2405.08762v1 [cs.CR] 14 May 2024

arxiv

$3C2 Summit 2024-03:
Industry Secure Supply Chain Summit

=

S3C2

Greg Tystahli, Yasemin Acar®, Michel Cukier’, William Enck®,
Christian Kistner®, Alexandros Kapravelos*, Dominik Wermke*, Laurie Williams*

*North Carolina State University, Raleigh, NC, USA
*Paderborn University, Paderborn, Germany, and George Washington University, DC, USA
TUniversity of Maryland, College Park, MD, USA
§Carnegie Mellon University, Pittsburgh, PA, USA

ABSTRACT

Supply chain security has become a very important vector to con-
sider when defending against adversary attacks. Due to this, more
and more developers are keen on improving their supply chains to
make them more robust against future threats. On March 7th, 2024
researchers from the Secure Software Supply Chain Center (S3C2)
gathered 14 industry leaders, developers and consumers of the open
source ecosystem to discuss the state of supply chain security. The
goal of the summit is to share insights between companies and
developers alike to foster new collaborations and ideas moving
forward. Through this meeting, participants were questions on best
practices and thoughts how to improve things for the future. In this
paper we summarize the responses and discussions of the summit.
The panel questions can be found in the appendix.

1 INTRODUCTION

Supply Chain security has become a major talking point of indus-
try practitioners. From the ashes of the Spectre, SolarWinds, and
Log4] attacks came the executive order requiring a higher focus
on supply chain security [3]. Through this order, work has been
done to improve software visibility through SBOMs [4], software
attestations, and build frameworks [2].

As software grows, policies may need to be reevaluated to cap-
ture all potential scopes and emerging areas of concern. With the
explosive growth in Al advancements as well as wide spread adop-
tion of large language models (LLMs), areas of the supply chain
may gain new attack vectors that need to be considered.

To this end, a group of researchers from the Secure Software
Supply Chain Center gathered 14 industry leaders, developers, and
consumers of the open source ecosystem to discuss the state of
supply chain security. This summit was held on March 7th, 2024
and lasted for one day. Participants of the summit were questioned
in six different panels by other participants. The summit followed
Chatham House Rules where participants were allowed to talk
about what was discussed in the summit, but were not able to
reveal who said what. As such, information disclosed in this paper
disseminating what was discussed will not include any information
as to who participated in this meeting.

The next sections are formatted based on the panel questions
and made up of summarized responses from the entire group. A
full list of panel questions can be found in the appendix.

2 SOFTWARE BILL OF MATERIALS (SBOM)

SBOMs have gathered a large popularity due their requirement
in the executive order [3]. Generation of SBOMs has become a
common practice of producers of software using tools such as Cy-
cloneDX and SPDX. While the adoption of SBOMs have increased,
it is unclear as to how companies are using the SBOMs that are
created.

2.1 SBOM Creation

While creation of SBOMs may have been a huge limiting factor
in the past, SBOM creation has become much easier. CycloneDX
and SPDX are the two major generators used by the participants.
These tools have become mostly interchangeable as their formats
are largely dependent on the specifications of the executive order.

However, while the generation process has become easier, the
challenge still remains for how many SBOMs need to be created.
Some of the participants debated on how much of their software
should have SBOMs generated. For software that has multiple builds
dependent on the operating system that they are building for, should
there be one major SBOM for all possible builds types or multiple
per build? The answer gathered was dependent on the consumer
of the SBOM. If requested, they would generate multiple SBOMs if
needed.

2.2 SBOM Consumption

The general consensus was that no consumer knows what to do
with SBOMs once they get them. A lot of consumers are asking for
SBOM:s as part of the compliance, but they are not using them for
anything at this time as use is not required.

