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Abstract

Object detection is a crucial task in computer vision, with applications ranging from

autonomous driving to surveillance systems. However, few have approached the problem

of explaining object detections to gain more insights. In this paper, we extend iGOS++,

an explanation algorithm of image classification models, to the task of object detection.

Our extension consists of two novel aspects. The first is to utilize Nesterov Accelerated

Gradient (NAG) to improve the optimization with integrated gradients. This significantly

improves over the line search used in the original work in terms of both speed and qual-

ity. Besides, we propose to generate diverse explanations via different initializations of

the optimization algorithm, which can better showcase the robustness of the network

under different occlusions. To evaluate the effectiveness of our algorithm, we conduct

experiments on the MS COCO and PASCAL VOC datasets. Results demonstrate that

our approach significantly outperforms existing methods in terms of both explanation

quality and speed. Besides, the diverse explanations it generates give more insight into

the (sometimes erroneous) mechanisms underlying deep object detectors.

1 Introduction

Saliency map, also known as heatmap explanations have been popular in recent years. These

explanations highlight areas in an image that are important for deep network classification,

which helps us gain more insights into those networks. However, most existing work focus

solely on image classification, which limits their application in downstream tasks such as

object detection and instance segmentation. Furthermore, most heatmap approaches generate

only a single heatmap for each image, including recent work [15] that attempts to explain

object detectors. This could fall short of providing a complete picture of the network it is

attempting to explain, since the network may exhibit robustness under different kinds of

occlusions [21], whereas a single heatmap can be seen as only one type of occlusion.

When extending explanation algorithms to detection/segmentation tasks, speed and res-

olution are two important aspects to consider. Detection/segmentation algorithms usually

operate at considerably higher resolutions than classification networks, and more often need
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Figure 1: We present examples generated by our proposed NAG-iGOS++ approach at 25×25

resolution using Mask R-CNN. In the generated explanations, importance is indicated by a

color gradient ranging from strong (red) to weak (blue). Our approach reveals that the model

often focuses only on a subset of object parts, such as ears of the cat, or the head and feet

of the persons. The explanation in the last two columns revealed that although the bounding

box is detected correctly, the network was erroneously looking at the head and feet of two

different persons, indicating its lack of deep understanding of the concept of a person.

to detect objects of much smaller scale. This calls for the explanation algorithm to be able to

run efficiently, and be of sufficient resolution to properly explain detections/segmentations

that might be very small. However, the state-of-the-art [15] for explaining detection algo-

rithms needs more than 150 seconds per image, and resolutions of 16×16 or 25×25 in prior

work often fall short of the need in explaining the predictions on small objects.

In this paper we extend the iGOS++ algorithm [8] into explaining detection networks.

iGOS++ is capable of avoiding adversarial masks at higher resolutions that helps us to gener-

ate explanations of much higher resolutions than prior work. To overcome speed challenges,

we propose to replace the line search algorithm used in [8] with Nesterov Accelerated Gra-

dient (NAG), leading to a 2× speedup. Our final algorithm is over 3× more efficient than

the state-of-the-art [15]. To provide multifaceted explanations for each detection, we propose

optimizing with multiple initializations, enabling the generation of different high resolution

explanations even for the same detection. Experiment results demonstrate that this approach

significantly enhances the quality of explanations while maintaining efficiency. Addition-

ally, our explanations sometimes reveal (Fig. 1) that the network may focus on a subset of

the detection region and may erroneously merge different parts of two distinct objects.

In summary, in this paper, we make the following contributions:

• We extend iGOS++ to object detection tasks. Results show that the performance and

speed of our method significantly improves over state-of-the-art.

• We propose to use Nesterov Accelerated Gradient (NAG) in iGOS++ to replace the

line search, which speeds up the algorithm by 2× and improves the performance.

• We propose a scheme that initializes iGOS++ with multiple starting masks, which

further improved performance and makes the algorithm capable of generating multiple

explanations for a single detection. The generated explanations can give more insights

to the robustness of the network to different occlusions.

