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and the desired inequality is implied by

1 log(k + ko + 1) < n
n(k + ko)2/3 3 = 2(k 4 ko +1)Y/3log(k + ko + 1)’

which in turn is implied by

2(log(k + ko +1))?

3 < en?(k + ko)'/?.

2log(k +ko+1) +

By using log(k + ko + 1) < 5(k + ko)'/'2, this inequality is implied by

25(k + ko)'/°

10(k + ko)/12 + 3

S 07]2(]‘5 + kO)l/sa

which in turn is implied by

112 < en? (k + ko)'/3 d 25(k + ko)1/6 < en?(k + ko)l/?’.

10(k + ko) 5 an 3 < 5

3cn? 3cn?

These bounds hold when kg > max ((37702)47 ( 50 )6) _ ( 50 )6_

The last assertion ng1 < 2942 (B.37f) is implied by (k4ko+2)"/? log(k+ko+2) < 2(k+ko+1)"/2log(k+ko+1)
which is implied by (k-+ko+2)"/3 < 2 (k+ko+1)'/3 which holds for any ko and by log(k+ko+2) < 2 log(k+ko+1)
which holds, for example, when kg > 2. O

The following lemma is showing the lower boundedness of the potential function Y defined in Lemma 2.3, which
is important for ensuring that the complexity has the desired dependence on ¢.

Lemma B.8. Under the assumptions and the parameter choices of Theorem 2.4 and the definition of Y
in (B.21), there exists y > —oo such that EYy >y for any k. In particular y = —2V2 37 v > —00 since

2
o — 6(1+c1)af N aim N 6}, N 18(1 4 ¢1)a} N 12mo _ ( 1 3) ’
op Ly enrgr po L (k + ko) (log(k + ko))
due to
n 2
A = Cl]g,

T e+ ko) 7o log(k + ko)’
for the constants n and ¢ from (B.19).

Proof. Note that all the terms are nonnegative in the definition of Y3 in Lemma 2.3) with the exception of
L,(zk, Ai). We therefore focus on the latter term. Our argument extends that of (Hong, 2016, Lemma 3.5), the
important difference being that, due to the stochasticity of our setting, we do not have non-increasing potential,
which is critical in the argument. We show that our time-varying choices of step sizes still allow us to establish
lower boundedness.

First, by using f(x) > f > 0 and the definition of A1, which implies

1
(Mkt1, Apgr — b) = p~ Moyt Apg1 — k) = 2 (X2 I = Il + Ak — Ael?)

we can show that the following holds for any K:

K

D ELy(whr1, A1) =
k=0

M=

E [£(@rs) + (err, Aviess = b) + 2l Aziss — b))
(

1
(ElX e+ 17 = 2oll?) = —;II/\0H2~

>

7:\»—*?
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It follows that

o0 oo
> EL(zi, M) > 00 = Y EYp >y, > o0, (B.39)
k=1 k=1
for some y, .
Next, we use the bound (B.25) which states that
EYy 1 < EY; + v, V2, (B.40)

where vy from Lemma 2.3 is redefined in the statement of this lemma. For the O() estimate v, =

0 (m), we have used 7, = (k+k0)1/3’710g(k+k0), ar = cni for constants 7, ¢ given in (B.19), to-
gether with with ky > 2. We define C' := V232 | vy, which is finite due to the definition of vj, with ko > 2.

We consider three cases.

1. When EY;, > 0 for all k, the assertion follows immediately.
2. When EY;, < 0 for some ky and EY;, > —2C for all k > ko, the assertion also follows.

3. When there exists an index k; such that EY;, < —2C, assume without loss of generality that k; is the
smallest index that satisfies this property. By the definition of this case, EY; > —2C for k < k;. Since
V2 Zzozl vy = C, we have from (B.40) that EY, < —C for all ¥ > k;. However, this would cause a
contradiction with (B.39).

This concludes the proof. O

C STOCHASTIC CONSTRAINTS: PROBLEM (III)

C.1 Variance control

We start with a result for the variance of the estimator gi. This result is essentially a corollary of Lemma A.1.
We characterize the precise constants for the bound of this lemma which are important for getting the order of
complexity. For ease of reference, let us recall here the relevant quantities from (A2), (A3), (A4):

EVf(z,8) = VIOl < Lyllz -yl
E|Vei(z,¢) = Vei(y, O < L.z — yl?,
Eléi(z,¢) — &y, OII* < L2||lz — I,
E|Vf(xz,&) = Vf(2)|* < o7,
E||Vei(z,¢) — Vei(x)
Elé(x,¢) — ci(a)||” < o2,
[Vei(z)|| < Cve
lei(z)| < C,
IVei(z, Q)| < Cye,

|6i(xv €)| S Cca

I? < o3,

for any i € {1,...,m}.
Lemma C.1. Let the assumptions in (A2), (A3), (A4) hold and let the parameters of Algorithm 2 be given as
1 72

