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ABSTRACT
Coalition structure generation (CSG) is a critical problem in mul-
tiagent systems, involving the optimal partitioning of agents into
disjoint coalitions to maximize social welfare. This paper introduces
SALDAE, a novel multiagent path finding algorithm for CSG on
a coalition structure graph. SALDAE employs various heuristics
and strategies for efficient search, making it an anytime algorithm
suitable for handling large-scale problems.
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1 INTRODUCTION
Coalition structure generation is a major problem in artificial in-
telligence that is central to many practical applications, including
transportation [9], disaster response [15], distributed sensor net-
works [4], and e-commerce [14]. Several algorithms have been
proposed for this problem, including optimal and approximate
solutions [1–3, 5–8, 10, 12, 13, 15, 16]. In this paper we present
SALDAE, a new algorithm to search the coalition structure graph
with multiagent path finding. It is anytime and scales to hundreds
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and thousands of agents. A CSG problem defined on a set of 𝑛
agents A = {𝑎1, 𝑎2, ..., 𝑎𝑛} is a problem of size 𝑛. A coalition C is
any non-empty subset of A. In CSG, a characteristic function 𝑣

assigns a real value to each coalition. This value determines the
efficiency of the coalition. A coalition structure CS is a partition of
the set of agents A into disjoint coalitions. Formally, given a set of
non-empty coalitions {C1, C2, ..., C𝑘 }, CS = {C1, C2, ..., C𝑘 }, where
𝑘 = |CS| and CS satisfies the following constraints:

⋃𝑘
𝑗=1 C𝑖 = A

and for all 𝑖, 𝑗 ∈ {1, 2, ..., 𝑘} where 𝑖 ≠ 𝑗 , C𝑖 ∩ C𝑗 = ∅. The value of
CS is assessed as: 𝑣 (CS) = ∑

C∈CS 𝑣 (C) . The goal in CSG is to find
the optimal solution CS∗ = argmaxCS∈Π (A) 𝑣 (CS) . The coalition
structure graph (see Figure 1) divides the solutions into levels and
each level 𝑙 contains coalition structures that are formed of exactly
𝑙 coalitions.

2 THE SALDAE ALGORITHM
In this paper, we introduce a novel path finding variant where each
node represents a solution to the coalition structure generation
problem—that is, a coalition structure. The objective is to identify
the optimal or near-optimal coalition structure by navigating a
graph with a search agent. The agent, starting at a designated
node, traverses adjacent nodes, maintaining a sorted list based on
coalition structure values.

Multiagent Path Finding has several variants, and our goal is to
find the optimal solution using multiple search agents in the CSG
context. Conflicts may arise whenmultiple agents evaluate the same
coalition structure. While the paths taken by agents are crucial for
finding high-quality solutions quickly, the optimal solution is the
highest-valued coalition structure found among the nodes.

Our proposed path search algorithm uses a gradually constructed
search graph (refer to Figure 1), starting from a designated start
node representing a coalition structure. Each parent node in the
graph connects to child nodes generated through coalition splitting
or merging operations. The algorithm iteratively builds the search
graph using a greedy approach.
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Figure 1: An illustration of the three phases of our algo-
rithm. In the first iteration, the start node is the bottom node.
The child nodes are represented by the nodes that are di-
rectly connected to the bottom node. The coalition structure
{{𝑎1, 𝑎4}, {𝑎2, 𝑎3}} in level 2 is assumed to have the highest
value, becoming the new start node. Subsequent iterations
involve generating child nodes, with selection based on coali-
tion structure values. Blue edges represent the generation of
coalition structure by merging two coalitions.

• Generation (Step 1): Child coalition structures are generated
from the current start node by either splitting a coalition or
joining two coalitions.

• Selection (Step 2): A start node selection procedure considers
the most promising child coalition structure among a set of
candidates generated in the previous step. The start node is
chosen as the highest-valued child coalition structure.

• Comparison to Incumbent (Step 3): The selected coalition
structure is evaluated, and if superior to the current best
solution, it becomes the new best solution.

The construction of the search graph continues iteratively, with
each node representing a potential solution. The algorithm’s search
process is illustrated through a 4-agent example (Figure 1), high-
lighting the generation, selection, and comparison steps.

The algorithm dynamically explores solutions by maintaining
a list of nodes and iteratively expanding them based on the three
fundamental steps. In addition to these steps, whenever a better
solution is found, the algorithm constructs a path of nodes connect-
ing the previous best solution to the new one. This path exploration
aims to uncover potentially better solutions by evaluating interme-
diate solutions between the two. The rationale lies in the correlation
between the distribution of coalitions and agents in current best so-
lutions, as slight changes in these structures could lead to improved
solutions.

SALDAE, the proposed algorithm, also employs memory man-
agement strategies that enhance its efficiency in seeking global
optima. It maintains three lists of nodes: OPEN, SUBSTITUTE, and
RESERVE. OPEN, constructed through the search process with the
3 steps, is sorted in descending order based on the values of coali-
tion structures. SUBSTITUTE holds nodes visited during the path
search between current best solutions, only expanded if they can
improve the current solution, and RESERVE stores less promising
nodes. The key strategies for memory management are:

(1) OPEN Replacement:
• If OPEN becomes empty, SUBSTITUTE replaces OPEN.
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Figure 2: Solution quality and gain rate of SALDAE, PICS,
FACS and CSG-UCT.

• Facilitates exploration of potentially more promising solu-
tion areas.

(2) OPEN to RESERVE Transition:
• If OPEN and SUBSTITUTE are empty, RESERVE replaces
OPEN.

• Prioritizes promising solution areas and reverts to RE-
SERVE if more promising areas are not found.

These memory management strategies empower SALDAE to
adaptively explore and focus on promising areas in the solution
space.

SALDAE accelerates the search of high-quality solutions by em-
ploying multiple search agents, each managing three lists: OPEN,
RESERVE, and SUBSTITUTE. Agents navigate from node to node,
aiming to enhance solutions. The key features are as follows:

(1) Agent Configuration:
• Two agents assigned to bottom and top nodes, with ran-
dom nodes for other agents.

• Agents move through nodes, expanding and generating
child nodes.

(2) Conflict Resolution: Conflicts arise when agents evaluate the
same coalition structure. We consider two conflict resolution
techniques:
• Bypassing Conflicts: Prevents using conflicting child nodes
found in other agents’ lists and ensures agents explore
distinct areas of the solution space.

• Managing Conflicts: Compares rankings of conflicting
child nodes in respective lists and allows the agent with
higher ranking to keep and expand the node.

3 EMPIRICAL EVALUATION
A comprehensive evaluation of SALDAE’s performance is con-
ducted, covering small-scale and large-scale benchmarks. SAL-
DAE consistently outperforms other algorithms, such as PICS [12],
FACS [11], and CSG-UCT [15], in terms of solution quality (Fig-
ure 2.a) and gain rate (Figure 2.b). It provides optimal solutions
more frequently and achieves higher solution quality compared to
the other algorithms. The evaluation also shows that SALDAE can
handle large problems with hundreds and thousands of agents.
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