2 Related work

2.1 Saliency Maps

Heatmap visualization approaches can be primarily categorized into gradient-based and

perturbation-based approaches. Gradient-based approaches primarily employ (modified)
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gradients of the model with respect to the input features or activations to gauge their impor-

tance to the prediction of the network. [22] directly outputs the magnitude of the gradient of

the class-specific outputs with respect to the input features as saliency maps. Grad-CAM [20]

calculates the gradient with respect to the last convolution layer activations which extends

CAM [28]. SmoothGrad [23] adds noise to the input image to produce a more robust expla-

nation. Integrated Gradients [24] computes the sum of gradients at multiple locations along

a straight line between a baseline image and the input image to determine the contribution

of each pixel to the final prediction. However, gradient-based methods often face limitations

such as insensitivity to class-specific parameters, vulnerability to adversarial attacks, and

inflexibility in generating explanations at desired resolutions.

Perturbation-based approaches introduce modifications to the input image and observe

the corresponding changes to the model prediction. [27] occludes patches of pixels over the

input image and observes the resulting change in the output of the model. Later, methods

such as LIME (Local Interpretable Model-Agnostic Explanations) [18] and RISE (Random-

ized Input Sampling for Explanation) [14] were introduced to explain the predictions made

by black-box models. Score-CAM [26] uses a weighted combination of the activation maps

based on their forward-pass score on the target class to generate the attribution maps. [19] re-

stricts the flow of information by perturbing the activation rather than input features. Despite

their merits, perturbation-based methods can shift images off their original data manifold

and be computationally expensive, limiting their suitability for real-time applications [18].

Methods such as meaningful perturbations [3, 4] and Integrated-Gradient Saliency Maps

(I-GOS) combine both perturbation-based and gradient-based methods in order to apply in-

formed perturbations rather than random ones [14]. I-GOS combines [4] and [24] which

utilizes integrated gradients as descent directions in an optimization algorithm. It uses a

smoothness regularization term to reduce noise and improve the visual quality of the gen-

erated heatmaps. Subsequently, iGOS++ enhances I-GOS by considering both the removal

and preservation of evidence during optimization and introduces a Bilateral Total Variation

term to reduce heatmap dispersion, thereby improving the quality of the generated heatmaps.

2.2 Explanations for Object Detection Models

Recently, visualizing the decisions made by object detection models has gained more at-

tention. [5] uses gradient backpropagation to approximately estimates SHAP (Shapley ad-

ditive explanations) [12] values for assessing feature importance and proposes the "Explain

to Fix" (E2X) framework. [25] calculates the correlation between the output of the model

and each input feature for every predicted bounding box in the SSD detector [11], and cre-

ate a heatmap highlighting the input features that are highly correlated to the output. More

recently, D-RISE [15] was proposed for generating visual explanations for object detectors,

which extends the masking technique RISE [14]. [7] proposed using pixel-wise feature at-

tribution from approximate SHAP [12] in object detection pipelines for satellite images.

3 Method

3.1 Revisiting iGOS++

We build on top of iGOS++ [8], a recently proposed state-of-the-art heatmap visualization

approach. This method identifies the most important areas of an input image for a given
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black-box network f outputting the class-conditional probability fc(I0) (henceforth referred

to as prediction confidence) for an input image I0 on each class c. It optimizes for a deletion

mask MD and an insertion mask MI to identify the areas that have significant impact on

the prediction confidence of the model. Specifically, the deletion mask MD is optimized to

identify the areas that would lead to a significant decrease in the prediction confidence when

removed from the input image I0. Simultaneously, the insertion mask MI is optimized to

identify the evidence that would lead to high prediction confidence. Finally, an Hadamard

product of the two masks give us the final mask MDI for the target class c, on which it

optimizes for both the deletion and the insertion losses. More formally:

min
M=(MD,MI)

Fc(I0,M) = fc(Φ(I0, Ĩ0,MD))− fc(Φ(I0, Ĩ0,1−MI))

+ fc(Φ(I0, Ĩ0,MDI))− fc(Φ(I0, Ĩ0,1−MDI))+g(MDI)) (1)

s.t. g(MDI)) = λ1||1−MDI ||1 +λ2BTV(MDI), Φ(I0, Ĩ0,M) = I0 ⊙M+ Ĩ0 ⊙ (1−M)

