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Abstract. The rare earth elements (REE) are essential
for the high-tech and green technology industries, and
used, for example, in computers, smartphones, and wind
turbines. The REE are considered critical minerals and
can be highly enriched in certain magmatic-hydrothermal
systems including alkaline complexes and carbonatites.
Almost all of the critical mineral deposits show a complex
overprint by hydrothermal processes during their genesis.
However, our understanding of the mobility in these ore-
forming systems and our knowledge about the stability of
REE minerals is still very limited. The MINES
thermodynamic database is an open-access database
and continuously updated with the most up to date
thermodynamic data for REE aqueous species and
minerals. This database also includes rock-forming
minerals and permits simulating the mineralogy and
alteration geochemistry that relates to the formation of
these critical mineral deposits. This study gives a short
overview of the MINES thermodynamic database and the
GEMS code package for simulating the formation of
hydrothermal calcite, fluorite and bastnäsite-(Ce) veins
relevant to interpreting critical mineral deposits.

1 Introduction

Critical mineral deposits evolve through a complex
sequence of magmatic-hydrothermal processes,
and most of them, are overprinted by late auto-
metasomatic processes (e.g. Gysi et al. 2016;
Elliott et al. 2018). The mobilization, fractionation
and/or enrichment of critical elements, such as the
rare earth elements (REE), can be predicted using
thermodynamic modeling (Migdisov et al. 2016;
Perry and Gysi 2018). These geochemical models
yield insights about the controls and distribution of
REE in these deposits and can potentially be used
together with field geochemical data to predict
alteration vectors for mineral exploration. However,
our current ability to predict the behavior of REE in
high temperature aqueous fluids and interpret these
natural systems depends on the availability of
thermodynamic data for the REE minerals and
aqueous species.

The hydrothermal solubility of the REE
phosphates, monazite and xenotime, has only
recently been determined experimentally (Gysi et
al. 2015, 2018; Van Hoozen et al. 2020; Gysi and
Harlov 2021). The same applies     to     the
thermodynamic properties of bastnäsite-(Ce) (e.g.
Gysi and Williams-Jones 2015; Shivaramaiah et al.
2016; Goncharov et al. 2022). Furthermore, new
models are developed based on experimental work,
which aid in simulating the mechanisms of REE
incorporation into gangue vein minerals such as

apatite, calcite, and fluorite (Perry and Gysi 2020;
Payne et al. 2023).

Thermodynamic data are available to predict the
mobility of REE in acidic aqueous fluids to ~350-
400ºC, whereas more experimental work is needed
to simulate the mobility of REE in alkaline and
supercritical fluids >350-400ºC. The properties of
many aqueous REE species have been determined
experimentally, including fluoride, sulfate, and
chlorite complexes that control REE transport in
acidic fluids (Migdisov et al. 2016). Previous
modeling studies further indicate the potential
importance of REE hydroxyl and carbonate
complexes in alkaline fluids (Perry and Gysi 2018).
The thermodynamic properties of these aqueous
species are, however, still poorly known at elevated
temperature, and the properties of a few of the REE
carbonate complexes were determined only
recently in hydrothermal solutions (Louvel et al.
2022; Nisbet et al. 2022).

Here, I present the MINES thermodynamic
database and a modeling study using the GEMS
code package (Kulik et al. 2013) to show an
application of geochemical modeling in economic
geology. This study gives an example of the
replacement of a calcite vein by hydrothermal
fluorite and bastnäsite-(Ce), and related
compositional changes in fluorite to highlight
advances and capabilities for modeling critical
mineral deposits.

Figure 1. Conceptual model of a multipass leaching
model (or 1-box flow-through reactor model), showing the
input/output of fresh/reacted aliquots of acidic REE-F-
bearing fluids passing through a calcite vein.

2 Methods

The MINES thermodynamic database
(https://geoinfo.nmt.edu/mines-tdb) is an open-
access database updated on a rolling release
model (i.e., as new data become available, and
have been implemented and tested). The current
database comprises >700 aqueous species and
minerals relevant to modeling hydrothermal ore-
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forming processes and fluid-rock interaction. The
database includes aqueous REE species (Migdisov
et al. 2009, 2016), REE phosphate minerals, and
REE fluorocarbonates (Gysi and Williams-Jones
2015; Gysi et al. 2015, 2018; Van Hoozen et al.
2020; Gysi and Harlov 2021). The database also
includes rock-forming minerals (Robie and
Hemingway 1995; Holland and Powell 1998),
zeolites, and clay minerals (Gysi and Stefánsson
2011).

