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Abstract—The concept of digital twin (DT), which enables the
creation of a programmable, digital representation of physical
systems, is expected to revolutionize future industries and will lie
at the heart of the vision of a future smart society, namely, Society
5.0, in which high integration between cyber (digital) and physical
spaces is exploited to bring economic and societal advancements.
However, the success of such a DT-driven Society 5.0 requires a
synergistic convergence of artificial intelligence and networking
technologies into an integrated, programmable system that can
coordinate DT networks to effectively deliver diverse Society 5.0
services. Prior works remain restricted to either qualitative study,
simple analysis or software implementations of a single DT, and
thus, they cannot provide the highly synergistic integration of
digital and physical spaces as required by Society 5.0. In contrast,
this paper envisions a novel concept of an Internet of Federated
Digital Twins (IoFDT) that holistically integrates heterogeneous
and physically separated DTs representing different Society
5.0 services within a single framework and system. For this
concept of IoFDT, we first introduce a hierarchical architecture
that integrates federated DTs through horizontal and vertical
interactions, bridging cyber and physical spaces to unlock new
possibilities. Then, we discuss challenges of realizing IoFDT,
highlighting the intricacies across communication, computing,
and Al-native networks while also underscoring potential inno-
vative solutions. Subsequently, we elaborate on the importance of
the implementation of a unified IoFDT platform that integrates
all technical components and orchestrates their interactions,
emphasizing the necessity of practical experimental platforms
with a focus on real-world applications in areas like smart
mobility.

Index Terms—digital twin, continual graph neural networks,
internet of federated digital twins (IoFDT), proof-of-concept

I. INTRODUCTION

Digital twins (DTs) are a transformative technology crafting
faithful digital representations of physical systems, processes,
and dynamics in cyber spaces. This application space enables
DTs to span elements ranging within the Internet of Things
(IoT) to intelligent transportation systems (ITS), healthcare,
and intricate industrial systems across the whole product
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life-cycle, including design, manufacturing, distribution, and
recycling [1], [2]. In essence, a fully realized DT is not just
a static blueprint or simulation of a physical system, but a
dynamic, high-precision, granular replica of a physical system,
including its interactions with other physical system. Thus,
DTs symbolize a harmonious blend of physical and cyber
spaces, which departs from the traditional IoT concept, where
interconnectivity is confined among physical objects and data
flows mainly in one way from physical to cyber spaces. DTs
will be an integral part of future applications ranging from
manufacturing to agriculture and enabling the metaverse [3].
DTs will shape the future as a cornerstone of super smart so-
ciety, dubbed Society 5.0 [4], where the intertwining of cyber
and physical spaces drives economic and societal advancement
across industries ranging from intelligent transportation to
factory automation and robotics. The success of this DT-driven
Society 5.0 depends on the seamlessly integration of physical
and cyber spaces, ensure precise coordination among DTs and
enable them to work together effectively to deliver diverse
Society 5.0 services. DTs, working in synergy, streamline end-
to-end (E2E) operations demanding synchronization across
multiple Society 5.0 services, such as smart mobility and auto-
mated manufacturing. Hence, DTs can establish interconnec-
tions and form cooperative clusters in cyber space, collectively
modeling and analyzing their corresponding physical systems
at varying granularities. Therefore, as a milestone towards
enabling Society 5.0, it is necessary to understand challenges
of synergistically interconnecting multiple DTs over wireless
networks rather than considering each DT in isolation.
Recent research exploring synergies between DTs and wire-
less systems falls into three main categories. The first category
(e.g., in [5]), constituting a significant portion of existing
research, leverages DTs to create digital representations for
wireless systems (e.g., SG) to enhance network management.
While these works are beneficial for wireless systems, they
neglect the wireless systems’s role in connecting and syn-
chronizing multiple DTs. The second category (e.g., in [6])
studies the deployment of a single, isolated DT within wire-
less systems, focusing on individual networking and learning
schemes. Clearly, these works fall short in extrapolating these
network mechanisms for a complex system of interconnected
DTs. Finally, some works (e.g., in [7]) focus on virtual
representation of twins, neglecting network constraints and
primarily tackling software development hurdles. Therefore,
these approaches fall short of realizing comprehensive and
coordinated E2E DT services in Society 5.0, as current DT
technologies lack required features, such as scalability and



interconnectivity, that are indispensable in systems of inter-
connected DTs. Comprehensive reviews on DTs can be found
in [1], [2]. While existing works have explored broader aspects
of DTs, they lack a focused exploration on complex integration
and coordination of multiple DTs across various physical
systems with seamless interoperability, a gap that this paper
aims to address.

