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Abstract

Metrics such as the outbreak size in an epi-
demic process on a network are fundamen-
tal quantities used in public health analyses.
The datasets used in such models used in
practice, e.g., the contact network and dis-
ease states, are sensitive in many settings.
We study the complexity of computing epi-
demic outbreak size within a given time hori-
zon, under edge differential privacy. These
quantities have high sensitivity, and we show
that giving algorithms with good utility guar-
antees is impossible for general graphs. To
address these hardness results, we consider a
smaller class of graphs with similar properties
as social networks (called expander graphs)
and give a polynomial-time algorithm with
strong utility guarantees. Our results are the
first to give any non-trivial guarantees for dif-
ferentially private infection size estimation.

1 Introduction

Epidemic models, especially network based, are com-
monly used in public health analyses, e.g., (Marathe
and Vullikanti, 2013; Adiga et al., 2020). Such a model
is defined on a contact network G = (V,E), where V
denotes the population, and E denotes the set of edges,
on which infections could spread. In the Susceptible-
Infected-Recovered (SIR) model of disease spread, an
infected node v ∈ V spreads the infection to each
susceptible neighbor, independently, with some prob-
ability. The simplest metrics of interest in epidemic
analyses are expected number of infections, peak size
(which are at a population level), and individual risk
of infection (which is at an individual level). There
has been a lot of previous work on forecasting such
metrics, e.g., (Mamidi et al., 2021; Adiga et al., 2022).
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One limitation of previous approaches is the lack of
data privacy guarantees. These methods use diverse
kinds of datasets as inputs, including mobility traces,
contacts, and infection status. Some individual risk
prediction models were based on electronic medical
record data, e.g., (Mamidi et al., 2021), and con-
tact tracing apps relied on contacts inferred through
phones, e.g., (Akinbi et al., 2021). Many of these are
very sensitive datasets. For instance, many individ-
uals might prefer to keep their contacts and disease
states private; indeed, privacy is considered to be one
of the reasons the deployment of contact tracing apps
were not adopted by a large fraction of the popula-
tion (Akinbi et al., 2021). Our work attempts to ad-
dress this limitation via the framework of differential
privacy (Dwork et al., 2006).

1.1 Our Contributions

We initiate the study of differentially private estima-
tion of the expected number of infections in a graph
G resulting from s source infections, denoted by f(G).
If the initial infections set is given, we show that any
differentially private algorithm must incur an additive
Θ(n) factor in general (see Section 6). Therefore, we
focus on the setting where the s source infections are
selected randomly. For this setting, we show that we
can beat the Ω(n) lower bound, in contrast to hard-
ness results in the fixed-source setting. We show that
the global sensitivity of f(G) in the random initial in-
fection setting is Θ(n/s) (see Section 3). Combined
with the Laplace mechanism (Dwork et al., 2014), this
implies an differentially private algorithm with Θ(n/s)
expected additive error. While this is significantly bet-
ter than a naive bound of Ω(n), it can lead to poor
utility in general.

This motivates alternative approaches to global sen-
sitivity such as various local sensitivity based meth-
ods. We first show that the smooth sensitivity tech-
nique (Nissim et al., 2007) can be applied to our
problem, and can greatly improve utility over global
sensitivity-based methods. Since the smooth sensitiv-
ity is difficult to compute, we show computing a multi-
plicative approximation for smooth sensitivity suffices
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for privacy. We then give a quasi-polynomial time al-
gorithm for computing approximate smooth sensitivity
for our problem.

To address the slow running time, we give a general-
ization of the classical propose-test-release approach,
and use it to give a polynomial-time algorithm with
strong utility guarantees for a class of sparse but well-
connected graphs called expanders. Since many social
networks are believed to satisfy approximate expan-
sion properties, this gives the first positive result for
estimating infection size with differential privacy for
social network graphs. Additionally, we believe that
our generalized propose-test-release framework will be
of independent interest, since it was the only approach
which improved over the quasi-polynomial runtime.

1.2 Related Work

There is no prior work on the problem we study here,
and there has been little work on private computation
of epidemic metrics. The most closely related work
is the work on the Individual Risk Prediction prob-
lem (Harrison et al., 2023), which involves privately
predicting the probability of infection for a node in
the next ∆ time steps. Recent work by Liu and Smith
(2023) develops a federated learning method for this
problem, while guaranteeing node differential privacy.
While this method could be used to determine the ex-
pected outbreak size by summing the probabilities, the
accuracy would be much worse than directly estimat-
ing the size. Specifically, the performance of their algo-
rithm degrades very rapidly for large ∆, which would
be needed for estimating the full outbreak size. This
work is orthogonal to ours.

More generally, there has been a lot of work on
private algorithms for computing a variety of graph
statistics (e.g., degree distribution and counts of sub-
graphs) in node, edge and attribute privacy mod-
els (Kasiviswanathan et al., 2013; Mülle et al., 2015;
Imola et al., 2021; Blocki et al., 2013; Ji et al., 2019;
Hay et al., 2009; Zhang et al., 2015; Dhulipala et al.,
2022, 2023). Since graph statistics generally have high
global sensitivity (e.g., the number of triangles in a
graph has a sensitivity of n − 2 under edge privacy),
using the Laplace mechanism can be very inaccurate.
Consequently, more advanced techniques based such as
smooth sensitivity (Nissim et al., 2007; Karwa et al.,
2014), ladder functions (Zhang et al., 2015), propose-
test-release (Dwork et al., 2014), and inverse sensitiv-
ity (Asi and Duchi, 2020) have been developed to pro-
vide much more accurate counts for some problems,
but are computationally expensive (see (Li et al., 2023)
for a recent survey on private graph algorithms). Our
work contributes to and generalizes some approaches
in this line of work.