While consumers may not be using SBOMs, one of the partici-
pants discussed the internal use case for their generated SBOMs.
They created their own analysis software that uses SBOMs for eas-
ier software composition analysis (SCA). With the use of SBOMs,
a full SCA is not needed every time a new version of something
comes out. Using the SBOM to find just the components that need to
change seemed to be a big help. Another participant discussed the
idea that SBOMs are making it easier for companies to communicate
their software to each other. They stated that SBOMs themselves
may not be the best solution, but they are getting companies to start
understand supply chain security. Understanding what software is
being added to dependent software has made it easier to track down
potential risks. To this effect, one participant stated that this kind
of visibility will lead to companies being embarrassed about using

very out of date or vulnerable software and will increase security
updates accordingly to avoid this.

2.3 VEX Use

Creating VEX statements is not possible for all scenarios with
SBOMs. Since VEXs are dynamic, they need to be generated contin-
uously for a specific SBOM, which are statically created. Work needs
to be done to be able to create more lightweight VEX statements to
accommodate multiple SBOMs at the same time. Otherwise, par-
ticipants believed it to be infeasible to create VEX statements for
every SBOM generated as well as inefficient.

2.4 Challenges

While SBOMs have seem improvments, participants still faced some
challenges as to their adoption. One of the challenges that they
faced was how effective are they at increasing security? It can be
said that knowing what components are in dependent software is
important, but is SBOM giving any more information that cannot
be gathered by other means? SCA tools have existed for quite some
time without the existence of SBOMs, so are they truly needed or
do SCA tools need to adopt similar functionality? Work needs to be
done to prove just how SBOMs themselves reduce attack vectors
for their cost to increase their use.

3 VULNERABLE DEPENDENCIES

Dependency management is an integral part of the supply chain,
especially when it comes to vulnerable dependencies. Understand-
ing which components to use as a dependent, detecting if they are
vulnerable, and how to fix found vulnerabilities or replace them
with similar non-vulnerable counterparts are all important things
to consider. We asked participants to talk about their processes for
this in this panel.

3.1 Dependency Choice

There were multiple different answers for how to choose which
dependencies to use. Some of these answers depend on the size
of the company and how much available resources they are able
to allocate to this. One participant described their heavyweight
processes to check the dependencies before implementing them
into the code. If any CVS found within the component have a score
of 7 or higher, the component is not cleared for use. While this is
able to capture a lot of problems before they are implemented, this
is a large effort.

Another way to discover potential problems was building all
software in house. Building in house allows for using the same
scans as normal source code to find any vulnerabilities. However,
this may not be possible for all kinds of dependencies where source
code is not available.

3.2 Dependency Update Policies

Updating dependencies that are either vulnerable or out of date
requires as large amount of effort. A participant stated some com-
panies have no way to stay up to date with all of their dependencies
for every version that is released (minor or major). On top of this,
they also do not have a way to come up with a total cost for an
update.

Secure Software Supply Chain Center (S3C2)

Thus, a participant proposed their solution which is having a
policy that fits the level behind you are willing to stay. Their exam-
ple policy that has worked well for the most part is to be behind
the release by three minor releases. Another example policy was
doing patches quarterly and only updating outside of this for CVE
releases. This increases security over not updating at all while still
reducing the total effort required.

One point of discussion was the idea of patching fatigue. Having
to update for every version may lead to burning out the developers.
On top of this, it was discussed that the latest patch may not be
the most secure one. To fix fatigue, another solution proposed was
automating the updates. It was something that split the participants.
Some stated that they leverage automatic tools like Dependabot to
handle this, but believe it is not fully there yet. Automatic updates,
while they have gone a long way tends to adds too much noise and
overhead on things that break to be fully effective currently.

4 MALICIOUS COMMITS

Due to the nature of open source software, there is always the
lingering possibility that an attacker can commit seemingly benign
malicious code into software products. A recent example of this
was the XZ Backdoor [1]. In this attack a malicious actor gained
co-control of a low level software repository and gained remote
code execution on a large number of seemingly secure devices. We
asked the panel how they are able to detect such commits and how
the ecosystem as a whole can get better at detecting them.