= = > ]f + 1 _4/5,
9Lp(k + 1)3/5 TR

Mk pr = pk'®,and oxiy = T2L%p7 M} =

for some constant p > 1, L2 = 4L2,, + 4m2(C2L%,_+ C% L?), we have
Vf c Ve VeHe

1
7202 p3 1

1

mElge — VQ,, (z1)|? < -
" 2

Ellgr — VQp (i)lI* — Ellgr+1 — VQpyps (1)
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Tm2C2, 2

7 |Pr41 — Pk\Q
120207y

7
—E —a)?
+1877k |Zk+1 — @kl +

2

« ~

+ R (03 4 2m?of (C20%, + CE.02) ).
1217 pg 1

Proof. We apply Lemma A.1 with

Gr(zr) = VQp, (xk) = V[ (zk) + pi ivci(xk)ci(xk)v (C.1a)
=1
Grr1(xrs1) = VQpyyy (Thy1) = VI (Trg1) + prsr i Vei(xps1)ci(Trst), (C.1b)
i—1
Gr(zy, Brs1) = VQp, (T, Bry1) = Vf(2, &0 41) + pr zm: Vei(@n, Gt )éi(@r, Gy, (C.1c)
i—1
Gra1(Trt1, Beg1) = VQ ooy Tk 1, Brt1) = Vi (@41, Eps1) + prt i6ci(f‘ck+17<%+l)&i(zk+lv Ciy1)- (C.1d)
=1

We note that Gy (xy) = E3k+1ék($k, Bi11) and Giyq1(zp41) = E3k+lék+1(xk+1, By.41), as required by Lemma
A.1. This estimation is due to By being sampled after the computation of x;1, by the independence of ¢*
and ¢2 and by pj being a deterministic sequence. We now estimate the error terms on the right-hand side of
Lemma A.1. Recall that E; the expectation conditioning on all the history up to and including zj41.

For lighter notation, we drop the subscripts from the random variables (£°,¢%,¢?) that define By, =
(§2+17 Cl%+17 C,%_H) in this lemma.

First, we estimate the second term on the right-hand side of the inequality in Lemma A.1. By Young’s inequality,
we have

Ep||Grir(2hi1, Bes1) — Gryr(wr, Bria)|)?

< QEk”@f(xk*tho) - ﬁf(xktago)'ﬁ

m 2

+ 207 1B || (@Ci(zk-i-la (MeEi(@ri, ) = Vei(ar, ¢, CQ)) (C.2)
i=1
By using (A2) and (A4), we have that
B Y (Vealwnan. ¢)aulanan. ) — Veslan, aulen. )|
=1
m - - 2
< m Y By || Ve (@irr, ¢, ) = Veulan, e, ¢?)|
=1
<2m By H@Ci(xml,Cl) (Gilwrs1,¢?) — 51‘(%,(2))”2
1=1
m B N 2
+2m > B || (Ves(anin, ¢) = Vei(an, ¢)) @lan, )|
=1
< om? (C2LR, + 3, L2) llass — o, (C.3)

where the first inequality follows from the fact that for vectors Y;, we have || Y-, V;[|* < (O, [|Y;])? <
m > ", [|Y;||* and the second by Young’s inequality. Using this in (C.2) along with the first line in (A2), we
have

ExllGrst (@1 Besn) = Gy (on, Bran)|? = (203 + 4pfm? (C2L3, + C3,12) ) llass — i
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<AL?p}y leksr — w)? (C.4)

where the last line is by the definition of L, see also (3.2).

Second, we estimate the third term on the right-hand side in Lemma A.1:

2
m
Er | Grr1 (2, Brar) — Grl(@r, Bry)|I” = Ei || (peg1 — pr) D> Vei(ar, ¢)éi(r, ¢%)
1=1
<m*C%.Cllpk1 — pil*. (C.5)

Third, we estimate the fourth term on the right-hand side in Lemma A.1. From Young’s inequality, we have
E||Gx(xx) — Gi(k, Berd)|?
2

xka Cz(xkv<2)

E Ve (xg)ei(zk)

i=1

§2EHVf@m%—@f@mf%H +203E

uMs

< 207 +4m?p (Czavc + é%d?’?) ) (C.6)
where the estimations for the last inequality are similar to (C.3).

By substituting the bounds (C.4), (C.5), (C.6) into (A.1) and also using (C.1), we obtain

Eillgrs1 = VQppiy (zr4)[? < (1 = ani1)?llgr — VQpy (1)1
+ 2807 pf w1 — akl|® + 42m*CE CZ | pryr — pil?