2 Preliminaries

2.1 Independent Cascades Model

We consider the Independent Cascades (IC) model,
which is the simplest instance of the more general
Susceptible-Infected-Recovered (SIR), on a contact
graph G = (V,E) (Marathe and Vullikanti, 2013). In
this model, each node v is in one of Susceptible (S),
Infectious (I) or Recovered (R) state. In the begin-
ning (t = 0), we have a subset I0 ⊆ V of source nodes
in the infected state, with s := |I0|, and all remain-
ing nodes are in the Susceptible state. Let It denote
the set of nodes which are infected at time t. At each
time-step t, an infected node u can infect each sus-
ceptible neighbor v with probability p, independent of
other neighbors of v. An infected node v is assumed
to recover after one time step, so all nodes in It are
Recovered in the next timestep. The expected total
number of infections f(G) = E[|

⋃
t It|] is one of the

most basic metrics in epidemic analyses, which we will
try to estimate given an input graph and transmission
probability p.

2.2 Differential Privacy Model

We use the notion of differential privacy (Dwork et al.,
2014), which is one of the most widely used stan-
dards of privacy, and has been extended to graph
data (Blocki et al., 2013; Kasiviswanathan et al.,
2013). We focus on the edge privacy model (Blocki
et al., 2013), which guarantees differential privacy for
the contact data between two individuals. Formally,
edge-privacy is defined as follows.

Definition 2.1. We say that two graphs G,G′ are
edge-neighbors, i.e., G ∼ G′, if they differ in exactly
one edge, i.e., |E(G)∆E(G′)| = 1, where E(G) de-
notes the set of edges of graph G.

Definition 2.2. Let G denote the set of all undirected
graphs. A (randomized) algorithm M : G → R is (ϵ, δ)-
edge differentially private if for all subsets S ⊂ R of
its output space, and for all G,G′ ∈ G, with G ∼ G′,
we have Pr[M(G) ∈ S] ≤ eϵPr[M(G′) ∈ S] + δ.

One of the most common mechanisms for guaranteeing
differential privacy is the Laplace mechanism (Dwork
et al., 2014), which adds suitably scaled Laplace noise
to a statistic to guarantee privacy. We now state
the mechanism formally in the context of graph al-
gorithms.

Definition 2.3. Let h : G → R be any graph statistic.
The Laplace mechanism Mh is defined as Mh(G) =
h(G) + Lap(GSh/ϵ), where GSh = maxG∼G′ |h(G) −
h(G′)| is the global sensitivity of h.

Lemma 2.4. The Laplace mechanism Mh is ϵ-edge
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differentially private and has expected error which
scales with the global sensitivity (i.e., E[|Mh(G) −
h(G)|] = c ·GSh/ϵ for some absolute constant c > 0).

2.3 Problem Definition

In our problem, we will be given a contact graph G =
(V,E) and transmission probability p. We will also be
given a parameter s, indicating the number of starting
infections I0. Our goal is to estimate the expected
number of infections in the graph G when the s source
nodes are chosen uniformly at random. We denote this
quantity by fs(G). Formally, our goal is to obtain an
(α, β)-approximation for computing fs(G).

Definition 2.5. We say f̂(G) is an (α, β)-

approximation if fs(G) ≤ f̂s(G) ≤ α · fs(G) + β.

We make some remarks on our problem definition.
First, we note that our model has random sources in-
stead of a fixed set of sources given as input. This
is justified in Section 6, where we show strong lower
bounds for the fixed-sources model: Ω(n) additive er-
ror is necessary even for expander graphs. Second, we
note that our notion of approximation contains multi-
plicative and additive error. This is the standard one
in differential privacy, since additive noise is needed to
guarantee privacy while multiplicative approximation
is necessary even in the non-private setting.

3 Analysis of Global Sensitivity

In this section, we show that the global sensitivity of
fs(G) is Θ(n/s) when p = 1, where s is the number of
random source nodes. We will show that this implies a
differentially private algorithm for estimating the ex-
pected number of infections with multiplicative error
1 + η and additive error Θ(n/s), for any given η > 0.
We first give a proof of the global sensitivity bound.

Lemma 3.1. For p = 1, the global sensitivity of fs(G)
is Θ(n/s) for each s.

Proof. Consider the vector x(G) ∈ [0, 1]V where xv(G)
for each v ∈ V is the probability that v is infected
under the random seeded starting infections. Let
C1, . . . , Cr denote the connected components of G and
let C(v) denote the connected component node v ∈ V

lies in. We can calculate xv = 1 − (1 − |C(v)|
n )s and

note that fs(G) is exactly the ℓ1-norm of x(G).