Building on this identified gap, this paper introduces and
defines the Internet of Federated Digital Twins (IoFDT), a
novel concept designed to enhance interconnections, coordina-
tion, and cooperation among DTs across diverse systems while
addressing critical performance metrics such as efficiency,
scalability, and latency. In essence, the IoFDT plays a crucial
role and constitutes the backbone in realizing Society 5.0 by
interconnecting a comprehensive, federated network of diverse
DTs and Society 5.0 services. Each DT within an [IoFDT in
the vision of Society 5.0 is designed for a specific system or
service, with federation occurring not only among homoge-
neous DTs, but in broader heterogeneous systems. Moreover,
the IoFDT architecture employs dynamic resource allocation
and modular services that can adjust system demands, ensuring
efficient scalability and performance integrity of the growing
DT network.

This creates a complex federation of interconnected DTs
across various domains in Society 5.0, all linked over wire-
less systems. In this framework, a federated DT leverages
sliced component functions, including sensors, networks, and
computing resources integrated within an IoFDT platform.
The IoFDT coordinates multiple federated DTs and integrates
physically separate, heterogeneous DTs beyond their physical
borders. Fig. 1 illustrates an example of the IoFDT with several
DTs in the vision of Society 5.0. In this example, the connec-
tion between the factory DT and agriculture DT in cyber space
enables a food processing DT, which manages agricultural
products from farms and food processing chain in factories
in cyber space. Such integration optimizes harvest schedules,
production plans, quality control, and E2E traceability. Other
examples requiring an interconnected IoFDT include: city
energy management by connecting power plant DT with user
behavior DT; smart supply management by linking logistics
DT and manufacturing DT; precision construction by associ-
ating construction site DT with construction machinery DT;
and smart preventive healthcare by connecting user lifestyle
DT to medical system DT. The IoFDT significantly departs
from conventional DT systems relying on isolated, indepen-
dent DTs, and could provide a backbone for Society 5.0 to
revolutionize future societies and deliver E2E smart services
through the seamless integration of cyber and physical spaces.

Towards enabling the IoFDT, a confluence of Al, net-
working, computing, and implementation is essential, which
introduces several novel challenges that should be addressed.
This paper’s key contributions are summarized as follows:

e We propose a novel IoFDT framework architecture
marked by its intricate hierarchical structure of DTs that
are not just interconnected but federated while bridging
cyber and physical spaces. This architecture leverages
multi-layered insights, enables operational, systemic, and
predictive analytics from individual DTs to the collective
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Fig. 1: An example of the vision of Internet of Federated Digital
Twins over wireless networks.

federation, and thereby enhances decision-making, strate-
gic foresight, and operation in the IoFDT ecosystem.

o We identify multifaceted challenges at the crossroad of
communications, artificial intelligence (AI), and comput-
ing. We put forth potential, novel solutions in realizing
the IoFDT at enhancing synchronization, cross-layer net-
working, real-time computing, scalability, Al learning,
Al-native networks, and generalizability of twins.

o Transitioning from theory to practice, we outline the
implementation of a unified experimental platform inte-
grating DT, network, and computing orchestrators to fa-
cilitate seamless interactions among diverse DTs. We em-
phasize real-world testing to validate theoretical models
and introduce a comprehensive proof-of-concept (PoC)
implementation, initially focused on smart mobility to
demonstrate the IoFDT’s feasibility and merit.

The rest of this paper is organized as follows. Section II
presents the overall [oFDT framework. Section III introduces
enablers and challenges for IoFDT across networking, Al,
and computing. Section IV introduces an experimental [oFDT
platform with experimental applications. Section V concludes
with future recommendations towards enabling IoFDT.

II. IOFDT: FROM INDIVIDUAL DTS TO HIERARCHICAL,
FEDERATED DT NETWORKS

The IoFDT architecture features a network of intercon-
nected, federated DTs, as illustrated in Fig. 2. This topology
overcomes limitations inherent in standalone DT systems,
such as lack of interconnectivity, inability to extract multi-
layered insights, limited adaptability, and the absence of a
collaborative ecosystem.

