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Abstract. This work explored synaptic strengths in a computational
neuroscience model of a controller for the hip joint of a rat which con-
sists of Ia interneurons, Renshaw cells, and the associated motor neurons.
This circuit has been referred to as the Canonical Motor Microcircuit
(CMM). It is thought that the CMM acts to modulate motor neuron
activity at the output stage. We first created a biomechanical model of a
rat hindlimb consisting of a pelvis, femur, shin, foot, and flexor-extensor
muscle pairs modeled with a Hill muscle model. We then modeled the
CMM using non-spiking leaky-integrator neural models connected with
conductance-based synapses. To tune the parameters in the network,
we implemented an automated approach for parameter search using the
Markov chain Monte Carlo (MCMC) method to solve a parameter esti-
mation problem in a Bayesian inference framework. As opposed to tradi-
tional optimization techniques, the MCMC method identifies probability
densities over the multidimensional space of parameters. This allows us
to see a range of likely parameters that produce model outcomes consis-
tent with animal data, determine if the distribution of likely parameters
is uni- or multi-modal, as well as evaluate the significance and sensitiv-
ity of each parameter. This approach will allow for further analysis of
the circuit, specifically, the function and significance of Ia feedback and
Renshaw cells.
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1 Introduction

Mammilian locomotion continues to be a much researched topic in the world of
neuroscience. It is commonly accepted that the rhythmic activity during loco-
motion arises from descending commands from pattern generator networks in
the spinal cord [16,17]. The activity from pattern generators is then modulated
by neural circuits and sensory feedback at the output stage before controlling
muscle activity. We have designed one of these output stage neural circuits after
the works of Hultborn et al. [10] which we refer to as the Canonical Motor
Microcircuit (CMM). The CMM modeled in this work does not include gamma
motoneurons as in the Hultborn model for simplicity [10]. This network, consist-
ing of Ta interneurons, Renshaw cells, and motor neurons, is included in numerous
other neural models of locomotor circuitry. [8,9,12,18,23]. However, these works
primarily focus on the pattern generator networks and largely ignore the role of
the CMM in modulating these commands. Aside from studies showing that the
neurons in this model are active in mammals during locomotion, the role of the
CMM and of the specific neurons within the CMM remains unknown [21].

The aim of this work is to enhance our understanding of the CMM through
the use of neural and biomechanical modeling. While the ideal approach would
involve recording neural activity in the spinal cord in wivo, this method can
be challenging and resource-intensive. Therefore, we aim to use modeling as a
complementary tool to aid in these experiments. By working with neuroscientists,
we can use these models to test theories, design future experiments, and provide
insights into experimental results.

Modeling neural and biomechanical systems is challenging, tuning these mod-
els is often nontrivial. Hand-tuning the networks is one possible method, but is
often time consuming and impractical. Another possible method is the Func-
tional Subnetwork Approach (FSA) [28]. This method describes the tuning of
small networks to perform addition, subtraction, multiplication, division, inte-
gration, and differentiation. These smaller networks can then be joined to create
large networks without the need for global optimization [28]. The FSA can be
useful in designing neural circuits, though when modeling existing circuits, it
may not be clear how to divide the network into subnetworks. In these cases, we
can turn to more traditional optimization techniques. Gradient-based optimiza-
tion is likely not an option as these systems tend to be highly nonlinear. Other
methods, such as particle swarm optimization, are reliant on initial values and
like gradient-based optimization, are susceptible to getting stuck in local min-
ima [14,15]. While genetic algorithms can use mutation to avoid local minima,
they share one large downside with other methods in this application. These
optimization methods produce one result and often tell little to nothing about
the solution space. This paper examines a tuning method for the CMM using a
Markov chain Monte Carlo (MCMC) approach to solve a parameter estimation
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problem in a Bayesian inference framework. This parameter inference method
has been used to tune a single Hodgkin-Huxley style neuron, but has not yet
been used to tune a network of neurons [31]. The MCMC method is advanta-
geous for this application because it provides a view of the solution space as a
whole, showing the significance and sensitivity of each parameter. In this way,
we can use the results to analyze the components of the network.