MDI = MD ⊙MI ; 0 ≤ MD,MI ≤ 1

where Ĩ0 is a baseline image with fc(Ĩ0) close to zero, ⊙ is the Hadamard product, λ1 and λ2

are hyperparameters controlling the contribution of individual constraints used in the regu-

larization term g(.). The final solution to the optimization problem is MDI . The approach of

using these masks MD, MI and MDI were shown to improve the performance of the explana-

tion compared with only using MD. Different from previous algorithms, the Bilateral Total

Variation (BTV) term is used to prevent the heatmap from being scattered:

BTV = ∑
u∈Λ

e−∇I(u)2/σ2

||∇M(u)||
β
β

(2)

where M(u) and I(u) represent the mask and the input image value at pixel u from the set of

all pixels Λ, respectively, β and σ are hyperparameters.

Integrated Gradient. The optimization problem in eq.(1) is highly non-convex. To over-

come slow convergence and local optima issues associated with optimizing using gradient

descent [4], [8] used integrated gradient (IG) [24] as the descent direction. The IG of fc(M)
with respect to M is given by:

∇IG
I0

fc(M) =
1

S

S

∑
S=1

∂ fc(Φ(I0, Ĩ0,
s
S
M))

∂M
(3)

where it accumulates the conventional gradient along the straight path from the disturbed

image to the baseline. Since the baseline is the globally optimal solution for the deletion

loss function, utilizing integrated gradients leads the algorithm towards that direction and

sometimes can steer away from the local optima that gradient descent [16] tends to obtain.

Backtracking Line Search. To determine the appropriate step size for updating the mask,

[8, 16] adapted the Armijo-Goldstein condition [4] and utilized backtracking line search (LS)

to keep Fc(I0,M) minimized:

S

∑
S=1

Fc(
s

S
(Mk −αk ·T G(Mk)))−

S

∑
S=1

Fc(
s

S
Mk)≤−αk ·β ·T G(Mk)T T G(Mk) (4)

where T G represents the total gradient of fc(I0,M), αk denotes the step size at iteration k,

and β is a parameter between 0 and 1.
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3.2 NAG-iGOS++: Nesterov Accelerated Gradient Adaptation of

iGOS++ to Object Detection

Unlike the classification problem, in object detection and instance segmentation tasks, the

combination of the original image and the baseline image may change the generated bound-

ing box proposals. To address this issue, we fix the bounding box proposal associated with

each object for two-stage detectors and utilize the classification head of the proposal region

to calculate the integrated gradient. For one-stage detectors, we fix the anchor location with

the size for each detected object. By doing so, we ensure that the integrated gradient is

calculated based on the correct proposal region.

Nesterov Accelerated Gradient. In [8], a backtracking line search was employed to de-

termine the appropriate step size for updating the mask. However, this requires evaluating

the integrated gradient of the network multiple times, leading to significant computational

cost. There are numerous optimization algorithms that are popular recently in machine

learning and deep learning to replace gradient descent. We experimented with several algo-

rithms, including Adaptive Moment Estimation (Adam) [9], Nesterov accelerated gradient

(NAG) [13], and Nesterov-accelerated Adaptive Moment Estimation (Nadam) [1]. The re-

sults showed that Adam and Nadam did not have better performance than LS, and tend to

generate scattered noise pixels in the heatmaps. Only NAG demonstrated good performance

and a faster convergence rate than LS. We update the mask with NAG as:

ωk+1 = Mk −α ·T G(Mk)

Mk+1 = ωk+1 + ε(ωk+1 −ωk) (5)

where ε is in the range of [0,1), and in our experiments, we set ε = k/(k + 3). α is the

learning rate that we set to be the same for all images at the same resolution.

Diverse Initializations. [21] showed that a deep network may be able to correctly and

confidently classify images under multiple different occlusions, indicating that there may

not exist a unique heatmap for each image/network pair. Hence, conventional heatmap ap-

proaches that generate a single heatmap may only provide a part of the complete picture.

In [21], multiple solutions are found via a beam search algorithm, which severely limits the

resolution of the obtained heatmaps (often to only 7×7).