At the center of IoFDT lies a series of DTs, which serve as
precise digital representations of physical objects or processes,
bridging cyber and physical spaces. These DTs are strategi-
cally arranged in a tiered structure, with each level reflecting



intricacies of DTs’ functionalities and degrees of interaction
with their physical counterparts. This hierarchy enables the
extraction of rich, multi-layered insights, such as operational
details from an irrigation machine DT, systemic understanding
of the irrigation system’s impact on crop growth, and pre-
dictive insights on planting cycles and pest control strategies
from collective data of farm DTs. DTs, diverse as systems
and services they represent, are not individual but intrinsically
linked through a federation. This DT federation is more than
a mere technical connection. Instead, it acts as a unifying,
logical thread that weaves together distinct DTs, creating a rich
tapestry of interactions and information/knowledge exchange.
This shared network establishes a collaborative ecosystem
within the IoFDT. Participants in this network, representing
various DTs, actively exchange real-time data, performance
metrics, and Al-derived insights. This continuous exchange
not only leverages existing knowledge, but integrates fresh
data, refining system’s collective intelligence and adaptability.
The DT federation fosters seamless data synchronization and
knowledge sharing among DTs. For instance, a DT represent-
ing an irrigation system might adjust water distribution based
on insights from another DT monitoring soil moisture. As DTs
interact, they fine-tune their algorithms, ensuring their digital
representations remain aligned with real-world conditions they
twin. The IoFDT framework categorizes interactions into two
types: horizontal interactions among DTs of similar hierarchies
or functionalities; and vertical interactions among DTs across
different hierarchical levels, bridging granular processes to
overarching system dynamics. Next, we describe the horizontal
and vertical splits in the IoFDT:

A. Horizontal Split

Horizontal interactions within the same DT levels and
clusters in the hierarchy are fundamental to the IoFDT for en-
hancing collaboration, learning, and growth among geograph-
ically dispersed DTs. For example, consider the following
scenario: A DT provides real-time crop yields and readiness
information to a logistics DT, which plans optimal routes for
fresh product transportation. Simultaneously, a supermarket
chain DT integrates this information to manage inventory and
plan their supply based on fresh product arrival. Meanwhile,
planting or harvest plans on farms will be adjusted according
to supermarket demands. This interaction is not only about
data exchange, but constitutes continuous mutual learning and
growth. Horizontal interaction is strengthened by sophisticated
frameworks of real-time data sharing, advanced analytics, and
Al-driven insights. It enables DTs to catch and understand
other DTs through the IoFDT. Furthermore, when DTs, either
homogeneous or heterogeneous, form functional clusters, the
horizontal interactions also facilitate communication across
DT clusters. In this interconnected, federated ecosystem, ge-
ographical distances and different segments become inconse-
quential. The IoFDT effectively shrinks the physical world, by
bringing diverse twins closer together in a shared cyber space.

B. Vertical Split

The IoFDT also includes vertical interactions that bind DTs
at higher hierarchical levels with those operating at more gran-
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Fig. 2: Federated DTs and associated platform for smart services in
IoFDT.

ular levels. While lower-layer DTs offer granular, real-time
data and insights into specific physical systems, upper-layer
DTs aggregate and contextualize this information, providing
a holistic view for strategic decision-making. For instance, in
a smart city, individual DTs might monitor specific services
like traffic, energy, or waste management, with each providing
specific insights into its respective physical system. An overar-
ching city management DT, positioned at a higher hierarchical
level, integrates these insights for decisions on overall resource
allocation, emergency response, and long-term urban planning.
Similarly, in a hospital, while individual DTs focus on specific
departments or patient data, a high-tier healthcare system DT
combines these insights to enhance patient care coordination
to optimize resource distribution and refine overall hospital
operations. This vertical interaction ensures not only that
ground-level detailed insights are considered, but also that
higher-level decisions are effectively disseminated, to maintain
system-wide coherence and efficiency.

Having delineated the IoFDT’s foundational framework, it
is essential to address the underlying technical challenges and
enablers over wireless systems. The intricacies and potential
solutions at the intersection of communication, Al, and com-
puting will be detailed next.



III. CHALLENGES AND ENABLERS FOR IOFDT:
WIRELESS, LEARNING, AND COMPUTING

Despite IoFDT’s benefits, realizing this vision still faces
many challenges.