+ 60344 (UJ% +2m?p (CQUVC + C’%caf)) . (C.7)

In (C.7), dividing all terms by 72£2p2+177k gives

1 (1 —agq1)?
= Erllgrr — VQpp (wrrn) | < 7” gk = VQp, (x1)|?
72L2P%+177k e T2L%pj, Pr+1"k o
7 2 Tm2C%, C? 9
+ = 18 Zk+1 — zkl|” + iz ol |Pr+1 — Pl
O‘i—kl ( 2 2 2 (2
—=—— |0} +2m°p;, (C’ 0%, +C%.0 c)) . (C.8)
12L7p% 4
We focus on the first term on the right-hand side and will show next
(1 —aky1)’ 2 1 2
— -VQ,, (z <|—- g — V@, (x . C.9
a9~ V@@l < (o = )l = V@ )] (c9)
By the definitions of ayy1,nk, pr+1, we have that 72;1% = —1ny, therefore (C.9) follows after showing that
k+1"lk
11—« +a? 1 1 1 1—
Nk+12 kAl o - = - = < akH( ak“) (C.10)
T2L2p% 1Mk 212 pime—1 Prg1k PRIE—1 Pit1 M
Note that by definitions of 7, and pg, we have that
1 P

2 _ 2 2/5 —
=p(k+1 = = — .
Prr1e = P~ ( ) 9Lp(k + 13/5  9L(k + 1)1/5

By substituting the values of p%an and a1 = 72[~/2p%+177,% = we find that (C.10) is equivalent to

72
81(k+1)175°

L L 1- 1)l/5
9p ((k+1)1/5 k1/5) < 9Logy1( a;+1)(k+ ) = (k+1)Y5 — kY5 < agyr (1 — agrn) (k + 1)Y5.
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First, we note that (k+1)/°—k/5 < Sk%/o and also (1 —ay11) = 1_W > <& for k > 1. Therefore, (C.10)

will be implied by
1 288

<
5k4/5 = 810(k + 1)3/5

which holds for & > 1. Thus, (C.10) and consequently (C.9) hold for k& > 1. Using (C.9) to bound the first term
on the right-hand side of (C.8) and taking total expectation gives the result. O

C.2 One iteration inequality

Lemma 3.5. Let the assumptions in (A2), (A3), (A4), (A5) hold and let the parameters of Algorithm 2 be given

as
1

72
"~ 9Lp(k + 1)3/5 81

k 1 —4/5

M pe = pk*®, and apyr = 120707 M} =

for some constant p > 1 and L* = 4L% ; + 4m*(C2L%, + C%,L?). Then, we have that

%E [d*(Vf(zh41) + peVe(@rir) " e(@rr1), —Nx (@h41))] SB[V = Yig1 +1Qp, (T11) — Qppys @y 1)[] + Exra,

where
Vst = 2ei1) + ————lgs1 — VQpr, (441))?
+1 ka+1< +1) 72L2,0i+177k Hg +1 ka+1( +1)||
and i Ao )
Tm=C% .C « =
Eerr = = pr = pul? + —= I (0F + 20} (C2o%, + CR.0?) ).
121 Pr+1"k 121 Pr41Tk

Remark C.2. By the definitions of 7y, p, we have that the first term of &1 is O(k~7/%), the second term of
Ek+1 is O(k™1), therefore Zszl Ert+1 = O(log(K +1)).

Proof. By descent lemma applied on 2 — Q,, (z), we have (by denoting the Lipschitz constant of VQ,, (z) as
ka = Pk(LVf + m(CcLVc + CVCLC)))7

L
Qi (Try1) < Qpy (1) +(VQy, (Tk), Thy1 — Tx) + 5’“ [@ps1 — ]|

ka

2
) ok =l + FITQu o)~ il (€1

[@pt1 — 2kl

= Qp,. (xx) + (g, Thy1 — k) +(VQp, (Tk) — gr» Thy1 — Tk) +

L 1
< Qpp (k) + (ghs Thog1 — Tpe) + | 22 + —
2 277k

where we added and subtracted (g, xg+1 — zk) for the equality and then used Young’s inequality.

By the definition of 41 in Algorithm 2 and z € X, we have
1 2
(Tht1 — Tl + MeGhs T — Tho1) = 0 = (gh, Thop1 — Tp) < —%H@“k — T

By using this estimate in (C.11), and then splitting the last term, we have

1 L 1 )
Quulionsn) < Qpulan) + (= 22 4 Y s =l + IV Qu ()~ il

2 2my

1 L
= Qputon) 4 (~ g + 22 Y lowrn — 2P + IV Quuan) = el — 2N Q (1) ~ .

We take expectation on this inequality and then use Lemma C.1 to bound the expectation of the third term on
the right-hand side to get

EQp, (Tr+1) Ellgks1 — VQprpy (zry1) |

+ -~ _ -
T2L2pf 1
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< EQp, (k) + Ellgr — VQp (@i)l|* — %Ellgk = VQp. ()|