Now, we calculate the global sensitivity of the statistic
fs(G) under the addition or removal of an edge. As
mentioned above, this is exactly the ℓ1-sensitivity of
the vector x(G). Since we are considering the global
sensitivity, we can without loss of generality consider
only edge additions; let’s say the edge (u, v) ∈ E is

added to the graph G and suppose C(u) ̸= C(v). Now,
consider the changes in the vector x(G). For w ∈
C(u), the probability of infection increases from 1 −
(1 − |C(u)|

n )s to 1 − (1 − |C(u)|+|C(v)|
n )s. Similarly, for

w ∈ C(v), the probability of infection increases from

1 − (1 − |C(v)|
n )s to 1 − (1 − |C(u)|+|C(v)|

n )s. Since the
remaining probabilities don’t change, the ℓ1-sensitivity
of x is A1 +A2, where

A1 = |C(u)| ·
[
(1− |C(u)|

n
)s − (1− |C(u)|+ |C(v)|

n
)s
]

A2 = |C(v)| ·
[
(1− |C(v)|

n
)s − (1− |C(u)|+ |C(v)|

n
)s
]

The global sensitivity is the maximum of A1+A2 over
all possible |C(u)|, |C(v)| ∈ [n] such that |C(u)| +
|C(v)| ≤ n. This can clearly be computed in poly-
nomial time, so we now have an efficient and private
algorithm for computing the expected infections size.

We will now try to upper bound this expression to ob-
tain accuracy guarantees. Then the expression above
can be upper bounded by the following by using 1−x ≤
e−x for all x ∈ R:

|C(u)| · e−|C(u)|s/n + |C(v)| · e−|C(v)|s/n (1)

Since the two terms in the above expression are inde-
pendent with respect to |C(u)|, |C(v)|, we can optimize
them separately. Simple calculus then gives us that the
expression is maximized when |C(u)| = n

s , so we have
an upper bound of n

es . A similar procedure shows that
the second term is also upper bounded by n

es , so the
entire expression is upper bounded by 2n

es , so the global
sensitivity is O(n/s). Taking |C(u)| = |C(v)| = n/s
in the expressions for A1 and A2 also shows that the
global sensitivity is Ω(n/s), proving Lemma 3.1.

Next, we use our bound on the global sensitivity in
the deterministic case to give an algorithm with non-
trivial guarantees in the general probabilistic case.

Theorem 3.2. Given any constant η > 0, there
exists a polynomial-time ϵ-edge differentially pri-
vate algorithm which computes a (1 + η,O(n/sϵ))-
approximation for fs(G) in expectation.

Proof. Observe that the running an SIR process on the
graph with probability p is equivalent to removing each
edge with probability p and then running an SIR pro-
cess on the resulting graph with probability 1. Given
this observation, our algorithm proceeds as follows.
We sample N graphs G1, . . . , GN , where each Gi is
obtained from G by retaining edge with probability p.
Then we compute the average f̃s(G) = 1

N

∑N
i=1 fs(Gi).

By Lemma 3.1, we know the global sensitivity of each
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fs(Gi) is O(n/s) so the global sensitivity of the aver-
age f̃s(G) must also be O(n/s). Our algorithm con-
cludes by outputting f̃s(G) using the Laplace mech-
anism, which guarantees edge-differential privacy by
Lemma 2.4. By a standard argument via Chernoff-
Hoeffding bounds, the average is within a 1 ± η mul-
tiplicative factor of fs(G) when N = Ω(n2), giving us
the multiplicative approximation guarantee. The ad-
ditive approximation guarantee follows directly from
combining the bound on the sensitivity with the util-
ity of the Laplace mechanism (Lemma 2.4).

4 Smooth Sensitivity and Its
Difficulties

In this section, we explore a local sensitivity-based
approach to the problem, called smooth sensitivity.
We show that one can compute a good approxima-
tion for smooth sensitivity, which we show suffices for
guaranteeing differential privacy. The drawback of
this approach is that it is difficult to obtain polyno-
mial run-time, and all algorithms here require quasi-
polynomial time to implement. This illustrates the
difficulties when applying local sensitivity-based ap-
proaches, which we overcome in Section 5.1. We note
that a similar problem arises when using an approxi-
mate version of inverse sensitivity to estimate the in-
fection size, but we omit the details here as it is unre-
lated to our main results.

First, let us recall the definition of smooth sensitivity
from Nissim et al. (2007).

Definition 4.1. For β > 0, the β-Smooth Sensitivity
of f is

S∗
f,β(x) = max

y
(LSf (y)e

−βd(x,y)),

where LSf (y) is the local sensitivity of f at y.

Nissim et al. (2007) show that for some β = β(ϵ, δ),
adding Laplace noise calibrated by the β-Smooth Sen-
sitivity to the statistic f(x) suffices to guarantee (ϵ, δ)-
differential privacy. However, this mechanism re-
quires the exact calculation of the β-Smooth Sensi-
tivity, which is intractable in our setting. We demon-
strate here that instead of the exact calculation, we
may use the approximation of the Smooth Sensitivity
to calibrate the noise. This slightly generalizes recent
work by Nguyen et al. (2023), which used approximate
smooth sensitivity for faster subgraph counting.

To state and prove our results, we first define our no-
tion of approximating the smooth sensitivity and re-
call the definition of an admissible noise distributions
from Nissim et al. (2007).

