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ABSTRACT
When faced with accomplishing a task, human experts exhibit
intentional behavior. Their unique intents shape their plans and de-
cisions, resulting in experts demonstrating diverse behaviors to ac-
complish the same task. Due to the uncertainties encountered in the
real world and their bounded rationality, experts sometimes adjust
their intents, which in turn influences their behaviors during task
execution. This paper introduces IDIL, a novel imitation learning al-
gorithm to mimic these diverse intent-driven behaviors of experts.
Iteratively, our approach estimates expert intent from heteroge-
neous demonstrations and then uses it to learn an intent-aware
model of their behavior. Unlike contemporary approaches, IDIL is
capable of addressing sequential tasks with high-dimensional state
representations, while sidestepping the complexities and drawbacks
associated with adversarial training (a mainstay of related tech-
niques). Our empirical results suggest that the models generated
by IDIL either match or surpass those produced by recent imitation
learning benchmarks in metrics of task performance. Moreover, as
it creates a generative model, IDIL demonstrates superior perfor-
mance in intent inference metrics, crucial for human-agent interac-
tions, and aptly captures a broad spectrum of expert behaviors.
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1 INTRODUCTION
With the growing demand for AI systems that can seamlessly in-
teract and emulate human behavior, modeling human behavior
and learning thereof have been important problems in the AI com-
munity [2, 4, 20]. For instance, when developing an autonomous
agent, behavior of human experts serves as a useful starting point,
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Figure 1: Consider the task of emptying a table. Different
individuals may accomplish this task differently; some start-
ing with the red block, while others with the green or blue.
Intent-driven imitation learning aims to model this diversity
in behaviors (arising from differences in experts’ intents)
from heterogeneous demonstrations.

especially for the tasks where humans excel. Learning from human
experts proves especially beneficial in scenarios where rewards
are sparse or ill-defined, rendering policy learning through rein-
forcements impractical [18, 57]. Modeling human behavior is also
essential in human-agent interaction contexts, as agents (i.e. au-
tonomous vehicles and robots) have to predict and reason about
human behavior for fluent coordination [17, 19, 48, 49]. Without
an accurate model of human behavior, robots misinterpret human
intentions and can cause sub-optimal human-robot interaction.

Imitation learning, also known as learning from demonstrations,
is a widely-used data-driven paradigm to model human behavior
in sequential decision-making tasks [1, 5, 18, 57]. Algorithms for
imitation learning (IL) most commonly utilize observation-action
trajectories of human experts’ task executions and return an es-
timate of true expert behavior (denoted as 𝜋𝐸 ). Mathematically,
the behavior is learned in the form of a conditional distribution
𝜋𝐸 ≈ 𝜋 (𝑎 |𝑠), where the variable 𝑎 denotes task-specific actions and
𝑠 denotes the observable task context. In other words, the traditional
IL paradigm assumes expert behavior as being influenced solely by
observable and known decision-making factors.

However, as motivated in Figure 1, the reality is more nuanced.
Different experts exhibit varying behaviors for the same task. Fur-
thermore, even a single expert’s behavior can fluctuate markedly
based on their intents for identical task contexts. In this sense, intent
of a human expert encompasses her preferred approach to execut-
ing a task, particularly when it can be accomplished in a variety
of ways. Moreover, experts often modify their intent during tasks
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to cater to evolving scenarios. Hence, intent emerges as a latent
decision-making factor upon which broader, high-level task strate-
gies are formed [9]. We posit that recognizing and factoring intent
and its dynamic nature is crucial for accurate modeling of human
behavior. Given that intent is a cognitive construct and inherently
unobservable, conventional imitation learning approaches (which
assume behavior depends only on the observable context) fall short
in addressing this complexity.

Informed by this research gap, we consider the problem of learn-
ing intent-driven expert behavior. Mathematically, we seek to
estimate 𝜋𝐸 ≈ 𝜋 (𝑎 |𝑠, 𝑥), where 𝑥 denotes the intent of the hu-
man expert, from a set of heterogeneous expert demonstrations.
In addition to utilizing diverse demonstrations without segmenta-
tion, learning intentional behavior offers two distinct advantages
over traditional imitation learning. First, intent-driven models can
be leveraged to discern the intents of human experts either during
or post-task. Such capability is invaluable for assistive robots and
autonomous agents, who can use these inferred intents to antic-
ipate experts’ actions over extended periods, enabling improved
coordination [17, 26, 45]. Secondly, intent-driven behavior models
𝜋 (𝑎 |𝑠, 𝑥) can capture variety of expert behaviors and thus serve as a
more comprehensive generative model of expert behavior relative to
intent-unaware models 𝜋 (𝑎 |𝑠). Representative generative models
of human decision-making behavior are particularly useful in a
variety of applications, such as development of digital twins.

Recognizing the diversity observed in expert behaviors, several
imitation learning methods have been developed in recent years
to learn a behavioral policy that depends on both the task context
and latent decision-making factors [24, 28, 32, 43, 50]. However, as
reviewed in Sec. 2.4 and demonstrated in Sec. 3, existing intent-
aware methods either are designed for discrete domains and, thus,
cannot scale up to tasks with large or continuous state spaces [32,
50]; or rely on generative adversarial training, whose performance
is often unstable in practice [24, 28, 43].

Towards addressing these limitations, we introduce IDIL: a novel
algorithm for imitation learning of intent-driven expert behavior.
IDIL learns a generative model of heterogeneous expert behaviors,
composed of an intent-aware estimate of the expert policy 𝜋𝐸 ≈
𝜋 (𝑎 |𝑠, 𝑥) and a model of experts’ intent dynamics 𝜁 (𝑥 ′ |𝑠, 𝑥). To
realize stable learning in tasks with large or continuous state spaces,
IDIL builds upon recent results from classical imitation learning [12].
Next, beginning with problem formulation, we describe IDIL and
derive its convergence properties. This analytical investigation is
followed by a suite of experiments, which empirically compare IDIL
to recent imitation learning baselines. Our experiments confirm that
IDIL is successfully able to estimate expert intent, learn predictive
models of expert behavior, and generate diverse interpretable set
of (both seen and unseen) expert behaviors.