T2L%p2 N1

L, 7 1 ,  Tm2C%,C? ,
R ) _ 700
+< 5 I8 277k> lze+1 — zkll® + 12022, 1 k|Pk+1 k|

2

Qk41 ( 2 2 2 (2 2 A2 2

+ ———— (o7 +mp; (C’cavc + CVCO'C))
12022 e N

First, by the definition of 7 and by L,, < L, <L = Lp(k + 1)1/5 < Lp(k 4 1)3/% which is due to (3.2),

Jensen’s inequality and E[VQ,, (z, Bk+1)] = Vgpk( )”‘”V:;; have that "’“ < M = 181 since Lp(k+1)3/5 =
9n . We consequently have L”k + 1877k 271“6 < ﬁ - ﬁ < - 187] We then add to both sides Q,, ., (Tx+1), use
the definitions of Y}, and & along with 2= > Z& to get
7172 (03 2 Nzesr — 2l” + g — VQp, (@)11] S E [Yi — Yig1 + 1Qpy (Tht1) — Qpryy (Tha1)[] + Epgr. (C.12)
We will now show that
P (Vf(@rr1) + prVe(eren) " e(@re), —Nx (@re1)) < 4002 lerer — 2l + llge = VQpy (zi)l*).  (C.13)

By the definition of xy41, we have

0 € Tpt1 — Tk + MGk + Dix (Tpt1)
= (@ = zre1) + (VQpy (1) = gk) + (VQpy (2r41) — VQp, (21)) € Dix (1) + VQp, (Th41)
= ek = 2p) + (VQp, (k) — gi) + (VQp (@hr1) — VQp (a4))
€ Qix (zr41) + Vf(@rt1) + prVe(@rrn) T e(@prn),
where the last step also used the definition of VQ,, (2x+1). This gives

d*(Vf(zk+1) + peVe(@rir) " e(@ri1), —Nx (€h41))
< 30 2l — 2l® + llor — VQp, (21 + IV Qpy (21) = VQpy (2141
< 2 ek — xxl® + llge — VQpy (i) 1%,
where the last step is due to VQ,, being L,,-Lipschitz, L,, < L,, < L,, ., and hence L,, < Lp(k + 1)}/° <

9I~/p(/€ +1)3/5 = 77,:1 by the definition of n;. Using (C.13) on (C.12) and taking total expectation gives the
result. O

C.3 Controlling the change of penalty parameters

Using variable penalty parameters allows us to remove assumptions on initialization that was done in Shi et al.
(2022) for solving a special case of our problem. To handle the effect of the change on penalty parameters we
have the next lemma that uses (A5) and Lemma 3.5.

Lemma C.3. Let the assumptions in (A2), (A3), (A4), (A5) hold and let the parameters of Algorithm 2 be

given as
1

9Lp(k 4 1)3/5
for some constant p > 1, we have that

. . 72 s
M = pr =Pk, and opyy = T2L2p% 0k = oo (R + 1),

K
Z E|ka (warl) - ka+1 (warl)'

= 0
< bQPl(xl) - (K _’_71)3/5 +

K be+p02 i bs,m i bpC?2 +§: 202,
T2 1205 T 2 (o )P T 2 RGP T 2 Bk

Hgl = VQp, (x1)|

648-8L b— 648-8L

where by = 52 (k)35 0= 552 and &1 s as given in Lemma 3.5.
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Remark C.4. In view of Remark C.2 and since b, = O(k~3/%), the right-hand side in this lemma is finite.

Proof. We start with the error term

Qi (2r41) = Qo (@rr 1) = (pra1 — pw)llezraa) 1. (C.14)
We have by the assumption in (A5) and triangle inequality that
d(prVe(@pin) T e(@ign), —Nx (2641)) > prdlle(r) |
= letorin)l| £ = (197 @)l + AV @) + pTelann) Telawin) ~Nx(owa)) . (C19)
Using this in (C.14) gives
Qi (Tht1) = Qppyy (Thet1)]
= 2|pk,0%5€k+1| IV f (e ) > + P (Vf (@rs1) + prVe(zepr) T e(@rir), —Nx (Tr41)) - (C.16)

As a result, we wish to bound

K
Z Qi (Th11) — Qppyy (Tr11)]

< Z A Bt (19 H )P + (9 F ) + piFeln) elone). Ny o). (1)

For bounding the right-hand side of this inequality, we use a crude bound that can be obtained by Lemma 3.5.
By using (C.14) with the uniform upper bound ||¢(zk+1)]] < C. to bound the third term on the right-hand side
of the result in Lemma 3.5, we get

E [d*(Vf(zhi1) + peVe(@rin) T e(@rir), —Nx (@r41))] S E[Yi = Yiga] 4+ Er1 + ok — pea|C2,  (C.18)

72
Let b, = % and b= 6§§28 First, note that for k > 1
b e _ 8 S 2 S 2ok = pena| _ 2lok — praa]
k 79 5p52(k+1)6/5 = 5p52(k)6/5 = p252k2/5 pﬁ52 )

since [pr+1 — pr| < 5475 and 4(k)5/5 > (k4 1)%/° for k > 1. Hence, after multiplying (C.18) by by, we get