Definition 4.2. We say that S̃f,β is a (γ, τ, δ′)-
approximation of S∗

f,β if with probability at least 1−δ′,

we have the following for all datasets x:

S∗
f,β(x) ≤ S̃f,β(x) ≤ exp(γ) · S∗

f,β(x) + τ.

We may drop the parameter τ in the notation when
τ = 0.

Definition 4.3. A probability distribution h on R is
(α, β)-admissible if for all ∆, λ ∈ R with |∆| ≤ α, |λ| ≤
β, and for all measurable S ⊂ R, we have the following

Pr
Z∼h

[Z ∈ S] ≤ exp(ϵ/2) · Pr
Z∼h

[Z ∈ S +∆] + δ/2 (2)

Pr
Z∼h

[Z ∈ S] ≤ exp(ϵ/2) · Pr
Z∼h

[Z ∈ exp(λ) · S] + δ/2.

(3)

In particular, the Lap(1) distribution is ( ϵ2 ,
ϵ

2 ln(2/δ) )-

admissible.

Now, we are ready to state the privacy guarantee of
approximate smooth sensitivity mechanisms.

Theorem 4.4. Let S̃f,β be a (γ, τ, δ′)-approximation
of S∗

f,β, assume we have a lower bound ρ on the small-
est value of the smooth sensitivity minx S

∗
f,β(x), and let

Z be sampled from some (α, γ+β+τ/(ρeγ))-admissible

distribution. Then mechanism Mf (x) = f(x) + S̃(x)
α Z

is (ϵ, eϵ/2+1
2 δ + 2δ′)-differentially private.

Proof. Fix a pair of neighboring datasets x ∼ y. Let E
be the event that S∗

f,β(x) ≤ S̃f,β(x) ≤ eγS∗
f,β + τ and

E ′ be the event that S∗
f,β(y) ≤ S̃f,β(y) ≤ eγS∗

f,β(y)+τ .
From the definition of our notion of approximation, we
have that Pr[E and E ′] ≥ 1− 2δ′ by the union bound.
We will prove that conditioned on events E and E ′, we

have that Mf (x) is (ϵ, eϵ/2+1
2 δ)-differentially private.

Since E and E ′ both occur with probability at least
1 − 2δ′, this implies the desired result directly by a
standard characterization of differential privacy.

For the remainder of the proof, condition on the events
that E and E ′ occur. Fix some measurable subset S ⊆
R of the co-domain of f . We have that Pr[Mf (x) ∈ S]
is upper bounded by

Pr

[
Z ∈ α

S̃f,β(x)
· [S − f(x)]

]
(a)

≤ exp(ϵ/2) · Pr

[
Z ∈ α

S̃f,β(x)
· [S − f(y)]

]
+

δ

2

(b)

≤ exp(ϵ) · Pr

[
Z ∈ α

S̃f,β(y)
· [S − f(y)]

]
+

δ

2
(1 + eϵ/2)

= exp(ϵ) · Pr[Mf (y) ∈ S] +
δ

2
(1 + eϵ/2).

In inequality (a), we used the Sliding Property with
∆ = α · |f(x) − f(y)|/S̃f,β(x) ≤ α and in inequal-
ity (b), we used the Dilation Property with λ =
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log[S̃f,β(x)/S̃f,β(y)], which satisfies the constraints of
the Dilation property because

log

[
S̃f,β(x)

S̃f,β(y)

]
≤ log

[
eγS∗

f,β(x) + τ

S∗
f,β(y)

]
(4)

= log
[
eγ+β

]
+ log

[
1 +

τ

eγ ·minx S∗(x)

]
(5)

≤ γ + β + τ/(ρeγ). (6)

Finally, the two equalities follow by definition of the
mechanism Mf (x), completing the proof.

We now show how to approximately compute the
smooth sensitivity for our problem in quasi-polynomial
time. Specifically, fix some constant η > 0 and take
N = Ω(n2) samples G1, . . . , GN ∼ G(p) of sub-
graphs of G so that the average infections f̃(G) =
1
N

∑N
i=1 f(Gi) is within an 1 ± η factor of f(G). We

will show how to approximately compute the smooth
sensitivity of f̃(G). Specifically, assume ϵ = O(1) and
δ = 1/poly(n); we will show how to compute the β-
smooth sensitivity of f̃ for β = 1/O(log n).

Recall the definition of the β-smooth sensitivity for f :

S∗
f̃ ,β

(G) = max
G′

(
LSf̃ (G

′) · e−βd(G,G′)
)

= max
k=0,...,n2

max
G′:d(G,G′)=k

(
LSf̃ (G

′) · e−βk
)
.

In the above equations, the second equality follows
since d(G,G′) lies between 1 and n2. Since LSf̃ (G

′) ≤
n for all graphs G′, observe that whenever k =
Ω(log2 n), we have that LSf̃ (G

′) · e−βk ≤ 1/poly(n).
Hence, it suffices to compute the following approxi-
mation which only considers k < Θ(log2 n); this gives
(γ, τ, δ′)-approximation for γ = 0, τ = 1/poly(n), and
δ′ = 1/poly(n) for arbitrarily large polynomials in n.
Formally, our approximation is defined as follows:

S̃f̃ ,β(G) = max
k=0,...,C log2 n/ϵ

max
G′:d(G,G′)=k

(
LSf̃ (G

′) · e−βk
)
.