The program GEM-Selektor (https://gems.web.
psi.ch) was used with the MINES thermodynamic
database to simulate the replacement reaction of
calcite vein by secondary fluorite and REE
fluorocarbonates (Fig. 1); a typical reaction texture
observed in many critical mineral deposits. The
simulations were carried out in the Ca-REE-F-Cl-C-
H-O system at 400ºC and 500 bar with an acidic
REE-F-Cl-bearing starting fluid (0.5 m HCl/HF)
interacted with a calcite vein. The REE
concentrations used are the chondrite values listed
in McDonough and Sun (1995).

The first model is a multipass leaching model
(Figs. 1-3) where at each step a fresh aliquot of
acidic REE-F-Cl-bearing fluid interacts with the
calcite vein while the alteration mineralogy, fluid
chemistry, and the compositions of both calcite and
fluorite can be monitored. The second model is a
1-D reactive transport model (Fig. 4), which permits
simulating fluid-flow using the GEM2MT module
implemented in the GEMS code package. In this
model, 50 sequential rock nodes containing calcite
were interacted simultaneously with the acidic fluid,
which is flushed as sequential “waves” through
each of the rock nodes. The resulting mineral
distribution is then recorded after 200 and 2000
steps or waves.

3 Modeling examples

enrichment in fluorite of up to ~100 times
chondrite.

Figure 2. Multipass leaching model (or 1-box reactor
flow-through) showing (a) the simulated pH and (b) the
simulated mineralogy as a function of aliquots of fluids
flushed through the calcite vein. Calcite-REE and fluorite-
REE both indicate that the REE concentrations were
simulated for these minerals.

3.1 Multipass leaching model

Figure 2 shows the progressive replacement of the
calcite vein by fluorite and bastnäsite-(Ce) upon
increased fluid-rock interaction (i.e., aliquots of fluid
added). The pH is initially buffered by calcite to a
value slightly below ~6.5. Interaction of the acidic
REE-F-bearing fluid with calcite leads to the
formation of bastnäsite-(Ce) and fluorite according
to:

CaCO3     (calcite) + 3F-     + REE3+     = CaF2     (fluorite) +
REEFCO3 (bastnäsite)                                            (Eq. 1)

Once all calcite is consumed (~140 aliquots of fluid
in Fig. 2), bastnäsite-(Ce) becomes unstable and
all the remaining REE (i.e., not flushed out through
the reactor box) are retained in fluorite. Figure 3
shows the compositional evolution of the simulated
REE-bearing fluorite. These preliminary
simulations indicate that fluid-rock reaction can
lead to significant REE variations in fluorite
including the light (L) and heavy (H) REE.
Furthermore,     the simulations show a REE

Figure 3. Simulated REE variations in fluorite normalized
to chondrite. The stability of fluorite is shown in Figure 2
and variations correspond to various degrees of fluid-
rock interaction or aliquots of fluid flushed through the
rock.

3.2 1-D reactive transport model

Figure 4a shows the evolution of a calcite vein after
200 steps, with the development of a large zone of
REE mineralization (i.e., fluorocarbonate veins)
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and a smaller zone of fluorite plus bastnäsite-(Ce).
Upon increased fluid-rock interaction (Fig. 4B; after
2000 simulations steps), a large zone of fluorite
develops at the input side of the acidic REE-F-
bearing fluid, and a large zone of calcite plus
bastnäsite-(Ce) forms on the output side of the
reactive fluid flow path. A smaller zone comprising
fluorite plus bastnäsite-(Ce) forms at the interface
between the calcite and fluorite rich zones.

Many of the REE mineral deposits associated with
carbonatites and alkaline deposits contain
hydrothermal     barite,calcite,     fluorite,     and/or
bastnäsite-(Ce) bearing veins. Hence the
simulations presented in Figures 2-4 provide a first
step in quantifying the processes that affect the
stability of these minerals and concurrent change
in fluorite REE chemistry. Prominent examples
where this type of reactions could be of importance
include the hydrothermal fluorite-REE-bearing
breccia/vein deposit in Gallinas Mountains in New
Mexico (McLemore et al. 2021), Bear Lodge in
Wyoming (Andersen et al. 2019), the giant Bayan
Obo carbonatite deposit in China (Gao et al. 2021),
and the Mianning-Dechang REE belt in China (Guo
and Liu 2019).
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Figure 4. 1-D reactive transport simulations showing the
mineralogy in 50 nodes or boxes of rock after (a) 200
steps and (b) 2000 steps, representing the number of
fluid “waves” flushed through all the calcite boxes.

4 Conclusions

Numerical modeling provides a powerful tool to
interpret the mineralogy, geochemistry, and
alteration zones developed in natural critical
mineral deposits. The MINES thermodynamic
database was used here to show an example
application to fluid-rock interaction processes that
control REE mobilization. This can be extended to
different mineral systems (Gysi and Williams-Jones
2013; Perry and Gysi 2018; Payne et al. 2023).
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