2 _
P B (9 f ) + puVelonen) o). ~Nx o)
k
< bk(]EYk — EY}C+1) + bkngrl + bk|pk - pk+1|03- (C19)

In view of (C.17), this gives

K
S EIQp, (1) — Qs (w051)]

k=1

(C.20)

= 2, 2lpe — Pk+1|C%f
<Y | ok(BY) —EYip1) + bt + belpk — pria [CF + :
=1

pi02
after also using ||V f(zr41)]|? < C%f. By the definitions in Lemma 3.5, we have bxE11 = O (k8/5) bi|pk—pr+1] =

O (#), and ‘p’rp# =0 (k61/5)' Hence, we now bound the term by (EY;, — EY)41). By the definition of Y41
k

in Lemma 3.5, we have

K
> bi(EYy — EYiqa)
k=1
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\Mw

ka xk ka+1 (Ik-‘rl)]

K

1
+y BE|——— g -V zi)|? —
Z K [72/32/)%%—1 gk — VQp, (k)|

k=1

1

m”gkﬂ - VQpM(:ka)lF] (C.21)
k+1

First, we have

1
(k-+1)

Mx

(ka(xk) ka+1(xk+1))

b
Il

1

Mw

1 < 1
<k3/5ka k) — WQMH Th+1 ) +Z ( k+1) 3/5 k3/5> ka(xk)

k=1
Q K
X 2
< Qulo1) = gy + B 400D X e
k=1

k=1

where the last step is by
1Qprr (@) = 1 (@rs1) + prgalle(@ria || < By + p(k + 1)1/°C2

and
1 1 < 1
(k+ 135 K3/5| = (k+ 1)3/5k’
since
1 1 (k1) (k+ 1)k —k 1
k35 (k+1)3/5 (k+1)3/5k3/5 (k:+1)3/5k = (k+1)35k
and Q,(r) > @ > —oo by (A4). After multiplying by b and using by = W on the last estimate gives
K K
> b (Q -Q <bQ 0 b(Bs + pC? L C.22
2 k Pk(xk) pk+1($k+1)) = p1 (961) W + ( fTp C)k:]_ W ( . )
Next, for the second term in (C.21), we have
P gk~ VQu I — e llgkr — Y@y (i)
- - x - - x
=1 (k + 1)3/5 72L2p%77k_1 Ik prATE 72LQP%+177k s pr
K
1 1 1 1
< _ v/ 2 _ I v/ 2
33 < 7 a1~ Y I~ G g 19601~ V@ ) )
9
< -V z1)|?.
LRI
Hence, after multiplying this estimate by b and using b, = W, we obtain
- gk~ VQu )P~ ks — V@ (i)
k=1 (k +1)3/5 \ 7202y, o pei 72910%“771@ gt P TR
VQ, (1) (C.23)
72L
We take expectations and then combine (C.22) and (C.23) in (C.21) to have
K bQ K
br(EYy — EYii1) <b — S + b(By + pC?)
; b(EBYk = EYi1) < @ (71) (K+1pm Brte ; k k+ k(k +1)2/5
+ 7”91 VQM (xl)HQ’ (C24>

72Lp
Using this estimate in (C.20) gives the result after also substituting the values of py, by.
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C.4 Main theorem

Theorem 3.1. Let the assumptions in (A2), (A3), (A4), (A5) hold. Let

1

72 5
—_ = pk'/® d = " (k+1)7%/°
9Lp(k 1+ 1)/5’ pr=pk’’?, and apqq 81( +1)7%7,

e =

for some constant p > 1 and L? = 4f12vf +4m?(C2L%, + C%_L?), we have that there exists \ such that

E [d(vf(ml}Jrl) + VC(.IEJFI)T/\, _NX a:k+1 ]
|

<e
Efc (xk+1) <

with number of iterations bounded by O(s~%).

Proof. We start by summing the one iteration inequality in Lemma 3.5

K
Z %E [ (Vf (@) + prVe(wnn) T e(@r), —Nx (@41))]
k=1

K K

<EY; + Z |ka (‘Tk+1> - ka+1(‘rk+1)| + ngJrl'
k=1 k=1

We use that 7, > ng and divide both sides of the inequality by K to derive

= ZE (VF(zk11) + prVe(wrn) T e(@rr), —Nx (z141))]

K
KTQ (]EYl + Z |ka l‘k-i-l) ka+1 ($k+1)| + Z 5k+1)-

k=1

In view of Lemma C.3, Remark C.2 and Remark C.4, we have that the sums in the right-hand side are either
finite or increase logarithmically in K and since nx = O(K ~3/%), we have

log(KJrU) ’ (C.25)

Ve ZE (Vf(@rs1) + peVe(wprr) T e(@), —Nx (2141))] = O ( e

along with ||V f(z)[* < C%, as per (A4).