This approximation can easily be computed in
Õ(nlog2 n) time by trying all possible G′, since comput-
ing the local sensitivity of f̃ can be done in polynomial
time.

In order to apply Theorem 4.4, we need a lower bound
ρ on the smooth sensitivity of any input. To do this,
we simply augment any input graph G with an ad-
ditional isolated node before inputting the graph into
the algorithm for computing approximate smooth sen-
sitivity. This way, the algorithm may assume that all
input graphs have at least one isolated node, so that
the local sensitivity is always at least ρ = 1. Using this

algorithm for computing approximate smooth sensitiv-
ity with the results of Theorem 4.4 gives a new private
algorithm1 for estimating the expected infection size.
Unfortunately. it is unclear how to obtain an approxi-
mation for the smooth sensitivity faster than trying all
possible G′, since the structure of the local sensitivity
of f̃ is so complex.

5 Polynomial-time Algorithm

In this section, we will give a polynomial-time al-
gorithm for estimating the expected number of in-
fections with differential privacy. Our approach will
be based on the Propose-Test-Release framework of
Dwork and Lei (2009), which is another instance of the
local sensitivity-based methods explored in the previ-
ous section. We show that a suitable generalization
of the framework suffices to give a polynomial-time
algorithm. We then show that the utility guarantees
of the algorithm match the ones given in the previ-
ous section up to poly-logarithmic factors. For ease
of exposition, we will consider the case where there is
only one random source (i.e., s = 1). Our claims and
method extends to general s, but the expressions are
more complicated.

5.1 Propose-Test-Release Framework

We first review the propose-test release framework for
an arbitrary statistic f(X) on database X ∈ Xn.

1. Propose a bound β on the local sensitivity.

2. Compute distance γ = d(X, {X ′ : LSf (X
′) ≥ β})

to the closest database X ′ with LSf (X
′) ≥ β.

3. Compute noisy distance γ̂ = γ + Lap(1/ϵ).

4. If γ̂ ≤ ln(1/δ)/ϵ, return ⊥. Otherwise, return
f(X) + Lap(β/ϵ).

Dwork and Lei (2009) showed that the above mech-
anism preserves (2ϵ, δ)-differential privacy. Further-
more, the mechanism can provide much stronger util-
ity guarantees if the bound β is much less than
the global sensitivity. We generalize the framework
slightly for our application. One difficulty in apply-
ing the framework is that the bound β on the local
sensitivity needs to be derived analytically for a spe-
cific class of input databases. To provide more gen-
erality, we can instead use a noisy binary search to

1It turns out that this algorithm only incurs poly-
logarithmic additive error on a class of graphs called ex-
pander graphs (defined in Section 5.1), but we omit the
proof since it the algorithm is superseded by the one in
Section 5.1.
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find a near-optimal bound β given the input database
X. The other difficulty is computing the distance γ;
this often cannot be computed in an efficient man-
ner. Instead, we propose that it suffices to replace
γ(X) with any non-negative statistic ϕ(X) with sen-
sitivity 1 which is a lower bound on γ(X). In some
cases such as ours, the algorithm designer can choose
a ϕ(X) which can be efficiently computed and well ap-
proximates the original distance γ(X); this freedom
enables us to give computationally efficient algorithms
using propose-test-release in new settings. Our mech-
anism is formalized below.

1. Let ϵ′ = ϵ/ log2(GSf ), where GSf is an upper
bound on the global sensitivity

2. Binary search β ∈ {1, . . . , ⌈GSf⌉} for an upper
bound on the local sensitivity LSf (X).

a. Compute lower bound ϕ(X) on distance
γ(X) = d(X, {X ′ : LSf (X

′) ≥ β}).
b. Add Laplacian noise to the lower bound

ϕ̂(X) = ϕ(X) + Lap(1/ϵ′).

c. If ϕ̂ ≤ ln(1/δ)/ϵ′, increase guess β. Other-
wise, decrease guess β.

3. Let β̂ be the smallest β where ϕ(X) > ln(1/δ)/ϵ′.

4. Return f(X) + Lap(β̂/ϵ).

We will first show that the above algorithm is still
(2ϵ, δ)-differentially private. In the next subsection, we
will illustrate how the above variant of propose-test-
release can be applied to our problem of estimating the
expected number of infections in a contact network.

Lemma 5.1. The above algorithm is (2ϵ, δ)-DP.

Proof. Let’s first analyze each iteration of the binary
search. Since we have assumed that the statistic ϕ(X)

has sensitivity 1, the output ϕ̂(X) is ϵ′-differentially
private by the privacy guarantees of the Laplace mech-
anism. Consequently, the decision of whether to in-
crease or decrease β in the binary search is also ϵ′-
differentially private by post-processing. By basic
composition of adaptive mechanisms, we have (ϵ, 0)-
differential privacy for the output of the binary search.

Now consider step 6 of the mechanism and let β̂ be as
defined in the algorithm. Suppose that β̂ ≥ LSf (X);
then by the privacy guarantees of the Laplace mecha-
nism, we have ϵ-differential privacy. Now suppose that
β̂ < LSf (X); then we have γ(X) = 0 by definition
which implies ϕ(X) = 0 since 0 ≤ ϕ(X) ≤ γ(X) for all
X by assumption on ϕ. But by the PDF of the Laplace
distribution, the probability that ϕ̂(X) ≥ log(1/δ)/ϵ′

is at most δ. As a result, we can conclude that step 6
is (ϵ, δ)-differentially private.