2 Methods

2.1 Modeling

We first create a biomechanical model of a rat hindlimb to be controlled by
the CMM. The physics engine and biomechanical modeling for this work were
done in Mujoco [29]. An existing model of the hindlimb with muscles to control
the hip, knee, and ankle in three dimensions, modeled in Opensim, was taken
and converted to the format needed for Mujoco [7,11,24]. The model was then
simplified to only two muscles, a flexor-extensor muscle pair controlling the hip
joint in the sagittal plane. In this model, the pelvis is fixed and the leg air
steps without ground contact. These simplifications to the model were chosen
as a starting point; future models will expand to include the complete array of
muscles and control of all joints. The simplified model in Mujoco can be seen in
Fig. 1.

Fig. 1. Biomechanical model of a rat right hindlimb in Mujoco with a flexor/extensor
muscle pair (red). (Color figure online)

Mujoco implements a Hill muscle model which is similar to that of Opensim.
The key differences are that Mujoco assumes the tendons are inelastic and that
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the pennation angle is zero [7,24,29]. For this work, the default muscle parame-
ters in Mujoco were used. The muscle force, F)s, can be found using the equation
[29]:

Fy = (FL(L) -Fvel(Vel) 'QCt(VMN)+Fp(L)) - Fy (1)

where Fp, is the active force as a function of length, L is the length of the
muscle, Fy; is the active force as a function of velocity, Vel is the velocity of
the muscle, Fp is the passive force, Fy is the peak active force at zero velocity
and is computed in the model compiler, and act is the muscle activation as a
function of the corresponding motor neuron potential, Vj;n. In this model, we
use a sigmoid muscle activation function. Examples of the Fj, and Fy; curves
are shown in Fig. 2.
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Fig. 2. Mujoco muscle modeling. Left: Fp curve and F, curve with various activation.
The activation function simply scales the Fr, curve. The Fp curve is centered around
L0, which is the resting length of the muscle as computed in the model compiler. Right:
Fy.; curve. [29]

We then create the neural model of the CMM, shown in Fig. 3, to control
muscle activation of the biomechanical model. The neural modeling and simula-
tion in this work was done in Python using SNS-Toolbox [20]. The neurons were
modeled using a non-spiking leaky-integrator model:

dv <
C— = Iapp - Ileak: + leynL (2)

dt ;

i=1
where C is the membrane capacitance, V is the membrane voltage, I,p, is an
applied current, [jcq) is the membrane leak current, and Iy, are the synaptic
currents. The benefit of using this neural model is that it allows for a single
non-spiking neuron to approximate the average activity of populations of spik-
ing neurons [32]. The synaptic currents are modeled using conductance based
synapses:

Vi re — E 04
Isyn, = Gmaz, - Min (max (pl 0) ,1) (Egyn, — V(1)) (3)
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Fig.3. CMM Neural Model in SNS-Toolbox. Ia: Ia inhibitory neuron. MN: Motor
Neuron, RC: Renshaw cell.

where gpmqz is the maximum synaptic conductance, V. is the membrane poten-
tial of the pre-synaptic neuron, Ep;, and Ej,, are saturation and threshold
parameters, respectively, which are properties of the pre-synaptic neuron, and
E,yn is the synaptic reversal potential. The synaptic reversal potential was set to
-100 mV for inhibitory synapses and 0 mV for excitatory synapses. The leak cur-
rent in Eq. 2 estimates the net effect of sodium, potassium, and chloride channels
with a net membrane conductance G, and a resting potential Ey:

lieak = G- (V(t) — ER) . (4)

The neural model incorporates Ia afferent feedback from muscle spindles to
the respective Ia inhibitory and motor neurons. We model this as a discharge
rate from the muscle spindles. It was found that for the Hill muscle model, the
discharge rate, is proportional to the tension of the muscle [25]. We can then
model the afferent feedback as an applied current:

Ipp=m-T+b (5)

where T is the muscle tension, m is a gain to convert from muscle tension to a
current, and b is a y-offset.

Tables 3 and 2 show the parameter values used in this model for the param-
eters not explored in the MCMC search (Table1).