This estimate along with p, = pk'/® in (C.15) gives

K K
1 1 2
Ve kEﬂIEIIc(ka)HQ <% k§71 7/)%2/5621[3 [IV f(zrs)? + d*(V F(@h1) + peVe(@rsr) T el@rer), —Nx (Tre1)]

log(K + 1)
=0 <Kz/5 :
This inequality with (C.25) gives
log(K + 1)
x ZE (Vo) + peFelionn) o) ~Nx(onr) + lelann)l?) = 0 (EEEDY.
Hence the claims follow by using A = p;.c(z;, +1) and Jensen’s inequality. O

D EXTENSIONS

Since the arguments in these parts are mostly the same as the previous section, the analyses in these two sections
do not spell out all the details but mentions the changes compared to Section C. In this section, we will consider
two extensions and show how they follow by minor adjustments on the analysis of the previous section.
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D.1 Dual variable updates

The algorithm in this case, written explicitly, is

Tpi1 = Px (Tr — Nkgr) (D-1a)
Sample Bii1 = (§141,Chy1,Crp1) € 2 % Z% and set VQ,(z, A, B) as (D.2) (D.1b)
Get1 = VQpp iy (Trot1, Net1, Bes1) + (1 — ar1) (g — VQpy (T, Moy Bret1)), (D.1c)
N2, = Mot 1,i + Vet 16 (Thr1, GRyg) Vi={1,...,m} (D.1d)
where we have m m
VQp(x, A\ B) =V (@, +> AVei(x, (') +p Y Veilx, (e, ). (D.2)
i=1 i=1
Theorem 4.1. For the algorithm described in (D.1a)-(D.1d) (as sketched in Section 4.1), let
1 -
Mk = pr = pk'P = 7 and o1 = T2L%p} ynf = —(k+1) 475

k(log(k + 1))2[é (. G|’

for some constant p > 1 and L? = %izvf +3m2(||\ || +4)2LE + 3m?(C? L2, +C2 L?). Let also the assumptions
n (A2), (A3), (A4), (A5) hold. We have that there exists A such that

E [d(Vf(zj,) + Vel,,) A —Nx (z,,))] <e,
Ellc(zj I <e

9Lp(k + 1)3/5°

with number of iterations bounded by O(e7).

Proof. For convenience, let us denote Jy = vi.:|¢;(wx, (7)| = M/Tl))?'
e Modification of Lemma C.1.
We apply Lemma A.1 with (¢f. Lemma C.1)

Gk(xk) = VQ[,,C (:L‘k, >\k) = Vf(Ik) + Z vcz‘(xk)/\k,i + Pk Z Vci(xk)ci(xk),

i—1 i—1

m
Grt1(Tht1) = VQpy iy (Tt Akg1) = Vf(Tpg1) + Z Vei(Tht1)Ne+1,i + Prt1 Z Vei(@pt1)ci(Te+1)s
=1 =1
Gr(k, Biy1) = VQpy (1, M Brpr) = VI (@r, 041) + D &, ¢ Ak + i ZVCZ (@hs Copr )@ (Ths Gogr)s
=1 =1
ék+1(mk+la Bk+1) = @kaﬂ(ﬂﬁlwl» )\k+1>Bk+1)
= V(@ri1,6001) + Z Vei(@nit, CO et + pr1 Y Vei(@ri, Gy )8 (@1, G-
=1

where I['EE;,CJA(?;{;(:U;€7 Bj41) = Gi(xk) and IEB,cHC;’kH(ka, Bit1) = Gi41(zk41) as before. We also define

Gri1(k, Bri1) = @prl(xk, k41, Bry1)

= Vf(@r 1) + D Vei(mn, D Akyri + pryr Y Vei(wr, Gy )& (@n, G-
i=1 =1
As aresult, the norm of dual vector A\; will affect the bounds in Lemma C.1. First note that by the definition of 7y,
we have Ai1.s = Mo+ gl e o (@ GF) and hence Avsri = Mo+ 51 Sgrrn ey a2 6))
and hence

m

Aerall? =D k1)

=1
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2

L.

@
Il
-

k
32 v S o 2
2()\1,2) +2 ;](log(j+ 1))2|6i(xj,cj2)02(x]7<j)

(2(A\1.4)% +3297)

=1
<2 M1+ 32ma, (D.4)

with [Agt1,i] < |A1,i| + 4, where the second step in the inequality chain is by Young’s inequality and the third
by

k

k
il G (g (2
2 Tliog+ Dy G )| = 2

Jj=1

gl
j(log(j + 1))2|éi(x;, GF)

Cz(%yC ) < 4.