1.1 Motivating Scenario
To further motivate the problem and describe our solution, we con-
sider a 2-dimensional version of the task shown in Figure 1. In this
task, which we call MultiGoals-𝑛, where a human is tasked with
visiting 𝑛 landmarks1; however, the order to visit the landmarks is

1Such tasks occur commonly in domains such as robotic manufacturing, as a compo-
nent of more complex sorting, binning, and assembly tasks.

not specified. As such, there are multiple ways to accomplish the
task optimally and different individuals may accomplish this task
differently. Based on their intent, some experts may start with the
red block, while others with the green or blue, and so on. While
expert behavior depends on both their starting location and intent,
only the former is readily observable. We seek algorithms that ex-
plicitly model and learn intent-driven policy of expert behavior
from a set of heterogeneous expert demonstrations.

1.2 Preliminaries
To formulate the problem, we limit our scope to sequential tasks
that can be described as Markov Decision Processes and expert
behaviors that can be represented as an Agent Markov Model.

1.2.1 Markov Decision Processes (MDP). An MDP represents a
sequential task via the tuple M � (𝑆,𝐴,𝑇 , 𝑅, 𝜇0, 𝛾), where 𝑆 de-
notes the set of task states 𝑠 , 𝐴 denotes the the set of actions,
𝑇 : 𝑆 × 𝐴 × 𝑆 → [0, 1] denotes the state transition probabilities,
𝜇0 : 𝑆 → [0, 1] denotes the initial state distribution, 𝑅 : 𝑆 ×𝐴 → R
denotes the task reward, and𝛾 ∈ (0, 1) is the discount factor. For our
running example, the state denotes the agent location and action de-
notes the direction in which they intend to move next. The solution
to an MDP is denoted as policy, 𝜋 , which prescribes the agent’s next
action. The degree of optimality of a policy is quantified through
its expected cumulative reward 𝐺𝜋 � 𝐸𝜋 [

∑∞
𝑡=0 𝛾

𝑡𝑅𝑡 ]. An expert
solving an MDP seeks to maximize 𝐺𝜋 by solving for and execut-
ing the optimal policy 𝜋∗ � argmax𝜋 𝐺𝜋 . Due to the Markovian
property, there exists at least one optimal policy that is Markovian.
Mathematically, this Markovian optimal policy can be summarized
via the conditional distribution 𝜋∗ (𝑎 |𝑠) : 𝑆 × 𝐴 → [0, 1], which
denotes the probability of selecting an action 𝑎 in a given state 𝑠 .

1.2.2 Imitation Learning. A Markovian policy 𝜋 (𝑎 |𝑠) induces a
stationary distribution of states and actions, referred to as the nor-
malized occupancy measure

𝜌 (𝑠, 𝑎) � (1 − 𝛾)
∞∑︁
𝑡=0

𝛾𝑡𝑝 (𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 |𝜋,M), (1)

where 𝑝 (𝑠𝑡 , 𝑎𝑡 |𝜋,M) is the probability of being in state 𝑠 and taking
action 𝑎 at time 𝑡 when following the policy 𝜋 in the taskM [36].
Conventionally, imitation learning seeks to learn a policy 𝜋 that
matches the behavior of an expert from demonstrations 𝐷 :

min
𝜋

𝐿(𝜋, 𝜋𝐸 ;𝐷) (2)

where 𝜋𝐸 is the expert’s policy that is unknown to the imitation
learner. Due to the one-to-one correspondence between a policy
and its occupancy measure, policy matching problem can be refor-
mulated as an occupancy measure matching problem [13, 18]:

argmin
𝜋

𝐷 𝑓
(
𝜌𝜋 (𝑠, 𝑎)

����𝜌𝜋𝐸 (𝑠, 𝑎)) (3)

where𝐷 𝑓 denotes 𝑓 -Divergence, and 𝜌𝜋 and 𝜌𝜋𝐸 are the occupancy
measures induced by the imitation learner and expert respectively.

1.2.3 Agent Markov Model. While optimal behavior in MDP can
be represented simply as a function of the state, in practice, expert
behavior – especially that of humans – often hinges on additional
decision-making factors. As exemplified by our motivating sce-
nario, several optimal policies might exist in the real world. Human
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Figure 2: Dynamic Bayesian network representing Intent-
Driven Behavior. Shaded nodes denote known or observable
variables; other variables are latent.

experts tend to show individual inclinations in choosing among
these optimal policies. The Agent Markov Model (AMM) provides
a principled approach to represent these variety of behaviors ex-
hibited by agents while solving sequential tasks [50]. An AMM
models behavior to depend both on the task state and latent states
(e.g., trust, intent, and workload). Mathematically, for a task de-
scribed as an MDP M, an Agent Markov Model (AMM) defines
the behavior of agents as a tuple (𝑋, 𝜁 , 𝑏, 𝜋), where 𝑋 is the set of
latent states, 𝜁 : 𝑋 × 𝑆 × 𝑋 → [0, 1] is the transition probabilities
of the latent states, 𝑏 : 𝑆 × 𝑋 → [0, 1] is the initial distribution of
the latent states, and 𝜋 : 𝑆 × 𝑋 × 𝐴 → [0, 1] is the agent policy.
Hence, actions of an AMM agent depend on both the task and latent
states 𝑎 ∼ 𝜋 (𝑎 |𝑠, 𝑥). Further, the agent’s latent state may change
during the task execution based on the corresponding transition
probability, 𝜁 (𝑥 |𝑠, 𝑥−).

1.3 Problem Formulation
We now formalize the problem of learning intent-driven expert
behavior. Similar to the conventional imitation learning setting, we
focus on sequential tasks that can be described as MDPs. However,
instead of assuming that expert behavior depends on the task state
alone, we model it also depend on their time-varying intent.

1.3.1 Model of Expert Behavior. Mathematically, we model the
expert as a special case of AMM in which the latent state (𝑥) corre-
sponds to the expert intent. A dynamic Bayesian network for this
representation is depicted in Figure 2. Similar to Seo and Unhelkar
[42], we assume 𝑋 the set of intents is known and finite. Following
Jing et al. [24], we introduce the notation # to represent the imagi-
nary value of the intent at time 𝑡 = −1 for the sake of notational
brevity. By defining 𝑋+ � 𝑋 ∪ {#} and representing the initial in-
tent distribution as 𝜁 (𝑥 |𝑠, 𝑥− = #) � 𝑏 (𝑥 |𝑠), we redefine the intent
transition probabilities to take the form 𝜁 : 𝑋+ ×𝑆 ×𝑋 → [0, 1]. As
𝜁 now encompasses the initial intent distribution and 𝑋 is known,
we henceforth refer to the AMM model describing the expert as
N𝐸 as the reduced tuple (𝜋𝐸 , 𝜁𝐸 ).