In order to run the neural and biomechanical models together, we first initial-
ize the neurons at their resting potentials. The biomechanical model is initialized
with the hip in slight flexion. This causes the limb to fall due to gravity at the
beginning of the simulation, initially exciting the neurons. Using the forward
Fuler method, we then repeat the following for a desired number of iterations:
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Table 1. Neural Parameters. MN: Motor Neuron. Ia: Ia inhibitory Neuron. RC: Ren-
shaw Cells

Er(MV) | Epi(MV) | Ejo(MV)
MN | —62 —54.53 | —T8
la | —60 —40 —62
RC | —50.5 —40 —60

Table 2. Muscle Feedback Applied Current Parameters.

m b

2op to Ext la | 0.4565 | —0.5617
2op to Flx la | 3.5385 | —0.7185
2p to Ext MN | 0.0106 | —0.9210
aop to Flx MN | 0.5036 | 0.0411

l
l
l
l

1. Run one timestep of the neural model in SNS-Toolbox using muscle feedback
from Mujoco as inputs.

2. Feed the motor neuron potentials from the previous timestep into the sig-
moidal muscle activation function.

3. Take one timestep in the biomechanical model in Mujoco using the calculated
muscle activation.

4. Get the muscle tension from Mujoco to input to the next step of the neural
model.

In earlier works, both the biomechanical and neural models were run in Ani-
matlab2 [6]. While it was beneficial to have both models in the same software,
the simulation time in Animatlab2 was slow, which greatly impacted the com-
putation time for automating the parameter search. By utilizing newly available
software tools, SNS-Toolbox and Mujoco, simulation time was decreased from
10.21 to 2.48 s on average when compared to Animatlab2.

2.2 Markov Chain Monte Carlo

Previous iterations of this work aimed to hand-tune similar models to produce
oscillatory motion in the hip joint [13]. While this method proved to be successful,
the results provided little information about the significance or sensitivity of
parameters in the models. To address these shortcomings, we implement an
automated parameter search for the maximum synaptic conductance, gmqz, in
the CMM shown in Fig. 3 using a Markov chain Monte Carlo (MCMC) method.
This method is centered around Bayes theorem [5]:

P(y|gmaa:) : P(gmaa:)

P(y) ©)

P(gmazly) =
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where P(gmaz|y) is the posterior (conditional probability for parameters gmaq,
given the data y), P(y|gmaz) is the likelihood (conditional probability of the data
y given the parameters gmaz), gmaz is the prior (probability of the parameters),
and P(y) is called evidence (probability of the data y). The evidence term is a
constant, therefore Bayes theorem is typically used in the form:

P(gmaz|y) < P(Y|gmaz) - P(gmaz)- (7)

The prior term is designed to take into account known information about
the parameters. As there is little known about the CMM, unbiased priors were
used. These priors were uniform distributions with lower and upper bounds of 0
and 8 microSiemens, respectively. The likelihood term is based on a loss function
which was designed to match the simulated data of the hip angle to data of the
hip trajectory of a rat walking on a treadmill as collected by Alessandro et al.
[2]. Rather than explicitly trying to match the simulated and animal data, the
loss function aims to mimic certain aspects of the motion:

loss = l_f’req + lsw/st + lsmooth + loscillate (8)

where [f,.q is the percent error of the frequency of oscillations between the
simulated and animal data, I,/ is the percent error of the swing to stance
ratio. The percent error is calculated as:

Vg — U4
vA

%Error = (9)

where vg is the simulated value and v 4 is the value from the animal data. The
smoothness term in the loss function, lsm00th, i the mean of the second derivative
of the simulated hip angle squared.

2 2
lsw/st = mean <(Cclit§> > (10)

The last term in the loss function is designed to promote solutions which oscillate,
loscillate 18 the inverse of the number of peaks in the simulated hip angle vs. time.

1

losci ate — 7 11
Hat num_peaks (11)

The likelihood probability density is then defined as:

P(y|gmaz) = e loss (12)

where the loss depends on the data, y, and parameters, gpmq.: loss =
loss(gmazsY)-

To begin the MCMC, we first choose a sampling method. In this work, we
have chosen an adaptive Metropolis-Hastings algorithm [26]. The Metropolis-
Hastings algorithm is typically a good choice when the conditional probability
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P(y|gmaz) cannot be drawn from directly [4]. As previously stated, we aim to
determine if the distribution of likely parameters is uni- or multi-modal. To do
this we run an adaptive parallel tempering MCMC using the PyPESTO library
in python [19,27]. Parallel tempering is a technique used in MCMC to help
chains traverse high posterior density regions and overcome local optima. Mul-
tiple chains are run in parallel where each chain has a unique starting point and
runs its own Metropolis-Hastings random walk. Similar to simulated annealing
algorithms, a temperature is computed for each chain and varies according to
Vousden et al. [30]. We then assign a term, § where 0 < 8 < 1 and is inversely
related to the temperature of the chain: 3 = 1/T. This /3 term is then applied as
an exponent to the posteriors of the given chain, resulting in P?(g,q2|y). This
newly scaled posterior is then what is used to calculate the acceptance ratio
in the Metropolis-Hastings algorithm. The impact of the 3 term is that chains
at higher temperatures can more easily explore the entire prior distribution for
parameters, while chains at lower temperatures can sample from regions of high
probability more efficiently [30]. Additionally, chains may perform swaps at cer-
tain intervals, swapping their parameters while maintaining their temperature.