Note that instead of (C.2), we now have

Ep||Grsr(2ht1, Bri1) — Gror(r, Br1)||? < 3BV f(2r41,8%) — VF(2r, €))2
2

+ 3Ex Z (@Ci(ﬂﬁkﬂ, Chr) — Vei(ap, C;i+1)) Akt1,i
=1
m 2
+ 3071 By, Z (ch i1, ¢ e (w1, ¢ — @Ci(xk(l)@i(wk,@)) (D.5)

Note also that, for the second term on the right-hand side of this inequality, we have

m

Z (?Ci(xk-i—lagli-',-l) — Vei(zp, (i) ) Ak+1,i

=1

Ex

i H(ch Thi1s Chyr) — @Ci(l‘mféﬂ)) Akt1i

< (Ml +4) ZEHWQ(%HK%H) — Vei(@r, G|
i=1

< (Ml +DmLvelwr — il (D.6)

where the second inequality used max; |Aky1:| < (J[A1]] +4) and the last inequality used (A3) with Jensen’s
inequality.

We reuse the estimation in Lemma C.1 for the third term on the right-hand side of (D.5), see (C.3). For the
second term on the right-hand side of (D.5), we use (D.6) and obtain (¢f. (C.4))

Ex||Grt1(Ths1, Bes1) — Grg1 Tk, Bigr) ||

< (323, +3m2 L3 (1A + 0% + 607, m? (G213, + O3 L2) ) g — all

< 4T o — el (b1
where 3. 3 3
L?= 4va +qm (Ml + 42 L, + §m2(c~’2i2vc + 0% L3).

Instead of (C.5) we have

EklGrs1(wr, Bes1) — Gr(@n, Bies)|?

< 2By |[(pr1 — o) Y Veilwn, ¢é(wr, )| + 2Bk || Ve (wn) Mt — Aka)
i=1 i=1
< 2m2€%céc2|pk+1 - pk|2 + 2@%67712:}/;3, (D8)

where the last estimate is by (A4) and |Ag11,; — Aki| = A% which is due to the definition of Agy;.
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Moreover, instead of (C.6), we have

E||Gx(zx) — Gr(2k, Brsr)|?
2

- 2 LU
< 3E va(xk) - Vf(xk,EO)H +3 Z(Vci(fﬂk,Q%H) = Vei(wg)) Ar.i

i=1
m 2
+ 30K X:VcZ x)ci(zk) Z@ (zr, ¢1)éi (0, ¢2)
i=1 i=1
< 303 + 303,mA (2 M |? + 32my?) + 6mp} (€203, + C3.0?), (D.9)

where we used (D.4) and (A3) for the second term on the right-hand side and the estimation in (C.6) for the
third term on the right-hand side.

By tracing the same calculations as Lemma C.1 (i.e., substituting (D.7), (D.8), (D.9) into (A.1), dividing by
72L%p? 417k and arguing the same way as (C.9) and the following estimations), we have

1
MElgr — VQpy (w1 M) ||” < 72L272 Ellge — VQpy (1, M)|1?
1
- ~7]E||gk+1 - va ($k+1, )\k+1)|\2
72L2pi+177k k+1
7 7 202 02 7*2 2@2
+ —Ellzper — 242 + Mm L= o2+ DM tve
18 + 2 + Y0
T 6L pj_ 1 6L2picy 17

Ckz ~
ot (a§ + 02, m2(2| A% + 32mA2) + 2m2p2 (C’fo%c + cgcgg)) _
8L2Pk+177k

Note that the additions compared to Lemma C.1 are the constants in the last term and the fifth term (and as
described above L is different in this case). The fifth term is summable thanks to the definition of 4 hence the
order of the bound is the same.

e Modification of Lemma 3.5.

In Lemma 3.5, the only change is that in addition to changing the penalty parameter, we also have to take into
account the change in dual variable and also the effect of dual variable size on the Lipschitz constant. The latter
is already reflected in the definition of L earlier in this section. For changing the dual variable, note that

Qo (@1, A1) = Qi (@i, M) = |- Ay = Aidei(@rnn)| < Ce Y i — Al
i=1 i=1
<mCeAy,

where we used triangle inequality, (A4), and the definition of Agt1,; that gives |Apt1: — Akl = Vi

Consequently, the result of Lemma 3.5 becomes

R BV f (1) + Vel@rpn) e+ pVe(@re) (@), —Nx (@51))

72

SEYR = Yig1 +1Qp, (Trg1; Aev1) — Qprpy (g1 A1)l + mCeAr + Exyas (D.10)
where )

Yir1 = Qo (@1, Mor1) + o5 l9k+1 = VQprpy (@1, M) I
T2L2 P 1"k
and
Tm2C2, C? Tv2m2(2
Epir = ¢|pk+l oul? + My

6L2pj 1 6E2f’£+17ik
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042
ST (07 + ot QNI +32me%) + 2 (CEobe + CReot) )
k+1

An important remark here is that the order of the dominant term in & is still O (1) as before.
e Modification of Lemma C.3.