4.1 Detection

Participants in this study had mixed answers on how to truly detect
malicious commits.

One half of them stated that there is no way to detect malicious
commits automatically. They believe that malicious commit detec-
tion is an unsolvable problem and to fix this must be done in the
environment and deployments rather than in the code creation.

The other half believed that developers can follow the signals
that have been extracted in the past such as behavior. The rebuttal
to this was that automatically detecting new, non-trivial commits
is seemingly impossible. At this time nobody knows exactly how
to define truly what is truly considered a malicious signal. The big
problem with detection of maliciousness was that the line between
a mistake and maliciousness is too close. Looking for behavior is
a signal, but it does not irrefutably mark a commit as malicious.
Non trivial examples blur the line even further. Third-party de-
pendencies that are added by a malicious actor with intent to be
changed later can still be malicious but not look that way on the
first commit.

Reputation was brought up as an important vector to consider
because it can be both a good and bad pattern for malicious commits.
Attacking the accounts that have the good reputation in the open
source ecosystem to use allows for attackers to gain control much
faster than if they created their own new accounts. This type of
attack is very hard for a human to detect and relies heavily on the
account security of the popular user.

$3C2 Summit 2024-03: Industry Secure Supply Chain Summit

4.2 Remediation

While malicious commits can be a huge problem, participants de-
bated potential strategies to remediate the impact of them. One
of the participants provided code reviews done by the developers
or outside parties help with catching malicious commits, but they
do not capture everything. In really small projects with only one
developer, who will or should do the code review? This becomes
especially important if the main developer themselves becomes
malicious.

Another participant suggested signing as a way to track the
commits back to the committer with a very hard forgability. This
does not stop malicious commits from occurring, but it can make it
easier to remove the malicious user or patch their breach once it is
found. Attestation, like what is required of SLSA Build Level 2 falls
into a similar vein [2]. While this is able to show a trail of where
commits or vulnerable projects come from, it does not prevent nor
detect malicious commits from happening.

A major remediation strategy proposed and almost universally
accepted was build speed. Being able to respond quickly to the
detection of vulnerabilities added through a malicious commit was
almost more important than detection beforehand. The caveat to
this was that faster builds requires very stable and good software
engineering practices to respond quickly.

4.3 Malicious Components VS Malicious
Commits

There was a clear sentiment among the participants that there
needs to be made a difference between malicious commits and
malicious components. Understanding what the component should
do as normal behavior and then detecting anomalies is easy.

Behavior analysis of the components is more powerful than
of the commits themselves and can be used to capture a lot of
maliciousness. This kind of analysis captures attacks such as typo
squatting or complete takeover of a dependency. This works for
dependencies that you can analyze as well as ones that are harder
like Docker. A factor in which this kind of analysis becomes difficult
is for new software. It is hard to tell what is normal for very new
software. To make this even stronger and more automatic, it was
suggested to use machine learning to determine what is the normal
and to detect the abnormal.

Most of these strategies proposed for both commits and compo-
nents work for third party and internal code.

5 BUILD INFRASTRUCTURE

Understanding what should be done to secure the build and deploy
process pipeline depends heavily on the company. If the company
has a more strict risk policy then this will affect the pieces that go
into their builds. It also depends heavily on the build environment
that the build is being done in. If building on GitHub, the SLSA
generation tools are easy and integrated, but this is not necessarily
the case for other CI/CDs. We asked the panel what they are doing
as well as what should be done to secure build pipelines.

5.1 Secure Strategies / Frameworks

Participants agreed that threat modeling for the entire build infras-
tructure is hard. There are a lot of places where an attacker can

change or add that goes straight to the consumer due to automated
build systems. On top of this, a lot of the current defences do not
seem to be getting at the heart of the problem. Strategies such as
attestation does not tell you what parts of the build are wrong, it
just tells you what is there. Reproducibility is effective when finding
tampering in build code, but compiler tampering is a huge problem
that current reproducibility may not be able to handle.