Again by basic composition of adaptive mechanisms,
we can conclude that our generalized propose-test-
release framework is (2ϵ, δ)-differentially private.

5.2 PTR for Infection Size Estimation

We will apply the generalized propose-test-release
framework described in Section 5.1 to our problem of
interest. The primary difficulty in applying the gener-
alized propose-test-release framework is finding a non-
negative statistic ϕ(X) which lower bounds γ(X) and
is efficiently computable. Recall that γ(X) is defined
to be the minimum number of edges which need to
be added or removed such that the local sensitivity of
f exceeds β. Thus, we need to understand the local
sensitivity LSf (G) and how it is affected by adding
or removing edges from the graph before designing a
good function ϕ(·). As before, we first consider the
case where the transmission is deterministic (Lemma
5.3). Then we will use results from the deterministic
case to give an algorithm for the general problem with
probabilistic transmission (Lemma 5.4).

For our algorithm, we will need the following result
from Aissi et al. (2017):

Lemma 5.2. For an undirected graph G = (V,E), we
say that a cut (S, V −S) is a b-balanced cut if there is at
least b vertices on the smaller side of the cut. The min-
imum b-balanced cut of a graph (and its corresponding
size) can be computed in polynomial time (Aissi et al.,
2017).

Next, we define our statistic ϕ(G, β). For eachB ∈ [n2]
and each k ≤ B, we will compute the following quan-
tities: let U1(B, k) =

∑k+2
i=3 |Ci(G)| and let U2(B, k)

denote the maximum b such that there is a b-balanced
cut of size B − k. Finally, we define ϕ(G, β) as the
minimum B such that there exists k ≤ B where
U1(B, k) + U2(B, k) ≥ β. We will now prove that this
is a feasible statistic:

Lemma 5.3. Assume p = 1. There exists a statistic
ϕ(G, β) such that 0 ≤ ϕ(G, β) ≤ γ(G, β) for all G, β.
Further, ϕ(G, β) has sensitivity 1 and a polynomial
time algorithm.

Proof. Recall that the statistic f we wish to estimate
is the expected number of infections in the giant com-
ponent of G. Since there is only one random source
(s = 1), we can write f as a function of |C1(G)| as
follows: f(G) = |C1(G)| · |C1(G)|/n. In particular, ob-
serve that f is a 1-Lipschitz function of |C1(G)| since
|C1(G)| ≤ n always, so it suffices to consider the local
sensitivity of |C1(G)| and how it’s affected by addition
or removing edges from the graph. More formally,
define f̃(G) = |C1(G)| to be our auxiliary statistic.
Since f is a 1-Lipschitz function of f̃ , we have that
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LSf (G) ≤ LSf̃ (G). This implies that the distance
γf (G, β) to the closest dataset which has large local
sensitivity is lower bounded by γf̃ (G, β). As a re-
sult, it suffices to find a statistic ϕf̃ (G, β) which lower
bounds γf̃ (G, β) in order to obtain our desired statistic
ϕf (G, β). For the remainder of the proof, we will be

working with the auxiliary statistic f̃(G) = |C1(G)|.

Now let β be given; we wish to find the minimum num-
ber of edges to add or remove from G to obtain G′ sat-
isfying LSf̃ (G

′) ≥ β. We will first characterize its local
sensitivity LSf̃ (G). If one edge is removed from G, the
size of the giant component can only change if G is a
bridge graph; the local sensitivity will then be the size
of the smaller half of the bridge graph. If one edge
is added to G, the size of the largest component can
change by at most |C2(G)| by adding an edge connect-
ing the first and second largest components. We will
compute a lower bound ϕ̂f̃ (G) on the minimum num-
ber of edges to add or remove from G to obtain G′ so
that |C2(G

′)| ≥ β. We claim ϕf̃ (G) := ϕ̂f̃ (G)− 1 is a
valid lower bound for γf̃ (G). This is because the two
quantities differ by at most 1, by adding or removing
the single edge which connects the two components.

As a consequence of the above claim, we only need
to reason about increasing |C2(G

′)| by adding or re-
moving edges to G. Suppose for each B and k, we
can show that U1(B, k) + U2(B, k) is an upper bound
of how much |C2(G)| can increase. We claim that

this implies that the output ϕ̂f̃ (G) of the algorithm
is a lower bound for the number of edge changes re-
quired to obtain |C2(G

′)| ≥ β. Indeed, if it was pos-

sible to use less than ϕ̂f̃ (G) edge changes to obtain
|C2(G

′)| ≥ β. Then using those exact edge changes,
we can obtain U1(B, k) + U2(B, k) ≥ β, contradicting

the assumption that ϕ̂f̃ (G) was the minimal B out-
put by the algorithm. Thus, it suffices to show that
U1(B, k) + U2(B, k) is a valid upper bound. The re-
mainder of the proof focuses on showing this claim.
The outline is as follows. We show that given a
graph, the amount which k edge additions can increase
|C2(G)| is upper bounded by LSadd(G) ≤ U1(B, k). In
order to make use of the B−k edge removals, our goal
is to find B − k edges to remove so that the impact
LSadd(G) of the edge additions is maximized. We will
then show that the amount which LSadd(G) can be
increase by B − k edge removals is at most U2(B, k).
Combining the results gives our desired claim.