In this case, the dual variable update will change two estimations. First is (C.16) where we will now have

|ka ('rk-i-l? /\k+1) - ka+1 ('rk-l-lv /\k+1)‘
3lpr —p
< A0 el (19 ) P + C2Ie P
k
+ dQ(Vf(:ckH) + VC(xk_H)T/\k + kaC(Ik+1)TC($k+1), 7NX (xk+1)), (D.ll)

where we note that || \;||? is finite as per (D.4) and hence do not change the order of the dominant terms in this
bound.

The second is (C.18) where now we will have, in view of (D.10), that

%EdQ(Vf(le) + Ve(@rgr) Ak + peVe(@isr) " e(@ret), —Nx (@re1))

< E[Yi = Y1) 4 Ers1 + ok — pe41|CZ + mCe, (D.12)
where the additional error term 74y is summable by definition and the rest of the proof of Lemma C.3 would be
the same to get Y31 |Qpy (h+1s A1) = Qpry (@is1, M) = O(L).

By combining these modified results as in Theorem 3.1 we deduce the result. O

D.2 Deterministic functional constraints

In this section, we consider the case when the constraints are not given in the expectation form. In this case, we
will set the parameters accordingly to get the complexity O(e™*).

Theorem 4.2. For Algorithm 2, set

1
9Lp(k + 1)1/2
72
o =
k+1 81(1€+1)1/2’

Mo = pr. = pk'/*,

for some p > 1 and L? = 4f/2vf +4m?(C?L%, + C%,L2). Let the assumptions in (A2), (A3), (A4), (A5) hold
with a deterministic c(x). We have that there exists A such that

E [d<vf(x]}+1) + VC(.IE+1)T/\, _NX xk:+1 ]

Elle(zi )l <

| /\

with number of iterations bounded by O(e~%).

Proof. Since the orders of the parameter choices differ in this case, we will show the changes in the analysis of
Section 3.

First, in Lemma C.1, the main change will be that we use full gradients for the constraints. In particular, we
have

Gr(r) = VQ,, () = )+ pr Z ¢i(x)Vei(x

ék(‘r7€) = @ka (x,f) Vf(JZ 5 + Pk Zcz VC'L )

=1
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As a result, the main change will be in the variance term, i.e.:

E||Gr(zk) — Gr(zr, &)l = E|Vf(2) = Vf(z,€)|* < oF.

Since in this case, we have 72[~/2pi+1nk = 729@, it follows that (C.9) holds by a1 < 1 due to 1—ag41 —|—ai+1 <1
(note that this is sufficient as per (C.10) due to the term 72L*p? m; being independent of k in this case). This
gives, instead of the result of Lemma C.1, that

1
Wl ~ 9@ (o0)I” < 2Bl ~ V@ I* ~ 2z Blliss — V@ (k)
Tm2C2, C? ol o3
2 vele 2 +1Yf
T —_— = — + —. D.13
* 41 — | 1272, |pr+1 = Pl 1212, (D.13)

The numerical estimations in Lemma 3.5 are true with the new parameters since we still have L, < I: <

f/pkﬂ < ka+1(k + 1)1/4 ﬁ and hence L% + 187% — ﬁ < — 1877 . Moreover, for the estimations at the end

of the proof of Lemma 3.5, we still have that L,, < 771;1 and as a result we have (c¢f. the result of Lemma 3.5)

Z;Ed (Vf(@rs1) + prVe(@rir) T e(@re), —Nx (wr41)) < E[Yi — Y1 + Qo (Tr41) — Qppyy (s 1)[] + Exgr,s

where )
Yit1 = ka+1(xk+1) + m”gm—l - VkaH(ka)Hz
and ) )
Tm?C%,C? 9 | Y4107
Epy1 = RO lpr+1 — prl” + 1oLz

Note that as Remark C.2, we have that Zle Er+1 = O(log(K 4 1)) by the definitions of a1 and py since
lok — pry1| < %%/4 and oy, = 81(16_7’_%~

72-18L

For Lemma C.3, we use by = Shi1)3/T to have
2 1 2|pr — pr+1]
b > >
- 72 po(k +1)5/4 = 2p5(k)5/4 = p26

by also using [px — pr+1| < 57z and pr = pk/*. We note also that, in the same way as Lemma C.3, we have

1

m — With these estimations and by repeating the same arguments as Lemma C.3, we

1
S BRI

get

K

S EIQp, (1) — Qs (w151)]

k=1

bQ b )
S bQPl (xl) - (K+ 1)3/4 =+ 72[”‘/2 B ||gl - VCgpl (1'1)”
K b(Bf + pC'2 X b5k+1 bpc2 K20,

where by = 5(224;11?5/4, b = 72'§8E. As & = O (%), the right-hand side on this inequality is finite. We can
then combine these inequalities the same way as Theorem 3.1 and use the definitions of 7, = ——+—— and

9Lp(k+1)1/2
pr = pk'/* to get the result. O
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