Robustly Learning Single-Index Models via Alignment Sharpness

Nikos Zarifis*! Puqgian Wang “! Ilias Diakonikolas' Jelena Diakonikolas '

Abstract

We study the problem of learning Single-Index
Models under the L3 loss in the agnostic model.
We give an efficient learning algorithm, achieving
a constant factor approximation to the optimal
loss, that succeeds under a range of distributions
(including log-concave distributions) and a broad
class of monotone and Lipschitz link functions.
This is the first efficient constant factor approxi-
mate agnostic learner, even for Gaussian data and
for any nontrivial class of link functions. Prior
work for the case of unknown link function ei-
ther works in the realizable setting or does not
attain constant factor approximation. The main
technical ingredient enabling our algorithm and
analysis is a novel notion of a local error bound
in optimization that we term alignment sharpness
and that may be of broader interest.

1. Introduction

Single-index models (SIMs) (Ichimura, 1993; Hristache
et al., 2001; Hérdle et al., 2004; Dalalyan et al., 2008; Kalai
& Sastry, 2009; Kakade et al., 2011; Dudeja & Hsu, 2018)
are a classical supervised learning model extensively studied
in statistics and machine learning. SIMs capture the com-
mon assumption that the target function f depends on an
unknown direction w, i.e., f(x) = u(w - x) for some link
(a.k.a. activation) function u : R — R and w € R?. In most
settings, the link function is unknown and is assumed to sat-
isfy certain regularity properties. Classical works (Kalai &
Sastry, 2009; Kakade et al., 2011) studied the efficient learn-
ability of SIMs for monotone and Lipschitz link functions
and data distributed on the unit ball. These early algorith-
mic results succeed in the realizable setting (i.e., with clean
labels) or in the presence of zero-mean label noise.

The focus of this work is on learning SIMs in the challenging
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agnostic (or adversarial label noise) model (Haussler, 1992;
Kearns et al., 1994), where no assumptions are made on
the labels of the examples and the goal is to compute a
hypothesis that is competitive with the best-fit function in
the class. Importantly, as will be formalized below, we
will not assume a priori knowledge of the link function. In
more detail, let D be a distribution on labeled examples
(x,y) € RY x Rand L2(h) = E(x)~pl(h(x) — y)?] be
the squared loss of the hypothesis & : R¢ — R with respect
to D. Given i.i.d. samples from D, the goal of the learner is
to output a hypothesis i with squared error competitive with
OPT, where OPT = infcc Lo(f) is the best attainable
error by any function in the target class C.

In the context of this paper, the class C above is the class
of SIMs, i.e., all functions of the form f(x) = u(w - x)
where both the weight vector w and the link function w are
unknown. For this task to be even information-theoretically
solvable, one requires some assumptions on the vector w
and the link function u. We will assume, as is standard,
that the /5-norm of w is bounded by a parameter . We
will similarly assume that the link function lies in a family
of well-behaved functions that are monotone and satisfy
certain Lipschitz properties (see Definition 1.3).

For a weight vector w and link function u , the L% loss
of the SIM hypothesis u(w - x) (defined by u and w) is
La(wiu) = B(x,y)~p[(u(w - x) — y)?]. Our problem of
robustly learning SIMs is defined as follows.

Problem 1.1 (Robustly Learning Single-Index Models). Fix
a class of distributions G on R? and class of link functions'
F. Let D be a distribution of labeled examples (x,y) €
R? x R such that its x-marginal D belongs to G. We say
that an algorithm is a C'-approximate proper SIM learner, for
some C' > 1, if givene > 0, W > 0, and i.i.d. samples from
D, the algorithm outputs a link function & € F and a vector
w € R? such that with high probability it holds Lo (W; %) <
C OPT + ¢, where OPT £ min |y, <w,ucr L2(W;u).

Throughout, we use u* (w* -x) to denote an(y) fixed optimal
solution to the learning problem, i.e., Lo(W*; u*) = OPT.

Some comments are in order. First, Problem 1.1 does not
make realizability assumptions on the distribution D. That

'Throughout this paper, we will use the terms “link function”
and “activation” interchangeably.
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is, the labels are allowed to be arbitrary and the goal is
to be competitive against the best-fit function in the class
C={uw-x)|weR|w|s <Wue F}. Second,
our focus is on obtaining efficient learners that achieve a con-
stant factor approximation to the optimum loss, i.e., where
C in Problem 1.1 is a universal constant — independent of
the dimension d and the radius W of the weight space.