1.3.2 Inputs and Outputs. Although intents influence expert be-
havior, they cannot be readily sensed or measured by imitation
learners. Thus, we assume an expert demonstration does not in-
clude the information of intents 𝑥 . We define a demonstration as

𝜏 � (𝑠0:ℎ, 𝑎0:ℎ) and a set of 𝑑 demonstrations as 𝐷 = {𝜏𝑚}𝑑
𝑚=1,

where ℎ is a task horizon. In addition, we denote the label of intents
for the𝑚-th demonstration as 𝑥0:ℎ𝑚 . Formally, our problem assumes
the following inputs: a task modelM\𝑅, a set of intents 𝑋 , a set of
expert demonstrations 𝐷 , and optionally labels of intents for 𝑙 (≤ 𝑑)
demonstrations {𝑥0:ℎ𝑚 }𝑙

𝑚=1. Given these inputs, our goal is to learn
an AMM model N = (𝜋, 𝜁 ) that mimics expert behavior.

1.3.3 Objective. Since the learner only has access to the observable
part of the expert behavior {𝑠, 𝑎}, we can consider simply matching
the occupancy measure of the observable variables:

argmin
𝜋

𝐷 𝑓
(
𝜌N (𝑠, 𝑎)

����𝜌N𝐸
(𝑠, 𝑎)

)
However, under this criteria, the learned model could be far from
the expert behavior, since multiple AMM models can exhibit the
same (𝑠, 𝑎)-occupancy measure [24]. To mitigate this ambiguity,
hence, we define the normalized intent-aware occupancy measure:

𝜌N (𝑠, 𝑎, 𝑥, 𝑥−)�(1 − 𝛾)
∞∑︁
𝑡=0

𝛾𝑡𝑝 (𝑠𝑡=𝑠, 𝑎𝑡=𝑎, 𝑥𝑡=𝑥, 𝑥𝑡−1=𝑥− |N ,M)

and pose the problem of learning intent-driven expert behavior as
the following occupancy measure matching problem:

min
N

𝐿𝑠𝑎𝑥𝑥− (N)�min
N

𝐷 𝑓
(
𝜌N (𝑠, 𝑎, 𝑥, 𝑥−)

����𝜌N𝐸
(𝑠, 𝑎, 𝑥, 𝑥−)

)
. (4)

2 LEARNING INTENT-DRIVEN BEHAVIOR
To effectively solve the optimization problem of Eq. 4, we introduce
IDIL: an imitation learning algorithm that can learn intent-driven
expert behavior from heterogeneous demonstrations.

2.1 IDIL: Intent-Driven Imitation Learner
A naïve approach to solve Eq. 4 is to first collect data of expert
demonstrations (𝑠, 𝑎) and intent (𝑥) and then apply techniques
for conventional imitation learning. However, as human cognitive
states cannot be readily measured using sensors, collecting intent
data is non-trivial and resource-intensive in practice [7, 16, 31].
Moreover, as detailed in Sec. 2.3, even in the case when intent data
is available a naïve application of conventional imitation learning
is inadvisable. Hence, we derive an iterative factored approach to
solve Eq. 4 using the following two occupancy measures:

𝜌N (𝑠, 𝑎, 𝑥)�(1 − 𝛾)Σ∞𝑡=0𝛾
𝑡𝑝 (𝑠𝑡=𝑠, 𝑎𝑡=𝑎, 𝑥𝑡=𝑥 |N ,M) (5)

𝜌N (𝑠, 𝑎, 𝑥−)�(1 − 𝛾)Σ∞𝑡=0𝛾
𝑡𝑝 (𝑠𝑡=𝑠, 𝑎𝑡=𝑎, 𝑥𝑡−1=𝑥− |N ,M) (6)

We have the following proposition relating the three occupancy
measures, which is proved in the Appendix.

Proposition 2.1. Consider two arbitrary AMM models: N and N ′.
Then, 𝜌N (𝑠, 𝑎, 𝑥) = 𝜌N′ (𝑠, 𝑎, 𝑥) and 𝜌N (𝑠, 𝑥, 𝑥−) = 𝜌N′ (𝑠, 𝑥, 𝑥−) if
and only if 𝜌N (𝑠, 𝑎, 𝑥, 𝑥−) = 𝜌N′ (𝑠, 𝑎, 𝑥, 𝑥−).

Proposition 2.1 implies that if the measures 𝜌 (𝑠𝑎𝑥) and 𝜌 (𝑠𝑥𝑥−)
induced by the learner match with those induced by the expert,
thenN = N𝐸 . In other words, instead of directly optimizing 𝐿𝑠𝑎𝑥𝑥− ,
one can alternatively solve the following factored sub-problems:

min
N

𝐿𝑠𝑎𝑥 (N) � min
N

𝐷 𝑓
(
𝜌N (𝑠, 𝑎, 𝑥)

����𝜌N𝐸
(𝑠, 𝑎, 𝑥)

)
(7)

min
N

𝐿𝑠𝑥𝑥− (N) � min
N

𝐷 𝑓
(
𝜌N (𝑠, 𝑥, 𝑥−)

����𝜌N𝐸
(𝑠, 𝑥, 𝑥−)

)
. (8)
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Algorithm 1 IDIL: Intent-Driven Imitation Learner

1: Input: Data 𝐷 = {𝜏𝑚}𝑑
𝑚=1 and {𝑥0:ℎ𝑚 }𝑙

𝑚=1
2: Initialize: (𝜃, 𝜙) where N𝜃,𝜙 = (𝜋𝜃 , 𝜁𝜙 )
3: repeat
4: E-step: Infer expert intent {𝑥0:ℎ𝑚 }𝑑

𝑚>𝑙
using (𝜋𝑛

𝜃
, 𝜁𝑛
𝜙
)

5: Define 𝐷̃ � 𝐷 ∪ {𝑥0:ℎ𝑚 }𝑑
𝑚=1

6: Generate trajectories 𝐷𝑔 = {(𝑠, 𝑥, 𝑎)0:ℎ} with (𝜋𝑛
𝜃
, 𝜁𝑛
𝜙
)

7: M1-step: Compute 𝜋𝑛+1
𝜃

via Eq. 7 using 𝐷̃, 𝐷𝑔
8: M2-step: Compute 𝜁𝑛+1

𝜙
via Eq. 8 using 𝐷̃, 𝐷𝑔

9: until Convergence

Algorithm 1 provides an iterative approach to solving these factored
sub-problems via online imitation learning. In line 2, IDIL initializes
the estimate of expert’s model asN𝐸 ≈ N𝜃,𝜙 = (𝜋𝜃 , 𝜁𝜙 ), where 𝜃, 𝜙
represent parameters of a known function (e.g. neural network).
We denote the iteration number as 𝑛 and the 𝑛-th estimate asN𝑛 =

(𝜋𝑛, 𝜁𝑛). As the demonstrations generally do not include data of
expert intent, line 4, performs intent inference using the current
estimate of the expert model. In lines 5-6, the algorithm augments its
training data with on-policy experience. The expert demonstrations
and on-policy experience are then used to update the estimate of
the expert model (𝜋, 𝜁 ) (lines 7-8). Due to its iterative nature, IDIL
can also be viewed as an expectation-maximization (EM) algorithm
in which the E-step corresponds to intent inference and M-step
corresponds to model learning. We detail IDIL’s subroutines next.