3 Results

The parallel tempering MCMC with an adaptive Metropolis-Hastings random
walk algorithm was successful in its ability to explore the multidimensional
parameter space, finding that the posterior is multi-modal with two distinct
regions of parameters with acceptable loss values. We present marginals of the
posterior showing the relationships between parameters. Figure 4 shows four of
these marginalized densities.

Here, we observe two modes in the posteriors. One mode showing the Ren-
shaw cells inhibits Ta interneurons more strongly than they do motor neurons,
while the other indicates that the synapse from the extensor Renshaw cell to the
extensor Ia inhibitory neuron has a maximum synaptic conductance close to zero
(Fig. 4C). This would suggest that there are no synapses between these neurons.
We are able to dismiss these results as it is known that Renshaw cells inhibit Ia
inhibitory neurons [21]. The marginal densities in Fig. 4 also show that the two
modes in the posterior densities may overlap for certain parameters (Fig. 4B).

To further examine the results, we look at the hip angle for the simulated
data and animal data. Figure5 shows a variety of joint trajectories and their
associated cost. The parameter values used in these plots can be found in Table 3.
Note that the loss function in Eq.8 only aims to match certain properties of
the trajectory, and therefore, the joint trajectories from the simulation may
not match the animal data completely. The results in Fig.5 show a variety of
joint trajectories, all of which indicate that the CMM is capable of producing
oscillatory behavior without the input of a pattern generator.
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Fig. 4. Partial solution map of the posterior for the 12 parameter search of maximum
synaptic conductance of the CMM model. Axes are labeled as: pre-synaptic - post-
synaptic neurons. For example: RC Ext - Ia Ext represents the synapse where the
RC Ext. is the pre-synaptic neuron and the Ia Ext. is the post-synaptic neuron. 1D
marginals are shown above and to the right of each subplot, which tell the search
range and the normalized distribution. The other portion of each subplot shows the
2D marginals of pairs of parameters with the x- and y-axes being the range of the
respective parameter. Each point in the 2D marginals is a sample found in the MCMC
search. The color of the point is associated with the posterior, with the darker colors
indicating a large posterior, and therefore a lower loss. The darkness of the point also
indicates the density of the area, with more prominent color indicating more points
overlapping. This figure shows 4 of the 66 2D marginals, the complete set can be found
at: https://github.com/cxj271/Living-Machines-2023
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Fig. 5. Hip angle vs. time of a rat walking on a treadmill as it compares to the simulated
data. A) Hip angle in the sagittal plane recorded from a rat walking on a treadmill.
B-F) Solutions found from the MCMC search and their associated loss.

Table 3. Parameter Values for Simulations in Fig. 5

Fig. 5 Loss RC Flx | RC Ext |Ia Ext Ia Flx RC Ext | RC Ext | RC Flx | RC Flx
Subplot to to to to to to to to

RC Ext | RC Flx | MN Flx | MN Ext | Ia Ext MN Ext | Ia Flx MN Flx
B 1.0382 | 4.7841 1.4200 6.3990 3.9774 6.9240 2.8318 5.0318 0.9442
C 1.0419 | 4.7357 1.0733 5.3191 2.3385 6.4873 2.5085 4.8937 0.8550
D 1.0463 | 4.8273 1.4041 5.0100 1.7797 6.0296 2.7741 4.8000 0.9119
E 1.0495 | 4.8319 1.4309 5.6222 3.0556 6.7807 2.5516 4.8108 1.0417
F 1.0503 | 4.1899 1.6269 4.9527 2.2418 6.3311 2.8697 4.9122 1.0798