Ideally, one would like an efficient learner that succeeds
for all marginal distributions and achieves optimal error of
OPT + € (corresponding to C' = 1). Unfortunately, known
computational hardness results rule out this possibility. Even
for the very special case that the marginal distribution is
Gaussian and the link function is known (e.g., a ReLU),
there is strong evidence that any algorithm achieving er-
ror OPT + € requires d*°Y(1/€) time (Diakonikolas et al.,
2020b; Goel et al., 2020; Diakonikolas et al., 2021; 2023).
Moreover, even if we relax our goal to constant factor ap-
proximation (i.e., C = O(1)), distributional assumptions
are required both for proper (Sima, 2002; Manurangsi &
Reichman, 2018) and improper learning (Diakonikolas et al.,
2022a). As a consequence, algorithmic research in this area
has focused on constant factor approximate learners that
succeed under mild distributional assumptions.

Recent works (Diakonikolas et al., 2020a; 2022c; Awasthi
et al., 2023; Wang et al., 2023) gave efficient, constant factor
approximate learners, under natural distributional assump-
tions, for the special case of Problem 1.1 where the link
function is known a priori (see also Frei et al. (2020)). For
the general setting, the only prior algorithmic result was
recently obtained in Gollakota et al. (2023). Specifically,
Gollakota et al. (2023) gave an efficient algorithm that suc-
ceeds for the class of monotone 1-Lipschitz link functions
and any marginal distribution with second moment bounded
by \. Their algorithm achieves L3 error

O(WVAVOPT) + ¢ (1)

under the assumption that the labels are bounded in [0, 1].
The error guarantee (1) is substantially weaker — both qual-
itatively and quantitatively — from the goal of this paper.
Firstly, the dependence on OPT scales with its square root,
as opposed to linearly. Secondly, and arguably importantly,
the multiplicative factor inside the big-O scales (linearly)
with the diameter of the space 1.

Interestingly, Gollakota et al. (2023) showed — via a hard-
ness construction from Diakonikolas et al. (2022a) — that,
under their distributional assumptions, a multiplicative de-
pendence on W (in the error guarantee) is inherent for ef-
ficient algorithms. That is, to obtain an efficient constant
factor approximation, it is necessary to restrict ourselves
to distributions with additional structural properties. This
discussion raises the following question:

Can we obtain efficient constant factor learners for

Problem 1.1 under mild distributional assumptions?

The natural goal here is to match the guarantees of known
algorithmic results for the special case of known link func-
tion (Diakonikolas et al., 2022c; Wang et al., 2023).

As our main contribution, we answer this question in the
affirmative. That is, we give the first efficient constant
factor approximation learner that succeeds under natural
and broad families of distributions (including log-concave
distributions) and a broad class of link functions. We em-
phasize that this is the first polynomial-time constant factor
approximate learner even for Gaussian marginals and for
any nontrivial class of link functions. Roughly speaking,
our distributional assumptions require concentration and
(anti)-anti-concentration (see Definition 1.2).

1.1. Overview of Results

We start by providing the distributional assumptions and
family of link functions for which our algorithm succeeds.

Distributional Assumptions Our algorithm succeeds for
the following class of structured distributions.

Definition 1.2 (Well-Behaved Distributions). Let L, R > 0.
Let V be any subspace in R? of dimension at most 2. A
distribution Dy on R? is called (L, R)-well-behaved if D is
isotropic and for any projection (D )y of Dy onto subspace
V, the corresponding pdf 1, on R? satisfies the following:

* For all xyy € V such that ||xv | < R, yv(xy) > L
(anti-anti-concentration).

e For all xy € V, yy(xy) < (1/L)(e”FI*vll2) (anti-
concentration and concentration).

This distribution class was introduced in Diakonikolas et al.
(2020c), in the context of learning linear separators with
noise and has since been used in a number of prior works,
including for robustly learning SIMs with known link func-
tions (Diakonikolas et al., 2022¢). The parameters L, R
in Definition 1.2 are viewed as universal constants, i.e.,
L, R = O(1). Indeed, it is known that many natural distribu-
tions, most importantly isotropic log-concave distributions,
fall in this category; see, e.g., Diakonikolas et al. (2020c).

Unbounded Activations Our algorithm succeeds for a
broad class of link functions that contains many well-studied
activations, including ReLU. This class, defined in Di-
akonikolas et al. (2022c) and used in Wang et al. (2023),
requires the link functions to be monotone, Lipschitz-
continuous and strictly increasing in the positive region.

Definition 1.3 (Unbounded Activations). Let u : R — R.
Given a,b € Rsuch that 0 < a < b, we say that u(z) is
(a, b)-well-behaved if u(0) = 0 and u(z) is non-decreasing,
b-Lipschitz-continuous, and u(z) — u(z’) > a(z — 2’) for
all z > 2’ > 0. We denote this function class by U(a’b).
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A simplified version of our main algorithmic result is as
follows (see Theorem 4.2 for a more detailed statement):

Theorem 1.4 (Main Algorithmic Result, Informal). Given
Problem 1.1, where G is the class of (L, R)-well behaved
distributions with L, R = O(1) and F = U(a,py such that
(1/a),b = O(1), there is an algorithm that draws N =
poly(W)O(d/€?) samples from D, runs in poly(N, d) time,
and outputs a hypothesis (W - x) with i € U(q p), [[W|l2 <
W such that Lo(W; 1) = COPT + € with high probability,
where C > 0 is an absolute constant.