Participants discussed some of their processes for securing their
pipeline. One participant suggested that hermetically sealing builds
should prevent build tampering. Use of Tekton chains for trusted
control pipelines and cryptographic provenance (SLSA Build Level
2) helps with creating trails. Vetting of build tasks before and after
they are run. Some paritipants believed that traceability is as impor-
tant if not more important than prevention. Some build pipelines
which are believe to be secure like GitHub Actions may not be fully
secure and should be looked into.

5.2 Reproducible Builds

Reproducibility is an interesting goal to strive for. It became ap-
parent through discussion that there is no one set definition of
reproducibility that everyone follows. Is it more important that the
build can be made twice bit-for-bit or just remade at all? Partic-
ipants agreed that the goal of each should be the same and that
developers are trying to detect tampering with the system that were
not already there in an ordinary build.

One participant put forth that currently reproducibility is not
the main problem since 96% of vulnerable downloads are done on
packages that are known to already be vulnerable. This is not to say
that reproducibility is useless. It does help to capture information
about your system and helps to find and isolate elements that get
compromised quicker. However, this is not something that com-
panies need to fully strive for at the beginning and should be a
wishlist item.

6 VULNERABILITY REDUCTION AT SCALE

With the use of Static Application Security Testing (SAST) tools
comes a lot of vulnerability alerts. These alerts can be in the thou-
sands for some software products so it becomes imperative that
developers are able to respond and handle these vulnerabilities.
One participant stated that 70% of vulnerabilities are from memory
safety issues. Thus, we asked the panel what strategies have they
been employing to reduce vulnerabilities at scale through secure
frameworks or moving to memory safe languages.

6.1 Memory Safe Languages

While memory safety issues may make up a large majority of the
vulnerabilities found in the wild today, moving to memory safe
languages does not solve all problems of programming. One par-
ticipant stated the phrase "Same bugs, different languages” for the
phenomenon they noticed when moving to these memory safe
languages. The same participant stated though that using memory
safe languages moving forward is a good practice to do. Another
participant noted that the government would rather use products
that use memory safe languages vs ones that do not. The converse
of this was the notion of redeveloping everything is a huge effort as
well as battle tested code has its benefits and should not be changed.

If the battle tested code has been pruned for a long time and have
not had any issues, it should not be a priority when transitioning
code to a safe language. Participants urged that companies should
be changing the old code to the newer languages as needed. The
goal would be to eventually phase out all of the legacy code, but
this does not all need to be done at once.

There are some complications that hold memory safe languages
back. Memory safe languages such as Rust have a very steep learn-
ing curve. Finding new developers that know safe languages and
practices as well as teaching current developers is a difficult task.
Due to the limitations of some of these languages and the needs of
particular software, it might not be possible to make the full switch.
Software life-cycles do not allow for quick updates to entirely new
languages and software. Phasing out legacy applications to memory
safe languages quickly is a very hard endeavour.

6.2 Secure Practices

Having secure practices when developing software is important in
almost every part of the development cycle. Participants agreed that
secure practices done early can reduce large vulnerabilities down
the line. One participant discussed their process of checking code
before it even gets into the pipeline. Another participant shared that
their frontend protections and sanitation were effective means of
reducing vulnerabilities. Shifting risk such as hosting infrastructure
through a third party allows for the company to focus more on
whats important to them and not have to worry as much about
everything.

If possible, a large team effort to reduce the vulnerabilities over
a long period of time was discussed to be effective. One partici-
pant on the panel discussed their success with a dedicated team
to recucing thousands of vulnerabilities down to less than 100 in
2.5 years. They pushed that the team must be dedicated to this
task alone as they become faster at solving these issues overtime
and can come up with faster ways to solve problems similar in the
future. Automating this process is important, but when considering
designing for automation, what to automate first and how fast is
the most important.