4 Discussion

The results in Figs.4 and 5 show that the parallel tempering MCMC method
can successfully be used to automate the parameter search of a neural circuit to
control a biomechanical model to exhibit a desired behavior. While the simula-
tion results from the MCMC shown in Fig. 5 show difference in joint trajectory
from the animal data, they share similarities in frequency of oscillations and
swing to stance ratios. This is a result of the design of the loss function in
Eq. 8. Many iterations of loss functions were tested to determine an appropri-
ate equation to generate different results. Other loss functions included: mean
squared error, mean absolute error, energy distance, Pearson Correlation, and
Dynamic time warping [1,3,22]. Additionally, we explored the inclusion other
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terms to the current loss function such as a root mean square error and errors
in the amplitude of oscillation. These attempts produced results with a variety
of undesirable characteristics such as sharp changes in velocity or results which
did not oscillate the hip joint. Issues such as these prompted the inclusion of
terms in the loss function which promoted smooth trajectories and oscillatory
motion (Ismooth and losciitate). The differences in joint trajectories may also be
a result of using a simplified model of the rat hindlimb with only two muscles
controlling the joint motion as opposed to applying muscle synergies. Further
testing and refining the loss function may provide better results in the sense of
hip trajectories. However, designing and selecting a “good” loss function is a
difficult process for automated parameter search and optimization.

Unlike traditional optimization methods, the MCMC results provide a pos-
terior density (Fig.4), allowing us to see the whole picture rather than a single
solution of the parameter space. The MCMC method was also able to avoid
getting stuck at local minima and found acceptable results with no need for
initial guesses and no information about the parameters other than upper and
lower bounds. Furthermore, the MCMC was able to locate multiple modes in
the posteriors. We were then able to apply what we know in biology to dismiss
the results from one of the modes. Another option would be to include this
knowledge in the priors.

The final results confirmed some expectations. It was thought that the Ren-
shaw cells more strongly inhibit Ia inhibitory neurons than motor neurons. This
was found in previous iterations of the work through hand-tuning and confirmed
through the posterior densities in Figs.4C and 4D [13]. The posterior of the
mutual inhibition of the Renshaw cells in Fig.4A show a tight spread of losses.
Therefore, it can also be inferred that these synapses are sensitive to change and
play a significant role in muscle control. The sensitivity and significance of the
remaining synaptic conductances can be examined in a similar fashion using the
posteriors presented in Fig. 4. For example, the Ia-MN synapses (Fig. 4B), are
insensitive compared to the RC-RC synapses (Fig.4A) as the darker region in
the posterior is more spread out.

It should be noted that the posteriors shown in Fig. 4 were found using animal
data of a rat walking at one frequency and swing stance ratio. While is likely
that using animal data with different frequencies and swing stance ratios would
cause changes in the posterior of the synaptic conductances, the results presented
should not be dismissed. It is important to remember that this circuit receives
a rhythmic input which was omitted in these experiments. Future works will
further analyze the modes found in the posteriors, exploring how this system
responds to the additional rhythmic input. We can then determine if tuning this
circuit to oscillate at one frequency is beneficial when driven at other frequencies.
It is also possible that small changes in the desired frequency and swing stance
ratio would result in small shifts in the posteriors of the synaptic conductances.
These small shifts may be due to synaptic plasticity, which may be accounted
for by expanding the neural model to include synaptic plasticity.
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The MCMC method for tuning neural circuits provides promising results
which may help to make neural modeling more readily and widely used in com-
putational neuroscience. In future works, the models will also be expanded to
include control of the hip in three-dimensions as well as control of the knee and
ankle joints. We will also explore how changes to the scale of the biomechanical
model impact changes to the neural model. It is known that as the length scale of
the biomechanical model increases, inertial forces become more dominant lead-
ing to changes in muscle activity during normal gait [33]. However, changes in
the neural control which drives this activity have not yet been explored. The
use of the MCMC method for parameter searching will allow us to develop more
complex models and begin to answer these larger questions.

References

1. Miiller, M.: Dynamic time warping. In: Miiller, M. (ed.) Information Retrieval
for Music and Motion, pp. 69-84. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74048-3_4

2. Alessandro, C., Rellinger, B.A., Barroso, F.O., Tresch, M.C.: Adaptation after
vastus lateralis denervation in rats demonstrates neural regulation of joint stresses
and strains. eLife 7, e38215 (2018). https://doi.org/10.7554 /eLife.38215

3. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In:
Cohen, 1., Huang, Y., Chen, J., Benesty, J. (eds.) Noise Reduction in Speech Pro-
cessing. Springer Topics in Signal Processing, pp. 1-4. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00296-0_5