We reiterate that the approximation factor C'in Theorem 1.4
is a universal constant, independent of the dimension and
diameter of the space. That is, our main result provides the
first efficient learning algorithm achieving a constant factor
approximation, even for the most basic case of Gaussian
data and any non-trivial class of link functions.

1.2. Technical Overview

When it comes to learning SIMs in the agnostic model with
target error COPT + ¢, to the best of our knowledge, all
prior work that achieves such a guarantee with C' being an
absolute constant only applies to the special case of known
link function u*. Such results are established by proving
growth conditions (local error bounds) that relate either
the L3 loss or a surrogate loss to (squared) distance to the
set of target solutions, using assumptions about the link
function and the data distribution, such as concentration and
(anti-)anti-concentration (Diakonikolas et al., 2020a; 2022b;
Wang et al., 2023). Among these, most relevant to our work
is Wang et al. (2023), which proved a “sharpness” property
for a convex surrogate function defined by

E%ur wiu) = E
) ( ) (xwy)ND

WX
[ J () =y) dr} . @
based on assumptions about the link function that are the
same as ours and distributional assumptions that are some-
what weaker but comparable to ours. Their sharpness result
corresponds to guaranteeing that for vectors w that are not
already O(OPT)+ ¢ accurate solutions, the following holds:

VL (wiu®) - (w=w") 2 [[w-w[3, 3
where w* is a vector that achieves error O(OPT) + e.

One may hope that the sharpness result of Wang et al. (2023)
can be generalized to the case of unknown link function and
leveraged to obtain constant factor robust learners. How-
ever, as we discuss below, such direct generalizations are
not possible and there are several technical challenges that
had to be overcome in our work. To illustrate some of the
intricacies, consider first the following example.

Example 1.5. Let x ~ N (0,I) and w = (1/2)w*, where
w* is an arbitrary but fixed target unit vector. Let b > 2a.

Suppose that the link function at hand is u(z) = bz and
the target link function is u*(z) = az. Observe that both
u,u* € Uy, as required by our model. Furthermore,
suppose there is no label noise, in which case OPT = 0.
Note that the L3 error of u(w - x) in this case is

Lo(w;u) = XNQE(O,D[(“(W - x) —u*(w* - x))?]
= B, [6/2— P = (b2~ a)’ = ©(1)

However, the gradient of the surrogate loss, V Lgu (W; 1) =
E[(u(w - x) — u*(w* - x))x], is negatively correlated with
w — w*, ie., VL (W;u) - (W —w*) < 0, contrary to
what we would hope for if a sharpness property as in Wang
et al. (2023) were to hold. Thus, although w and u are
both still far away from the target parameters w* and u*,
the gradient of the surrogate loss cannot provide useful
information about the direction in which to update w.

What Example 1.5 demonstrates is that we cannot hope
for the surrogate loss to satisfy a local error bound for an
arbitrary parameter pair (u, w) that would guide the con-
vergence of an algorithm toward a target parameter pair
(u*, w*). This seemingly insurmountable obstacle is sur-
passed by observing that we do not, in fact, need the surro-
gate loss to contain a “signal” that would guide us toward
target parameters for an arbitrary pair (u, w). Instead, we
can restrict our attention to pairs (u, w) satisfying that u is a
“reasonably good” link function for the vector w. Ideally, we
would like to only consider link functions w that minimize
the L3 loss — considering that «* must minimize the L3
loss for a given, fixed w* — but it is unclear how to achieve
that in a statistically and computationally efficient manner.
As a natural approach, we consider link functions that are
the best fitting functions in an empirical distribution sense.
In particular, given a sample set S = {(x(*, ()} | and
a parameter w, we select a function ., that solves the
following (convex) optimization problem:

1 — : ;
Gl € argmin — Y (u(w-x®) —3@)2, P
UEU(a,b) m ;