2.1.1 E-step: Intent Inference. Following algorithms for AMM learn-
ing [32, 42, 50], we take a Bayesian approach to inferring values
of expert intent. Mathematically, to infer intent data 𝑥0:ℎ for each
demonstration 𝜏 , IDIL computes the following maximum a posteri-
ori (MAP) estimate for the posterior distribution:

𝑥0:ℎ = argmax
𝑥0:ℎ

𝑝 (𝑥0:ℎ |𝜏,N𝑛) (9)

using a variant of Viterbi algorithm introduced in [24, 50, 51],
which has a time complexity of 𝑂 (ℎ |𝑋 |2). Observe that, using
these estimates, one can augment the expert demonstrations 𝐷̃ �
𝐷 ∪ {𝑥0:ℎ𝑚 }𝑑

𝑚=1 to arrive at (𝑠, 𝑎, 𝑥)-trajectories. Further, these tra-
jectories can then be used to compute the empirical estimates
of expert’s occupancy measures – 𝜌𝑛

𝐸
(𝑠, 𝑎, 𝑥, 𝑥−), 𝜌𝑛

𝐸
(𝑠, 𝑎, 𝑥), and

𝜌𝑛
𝐸
(𝑠, 𝑎, 𝑥−) – needed for the subsequent steps of the algorithm.

2.1.2 M1-step: Learning Agent’s Policy 𝜋 . Assuming 𝜌𝑛
𝐸
and 𝜁𝑛

as fixed, in line 7, IDIL solves the sub-problem described in Eq. 7
to update the agent’s estimate of the expert policy 𝜋𝜃 . To derive
the solution, we begin with an intent-augmented state represen-
tation, 𝑢 � (𝑠, 𝑥) ∈ 𝑆 × 𝑋 . Using this representation, we de-
fine an intent-informed MDP M̃ � ((𝑆 × 𝑋 ), 𝐴,𝑇 , 𝜇̃0, 𝛾), where
𝑇 (𝑢′ |𝑢, 𝑎) = 𝑇 (𝑠′ |𝑠, 𝑎)𝜁𝑛 (𝑥 ′ |𝑥, 𝑠) and 𝜇̃0 (𝑢) = 𝜁 (𝑥 |𝑠, #)𝜇0 (𝑠). Ob-
serve that, for this intent-informed MDP, Eq. 7 reduces to the con-
ventional imitation learning problem of learning 𝜋 (𝑎 |𝑢) by match-
ing the occupancy measure 𝜌 (𝑢, 𝑎) ≡ 𝜌 (𝑠, 𝑥, 𝑎). Given this reduc-
tion, a variety of existing imitation learning algorithms can be used
to solve Eq. 7. Our implementation of IDIL uses a recent algorithm
IQ-Learn to solve Eq. 7 and update 𝜋𝜃 . This choice is motivated by

IQ-Learn’s state-of-the-art performance and stable training; unlike
many related techniques, IQ-Learn and consequently IDIL do not
rely on (potentially unstable) adversarial training.

2.1.3 M2-step: Learning Agent’s Intent Dynamics 𝜁 . Assuming 𝜌𝑛
𝐸

and 𝜋𝑛+1 as fixed, in line 8, IDIL updates 𝜁𝜙 by solving Eq. 8. To
derive the solution, we utilize an alternate intent-augmented state
representation 𝑣 � (𝑠, 𝑥−) ∈ 𝑆 × 𝑋+. Using this representation and
modeling the set of intents𝑋 as agent’s macro-actions, we define the
intent-transition MDP M̄ = ((𝑆 × 𝑋+), 𝑋,𝑇 , 𝜇0, 𝛾), where the tran-
sition model of 𝑣 is defined as𝑇 (𝑣 ′ |𝑣, 𝑥) = ∑

𝑎 𝜋
𝑛+1 (𝑎 |𝑠, 𝑥)𝑇 (𝑠′ |𝑠, 𝑎)

and 𝜇0 (𝑣) = 𝜇0 (𝑠) represents the initial distribution of 𝑣 . Observe
that 𝜁 (𝑥 |𝑣) corresponds to the policy of the intent-transition MDP
M̄, which describes the agent’s approach to selecting its intent 𝑥
given the task state and prior intent 𝑣 = (𝑠, 𝑥−). Hence, for the
intent-transition MDP, Eq. 8 too reduces to the conventional imita-
tion learning problem of learning 𝜁 (𝑥 |𝑣) bymatching the occupancy
measure 𝜌 (𝑣, 𝑥) ≡ 𝜌 (𝑠, 𝑥, 𝑥−). Consequently, similar to M1-step,
a variety of existing imitation learning algorithms can be used to
solve Eq. 8. For reasons stated in Sec. 2.1.2, our implementation of
IDIL uses IQ-Learn to also solve Eq. 8 and update agent’s estimate
of the expert’s intent dynamics 𝜁𝜙 .

2.1.4 Implementation Considerations. As suggested by our analysis
presented next, we opt for small learning rates while updating
the model parameters. This leads to small incremental updates to
the parameters 𝜃 and 𝜙 in the M1-step and M2-step. Further, to
enhance learning performance, we conduct multiple iterations of
M1-step and M2-step (lines 7-8) in every loop of Algorithm 1 after
the subsequent E-step (line 4) in our implementation. For detailed
insights and other considerations, please refer to the Appendix.