In this paper, we propose to utilize multiple diverse initializations to locate diverse

heatmaps that may explain the same network. This overcomes the resolution limitation of

[21] and allows us to locate diverse high-resolution heatmaps. We propose to generate K2

different initializations of the heatmap optimization algorithm on a K ×K grid, initializing

the mask with nonzero values in only one cell for each initialization. Such diverse initial-

izations could generate different optimization results if there are multiple ways the deep

network could output confident predictions. Figure 2 demonstrates the impact of different

initializations on the heatmap generated from the same object detection.

4 Experiments

We utilized a pre-trained Mask R-CNN [6] model1 and the YOLOv3-SPP [17]2 implemented

in PyTorch as our base models for all qualitative and quantitative experiments, using the

1https://github.com/pytorch/vision
2https://github.com/ultralytics/yolov3
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Figure 2: Examples generated by NAG-iGOS++ without and with initialization using differ-

ent regions of predicted mask in insertion tasks using Mask R-CNN as the baseline model

can be seen in the generated heatmaps. One can see that the network can generate a confident

prediction from each different region, highlighting the need for multiple explanations.

2017 Val set of MS-COCO [10] and the Val set of PASCAL VOC 2012 [2]. Detections

with a predicted score of 0.5 or greater were considered. For Mask R-CNN, input images

were resized to the 800×800 resolution, and heatmaps were generated at three different

resolutions: 16×16, 25×25, and 100×100. For YOLOv3-SPP, input images were resized to

the 512×512 resolution, and heatmaps were generated at two different resolutions: 16×16

and 64×64. This was done to facilitate a fair comparison with other baselines; D-RISE uses

a 16×16 resolution for quantitative results [15], while Grad-CAM was evaluated on Mask

R-CNN at the 25×25 resolution and YOLOv3-SPP at the 16×16 resolution. We included a

100×100 resolution for Mask R-CNN and 64×64 for YOLOv3-SPP (both 1/8 of the input

image size) to illustrate the flexibility of choosing the resolution for our method, and note

that a higher resolution is better for the explanation of smaller objects. Inference time is

computed on a NVidia Quadro RTX 8000. For multiple initializations, we choose K = 2.

4.1 Metrics

We evaluate the capability of heatmaps in capturing the most important regions of an image

using the Deletion and Insertion metrics [14]. These metrics involve substituting patches

of pixels from a baseline image and evaluating the impact on the prediction confidence of

the network. The Deletion metric measures the decrease in prediction confidence as salient

regions in the input image are substituted with the baseline, whereas the Insertion metric

measures the rate at which the original confidence can be restored if relevant evidence is

reintroduced to the baseline. The Deletion/Insertion scores are the area under the curve

(AUC) of the prediction confidences, with lower deletion scores and higher insertion scores

indicating better performance. In all of our experiments, we use a highly blurred version of

the original image as the baseline, which has been shown to be helpful to keep the perturbed

images in the computation of Insertion/Deletion to stay on the natural image manifold [14,

16]. During the evaluation, we fix the bounding box proposal corresponding to the detection

instead of generating new proposals from the masked image for two-stage detectors. For

one-stage detectors, we also use the same anchor location with the same size for each object.

How many pixels should be inserted or deleted? Unlike the classification task, object

detection and segmentation involve many small objects, so evaluating the heatmap by insert-

ing and deleting all pixels of the entire image can be unfair to objects of varying sizes. A

heatmap on a small object could quickly reach high confidence by merely inserting a small

area, resulting in an artificially high Insertion score and low Deletion score. To address this,

we normalize the amount of deleted and inserted pixels based on the size of the object pre-

dicted by the model. Specifically, a maximum of 3 times the number of predicted mask/box
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pixel values are inserted and deleted. This accounts for the possibility that the background

information outside the bounding box may be utilized during the prediction.