For notational simplicity, we drop the parameter w' from
liw+ and use 4! instead. It is worth pointing out here that
in general the problem of finding the best function that
minimizes the L2 error fails under the category of non-
parametric regression, which unfortunately requires expo-
nentially many samples (namely, £2(1/¢)). Fortunately, in
our setting, we are looking for the best function that lies
in a one-dimensional space. Therefore, instead of looking
at all possible directions, we can project all the points of
the sample set S to the direction w and find the best fit-
ting link function efficiently. We provide the full details for
efficiently solving (P) in Appendix E.
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Having set on the “best-fit” link functions in the sense of the
problem (P), the next obstacle one encounters when trying to
prove a “sharpness-like” result is that neither the L3 loss nor
its surrogate convey information about the scale of w and
w*. This is because models determined by v, w and u/c, cw
for some parameter ¢ > 0 have the same value of both loss
functions. Thus, it seems unlikely that a more traditional
local error bound as in (3) can be established in general,
for either the surrogate loss or the original L3 loss. Instead,
we prove a weaker property that establishes strong corre-
lation between the gradient of the empirical surrogate loss
Vi (wha') = (1/m) 3%, (4" (w' - x() — y(1)x®
and the direction w* — w* that holds whenever w? is not an
O(OPT) + € error solution and which is independent of the
scale of w. This constitutes our key structural result, stated
as Proposition 3.1 and discussed in detail in Section 3. We
further discuss how this result relates to classical and recent
local error bounds in Appendix B.

In addition to this weaker version of a sharpness property,
we further prove in Corollary 3.4 that given a parameter w'
and a dataset of m samples from D, the activation 4 (w" - x)
generated by optimizing the empirical risk on the dataset
as in (P) satisfies Exp, [(4}(W! - x) — u*(w* - x))?] <
b%||lw® — w*||3 with high probability. As a result, we can
guarantee that when ||w! — w*|| decreases, the L3 distance
between 4! and v* diminishes as well. This is crucial, since
without such a coupling we would not be able to argue about
convergence over both model parameters u, w.

Leveraging these results, we arrive at an algorithm that al-
ternates between “gradient descent-style” updates for w
and best-fit updates for u. We note in passing that simi-
lar alternating updates have been used in classical work on
SIM learning in the less challenging, non-agnostic setting
(Kakade et al., 2011). In more detail, our algorithm fixes
the scale 3 of ||w?||2 and alternates between taking a Rie-
mannian gradient descent step on a sphere for wt w.r.t. the
empirical surrogate loss and solving (P). The unknown scale
for the true parameter vector w* is resolved by applying
this approach using /3 chosen from a sufficiently fine grid of
the interval [0, W] and employing a testing procedure at the
end to select the best parameter vector. Although the idea is
simple, the proof is quite technical, as it requires ensuring
that the entire process does not accumulate spurious errors
arising from the stochastic nature of the problem, adversar-
ial labels, and approximate minimization of the surrogate
loss, and, as a result, that it converges to the target error.

Technical Comparison to Gollakota et al. (2023) The
only prior work addressing SIM learning (with unknown
link functions) in the agnostic model is Gollakota et al.
(2023), thus here we provide a technical comparison. While
both Gollakota et al. (2023) and our work make use of the
surrogate loss function from (2), on a technical level the two

works are completely disjoint. Gollakota et al. (2023) uses a
framework of omnipredictors to minimize the surrogate loss
and then relates this result to the L2 loss. Although they han-
dle more general distributions and activations, their learner
outputs a hypothesis with error that cannot be considered
constant factor approximation (see (1)) and is improper. By
contrast, our work does not seek to minimize the surrogate
loss. Instead, our main insight is that the gradient of the
surrogate loss at a vector w conveys information about the
direction of a target vector w*, for a fixed link function that
minimizes the L3 loss. We leverage this property to con-
struct a proper learner with constant factor approximation.

2. Preliminaries

Basic Notation For n € Z, let [n] .= {1,...,n}. Weuse
lowercase boldface characters for vectors. We use x - y for
the inner product of x,y € R¢ and #(x,y) for the angle
between x,y. For x € R? and k € [d], x; denotes the
kth coordinate of x, and ||x||» denotes the £>-norm of x.
We use 14 = 1{A} to denote the characteristic function
of the set A. For vectors v,u € R, we denote by v+u
the projection of v onto the subspace orthogonal to u, i.e.,
vie = v — ((v-u)u)/||ul|2. We use B(r) to denote the
5 ball in R? of radius r, centered at the origin.

Asymptotic Notation We use the standard O(-), ©(-), Q(+)
asymptotic notation. We use 9] (+) to omit polylogarithmic
factors in the argument. We use O, (-) to suppress polyno-
mial dependence on p, i.e., Op(w) = O(poly(p)w). O,(+)
and ,(-) are defined similarly. We write E 2 F for two
non-negative expressions £ and F’ to denote that there exists
some positive universal constant ¢ > 0 (independent of the
variables or parameters on which E and F' depend) such
that F > ¢ F'. The notation < is defined similarly.