Once again the theme of speed came up as a secure policy. Being
able to fix things really quickly rather than having a super heavy
framework that slows down production is more beneficial overall.
Potentially contradictory to speed is an understanding needs to
be made that code that is written today may be used for a long
time so care should be taken to make sure they work correctly in
the beginning. Being able to balance between speed and security
is a crucial step that companies need to achieve for their secure
policies.

7 LLMS AND SUPPLY CHAIN

Recent advancements in Al technology, specifically the rise of LLMs,
has lead to widespread use by companies and developers alike.
While this technology is seemingly very useful, it is still in the
early stages of its developmental lifestyle. New challenges will
begin to appear as more and more adopt the use of them into their
systems and software. We asked the panel at this time, how are
they leveraging AI/ML into securing the supply chain.

Secure Software Supply Chain Center (S3C2)

7.1 Potential Use Cases

Finding uses for models in non-critical tasks appeared to be the
thought process for looking for any kind of task for the LLM, such as
threat modeling and translation. Participants expressed that trying
to find other uses for LLMs is hard. One participant was striving to
look into fuzz testing by getting the LLM to generate fuzz tests, but
found this hard as they were unsure as to how to go about doing
this. Another participant said they were looking into using LLMs to
answer security questions. Using LLMs as monitors came up again
for behavior analysis, anomaly detection in networks, and catching
attacks during holidays when attackers are likely to strike. Use
for training developers in security topics such as risk management
training as well as helping Blue Teams develop attacks and defenses
was also something being considered.

Participants discussed some things that are already being done to
use Al including generating environment configurations for builds.
Another participant discussed how they found that LLMs were able
to fix 7.5% of reviewer comments automatically.

The group then discussed that a stretch goal for LLMs is to use
them to solve simple vulnerabilities to reduce the number of things
that need to be looked at for developers. They also expressed interest
in researching how LLM developers can get the models to generate
more secure code and recommend more secure dependencies.

7.2 Limitations

While Al offers a lot of benefits, they have a lot of limiting factors
that are holding companies back from full adoption. One of the
major issues brought up with LLMs is trust. Can companies trust
the model to do what they need it to do or will hallucinations be
a huge detriment. When hallucinations happen, it is hard to trace
problems back to the source when they do not know what the
source is.

One participant made the claim that LLMs will cause bad devel-
opers to create huge amounts of bad code. Small teams that require
big efforts will substitute LLMs and will run into a lot of issues
when the code does not work well enough. An idea brought up was
that the liability of LLMs will be a huge factor going forward that
is seemingly ignored currently. Pen testing against LLMs is easy
and exploitable (Feels out of place). The risk from LLMs use itself
is poorly understood and highly imminent.

Incorporation into code writing is too much of a risk for pro-
prietary code. It is possible to be done if you use and maintain
your own LLM model with your own training data, but this is very
expensive and time consuming to even create the dataset.

When looking specifically at supply chain applications of LLMs,
including models into any part of the process will be hard to de-
termine if that model has not been poisoned. Verification of safe
models is a big question that comes from this. A direct quote from
on the of the participants was "LLMs generally make supply chain
security worse". Companies need to understand better how LLMs
work on a fundamental level to make any kind of decision.

8 SUMMARY

After discussing all of the topics of the summit, participants were
asked what was their key takeaways from all of the talks.

$3C2 Summit 2024-03: Industry Secure Supply Chain Summit

One of the participants expressed that everything that was dis-
cussed is hard. These problems are not fully solvable for any com-
pany. Coming up with solutions that fit the broad scope of every
company is impossible. Another participant stated solutions that
can be created can follow the "80-20" rule in which it can get com-
panies started in the right direction and they can prioritize what
they care about more.

Security strategies proposed to mitigate the supply chain secu-
rity issues fell heavily into the defense in depth category. Being
able to secure every part of the pipeline as much as possible will
help with overall security Engineering effort became the biggest
deciding factor in what companies will decide to do over something
else. Cost benefit analysis will be very important in this decision
process. Being able to build software fast seemed to be the most
widely accepted sentiment for keeping software as secure as possi-
ble. Priorities of the company will also dictate their policies which
will influence how heavy easy defense will need to be. Knowing the
type of product you are trying to produce as well as the organization
you work for will help with these decisions.