4. Calvetti, D., Somersalo, E.: Sampling: the real thing. In: Calvetti, D., Somersalo, E.
(eds.) Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective
Computing. STAMS, pp. 161-182. Springer, New York (2007). https://doi.org/10.
1007/978-0-387-73394-4_9

5. Chen, Z.: An overview of Bayesian methods for neural spike train analysis. Comput.
Intell. Neurosci. 2013, 1-17 (2013). https://doi.org/10.1155/2013/251905. http://
www.hindawi.com/journals/cin/2013/251905/

6. Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: Ani-
matLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci.
Methods 187(2), 280-288 (2010). https://doi.org/10.1016/j.jneumeth.2010.01.005.
https://linkinghub.elsevier.com/retrieve/pii/S0165027010000087

7. Delp, S.L., et al.: OpenSim: open-source software to create and analyze dynamic
simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940-1950 (2007).
https://doi.org/10.1109/ TBME.2007.901024

8. Deng, K., et al.: Biomechanical and sensory feedback regularize the behavior of dif-
ferent locomotor central pattern generators. Biomimetics 7(4), 226 (2022). https://
doi.org/10.3390 /biomimetics7040226. https://www.mdpi.com/2313-7673/7/4/226

9. Deng, K., et al.: Neuromechanical model of rat hindlimb walking with two-layer
CPGs. Biomimetics 4(1), 21 (2019). https://doi.org/10.3390/biomimetics4010021.
https://www.mdpi.com/2313-7673/4/1/21

10. Hultborn, H., Lindstrm, S., Wigstrm, H.: On the function of recurrent inhibi-
tion in the spinal cord. Exp. Brain Res. 37(2) (1979). https://doi.org/10.1007/
BF00237722

11. Ikkala, A., Hamaldinen, P.: Converting Biomechanical Models from OpenSim to
MuJoCo (2020). https://doi.org/10.48550/ ARXIV.2006.10618


https://doi.org/10.1007/978-3-540-74048-3_4
https://doi.org/10.1007/978-3-540-74048-3_4
https://doi.org/10.7554/eLife.38215
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1007/978-0-387-73394-4_9
https://doi.org/10.1007/978-0-387-73394-4_9
https://doi.org/10.1155/2013/251905
http://www.hindawi.com/journals/cin/2013/251905/
http://www.hindawi.com/journals/cin/2013/251905/
https://doi.org/10.1016/j.jneumeth.2010.01.005
https://linkinghub.elsevier.com/retrieve/pii/S0165027010000087
https://doi.org/10.1109/TBME.2007.901024
https://doi.org/10.3390/biomimetics7040226
https://doi.org/10.3390/biomimetics7040226
https://www.mdpi.com/2313-7673/7/4/226
https://doi.org/10.3390/biomimetics4010021
https://www.mdpi.com/2313-7673/4/1/21
https://doi.org/10.1007/BF00237722
https://doi.org/10.1007/BF00237722
https://doi.org/10.48550/ARXIV.2006.10618

50

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

C. Jackson et al.

Ivashko, D., Prilutsky, B., Markin, S., Chapin, J., Rybak, I.: Modeling the spinal
cord neural circuitry controlling cat hindlimb movement during locomotion. Neuro-
computing 52—54, 621-629 (2003). https://doi.org/10.1016/S0925-2312(02)00832-
9. https://linkinghub.elsevier.com/retrieve/pii/S0925231202008329

Jackson, C., Nourse, W.R.P., Heckman, C.J., Tresch, M., Quinn, R.D.: Canoni-
cal motor microcircuit for control of a rat hindlimb. In: Hunt, A., et al. (eds.)
Biomimetic and Biohybrid Systems, vol. 13548, pp. 309-320. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-20470-8_31

Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995 - International Conference on Neural Networks, Perth, WA, Australia, vol. 4,
pp. 1942-1948. IEEE (1995). https://doi.org/10.1109/ICNN.1995.488968. http://
ieeexplore.ieee.org/document /488968 /

Lee, K.Y., Park, J.: Application of particle swarm optimization to economic dis-
patch problem: advantages and disadvantages, pp. 188-192 (2006). https://doi.
org/10.1109/PSCE.2006.296295

Lindén, H., Petersen, P.C., Vestergaard, M., Berg, R.W.: Movement is governed by
rotational neural dynamics in spinal motor networks. Nature 610(7932), 526-531
(2022). https://doi.org/10.1038/s41586-022-05293-w. https://www.nature.com/
articles/s41586-022-05293-w