Probability Notation We use E x..p [ X] for the expectation
of a random variable X according to the distribution D and
Pr[€] for the probability of event £. For simplicity of
notation, we omit the distribution when it is clear from the
context. For (x,y) distributed according to D, we use Dy
to denote the marginal distribution of x.

Organization In Section 3, we establish our main structural
result of alignment sharpness. In Section 4, we describe
and analyze our constant factor approximate SIM learner.
We conclude the paper in Section 5. The full version of the
proofs is deferred to the supplementary material.

3. Main Structural Result: Alignment
Sharpness of Surrogate Loss

In this section, we establish our main structural result
(Proposition 3.1), which is what crucially enables us to
obtain the target O(OPT) + € error for the studied problem.
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Proposition 3.1 states that the empirical gradient of the surro-
gate loss positively correlates with the direction of w? — w*
whenever w! does not correspond to an O(OPT) + € so-
lution, and, moreover, the correlation is proportional to
the quantity ||(w*)1wt||3. This is a key property that is
leveraged in our algorithmic result (Theorem 4.2), both in
obtaining an O(OPT) + € error result and in arguing about
the convergence and computational efficiency of our algo-
rithm. Intuitively, what Proposition 3.1 allows us to argue
is that as long as the angle between w' and w* is not close
to zero, we can update w! to better align it with w*, in the
sense that we reduce the angle between these two vectors.

Proposition 3.1 (Alignment Sharpness of the Convex Sur-
rogate). Suppose that Dy is (L, R)-well-behaved, U(q p) is
as in Definition 1.3, and €,5 > 0. Let i 2, a> LR*/b. Given
any w' € B(W), denote by 0' the optimal solution to (P)
with respect to w' and the sample set S = {(x(),y(M)}m
drawn i.i.d. from D. If m satisfies

m > dWO2b* L4 log*(d/(€0))(1/€*/? + 1/(€d)) ,
then, with probability at least 1 — §,

VL (whia) - (wh—w*) > pll(w*) |13

— 2(OPT + €)/b — 2(VOPT + Ve)|[w! — w*||5 .

To prove Proposition 3.1, we rely on the following key ingre-
dients. In Section 3.1, we prove our main technical lemma
(Lemma 3.2), which states that the L2 distance between a hy-
pothesis u(w-x) and the target u*(w™* -x) is bounded below
by the misalignment of wt and w*, i.e., the squared norm of
the component of w* that is orthogonal to w, ||(w*)1wt |2,
As will become apparent in the proof of Proposition 3.1, the
inner product V Ly, (w'; @) - (w! — w*) can be bounded
below as a function of the empirical L3 error for w' and a
different (but related) activation 4**, which can in turn be ar-
gued to be close to the population L3 error for a sufficiently
large sample size, using concentration. Thus, Lemma 3.2
can be leveraged to obtain a term scaling with ||(w*)+w*||2
in the lower bound on V Lgy, (w'; @if) - (w! — w*).

In Section 3.2, we characterize structural properties of the
population-optimal link functions ! and u*! (see (EP) and
(EP¥*)), which play a crucial role in the proof of Proposi-
tion 3.1. Specifically, we show that activation u! is close to
the idealized activation u*¢ (the optimal activation without
noise, given w') in L2 distance (Lemma 3.3). Since by stan-
dard uniform convergence results we have that 4 and 4**
are close to their population counterparts u! and u*?, respec-
tively, Lemma 3.3 certifies that 4¢ is not far away from 4*t.
This property enables us to replace by (the idealized) a*t
in the empirical surrogate gradient V Lg,, (w'; 4!), which
is easier to analyze, since 4*? is defined with respect to the
“ideal” dataset (with uncorrupted labels).

Finally, as a simple corollary of Lemma 3.3, we prove Corol-
lary 3.4, which gives a clear explanation of why our algo-
rithm, which alternates between updating w' and 4, works:
we show that the L3 loss between the hypothesis generated
by our algorithm @f(w? - x) and the underlying optimal
hypothesis u*(w* - x) is bounded above by the distance
between w! and w*. Since our structural sharpness re-
sult (Proposition 3.1) enables us to decrease |[w! — w*||2,
Corollary 3.4 certifies that choosing the empirically-optimal
activation leads to convergence of the hypothesis @' (w'-x).

Equipped with these technical lemmas, we prove our main
structural result (Proposition 3.1) in Section 3.3.

3.1. L3 Error and Misalignment

Our first key result is Lemma 3.2 below, which plays a
critical role in the proof of Proposition 3.1. As discussed
in Section 1.2, for two different activations u and «* and
parameters w and w* such that w and w* are parallel,
even when the L3 error is (1), the gradient V Ly, (W; )
might not significantly align with the direction of w — w*,
and thus cannot provide sufficient information about the
direction to decrease |w — w*||5. Intuitively, the fol-
lowing lemma shows that this is the only thing that can
go wrong, and it happens when w and w* are parallel.
In particular, Lemma 3.2 shows that for any square in-
tegrable link function f, we can relate the L3 distance
Exwp, [(f(W-x) — u*(w* - x))?] to the magnitude of the
component of w* that is orthogonal to w. The full proof of
Lemma 3.2 is deferred to Appendix C.2.