When adding edges, the optimal choice for increas-
ing |C2(G)| is to iteratively add an edge connecting
the second largest component C2(G

′) with the third
largest component C3(G

′); this can be proven by a
standard exchange argument. In particular, one can
observe that LSadd(G) is a monotone and Lipschitz
function of |Ci(G)| for all i > 1. Furthermore, it is

clear that the amount which the k edge additions can
increase |C2(G

′)| without using the budget of B − k
for edge removals is upper bounded by LSadd(G) ≤∑k+2

i=3 |Ci(G)|. Next, we wish to find B − k edges to
remove first, so that the k edge additions afterwards
can optimally increase |C2(G

′)|. Since LSadd(G) is a
monotone function of all |Ci(G)| for i > 1, removing
edges from within Ci(G) for any i > 1 can never in-
crease LSadd(G). Thus, we may assume without loss
of generality that all edges are removed from C1(G).
Since LSadd(G) is a Lipschitz function of each |Ci(G)|
for i > 1, the amount which LSadd(G) increases is
at most the amount which |C1(G)| decreases (since∑n

i=1 |C1(G)| is fixed).

Next, we use the results in Lemma 5.3 to solve the
general problem. Let N denote the number of samples
which we will specify later. As in the non-private ver-
sion of the problem, let G1, . . . , GN be N samples of
the infection process, taking each edge in G with prob-
ability p. Our estimate of the number of infections in
G will be fp(G) = 1

N

∑N
i=1 f(Gi). We will now apply

the generalized propose-test-release framework to our
statistic fp(G), which uses the following definition of
ϕ(G, β):

Lemma 5.4. Let ϕ(G, β) = mini∈[n] ϕ(Gi, β), where
ϕ(Gi, β) is defined as in Lemma 5.3. Then ϕ(G, β) is
a valid lower bound on γ(G, β) and has sensitivity 1.

Proof. Observe that we have

ϕ(G, β) = min
i∈[n]

ϕ(Gi, β) ≤ min
i∈[n]

γ(Gi, β)

since we already have that ϕ(Gi, β) ≤ γ(Gi, β) for
each i ∈ [n] by Lemma 5.3. Thus, it suffices to show
that mini∈[n] γ(Gi, β) ≤ γ(G, β). Suppose for the
sake of contradiction that γ(G, β) < mini∈[n] γ(Gi, β).
Then there exists a sequence of γ edge additions or
removals from G to obtain G′ where LSfp(G

′) ≥ β.

But note that we have LSfp(G
′) ≤ 1

N

∑N
i=1 LSf (G

′
i),

so there exists some i ∈ [n] such that LSf (G
′
i) ≥ β.

But note that d(Gi, G
′
i) ≤ d(G,G′) since G (resp.

G′) contains an edge if and only if Gi (resp. G′
i)

contains the edge. Consequently, we can conclude
that γ(G, β) edges also suffices to transform Gi into
some G′

i so that LSf (G
′
i) ≥ β. But this implies that

mini∈[n] γ(Gi, β) ≤ γ(G, β), contradicting our original
assumption. Our claim that ϕ(G, β) has sensitivity 1
follows directly since ϕ(Gi, β) has sensitivity 1, so we
are done.

Now that we have a valid statistic ϕ(G, β), we can
apply the generalized propose-test-release framework
from Section 5.1 to obtain a polynomial-time private
mechanism for releasing an estimate of the expected
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number of infections. In the next subsection, we will
analyze its utility in a special class of graphs.

5.3 Discussion of Utility Guarantees

Let us first define the class of graphs we will work with.

Definition 5.5. A (n, d, λ)-spectral expander is a d-
regular graph on n vertices where its eigenvalues (that
is, the eigenvalues of its normalized adjacency matrix)
1 = λ1 ≥ λ2 ≥ . . . ≥ λn satisfy λ = max{|λ2|, |λn|}.

Spectral expanders have many nice properties which
will enable us to give theoretical guarantees when com-
puting the expected outbreak size. For example, the
size of the giant component of G under percolation is
of size Θ(n) when an outbreak occurs in G. Such a
property is necessary for our approach to work since
we made a simplifying assumption that the smaller
components only contribute to lower order terms.

Lemma 5.6. Let G be a (n, d, λ)-spectral expander
and let G(p) denote the resulting (random) subgraph
formed by retaining each edge of G with probability
p. Then for p = 1+α

d , there is (with high probability)
a unique giant component of size Θ(n) and all other
components are of size O(log n).

Additionally, spectral expanders have the nice prop-
erty that the resulting giant component after perco-
lation is a vertex expander for sets which are not too
small (Diskin and Krivelevich, 2022). Using this prop-
erty, we can show that our statistic ϕ(G, β) is not too
small when β = polylog(n). As a result, we can obtain
high accuracy estimates of the expected outbreak size.

Lemma 5.7. Let α > 0 be a small enough constant
and let β > 0 be such that β ≤ α4. Let G = (V,E) be
a (n, d, λ)-spectral expander with λ ≤ δ. Fix p ≥ 1+α

d
and let G(p) denote the resulting (random) subgraph
formed by retaining each edge of G with probability
p. If C1 is the largest component of G(p), then there
exists an absolute constant c > 0 such that with high

probability for any S ⊆ L1 with 16 ln(n)
α2 ≤ |S| ≤ α2n

50 ,

we have |NG(p)(S)| ≥ cα2|S|
ln(1/α) .