MacKay-Lyons, M.: Central pattern generation of locomotion: a review of the
evidence. Phys. Ther. 82(1), 69-83 (2002). https://doi.org/10.1093/ptj/82.1.69.
https://academic.oup.com/ptj/article/82/1/69 /2837028

McCrea, D.A., Rybak, I.A.: Organization of mammalian locomotor rhythm
and pattern generation. Brain Res. Rev. 57(1), 134-146 (2008). https://doi.
org/10.1016/j.brainresrev.2007.08.006. https://linkinghub.elsevier.com/retrieve/
pii/S0165017307001798

Miasojedow, B., Moulines, E., Vihola, M.: An adaptive parallel temper-
ing algorithm. J. Comput. Graph. Stat. 22(3), 649-664 (2013). https://
doi.org/10.1080/10618600.2013.778779. http://www.tandfonline.com/doi/abs/10.
1080/10618600.2013.778779

Nourse, W.R.P., Szczecinski, N.S., Quinn, R.D.: SNS-toolbox: a tool for efficient
simulation of synthetic nervous systems. In: Hunt, A., et al. (eds.) Biomimetic and
Biohybrid Systems, vol. 13548, pp. 32-43. Springer, Cham (2022). https://doi.org/
10.1007/978-3-031-20470-8_4

Pratt, C.A., Jordan, L.M.: IA inhibitory interneurons and Renshaw cells as contrib-
utors to the spinal mechanisms of fictive locomotion. J. Neurophysiol. 57(1), 56-71
(1987). https://doi.org/10.1152/jn.1987.57.1.56. https://www.physiology.org/doi/
10.1152/jn.1987.57.1.56

Rizzo, M.L., Székely, G.J.: Energy distance. Wiley Interdisc. Rev.: Comput. Stat.
8(1), 27-38 (2016). https://doi.org/10.1002/wics.1375. https://onlinelibrary.wiley.
com/doi/10.1002/wics.1375

Rybak, [.A., Stecina, K., Shevtsova, N.A., McCrea, D.A.: Modelling spinal circuitry
involved in locomotor pattern generation: insights from the effects of afferent stim-
ulation: modelling afferent control of locomotor pattern generation. J. Physiol.
577(2), 641-658 (2006). https://doi.org/10.1113/jphysiol.2006.118711. https://
onlinelibrary.wiley.com/doi/10.1113/jphysiol.2006.118711

Seth, A., et al.: OpenSim: simulating musculoskeletal dynamics and neuromuscu-
lar control to study human and animal movement. PLoS Comput. Biol. 14(7),
€1006223 (2018). https://doi.org/10.1371/journal.pcbi.1006223


https://doi.org/10.1016/S0925-2312(02)00832-9
https://doi.org/10.1016/S0925-2312(02)00832-9
https://linkinghub.elsevier.com/retrieve/pii/S0925231202008329
https://doi.org/10.1007/978-3-031-20470-8_31
https://doi.org/10.1109/ICNN.1995.488968
http://ieeexplore.ieee.org/document/488968/
http://ieeexplore.ieee.org/document/488968/
https://doi.org/10.1109/PSCE.2006.296295
https://doi.org/10.1109/PSCE.2006.296295
https://doi.org/10.1038/s41586-022-05293-w
https://www.nature.com/articles/s41586-022-05293-w
https://www.nature.com/articles/s41586-022-05293-w
https://doi.org/10.1093/ptj/82.1.69
https://academic.oup.com/ptj/article/82/1/69/2837028
https://doi.org/10.1016/j.brainresrev.2007.08.006
https://doi.org/10.1016/j.brainresrev.2007.08.006
https://linkinghub.elsevier.com/retrieve/pii/S0165017307001798
https://linkinghub.elsevier.com/retrieve/pii/S0165017307001798
https://doi.org/10.1080/10618600.2013.778779
https://doi.org/10.1080/10618600.2013.778779
http://www.tandfonline.com/doi/abs/10.1080/10618600.2013.778779
http://www.tandfonline.com/doi/abs/10.1080/10618600.2013.778779
https://doi.org/10.1007/978-3-031-20470-8_4
https://doi.org/10.1007/978-3-031-20470-8_4
https://doi.org/10.1152/jn.1987.57.1.56
https://www.physiology.org/doi/10.1152/jn.1987.57.1.56
https://www.physiology.org/doi/10.1152/jn.1987.57.1.56
https://doi.org/10.1002/wics.1375
https://onlinelibrary.wiley.com/doi/10.1002/wics.1375
https://onlinelibrary.wiley.com/doi/10.1002/wics.1375
https://doi.org/10.1113/jphysiol.2006.118711
https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2006.118711
https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2006.118711
https://doi.org/10.1371/journal.pcbi.1006223

25.