Lemma 3.2 (Lower-Bounding L3 Error by Misalignment).
Let u* € U(qp), Dx be (L, R)-well-behaved, and f : R —
R be square-integrable with respect to the measure of the
distribution Dy. Then, for any w,w* € R?, it holds that

E [(f(w-x)—u'(w" %)) 2 a®LR"|[(w") "3 .

x~Dy

Proof Sketch of Lemma 3.2. Suppose for simplicity that
R = 1, and let us denote (f(w - x) — u*(w* - x))? by
p(x). The statement holds trivially when w is parallel to
w*, so assume this is not the case. Let us also assume
w* - w > 0, as for the case of w* - w < 0 the proof
can be carried out using similar arguments. Define v =
(w)tw = w* — (w* - w)w/||w|)3 and let v = v/||v].
Then w* = aw + v, for some o« > 0. Let V be the
subspace spanned by w,v. Then considering the event
A={w-x>0,v-x € (1/16,1/8)U(3/8,1/2)}, we have
Ex, [P(%)] = Exop, [(f(Wxv)—u* (W xv))*1{A}].

The main idea is to study the relation between the value
of f(w - x) and u*(w* - x), utilizing the fact that u*(z) is
strictly increasing when z > 0. In particular, define the
following functions indicating the intervals that f(w - x)
belongs to: I1(x) = sign(f(w-x)—u*(aw-x+]||v||2/32)),
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Ir(x) = sign(f(w-x)—u*(aw-x+||v]|2/4)), and I3(x) =
sign(f(w - x) — u*(aw - x + ||v]|2)). Since u* is non-
decreasing, it must be 1 (x)[2(x) > 0 or I2(x)I3(x) > 0.
We discuss the cases of I (x)I>(x) > 0 and I5(x)I3(x) >
0, and provide lower bound for each case respectively.

Consider first I (x), I2(x) > 0, indicating that f(w - x) >
u*(aw - x + ||v||2/4). Further restricting x on the band
B={w-x>0,v-x€(1/16,1/8)}, B C A, we have
u*(w* - x) < u*(aw - x + ||v||2/8). Using the fact that
u*(z) —u*(2") > a(z — 2’) when z > 2’ > 0, we have

p){B} = ({f(w-x) —u"(aw - x + |[v]2/4)}
+{ut(aw - x + |[v]jo/4) = (w* - x)})*1{B}
> (u(aw - x + [|[v2/4) — u*(w* - x))*1{B}
> (a®/8%)||v[31{B} .

With similar arguments, when both I (x), Io(x) < 0, it
holds p(x)1{B} > (a?/32)?|v||31{B}. Thus, when
1 (x)1>(x) > 0 we have p(x)1{B} 2 a|[v|31{B}.

For the case of I5(x)I3(x) > 0, we consider restricting
xon B = {w-x > 0,v-x € (3/8,1/2)}. Then,
similarly, after discussing the cases of I3(x), I3(x) > 0
and I5(x), I3(x) < 0, we get that when I5(x)I3(x) > 0,
p(x)1{B'} 2 a?|[v[31{B'}.

Finally, let D = (B N {[;(x)Ix(x) > 0}) U (B'nN
{I2(x)I3(x) > 0}) C A. Since Dy is (L, 1)-well behaved,
the probability mass ~y satisfies vy (x) > L when [|x]|o0 <
1. Therefore, since V' is a 2-dimensional plane, using ge-
ometric observations, Pr[D] can be bounded below by
Pr[D] > Pr[D N {||x|l« < 1}] > L/16. Hence, combin-
ing the bounds above and recalling that b > «a, we finally get
By, [p(x)] > Evop,[p(x)1{D}] 2 a?|[v|3Pr[D] 2

a®L||v|| completing the proof of Lemma 3.2. O

3.2. Closeness of Idealized and Attainable Activations

In this section, we bound the contribution of the error in-
curred from working with attainable link functions 4! in the
iterations of the algorithm. The error incurred is due to both
the arbitrary noise in the labels and due to using a finite
sample set. In bounding the error, for analysis purposes, we
introduce auxiliary population-level link functions.