A. Communications and Networking Challenges

1) Synchronization over the network: Creating and feder-
ating multiple DTs requires real-time data accumulation from
a multitude of physical objects and processes across vast
distances. Meanwhile, modifications in cyber space must be
reflected in almost real-time on the physical counterpart, en-
suring DTs must be synchronized with the physical space [8].
The twin mandates of IoFDT, i.e., real-time data collection and
actuation, present challenges, because they require real-time
data transmission between devices of various physical systems
and edge/cloud servers through complex, heterogeneous net-
works. It is also crucial to synchronize interactions between
multiple DTs, each representing different aspects or compo-
nents of a larger system. This further requires maintaining
synchronization of contextual data relevance and operational
coherence across DTs. Such demands could strain existing
communication systems, such as 5G/6G, while requiring them
to constantly adjust to dynamics and requirements of physical
systems, ensuring seamless coordination between various DTs
and physical processes. To address synchronization challenges,
dynamic network slicing can be developed whereby network
resources are adaptively allocated based on each DT’s re-
quirements. This approach, illustrated in Fig. 3, optimizes
resource allocation within each slice according to the con-
text and industry-dependent attributes of the physical system.
Evolutionary reinforcement learning (ERL) [9], combining re-
inforcement learning (RL) with evolutionary algorithms, could
be employed to evolve slicing policies over time to meet DT’s
dynamic requirements. Also, here one can exploit semantic
communications to push forward less data and facilitate DT
synchronization [10].

2) Cross-layer networking between DTs: To harness DTs’
benefits and realize IoFDT for Society 5.0, it is necessary to
address a series of unique, cross-layer networking challenges
inherent in IoFDT. Unlike conventional networks, IoFDT re-
quires seamless interaction between various networking layers
to support complex functionalities of federated DTs. Main
challenges include managing asynchronous communications
across different layers and DTs, ensuring data integrity across
multiple network protocols, and orchestrating responsive in-
formation flows that can adapt to the rapidly changing states
of physical entities represented by DTs. These challenges
are magnified by diverse natures of devices involved, each
with different communication protocols and data formats,
necessitating a unified coherent network structure. Real-time
analytics and decision-making processes based on multi-layer
contextual information further increase complexity, requiring
more intelligent and flexible network design and management.
The tailored solution for these challenges involves network
slicing, as shown in Fig. 3, to discern and dynamically accom-
modate distinct communication and processing requirements
at each network layer. This includes the provisioning of
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Fig. 3: Resources slicing and orchestration for DTs in IoFDT

network slices with specific cross-layer functionalities like pro-
tocol translation, data prioritization, and layer-specific security
measures. Moreover, by utilizing a combination of collab-
orative reinforcement learning (CRL) and transfer learning,
the network can continuously learn from data flow patterns
and adjust slices in real-time, ensuring optimal cross-layer
communication responsive to each DT’s contextual needs.
Such an approach enables dynamic and intelligent cross-layer
networking that effectively sustains the complex operations of
IoFDT to ensure that all network layers work collaboratively
for the DT federation.

B. IoFDT Computing Challenges

1) Real-time computing for data collection and actuation:
Real-time computing in the IoFDT is essential for effectively
coordinating multiple DTs with one another and with their
dynamic physical systems. This requires not only efficient
architectural design, but agile resource allocation strategies
for rapid processing of complex datasets on distributed edge
servers, which often have limitations in computing power. The
challenges in real-time computing are multifaceted. Latency
issues arise from data transmission and processing across
distributed computational nodes, and any delay can degrade
decision-making. Edge servers must process large-scale data
inflows, potentially causing bottlenecks. The computational
infrastructure and resources require high flexibility, scaling to
meet DTs’ real-time needs. Consider smart mobility services
in which autonomous vehicles’ safety and efficiency hinge on
immediate sensor data processing and communication with
surrounding infrastructures. Any lag in these processes could
result in outdated decisions, risking safety and operational
inefficiencies. Moreover, when multiple DTs interact, the
challenge escalates as each DT requires data from others in
real-time to make informed decisions. This interdependence
necessitates not only rapid data sharing but synchronized



data processing and analysis across DTs, which demands an
advanced level of computational orchestration for system-wide
coherence and efficiency. To overcome these challenges, a
potential solution is implementing edge computing architec-
tures with specialized accelerators for data-intensive tasks,
such as FPGAs and GPUs, which can significantly enhance
real-time analytics processing at edges. Employing predic-
tive resource allocation strategies utilizing machine learning
models to forecast demand and preemptively adjust resource
distribution can improve DTs’ responsiveness. This predictive
approach, combined with flexible edge computing resources,
would minimize latency and enable more effective real-time
computation and actuation for tasks that are critical to DTs’
operation and synchronization, such as immediate traffic re-
routing in connected vehicle networks.