26.

27.

28.

29.

30.

31.

32.

33.

Multimodal Parameter Inference 51

Shadmehr, R., Wise, S.P.: The Computational Neurobiology of Reaching and
Pointing: A Foundation for Motor Learning. Computational neuroscience, MIT
Press, Cambridge (2005)

Spencer, S.E.: Accelerating adaptation in the adaptive Metropolis-Hastings
random walk algorithm. Aust. New Zealand J. Stat. 63(3), 468-484 (2021).
https://doi.org/10.1111/anzs.12344. https://onlinelibrary.wiley.com/doi/10.1111/
anzs.12344

Stapor, P., et al.. PESTO: parameter EStimation TOolbox. Bioinformatics
34(4), 705-707 (2018). https://doi.org/10.1093/bioinformatics/btx676. https://
academic.oup.com/bioinformatics/article/34/4/705/4562504

Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to
designing synthetic nervous systems that control legged robot locomotion. Front.
Neurorobot. 11, 37 (2017). https://doi.org/10.3389/fnbot.2017.00037. http://
journal.frontiersin.org/article/10.3389/fnbot.2017.00037 /full

Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based con-
trol. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 5026-5033 (2012). https://doi.org/10.1109/IROS.2012.6386109. ISSN
2153-0866

Vousden, W.D., Farr, W.M., Mandel, I.: Dynamic temperature selection for parallel
tempering in Markov chain Monte Carlo simulations. Monthly Notices R. Astron.
Soc. 455(2), 1919-1937 (2016). https://doi.org/10.1093/mnras/stv2422. https://
academic.oup.com/mnras/article-lookup/doi/10.1093 /mnras/stv2422

Wang, Y.C., et al.: Multimodal parameter spaces of a complex multi-channel neu-
ron model. Front. Syst. Neurosci. 16 (2022). https://www.frontiersin.org/articles/
10.3389/fnsys.2022.999531

Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in
localized populations of model neurons. Biophys. J. 12(1), 1-24 (1972).
https://doi.org/10.1016/S0006-3495(72)86068-5. https://linkinghub.elsevier.com/
retrieve/pii/S0006349572860685

Young, F.R., Chiel, H.J., Tresch, M.C., Heckman, C.J., Hunt, A.J., Quinn, R.D.:
Analyzing modeled torque profiles to understand scale-dependent active muscle
responses in the hip joint. Biomimetics 7(1), 17 (2022). https://doi.org/10.3390/
biomimetics7010017. https://www.mdpi.com/2313-7673/7/1/17


https://doi.org/10.1111/anzs.12344
https://onlinelibrary.wiley.com/doi/10.1111/anzs.12344
https://onlinelibrary.wiley.com/doi/10.1111/anzs.12344
https://doi.org/10.1093/bioinformatics/btx676
https://academic.oup.com/bioinformatics/article/34/4/705/4562504
https://academic.oup.com/bioinformatics/article/34/4/705/4562504
https://doi.org/10.3389/fnbot.2017.00037
http://journal.frontiersin.org/article/10.3389/fnbot.2017.00037/full
http://journal.frontiersin.org/article/10.3389/fnbot.2017.00037/full
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1093/mnras/stv2422
https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stv2422
https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stv2422
https://www.frontiersin.org/articles/10.3389/fnsys.2022.999531
https://www.frontiersin.org/articles/10.3389/fnsys.2022.999531
https://doi.org/10.1016/S0006-3495(72)86068-5
https://linkinghub.elsevier.com/retrieve/pii/S0006349572860685
https://linkinghub.elsevier.com/retrieve/pii/S0006349572860685
https://doi.org/10.3390/biomimetics7010017
https://doi.org/10.3390/biomimetics7010017
https://www.mdpi.com/2313-7673/7/1/17

	Multimodal Parameter Inference for a Canonical Motor Microcircuit Controlling Rat Hindlimb Motion
	1 Introduction
	2 Methods
	2.1 Modeling
	2.2 Markov Chain Monte Carlo

	3 Results
	4 Discussion
	References