Concretely, given w € B(W), a population-optimal activa-
tion is a solution to the following stochastic convex program:

[(w(w-x)—y)?.  (EP)

Uy € argmin @ E
UEU (a,b) (x,9)~D

We further introduce auxiliary “idealized, noiseless” activa-
tions, which, given noiseless labels y* = u*(w* - x) and a
parameter weight vector w, are defined via

(EP*)

ul, € argmin @ E  [(u(w-x) —y*)?.

uEZ/l(ayb) (x,9)~D

Below we relate u' := uy+ and u** := uj, and show that
their L3 error for the parameter vector w' is bounded by
OPT. The proof of Lemma 3.3 is deferred to Appendix C.3.

Lemma 3.3 (Closeness of Population-Optimal Activations).
Let w' € B(W) and let u*t, ut be defined as solutions to
(EP*), (EP), respectively. Then,

E [(u'(w'-x)—u*(w'-x))?] < OPT.

x~Dy

As a consequence of the lemma above, we are able to relate
4! to the “noiseless” labels y* = u*(w*-x) by showing that
the L3 distance between u* (w* - x) and the sample-optimal
activation 4! (w! - x) is bounded by [|w® — w*||3. Although
Corollary 3.4 is not used in the proof of Proposition 3.1,
we still present it here as it justifies the mechanism of our
approach alternating between updates for w' and 4!. The
proof of Corollary 3.4 can be found in Appendix C.4.

Corollary 3.4 (Closeness of Idealized and Attainable Acti-
vations). Let €,0 > 0. Given a parameter w € B(W) and
m > dlog*(d/(ed))(b*W?3 /(L%€))3/2 samples from D, let
@t be the sample-optimal activation on these samples given
wt, as defined in (P). Then, with probability at least 1 — 6,

B (@)~ (w %))

< 3(e + OPT + b?||w! — w*[|2).

3.3. Proof of Proposition 3.1

‘We now provide a proof sketch for Proposition 3.1, while
the detailed proof is deferred to Appendix C.1.

Proof Sketch of Proposition 3.1. Given any weight param-
eter wt € B(W) and 4 as defined in the statement, let u®
be the population-optimal activation defined by (EP). Given
S = {(x@ y@)}m , define y*) = u*(w* - xV) for
i € [m]. Further define the following auxiliary problem:

(u(w - x7) =),
=1

(P*)

- .
Uy, € argmin —
ueuwb) m i

*

Denote 4*' = iy,.. Observe that (P*) is the empirical
version of (EP*). To prove Proposition 3.1, we decompose
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~

V Lgur (Wt @it) - (w! — w*) into three summation terms.

m

=1
Q2
1 m
il #(8) _ (8 b5 (@) (@) 4
o -y kO @
Qs

We bound each term @1, @2, Q3 in (4) separately and defer
the proofs of corresponding claims to Appendix C. We first
show that with probability at least 1 — §, we have

> —(ve+VOPT)|w' —w*||z — (OPT +¢)/b. (5)
Inequality (5) contains two error terms, the first one is due
to noise and the second one is the estimation error. The
second term comes from standard concentration results (see
Appendix F). The first term comes from replacing % and 4*!
with their population counterparts «* and «** and combining
Cauchy-Schwarz inequality with Lemma 3.3.

We next show that (2 is a constant multiple of || (w*)1wt |2,
which is the main positive contribution among the three
summands. In particular, we show that for an absolute
constant C’, with probability at least 1 — 4,

C'a?LR*

W) T 5= Vel [w' = wla—e/b. (6)

The proof of the above statement is rather technical. We first
define an ‘empirical inverse’ f : R — R of the activation
u*, as u* is not strictly increasing hence (u*)~! is not well-
defined on R. Denote ¢(x() := a**(w! - x()) *

—u*(w* -
x("). Then adding and subtracting f(a*!(w* - x()),

Q2= 1 Sl = (X))
1 m
2

Using the optimality conditions of (P*), the first summation
above is always positive. For the second summation, by the
definition off we have that | f(a* (w-x()) —w* x| >
(1/8)]q(xD)] and g(xD) (f(@** (w -x())) —w*-x(D) > 0,
leading to a lower bound of (1/bm) "1 | (¢(x(¥))2. Using
Lemma 3.2 and standard concentration arguments, we then

(w' x())) w*.x(i))_

obtain Inequality (6). Finally, using similar arguments as
for ()1, we show that with probability at least 1 — 4,

Q3 > —VOPT||w* —w'||a — (OPT +¢€)/b. (7)

The proof is completed by plugging the bounds from In-
equalities (5) to (7) back into Equation (4). ]

4. Robust SIM Learning via Alignment
Sharpness

As discussed in Section 1.2, our algorithm can be viewed
as employing an alternating procedure: taking a Rieman-
nian gradient descent step on a sphere with respect to the
empirical surrogate, given an estimate of the activation, and
optimizing the activation function on the sample set for a
given parameter weight vector. This procedure is performed
using a fine grid of guesses of the scale of ||w™*||2. For this
process to converge with the desired linear rate (even for
a known value of ||w*||2), the algorithm needs to be prop-
erly initialized to ensure that the initial weight vector has
a nontrivial alignment with the optimal vector w*. The
initialization process is handled in the following subsection.