2.2 Sufficient Conditions for Convergence
Proposition 2.1 establishes that N = N𝐸 when both 𝐿𝑠𝑎𝑥 = 0 and
𝐿𝑠𝑥𝑥− = 0. However, due to the iterative nature of Algorithm 1,
this alone does not ensure the convergence to the expert model.
Minimizing 𝐿𝑠𝑎𝑥 in M1-step might inadvertently increase 𝐿𝑠𝑥𝑥− ,
and the opposite could occur in M2-step. To address this, we derive
the conditions under which Algorithm 1 monotonically reduces the
primary loss function (Eq. 4) and, thus, asymptotically converges
to a sound estimate of the expert’s behavioral model.

Consider the following approximations of the expert occupancy
measure 𝜌𝐸 (𝑠, 𝑎, 𝑥, 𝑥−), which are computed using the𝑛-th estimate
of the expert model and factored occupancy measures:

𝜌𝑛𝐸 (·) = 𝜌𝑛𝐸 (𝑠, 𝑎, 𝑥, 𝑥
−) �

∑︁
𝑠−,𝑎−

𝜋𝑛 (·)𝜁𝑛 (·)𝑇 (·)𝜌𝑛𝐸 (𝑠
−, 𝑎−, 𝑥−) (10)

𝜌𝑛𝐸 (·) = 𝜌𝑛𝐸 (𝑠, 𝑎, 𝑥, 𝑥
−) � 𝜋𝑛 (𝑎 |𝑠, 𝑥)𝜌𝑛𝐸 (𝑠, 𝑥, 𝑥

−) (11)

For these approximations, we have the following two lemmas.2

Lemma 2.2. Define |Δ(𝜃, 𝜃𝑛) | � 𝜖 . If 𝜖 is sufficiently small, then

𝐷 𝑓
(
𝜌𝜋𝜃 (𝑠, 𝑎, 𝑥)

����𝜌𝑛𝐸 (𝑠, 𝑎, 𝑥)) = 𝐷 𝑓

(
𝜌𝜋𝜃 ,𝜁𝑛 (𝑠, 𝑎, 𝑥, 𝑥

−)
����𝜌𝑛𝐸 (·))

Lemma 2.3. Define |Δ(𝜃𝑛+1, 𝜃𝑛) | � 𝜖 . If 𝜖 is sufficiently small, then

𝐷 𝑓

(
𝜌𝜁𝜙 (𝑠, 𝑥, 𝑥

−)
������𝜌𝑛𝐸 (𝑠, 𝑥, 𝑥−)) = 𝐷 𝑓

(
𝜌𝜋𝑛+1,𝜁𝜙 (𝑠, 𝑎, 𝑥, 𝑥

−)
������𝜌𝑛𝐸 (·))

2Please refer to the Appendix for detailed proofs.
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Lemma 2.2 implies that, if the update to policy parameters in
M1-step is sufficiently small,3 then the value of sub-objective 𝐿𝑠𝑎𝑥
approximately equals the overall objective 𝐿𝑠𝑎𝑥𝑥− . Here, the ap-
proximation arises from the use of 𝑛-th estimates of expert model to
approximate the expert occupancy measures 𝜌𝐸 (𝑠, 𝑎, 𝑥, 𝑥−) ≈ 𝜌𝑛

𝐸
(·).

Under similar conditions and the approximation 𝜌𝐸 (𝑠, 𝑎, 𝑥, 𝑥−) ≈
𝜌𝑛
𝐸
(·), Lemma 2.3 implies that the value of sub-objective 𝐿𝑠𝑥𝑥−

equals the overall objective 𝐿𝑠𝑎𝑥𝑥− . Thus, under the given condi-
tions, a decrease in 𝐿𝑠𝑎𝑥 and 𝐿𝑠𝑥𝑥− will also decrease 𝐿𝑠𝑎𝑥𝑥− . The
proof of these lemmas rely on first-order approximations with re-
spect to the policy parameters and convexity of the function used
to compute the 𝑓 -divergence.

Given these lemmas, we can now proceed to stating the sufficient
conditions for convergence of IDIL. Consider a third approximation
of the expert occupancy measure 𝜌𝐸 (𝑠, 𝑎, 𝑥, 𝑥−) computed using
the Viterbi intent estimates derived in the E-step as follows:

𝜌𝑛𝐸 (·) = 𝜌𝑛𝐸 (𝑠, 𝑎, 𝑥, 𝑥
−) � 𝜌𝐸 (𝑠, 𝑎)𝑝 (𝑥, 𝑥− |𝑠, 𝑎,N𝑛) (12)

Further, denote the empirical estimate of the original objective of
Eq. 4 at the 𝑛-th iteration as

𝐿𝑠𝑎𝑥𝑥− ≈ 𝐿𝑛𝑠𝑎𝑥𝑥−�𝐷 𝑓
(
𝜌N (𝑠, 𝑎, 𝑥, 𝑥−)

����𝜌𝑛𝐸 (𝑠, 𝑎, 𝑥, 𝑥−)) (13)

Then, we have the following theorem for the convergence of IDIL.

Theorem 2.4. If (1) 𝜌𝑛
𝐸
≈ 𝜌𝑛

𝐸
≈ 𝜌𝑛

𝐸
; and (2) |Δ(𝜃𝑛+1, 𝜃𝑛) | is suffi-

ciently small, then 𝐿𝑛+1𝑠𝑎𝑥𝑥− ≤ 𝐿𝑛𝑠𝑎𝑥𝑥− .

Note that, while important, Theorem 2.4 only guarantees conver-
gence to a local optima computed with respect to the approximate
objective lim𝑛→∞ 𝐿𝑛𝑠𝑎𝑥𝑥− . A stronger result can be achieved for the
supervised case of the intent-driven imitation learning, in which
labels of expert intent available for all expert demonstrations.4
As evidenced in our experiments, however, the empirical results
are more encouraging. IDIL, even with no or small supervision,
converges to the expert behavior in a variety of problems.