2) Scalability: The scalability of the IoFDT infrastructure
is a key challenge, because the IoFDT encompasses diverse,
geographically dispersed DTs representing increasingly com-
plex and dynamic physical systems. As DTs’ number and
complexity grow, computational demands and data volumes
in IoFDT also grow, necessitating a distributed computing
network capable of dynamic adjustment and scaling. Key scal-
ability challenges include developing a computing architecture
ensuring high-throughput data processing and rapid elasticity
for growing and fluctuating workloads, while also being re-
silient to node failures to maintain operational integrity and
system performance. A potential solution to these challenges
lies in advanced distributed computing networks with dynamic
adaptive load balancing, auto-scaling, and resource provision-
ing responding to DTs’ increasing computational demands.
Furthermore, spectral graph theory offers a powerful tool for
modeling the complex network of DT interconnections. By
treating the network as a graph, spectral analysis enables us
to identify the interactivity degrees of DTs and computational
nodes in IoFDT. Such insight allows for optimized resource
allocation, and thereby can optimize network performance
and reduce computational overhead. Essentially, spectral graph
theory also aids in streamlining communication routes and
prioritizing resource distribution to enhance overall efficiency
and reduce latency in IoFDT.

C. Al Challenges

1) Al Models for IoFDT Design: The IoFDT requires
new Al frameworks for interconnected and dynamic DTs
evolving with data and real-time actuation. At its core, each
DT is an Al model that continuously updates its physical
space twin, and this is where Al is leveraged to create DTs
and the entire IoFDT system. Learning within [oFDT must
consider networking constraints while accurately twinning
distributed physical processes across various dimensions. To
fulfill network-aware Al twinning, Al must be adept at creating
context-aware twin models that adapt at data inflows, and
extract complex interrelations across diverse, heterogeneous
systems. These frameworks must encapsulate the capability
for multidimensional representations that accurately reflect
physical processes and inform network design within system-
wide communication and computing limitations. Moreover,

compared to standalone DTs, generating and leveraging syn-
thetic data for IoFDT to simulate hypothetical yet plausible
scenarios pose greater challenges, as clusters of federated DTs
involve increased complexity of dynamic, diverse, intercon-
nected systems. Continual graph neural network (CGNNs)
[11], combining benefits of continual learning (CL) with graph
neural network (GNN), is a candidate promising to address
these demands by adapting to temporal dynamics and complex
interactions inherent in IoFDT. On the one hand, CL provides
an agile incremental learning method with swift model up-
dates [12]. On the other hand, GNNs present an effective
method to model the interrelations between the multi-level
DT elements. For instance, in smart manufacturing, [oFDT
can integrate various DTs such as machinery, warehouse, and
logistics. CGNNSs are utilized to continuously learn and update
relationships based on their complex data interactions and
dependencies, thereby optimizing entire production process.
When GNNs are not directly applicable, knowledge graphs
can be employed to articulate and structure the non-graph-
structured relationships.

2) Al-Native Networks for IoFDT: In parallel, the IoFDT
necessitates Al-native communication networks to manage the
autonomous coordination, synchronization, and connectivity
of various federated DTs. These networks form the IoFDT’s
backbone, and enable not only the information flow but the
actuation back to physical systems. Al techniques here must
ensure seamless operation within communication networks in
the IoFDT, address data’s distributed nature across multiple
devices, and facilitate real-time responses. This requires so-
phisticated orchestrations of network resources that are aware
of the context and constraints in the IoFDT, while maintain-
ing harmonious synchronization between physical and digital
twins for optimized functionality. To address these challenges,
we envision integrating adaptive learning algorithms that not
only keep DTs updated but also enable real-time prediction
and actuation for continuous synchronization between physical
and digital twins in a scalable manner. Additionally, grounding
Al-native networks in causal techniques, e.g., causal reason-
ing, can deepen network behavior understanding, leading to
improved explainability, generalizability, and sustainability of
the network operations, which enhances network performance
for dynamic and interconnected DTs management [13].