Resolution 16 × 16 25 × 25 100 × 100

Method Del ↓ Ins ↑ Time(s) Del ↓ Ins ↑ Time(s) Del ↓ Ins ↑ Time(s)

D-RISE 0.6422 0.6322 220 ± ± ± ± ± ± ± ± ± ± ± ±

Grad-CAM ± ± ± ± ± ± 0.7839 0.3048 7 ± ± ± ± ± ±

LS-iGOS++ 0.5630 0.6692 146 0.4685 0.6210 138 0.2370 0.5455 115

NAG-iGOS++ 0.5577 0.6760 62 0.4641 0.6285 62 0.2380 0.5478 62

Best-NAG-iGOS++ 0.5388 0.6952 248 0.4399 0.6500 248 0.2048 0.5950 248

Table 1: Quantitative comparison in terms of Deletion (lower is better), Insertion (higher is

better), and runtime on the MSCOCO dataset using Mask R-CNN. LS-iGOS++ and NAG-

iGOS++ use the backtracking line search optimization method and NAG, respectively. Best-

NAG-iGOS++ uses multiple initializations with NAG

Figure 3: Visualization of the heatmap generated from different methods at the 25x25 reso-

lution on Mask R-CNN detections

4.2 Results and Analysis

Insertion and Deletion Scores. Table 1 and 2 present the results of iGOS++ with different

initialization and optimization methods, compared with state-of-the-art approaches on the

MS-COCO dataset. It shows that our methods have superior performance over Grad-CAM

and D-RISE at the respective resolutions of each method. For Best-NAG-iGOS++, we use

the mask/box with the maximal difference between its insertion and deletion scores for eval-

uation. Note that these scores can be measured from the image and the model alone, hence

the maximum can be selected using only the image and the model.
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Note that this paper and [15] employ distinct methodologies for computing the Insertion

and Deletion scores. Our approach employs highly blurred original images as the baselines

for score computation, whereas [15] sets perturbed pixels to zero during deletion score calcu-

lation. Furthermore, [15] computes scores using the pixels of the entire image, which could

potentially result in biased outcomes for objects of different sizes. Fig. 3 illustrates that the

heatmaps produced by the D-RISE method can contain a considerable amount of noise. This

noise can be attributed to the stochasticity of the approach. The heatmap visualization of

Grad-CAM indicates that its poor insertion and deletion scores can be attributed to its ten-

dency to highlight all regions belonging to the same class of objects in the entire image, even

when only the score head of the target region is utilized for the backpropagation.

Resolution 16 × 16 64 × 64

Method Del ↓ Ins ↑ Time(s) Del ↓ Ins ↑ Time(s)

D-RISE 0.4985 0.4953 70 ± ± ± ± ± ±

Grad-CAM 0.6980 0.2210 2 ± ± ± ± ± ±

LS-iGOS++ 0.4804 0.4833 40 0.2475 0.2968 41

NAG-iGOS++ 0.4688 0.4922 14 0.2384 0.3201 14

Best-NAG-iGOS++ 0.4015 0.5403 56 0.1704 0.3846 56

Table 2: Quantitative comparison in terms of Deletion (lower is better), Insertion (higher is

better), and run time on the MSCOCO dataset using YOLOv3-SPP. LS-iGOS++ and NAG-

iGOS++ use the backtracking line search optimization method and NAG, respectively. Best-

NAG-iGOS++ uses multiple initializations with NAG

Runtime. In Table 1 and 2, we present the average runtime per image for D-RISE, Grad-

CAM, and all iGOS++ variants for explaining Mask R-CNN and YOLOv3-SPP on the MS-

COCO dataset. All iGOS++ variants have a maximum of 5 iterations, while D-RISE has a

maximum of 5000 iterations. The iGOS++ variant using line search is almost twice as fast

as D-RISE, and the iGOS++ variant using NAG is about three times as fast as D-RISE.

Optimization 16 × 16 25 × 25 100 × 100

Del ↓ Ins ↑ Time(s) Del ↓ Ins ↑ Time(s) Del ↓ Ins ↑ Time(s)

LS 0.5630 0.6692 146 0.4685 0.6210 138 0.2370 0.5455 115

Adam 0.5747 0.6439 62 0.5040 0.5877 62 0.2997 0.4329 62

Nadam 0.6272 0.5895 62 0.5843 0.5280 62 0.4621 0.2951 62

NAG 0.5577 0.6760 62 0.4641 0.6285 62 0.2380 0.5478 62

Table 3: Ablation study on optimization methods used in iGOS++ on the MSCOCO dataset

using Mask R-CNN

Ablation Study on Optimization Algorithms. We present results using NAG, Adam, and

Nadam optimization methods in Table 3. We observe all these methods are significantly

faster than line search (LS). However, among the three optimization methods, only NAG

demonstrates improved performance in terms of both insertion score and deletion score when

compared to the LS optimization method. It is also noteworthy that NAG maintained a

consistent speed at different resolutions, while the LS method ran slightly faster at higher

resolutions. This could be attributed to the fact that suitable update step sizes are easier to

find at higher resolutions.