2.3 IDIL-J: A joint variant of IDIL
Given the inferred values of expert intent, IDIL factors the original
problem (Eq. 4) into two sub-problems (Eq. 7 and Eq. 8) which are
each solved separately. As the analysis of its convergence relies on
showing that optimizing the two factored objectives is equivalent
to optimizing the original joint objective 𝐿𝑠𝑎𝑥𝑥− , a natural ques-
tion arises: why not directly optimize the joint objective? To answer
this question, we provide an alternate approach that indeed uses
the inferred intent values to directly optimize the original joint
objective 𝐿𝑠𝑎𝑥𝑥− . To derive this approach, consider the joint MDP
model, with state defined as 𝑤 � (𝑠, 𝑥−) ∈ 𝑆 × 𝑋+ and actions as
𝑎𝑤 � (𝑎, 𝑥) ∈ 𝐴 × 𝑋 . The policy for this joint MDP corresponds to
a joint estimate of the expert policy and intent dynamics

𝜋̃ (𝑎𝑤 |𝑤) � 𝜋̃ (𝑎, 𝑥 |𝑠, 𝑥−) = 𝜋 (𝑎 |𝑠, 𝑥)𝜁 (𝑥 |𝑠, 𝑥−) (14)

Further, given the inferred values of (𝑥, 𝑥−) computed via the E-step
and the aforementioned MDP, Eq. 4 reduces to the conventional
imitation learning problem of learning 𝜋̃ (𝑎𝑤 |𝑤) by matching the
occupancy measure 𝜌 (𝑤, 𝑎𝑤) ≡ 𝜌 (𝑠, 𝑎, 𝑥, 𝑥−). Given this reduction,
3In practical implementations, sufficiently small updates to the policy parameters can
be realized through appropriate choice of the learning rate hyperparameter.
4For the supervised case, the E-step of Algorithm 1 is not required, and offline pre-
training can greatly help.

similar to the factored M1-step and M2-step, we can now apply
existing techniques to solve the original problem. For instance, we
can apply IQ-Learn to first learn 𝑄 (𝑤, 𝑎𝑤) = 𝑄 (𝑠, 𝑥−, 𝑎, 𝑥) from
the expert demonstrations and online experience. Next, using the
learnt𝑄-values we can then recover the expert model (𝜋 and 𝜁 ) by
optimizing the following soft actor-critic (SAC) objective [14]:

𝐽 (𝜃, 𝜙) = 𝐸 (𝑠,𝑥− )∼𝐷̃

[
𝐷𝐾𝐿

(
𝜋𝜃 · 𝜁𝜙

��������exp(𝑄 (𝑠, 𝑥−, 𝑎, 𝑥))
𝑍

)]
(15)

We refer to this unfactored approach, which replaces the two M1-
step and M2-step with a joint M-step, as IDIL-Joint or IDIL-J in
short. This approach is technically sound. However, as learning the
joint function does not leverage the inherent factored structure of
the expert behavior, we anticipate its learning performance and
interpretability to be subpar than IDIL. In Sec. 3, we evaluate this
hypothesis by empirically comparing IDIL and IDIL-J.

2.4 Relation to Existing Works
We conclude this section by discussing the relationship of IDIL to
relevant human modeling and imitation learning techniques that
also consider latent decision-making factors [2, 5, 17, 34].

2.4.1 Human Behavior Modeling. A prevailing motif in human
modeling research is the significance of mental (or latent) states,
such as intent, expertise, and trust in the robot [33, 37, 38, 45, 54].
Techniques that incorporate these latent states generally outper-
form those that exclude them [6, 11, 15, 20, 29, 40, 52, 53]. For
instance, explicit modeling of human intent has been used to learn
more effective policies for human-robot collaboration [53]. Sim-
ilarly, extensions of Generative Adversarial Imitation Learning
(GAIL) that incorporate demonstrator’s strategy code as an latent
feature tend to outperform GAIL [15, 18, 29, 52]. While these meth-
ods learn human behavior with diverse intents, unlike IDIL, they
assume that the intent remains static during an episode.

In contrast, Agent Markov Model (AMM) and its variants con-
sider both the expert’s latent states and its temporal dynamics [32,
42, 50]. Thus, the model can capture diverse and dynamically-
changing intents representative of human behavior. However, ex-
isting learning methods for AMM utilize variational inference and
tabular representations, which imposes strong assumptions on the
target distributions and cannot scale up to complex tasks. IDIL does
not make such assumptions and thus is capable of learning expert
behavior in tasks with large or continuous state spaces.

2.4.2 Hierarchical Imitation Learning. As intents typically shape
expert behavior at a macro level, the problem of learning intent-
driven behavior shares similarities with hierarchical imitation learn-
ing [8, 21, 25, 27, 56].5 Kipf et al. [25], Le et al. [27], Zhang and
Paschalidis [56] propose hierarchical policy learning algorithms
based on behavior cloning. These methods, however, do not uti-
lize task dynamics and are prone to compounding errors [39, 47].
To alleviate the problem of compounding errors, several GAIL-
based approaches have been proposed to learn hierarchical poli-
cies [10, 24, 28, 43]. Among these, Option-GAIL that builds upon the
options framework and utilizes an EM approach is most relevant to
5For instance, in our problem setting, intent can be viewed as a one-step option [44].
However, in contrast to the options framework, intent is neither associated with an
option termination condition nor assumes temporal abstraction.
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(a) MultiGoals (b) AntPush (c) Humanoid (d) OneMover (e) Movers

Figure 3: Visual illustrations of Experimental Domains.

Table 1: Key Characteristics of Experimental Domains

State Space Expert

Domain Type |𝑆 | or 𝑛𝑠 Intent Human

MG-n suite Continuous 2 Yes
AntPush Continuous 107 Maybe
Mujoco suite Continuous 376
OneMover Discrete ≈ 1𝑘 Yes
Movers Discrete ≈ 40𝑘 Yes Yes

our work [24, 44, 55]. However, unlike our approach, Option-GAIL
relies on adversarial training and thus is prone to unstable gradi-
ents [3, 23].We posit, through the use of a non-adversarial approach,
IDIL will result in stable training and superior performance [12].
We evaluate this hypothesis in the following section.

3 EXPERIMENTS
We evaluate IDIL on multiple domains and benchmark its ability
to successfully complete tasks, infer expert intent, and generate di-
verse interpretable behaviors. Through this empirical investigation,
we evaluate, in terms of performance,
(Q1) How does IDIL compare to conventional IL techniques when

experts exhibit intent-driven behavior?
(Q2) How does IDIL compare to conventional IL techniques when

experts do not exhibit intent-driven behavior?
(Q3) How does IDIL compare to hierarchical IL techniques?
(Q4) How does IDIL compare to its variant IDIL-J?

3.1 Domains and Expert Demonstrations
As summarized in Table 1, we consider both discrete and continu-
ous MDPs, low- and high-dimensional state spaces, intent-driven
and intent-agnostic behaviors, and human and artificial experts. In
Table 1, we list the size of the state space |𝑆 | for discrete domains
and number of state features 𝑛𝑠 for continuous domains. For the
MultiGoals-n and Mujoco suites, we report these values for the
most complex task of the suite.