3) Generalizability of Twins: Moreover, Al systems within
IoFDT must be able to generalize across new, previously
unseen learning tasks in real-time. Such adaptability is critical
as federated DTs constantly face novel situations and chal-
lenges. IoFDT Al frameworks must swiftly and accurately
adjust learning algorithms and models in response to emerging
tasks to improve federated DTs’ continuous development and
refinement. Leveraging advanced meta-learning and domain
adaption techniques could serve as a viable solution, and the
integration of these techniques could significantly enhance
DTs’ generalizability and evolutionary pace within the [oFDT
ecosystem.



IV. PRACTICAL IMPLEMENTATION AND REALIZATION OF
IOFDT: PLATFORM AND EXPERIMENTAL FIELD

In addition to theoretical challenges outlined in Section III,
a unified, experimental IoFDT platform is needed to blend all
technical elements and orchestrate their interactions. Indeed,
experiments with practical Society 5.0 services in IoFDT on
a fully functional experimental platform are indispensable to
validate fundamental research and generate testing data for
system design refinement.

A. Unified IoFDT Platform to Integrate All Elements

We propose an IoFDT platform, as a universal integrator and
orchestrator, to unify all elements in IoFDT and orchestrate
seamless interactions among DTs. To realize such a platform,
three functional modules become essential: the DT orchestra-
tor, network orchestrator, and computing orchestrator.

DT Orchestrator: This orchestrator manages DTs through-
out life-cycle, including storage, creation, distribution, opera-
tion, and interaction. Central to this module are repositories of
reusable DT functions and knowledge bases (Al models). For
new applications and associated DTs, instead of starting from
the ground up, they leverage pre-existing function modules and
knowledge, accelerating DT development and implementation.
The DT orchestrator distributes and deploys new DTs to
optimized edge or cloud servers based on application scenarios
and QoS requirements. It orchestrates DT interactions in the
IoFDT, including data sharing and learning through DT feder-
alization, data format/protocols coordination, data desensitiza-
tion, and knowledge base management. In this containerization
approach, the orchestrator assembles components to create
DTs. These components, along with function modules, depen-
dencies, configurations, Al models, and desensitized data, are
then packaged into containers using tools such as Docker and
containerd. They are then deployed and run by tools such as
Kubernetes and Docker Swarm. The DT orchestrator, with a
global system view, also decides the federation participation of
new DTs, considering function, service, and resources. A con-
tinuous integration/continuous deployment (CI/CD) pipeline
using automation tools like Jenkins ensures this process for
each DT creation or update. Middle-ware is also necessary
for data interoperability between networks, DTs, and devices
using different data formats/protocols.

Network Orchestrator: This orchestrator manages the data
flow and resources in IoFDT by allocating network resources,
managing diverse communication protocols, and maintaining
network QoS for each DT to collect data, process it, and send
the input back to the physical space in real-time. Software-
defined networking (SDN) and network function virtualization
(NFV) can be employed for dynamic and programmable net-
works through an IoFDT network control plane. To orchestrate
IoFDT networks and enable access to customized virtual
network functions (VNFs) for each DT, SDN controllers
provide a global, real-time, and unified view of resources and
programmable interfaces to manipulate data flows. In practical
implementation, SDN frameworks, such as OpenDaylight,
Open Network Operating System, and Ryu, can be leveraged
to abstract resources in networks, supporting the dynamic

slicing for diverse DTs. RAN and core network functions
are transformed into VNFs and managed by open platforms,
such as Open RAN (O-RAN). An interface between the
chosen SDN controller and the VNF management platform
is necessary to monitor the status of VNFs. By implementing
this composition, the IoFDT network orchestrator maps the re-
sources required by DT to the specific physical infrastructures,
controlling data flows to ensure seamless connectivity.

Computing Orchestrator: The computing orchestrator man-
ages computing resources, both cloud and edge, to ensure
that each DT can process the data and learn the physical
space in real-time. It involves such as resource monitoring,
workload balancing, dynamic resource allocation, and edge-
cloud coordination. Such orchestration must be in real-time
while constantly adapting to DTs’ dynamic needs and the
fluctuating availability of resources. Practically, each DT ap-
plication can be packaged into a unit, such as a Pod in
Kubernetes comprising DT and knowledge base containers.
It can be deployed in a cloud-edge server computing cluster.
The orchestrator, typically at the cloud server, monitors real-
time resource usage in the cluster and DT demands, including
memory, CPU, GPU, and storage, as assessed by tools such as
Kubelet. With global insights and perspective, the orchestrator
optimally allocates computing resources, ensuring real-time
processing capabilities for DTs.