Now that we have stated the necessary properties, let
us prove our utility guarantees.

Theorem 5.8. Let G be a (n, d, λ)-spectral ex-
pander. Then our algorithm is an (1+η, poly log(n)/ϵ)-
approximation algorithm for estimating the expected
number of infections, with high probability.

Proof. Consider β′ = C log3(n) for some sufficiently
large constant C; we will show that for all β ≥ β′, we
have ϕ̂ ≥ ln(1/δ)/ϵ′ in Line 5 with high probability for
our statistic ϕ described above. As a consequence, we
have that β̂ ≤ β′ in Line 6, so our additive error is at

most O(β′ · log(n)/ϵ) = O(log3(n))/ϵ with high prob-
ability by the tail bounds of a Laplace distribution.
Since we have that f(X) is within a 1 ± η multiplica-
tive factor of the true expected number of infections
by a standard Chernoff-Hoeffding argument, we will
have our desired approximation guarantees.

Fix β ≥ β′. We will show that the lower bound ϕ on
the distance d(X, {X ′ : LSf (X

′) ≥ β} satisfies

ϕ ≥ C ′ log2(n)/ϵ′

for some large enough constant C ′. This would imply
that with high probability, we have ϕ̂(X) > ln(1/δ)/ϵ′

by the concentration of the Laplace distribution and
the assumption that δ = 1/poly(n). The claim that
ϕ ≥ C ′ log2(n)/ϵ′ follows by the properties of spec-
tral expander graphs discussed before. If we use edge
additions, we know that all non-giant components are
of size O(log n) so it requires at least Ω(log2(n)) edge
additions in order to increase the local sensitivity to
be greater than β. If we use edge deletions, then it
requires Ω(log2(n)) edge deletions since the sampled
graph G(p) is an edge expander with high probabil-
ity (see Theorem 5.7). Thus, we have proven that
ϕ ≥ C ′ log2(n)/ϵ′ and we are done.

6 Lower Bounds

In this section, we’ll give lower bounds for other nat-
ural settings in which one may wish to estimate the
expected infection size. For example, our model as-
sumes a random set of sources. We show when the
set of source nodes are given, there are strong lower
bounds even when the underlying graph is a spectral
expander. Similarly, we show in the Appendix that if
we instead wish to guarantee attribute privacy instead
of edge privacy (in the fixed-source model), there are
similar lower bounds showing that incurring Θ(n) ad-
ditive error is inevitable. These lower bounds explain
and justify our use of the random source model in our
paper.

6.1 Lower Bound for Fixed Sources

Here, we justify our use of the random source SIR
model by showing if we allow for fixed sources, any
differentially private algorithm must incur Θ(n) ad-
ditive error. We remark that our lower bound even
applies to spectral expanders in the interesting regime
of sparse graphs, which most social network graphs
satisfy. This is in contrast to our positive results in
the previous section for the random source model.

Theorem 6.1. Let ϵ > 0 be a constant and let
δ = o(1). Then any (ϵ, δ)-differentially private algo-
rithm for estimating the expected number infections
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with a fixed source must incur an additive Θ(n) ex-
pected error, even if the underlying graph is a constant
degree spectral expander.

Proof. Suppose for contradiction that there exists
some (ϵ, δ)-differentially private algorithm M which
guarantees sublinear additive error for the problem
with a fixed source. Take any (n, d, λ)-spectral ex-
pander G for some constant d and λ with some fixed
source node s and let the transmission probability be
p = 1. Let G′ denote the graph with all edges incident
on s removed from G and note that G′ is a d-edge
neighbor of G. Since G is an expander, we know that
it is connected so the expected number of infections
in G with source s is n. Because the M has sublinear
expected error, we know that

Pr[A(G) ∈ o(n)] ≤ o(1).

But by group privacy properties, we have that

Pr[A(G′) ∈ o(n)] ≤ exp(dϵ) · o(1) + de(d−1)ϵδ.

Since we have assumed that ϵ, d = Θ(1) and δ = o(1),
the right hand side is o(1) so A(G′) ∈ Θ(n) with high
probability. But in G′, the source node is an isolated
vertex so the expected number of infections is 1, so
the expected error of the algorithm when run on G′ is
Θ(n), a contradiction.

7 Conclusion

Our work initiates the study of estimating the ex-
pected infection size of an epidemic, modeled by an
SIR model, under edge differential privacy. Our main
result is a polynomial-time edge-differentially private
algorithm for the problem with only poly-logarithmic
additive error on expander graphs. We believe our al-
gorithms perform well on real-world graphs, because
they often have good expansion properties. However,
we note that this isn’t immediately implied by our the-
oretical results, as our results only apply for d-regular
graphs. It remains interesting to test if our algorithm
actually performs well in practice. Another interesting
question is whether or not looser graph properties suf-
fice for guaranteeing sublinear additive error for this
problem. As a concrete starting case, it would be in-
teresting to see if edge expansion in general (not nec-
essarily regular) graphs suffices.
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(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Not Applicable]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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