3.1.1 MultiGoals-𝑛 (MG-𝑛). As introduced in Sec. 1.1, this domain
models an agent tasked with visiting 𝑛 landmarks (goals) in an
empty environment of size 5×5. Figure 3a depicts this domain with
𝑛 = 3. No constraint is placed on the visitation order of landmarks,

which is decided based on expert’s intent. Both state and action
are 2-dimensional vectors, denoting the position and velocity of
the agent. The agent receives a reward of 10 upon reaching a previ-
ously unvisited landmark and a penalty of 0.1 every time step. We
synthetically generate 100 demonstrations (50/50 train/test split)
for this task by hand-crafting an expert model. The hand-crafted
expert first selects an arbitrary unvisited landmark and then per-
forms goal-oriented motion to visit it. Observe that the state alone
is insufficient to predict expert behavior, as it depends on both its
location and intent (i.e., which landmark the expert plans to visit
next). We consider four versions of this task, by varying 𝑛 from two
to five.

3.1.2 OneMover. This domain, depicted in Figure 3d, models a
single-agent version of the benchmark domain Movers introduced
by Seo et al. [41]. It simulates a 7×7 discrete grid world, in which the
agent is task with moving boxes to the truck. The state denotes task
information (agent and box locations) but not the agent intent (i.e.,
which box it plans to pick or drop next). We assume an expert may
have one of four different intents: going to one of the three boxes
or a truck). Similar to MultiGoals-𝑛, we synthetically generate 100
demonstrations (50/50 train/test split) for this task by hand-crafting
an expert model.

3.1.3 Mujoco suite. To evaluate IDIL in domains that may not in-
volve diverse or time-varying intents, we consider the following
benchmark Mujoco environments: Hopper-v2, HalfCheetah-v2,
Walker2d-v2, Ant-v2, Humanoid-v2, and AntPush-v0 [46].We use
the version of AntPush-v0 introduced by Jing et al. [24] and their
expert dataset to facilitate a direct comparison between the per-
formance of IDIL and Option-GAIL. For the remaining tasks, we
employ the datasetmade available byGarg et al. [12].We use demon-
strations of 1k, 5k, and 50k time steps for Hopper-v2, Walker2d-v2,
and AntPush-v0, respectively, the same as Jing et al. [24]. For other
tasks, we use five trajectories (5k time steps). For all tasks, we set
the number of intents to four following Jing et al. [24].

3.1.4 Movers. Modeling human behavior and recognizing their in-
tent are particularly important for human-AI collaboration. Hence,
we also utilize Movers: a human-AI collaboration setting introduced
by Seo and Unhelkar [42]. This domain models a human-agent team
that needs to work together to move boxes to a truck. Originally
a multi-agent problem, we adapt it to a single-agent context by

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1678



Table 2: Cumulative task reward (averaged over three experiment trials) for each method.

Domain Expert BC IQL OGAIL IDIL-J IDIL OGAIL-s IDIL-J-s IDIL-s

MG-2 15.19±1.0 -8.69±2.3 -2.61±8.4 -10.51±2.4 1.08±6.7 16.16±0.3 -9.10±5.2 1.55±1.2 16.20±0.2
MG-3 22.32±0.9 -7.08±1.5 6.06±14.8 -11.25±2.2 -4.58±1.4 20.64±2.2 -4.89±5.9 -3.33±0.7 22.25±0.8
MG-4 29.14±1.4 -10.4±0.7 -8.67±2.3 -13.33±3.6 -4.17±1.4 13.63±2.1 -13.75±3.3 -4.17±2.6 24.61±1.7
MG-5 40.09±1.4 -6.25±1.3 -10.92±1.8 -12.92±2.6 4.17±4.4 27.88±1.8 -12.08±5.1 6.27±2.5 32.84±0.7
OneMover -46.8±4 -200.0±0 -45.7±3 -200.0±0 -91.3±17 -45.5±1 -200.0±0 -70.6±32 -46.0±2
Movers -67.6±6 -200.0±0 -65.6±0 -200.0±0 -152.3±16 -68.3±3 -200.0±0 -155.2±28 -68.2±1
Hopper 3533±39 861±558 3523±22 3279±426 3558±40 3523±21

N/A

½Cheetah 5098±62 4320±314 5092±31 2801±923 5136±37 5098±66
Walker2d 5274±53 3065±800 5185±43 4178±1610 5179±31 5249±19
Ant 4700±80 4179±175 4606±38 4529±59 4636±27 4580±30
Humanoid 5313±210 496±47 5350±58 458±43 5298±22 5370±133
AntPush 116.6±14 90.2±13 116.6±1 98.9±16 116.6±2 117.1±0

treating the robot teammate as an environmental component. We
utilize 66 human demonstrations, 44 for training and 22 for testing.

3.2 Baselines and Metrics
3.2.1 Baselines. We benchmark IDIL and its variant IDIL-J against
Behavioral Cloning (BC), IQ-Learn (IQL), and Option-GAIL (OGAIL)
[12, 24, 35]. BC is a simple yet effective IL technique [30]. IQ-Learn
and Option-GAIL represent the state of the art in conventional and
hierarchical IL, respectively. For the intent-aware techniques, we
also benchmark the performance of their semi-supervised variants
(denoted as IDIL-s, IDIL-J-s, OGAIL-s), which additionally receive
ground truth labels of expert intent for 20% of the trajectories.

3.2.2 Implementation Details. We utilize a multi-layer perceptron
(MLP) with two hidden layers, each containing 128 nodes, to im-
plement all neural networks of IDIL; this includes Q-networks for
𝜁 and 𝜋 , and the actor network for 𝜋 in the case of continuous
domains. Other hyperparameters are selected via grid search. The
policy network for BC employs an MLP with two hidden layers of
256 nodes each. For implementing IQ-Learn and Option-GAIL, we
adopt the neural network structures and hyperparameters proposed
in their original papers [12, 24]. IDIL-J shares the same architecture
as IQ-Learn. All online imitation learning methods were trained un-
til convergence, capped at 6M exploration steps. Behavior Cloning
was trained for 10k updates, using a batch size of 256. Please refer
to the Appendix for additional implementation details.

3.2.3 Metrics. We consider three metrics: the cumulative task re-
ward, accuracy of intent inference, and the diversity of behaviors
generated by the learned model. To characterize the learning curve,
cumulative reward is computed every 20k exploration steps as an
average over 8 evaluation episodes. Table 2 reports the maximum of
this learning curve. We determine the accuracy of intent inference
by computing the fraction of time steps wherein the algorithm
accurately identifies the intent, relative to the total steps in the test
set. The range and interpretability of behaviors exhibited by the
learned model is qualitatively assessed through a visual inspection
of its generated trajectories.