B. Experimental Platform for loFDT

An IoFDT experimental platform needs to be approached
from two aspects.

o Establishing a comprehensive experimental PoC for
IoFDT with interconnected federated DTs to support all
its key features of learning data and running DTs;

« Implementing a system-level PoC development and im-
plementation, including hardware/infrastructure and soft-
ware/algorithms for system demonstration and perfor-
mance evaluation.

Fig. 4 shows a proposed architecture of an IoFDT PoC
implementation with physical systems, network infrastructure,
and DTs. It is an open, programmable, and universal platform,
constructed with state-of-the-art, programmable sensing, com-
munication, and computing hardware (e.g., LIDARs, 5G NR
networks/ITS networks, MEC/cloud servers), and developer-
friendly open-source software (e.g., Open Daylight, Robot Op-
erating System, and TensorFlow/PyTorch). The experimental
integrated IoFDT platform unifies cyber and physical spaces
and satisfy the practical requirements of diverse applications.
Given the platform’s emphasis on mobility as an example, we
developed a Smart Mobility Research & Education Field in
Tokyo Tech, as shown in Fig. 4, with state-of-the-art infrastruc-
tures, e.g., 5G NR network, millimeter (mmWave) vehicular
networks (backhaul/access) [14], roadside units (RSUs) and
connected automated driving vehicles (CAVs) as a cornerstone
of PoC implementation for IoFDT.

PoC trials demonstrated the system functions and enhanced
vehicle perception, assisting safer automated driving. For
example, as shown in Fig. 5, we have developed a smart
mobility DT that fuses traffic information detected, processed,
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and then mapped into cyberspace at RSUs and CAVs [15]. This
serves as an initial experimental implementation of integrating
multiple local DTs to provide insights on the global traffic
situation. A PoC application of path planning for CAVs was
also conducted, in which optimized paths are calculated for
CAVs based on real-time global traffic information in DT, and
sent to CAV via vehicular network. The CAV then adjusts
its path accordingly. A demo video of this PoC is available'.
The IoFDT PoC platform will be built on these prelimi-
nary experimental works as well as extensive works on Al,

Thttps://youtu.be/Y3XXINIRmXI
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communication networks, computing networks, and platforms
discussed in previous sections. We are also developing and
implementing diverse smart mobility prototype applications
on the IoFDT PoC system, aiming to demonstrate IoFDT’s
feasibility and merits. Examples include DT-based collision
prediction and avoidance system, and a DT-based car-sharing
system, as typical and key Society 5.0 use-cases. Additionally,
this platform can be utilized to develop a wide range of DT-
based applications beyond smart mobility.

V. CONCLUSION AND RECOMMENDATIONS

In this paper, we present the vision of IoFDT by covering
its various aspects, including communication, learning, and
computing, as well as implementation and platform. To ad-
vance IoFDT and facilitate Society 5.0, we provide several
recommendations for advancing this field:

o Synchronization and Interaction: While individual DTs
must be synchronized with physical system, in an IoFDT,
it is also necessary to look at cross-DT interactions and
coordination.

o Adaptive and Continuous Learning Frameworks: Al-
native networks and learning frameworks that are capable
of changing and adapting over time are needed to support
the IoFDT. These frameworks must be responsive to new
data and changes in physical systems to continuously
enhance DTs’ performance and reliability.

o loFDT-centric Resource Management: Due to the spe-
cific requirements of each DT in the IoFDT ecosystem,
efficient allocation of network and computing resources,
across the entire DT federation, is crucial for the IoFDT.
This includes the implementation of learning-based dy-



namic network slicing and context-aware resource opti-
mization.

Privacy and Security: Given the interconnected nature of
IoFDT, it is crucial to ensure privacy-preserving insights
across DTs and maintain system integrity and security by,
e.g., leveraging federated intelligence, robust encryption
protocols, and access control mechanisms in the IoFDT
framework.

o Application and Service: The development of novel ap-
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plications and services enabled by IoFDT is necessary,
and Society 5.0 offers fertile ground for this.
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