Ablation Study on initialization K. In Table 4, we show results utilizing different K values.

Larger K gives more explanations which could be beneficial, but has small benefits on the

metrics at the cost of slower runtime.
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Best- 16 × 16 25 × 25 100 × 100

NAG-iGOS++ Del ↓ Ins ↑ Time(s) Del ↓ Ins ↑ Time(s) Del ↓ Ins ↑ Time(s)

K = 2 0.5388 0.6952 248 0.4399 0.6285 248 0.2048 0.5950 248

K = 3 0.5237 0.7044 558 0.4248 0.6601 558 0.1936 0.6036 558

Table 4: Ablation with multiple initialization K on the MSCOCO dataset using Mask R-CNN

4.3 Multiple initializations

In Table 1-2, the results for Best-NAG-iGOS++ indicates the best result out of NAG-iGOS++

using four different initializations. The heatmap selected is based on the largest difference

observed between the Insertion and Deletion scores. Fig. 4-5 display a few qualitative ex-

amples of the heatmaps from different initializations. We present various interpretations for

the same object, such as different parts of an elephant and truck, all of which yield a confi-

dence level exceeding 80% according to the model’s predictions. The results indicate that the

network is robust to different occlusions of the object and can make a confident prediction

whenever seeing enough parts. This information cannot be revealed with a single heatmap.

Figure 4: Examples generated by NAG-iGOS++ with different initializations on MSCOCO

using Mask R-CNN. The regions not highlighted by the heatmap are blurred.

Figure 5: Examples generated by NAG-iGOS++ with different initializations on MSCOCO

using YOLOv3-SPP. The regions not highlighted on the heatmap are blurred.
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Comparing with Mask R-CNN, YOLO seems to be more focused on the corners of the

detections. This is especially obvious in the truck image, where Mask R-CNN explanations

all contained the center of the truck whereas all YOLO explanations (initialized from four

corners, respectively) contained at least 3 corners of the box. This might be related to the one-

stage nature of the YOLO detector that needs to locate the box extent in the same network

as the classification, whereas in two-stage networks such as Mask R-CNN the box extent is

mostly resolved in the anchor box stage and the second stage can just focus on classification.

4.4 More Visualizations using Mask R-CNN

We present the visualizations of a few more images in Fig 6. It shows that in many images

the model tends to focus on specific parts or subregions of objects. Notably, the model

consistently directs its attention to the knot on the tie and the tire of buses. This observation

suggests a preference for distinctive local features.

Besides, from the two middle columns of Figure 6, we observe a tendency of the model

to merge similar objects into a single bounding box. This merging behavior often leads to

inaccurate localization and hampers the model’s ability to precisely delineate individual in-

stances. This phenomenon sheds light on the challenges faced by the model in accurately

localizing and distinguishing between objects that share visual similarities. The visualiza-

tions in the last two columns show further insights into the model’s behavior when it makes

mistakes. For example, the rightmost object was incorrectly predicted to be a truck. The

visualization hints that this inaccuracy might be attributed to the network’s focus on the

railings on top of the bus. More visualizations are shown in the supplementary materials.

Figure 6: More visualizations using Mask R-CNN.

5 Conclusion

This paper presents NAG-iGOS++, an algorithm that extends the iGOS++ algorithm to ex-

plain object detection networks. We proposed to use Nesterov Accelerated Gradient which

improved the efficiency and accuracy of explanations, and our multiple initializations pro-

vided a more complete picture of the object detection and segmentation networks to be ex-

plained. Through extensive experiments on the MSCOCO dataset, we demonstrate the su-

periority of our approach compared to existing methods in terms of both explanation quality

and speed. The insights gained from our approach can also help in identifying errors and

biases in the deep network, leading to improved performance and a better understanding of

the inner working of the network.
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