3.3 Results
3.3.1 Task Performance: Intent-Driven Experts. First, we consider
the performance of IDIL in domains where experts exhibit di-
verse intent-driven behaviors: namely, MultiGoals, OneMover, and
Movers. As shown in Table 2, IDIL either outperforms or performs
comparably to the baselines in these domains. Further, in domains
where the performance is comparable to baselines, both IDIL and
the best performing baseline perform as well as the expert.

Towards Q1, we observe that IQ-Learn (a conventional IL tech-
nique) performs as well as the expert in some intent-driven tasks but
not in others. Its task performance is especially poor in MultiGoals
domain, where expert behaviors are not only diverse but also con-
tradictory. For instance, based on their intent, different experts may
select opposite actions at the same state. As IQ-Learn does not
model intent it is unable to resolve this ambiguity and thus leads to
subpar performance. In contrast, IDIL is still able to mimic expert
behavior and achieves a high task reward, associating contradictory
behaviors to different intents. Moreover, even in domains where IQ-
Learn exhibits expert-level performance, the learnt model cannot
be used to infer the actor’s intent or generate diverse behaviors.

Among intent-aware algorithms considered in Q3 and Q4, IDIL
outperforms Option-GAIL and IDIL-J. Option-GAIL particularly
performs poorly in OneMover and Movers. We expect that this oc-
curs due to the large input dimension for its discriminator, caused
by the conversion of a discrete state into a corresponding one-hot
encoding. Such high-dimensional inputs hinder the performance
of the discriminator, which is crucial for GAIL-like algorithms to
work, by making it challenging for a neural network to differenti-
ate between them. IDIL-J also shows poor performance in discrete
domains, presumably due to Gumbel-Softmax reparameterization
[22] of Categorical distribution required for backpropagation of
gradients when optimizing the SAC objective. As mentioned in Sec.
2.1.4, since IDIL learns a separate 𝑄 (𝑠, 𝑎, 𝑥)-function, the policy for
discrete action can be directly derived from the learnt 𝑄 , removing
the additional optimization for the SAC objective. We also observe
that semi-supervision of intents leads to faster convergence and
improves the performance of IDIL (cf. Table 2: IDIL and IDIL-s).
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Table 3: Accuracy of Intent Inference

Domain Random OGAIL-s IDIL-J-s IDIL-s

MG-3 ≈ 0.33 0.44±0.1 0.64±0.1 0.93±0.0
MG-5 ≈ 0.20 0.20±0.0 0.53±0.2 0.83±0.1
OneMover ≈ 0.25 0.38±0.1 0.32±0.2 0.62±0.0
Movers ≈ 0.20 0.38±0.3 0.48±0.1 0.60±0.1

While Option-GAIL and IDIL-J also benefit from this additional
information, the improvement is the most noticeable for IDIL.

3.3.2 Task Performance: Intent-Agnostic Experts. For the domains
where demonstrations do not include diverse or intent-driven ex-
pert behaviors, IQ-Learn, IDIL-J, and IDIL all show comparable per-
formance and achieve the near-expert task reward. Towards Q2, this
demonstrates that IDIL does not overfit to the intent-driven model
and does not collapse when demonstrations are homogeneous. Also,
IDIL’s performance in the Mujoco suite ensures that it can handle
expert’s demonstrations in complex and continuous domains, which
is not possible with recent AMM-learning algorithms [32, 42, 50].
In addition, compared to Option-GAIL and IDIL-J, IDIL achieves a
higher task reward and show lower variance. Taking into account
that IDIL-J and Option-GAIL utilize identical objectives Eq. 4, this
results demonstrate the advantage of non-generative adversarial
approach for achieving consistent training.

3.3.3 Intent Inference. A high reward demonstrates that the algo-
rithm is capable of finding one (near-)optimal behavior. However,
it does not imply that the algorithm is adept in capturing intents
or diversity observed in expert behavior. Hence, we benchmark
the intent inference performance computed using the learnt mod-
els in Table 3. To associate the expert and learnt intent, we train
models with 20% supervision of intent. Notice that, since IQ-Learn
and Behavior Cloning learn a single behavior, models learnt using
them cannot be used for intent inference. We observe that IDIL
outperforms Option-GAIL, IDIL-J, and random guess in all domains.

3.3.4 Diversity and Interpretability of Generated Behaviors. Finally,
in Figure 4, we visualize and qualitatively inspect the diverse intent-
driven behaviors learnt by various algorithms for the MultiGoals-3
domain. Recall that in this domain each intent-driven behavior cor-
responds to reaching one of the three landmarks in the environment.
We observe that behaviors learnt using IDIL are not only capable
of addressing complex tasks (cf. Table 2) but also interpretable and
match diverse expert intents. This qualitative analysis also sheds
light on superior intent inference performance of IDIL (cf. Table 3).
In contrast, IDIL-J does not effectively learn interpretable intent-
driven behavior. As we posited in Sec. 2.3, our experiments suggest
learning the joint 𝑄-function instead of learning two factored Q-
functions decreases both interpretability and overall performance.
Figure 4 also suggests that Option-GAIL is not able to learn intent-
driven behavior that match expert intent.

4 CONCLUSION
We introduce IDIL, a novel algorithm for learning intent-driven
expert behavior from heterogeneous demonstrations. By employing

(a) Expert

(b) IDIL

(c) IDIL-J

(d) Option-GAIL

Figure 4: MultiGoals-3 trajectories generated by the expert
and learnt models according to different intents.

an EM-style approach and implementing factored optimizations,
IDIL successfully captures time-varying intents and intent-driven
behavior even in complex and continuous tasks. Our contribution
includes a theoretical analysis on the convergence properties of
IDIL and empirical results showcasing that IDIL outperforms the
state-of-the-art baselines.

Our work also motivates several directions of future work. The
key limitation of our work is the set of intent has to be finite and
known. Moreover, when dealing with a large number of intents,
the E-step can become slow. A worthwhile future direction can be
exploring methods to relax these assumptions regarding intents.
Additionally, while intents tend to change slower compared to
actions, IDIL does not explicitly leverage this characteristic. In
future work, we hope to develop methods to incorporate this prior
knowledge of intent dynamics into the learning process. Building
on IDIL, we also plan to extend this work to multi-agent settings
where intent of each agent can be influenced by other agents.
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