9 ACKNOLEDGEMENTS

We would like to thank all of the participants of the Summit. All
of their discussions and insights will be very beneficial to the
open source supply chain security community. The Summit was
organized by Laurie Williams and Alexandros Kapravelos and was
recorded by Greg Tystahl. This material is based upon work sup-
ported by the National Science Foundation Grant Nos. 2207008,
2206859, 2206865, and 2206921. These grants support the Secure
Software Supply Chain Summit (S3C2), consisting of researchers at
North Carolina State University, Carnegie Mellon University, Uni-
versity of Maryland, George Washington University, and Paderborn
University. Any opinions expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

[1] CISA. Lessons from xz utils: Achieving a more sustainable open source ecosys-
tem. https://www.cisa.gov/news-events/news/lessons-xz-utils-achieving-more-
sustainable-open-source-ecosystem, April 2024.

[2] OpenSSF. Supply-chain levels for software artifacts (slsa). https://slsa.dev/, 2023.

[3] US White House. Executive order 14028 on improving the nation’s cybersecu-
rity. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/
12/executive-order-on-improving-the-nations-cybersecurity/, May 2021.

[4] Nusrat Zahan, Elizabeth Lin, Mahzabin Tamanna, William Enck, and Laurie
Williams. Software bills of materials are required. are we there yet? IEEE Security
& Privacy, 21(2):82-88, 2023.

A FULL SURVEY QUESTIONS FOR PANEL

(1) Software Bill of Materials (SBOM): Where are you in
your journey toward producing an SBOM? Where are you
in your journey toward consuming/using the SBOMs of
components and products you use? What challenges have
you faced in SBOM production or use and how have you
tried to overcome these challenges? Are you creating a
VEX? How?

Vulnerable dependencies: What process and/or tools do
you use to find out that you have a vulnerable dependency?
What is your processes for evaluating/prioritizing what
dependencies to update and actually updating vulnerable

@

~

©)

©

(&)

(6)

dependencies? Do you push a new version of a dependency
with a major or minor release?

Malicious commits: How can malicious commits be de-
tected? What do you think signals a suspicious/malicious
commit? What role does the ecosystem play in detecting
malicious commits?

Build Infrastructure: What is being done (or should be
being done) to secure the build and deploy process/tooling
pipeline (a.k.a SLSA practices)? Are you working toward
reproducible builds?

Reducing entire classes of vulnerabilities at scale: Are
you moving toward the use of safer languages? Mandating
the use of any secure frameworks?

LLMs and Supply Chain Security: How are you leverag-
ing the recent advances in ML/AI in securing your software
supply chain?

https://www.cisa.gov/news-events/news/lessons-xz-utils-achieving-more-sustainable-open-source-ecosystem
https://www.cisa.gov/news-events/news/lessons-xz-utils-achieving-more-sustainable-open-source-ecosystem
https://slsa.dev/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

	Abstract
	1 Introduction
	2 Software Bill of Materials (SBOM)
	2.1 SBOM Creation
	2.2 SBOM Consumption
	2.3 VEX Use
	2.4 Challenges

	3 Vulnerable Dependencies
	3.1 Dependency Choice
	3.2 Dependency Update Policies

	4 Malicious Commits
	4.1 Detection
	4.2 Remediation
	4.3 Malicious Components VS Malicious Commits

	5 Build Infrastructure
	5.1 Secure Strategies / Frameworks
	5.2 Reproducible Builds

	6 Vulnerability Reduction at Scale
	6.1 Memory Safe Languages
	6.2 Secure Practices

	7 LLMs and Supply Chain
	7.1 Potential Use Cases
	7.2 Limitations

	8 Summary
	9 Acknoledgements
	References
	A Full survey questions for panel