4.1. Initialization

We begin by showing that the Initialization subroutine stated
in Algorithm 2 (see Appendix D.1) returns a point w" that
has a sufficient alignment with w*. As will become apparent
later in the proof of Theorem 4.2, this property of the initial
point is critical for Algorithm 1 to converge at a linear rate.
We defer the more detailed statement of Lemma 4.1 (see
Lemma D.1) and its proof to Appendix D.1.

Lemma 4.1 (Initialization). Given u = Op, g(a?/b) and
€,0 > 0, (Initialization) Algorithm 2 draws mg =
OWZ7 /L, 1/u(d/( (8€3/2)) i.i.d. samples from D, it runs in
time OW,b,l/L,l/,u(dmO) and with probability at least 1 — 6,
it generates a list of size to < (b/u)® log(b/ ) that contains
a vector w° such that

J(w*) -0l < max{pl[w*[l2/b, b/* (VOPT + Vo).

4.2. Optimization

Our main optimization algorithm is summarized in Al-
gorithm 1 (see Algorithm 3 for a more detailed ver-
sion). We now provide intuition for how guessing the
value of ||w*||2 is used in the convergence analysis. Let
wh = [[w*[law'/|[[W'[|2 so that [w'[2 = [[w*[]2 and
let vt := (w*)1twt. Observe that |[vt|> |wt —
w*||2 cos(6(w', w*)/2). Applying Proposition 3.1, it can
be shown that |[w!Tt — w*||3 < [|[w! — w*||3 — C||v!|3
for some constant C. Thus, as long as the angle be-
tween w' and w* is not too large (ensured by initializa-

tion), [|[w! — w*||2 &~ ||v!||2. Hence, we can argue that
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|[w! — w*||5 contracts in each iteration, by observing that
[w = w3 &~ [V < [Iw — w3,

Algorithm 1 Optimization

1: Input: w™ = 0; ¢ > 0; positive parameters: a, b, L,
R, W, u; step size

2: {W"“ ..., w2} = Initialization[w™™] (Algorithm 2)

3 P={(w=0u(z) =0)}

4: fork =0toty < (b/u)®log(b/u) do

5: forj=1toJ =W/(n/e) do

6 Wl =wi g = e

7: fort =0toT = O((b/u)?log(1/e€)) do

8: Wi = Bi(W5 /115 i ll2)

9: Draw m = @Wb 10,1 u(d/€ 3/2) new samples

m

10: ah = argmin & 3 (u(Wh cx(M) — y(9)2
UEU(a,b) =1

11: ’H,;l =W, — )V Lour (W W k)

12: end for

13: P+ PU{(WwT Wi ]k)}

14:  end for

15: end for

16: (w;u) = Test[(w; u) € P] (Algorithm 4)

17: Return: (w; @)

Our main result is the following theorem (see Theorem D.2
for a more detailed statement and proof in Appendix D.2):

Theorem 4.2 (Main Result). Let D be a distribution in
R? x R and suppose that Dy is (L, R)-well-behaved. Let
U(apy be as in Definition 1.3 and let ¢ > 0. Then, Algo-
rithm 1 uses N = OW7b,1/L71/M(d/€2) samples, it runs for
OW7b,1/M(1/\/E) iterations, and, with probability at least
2/3, returns a hypothesis (i, W), where i € Uq p) and w €
B(W), such that ,CQ(\/I\V; '&) = Ol/L,l/R,b/a(OPT) +e€.

To prove Theorem 4.2, we make use of two technical results
stated below. First, Lemma 4.3 provides an upper bound
on the norm of the empirical gradient of the surrogate loss.
The proof of the lemma relies on concentration properties
of (L, R)-well behaved distributions Dy, and leverages the
uniform convergence of the empirically-optimal activations
@t. A more detailed statement (Lemma D.7) and the proof
of Lemma 4.3 is deferred to Appendix D.3.

Lemma 4.3 (Bound on Empirical Gradient Norm). Let S
be a set of i.i.d. samples of size m = éw)b71/,;(d/e3/2 +
d/(€d)). Given any w' € B(W), let i* € Uy, ) be the
solution of optimization problem (P) with respect to w* and
sample set S. Then, with probability at least 1 — 6,

IV Eur (w5 )3 < 48[ w' — w3 + 10(OPT + ).
The next claim bounds the L3 error of a hypothesis iy, (W-X)

by the distance between w and w*. We defer a more de-
tailed statement (Claim D.8) and the proof to Appendix D.4.

Claim 4.4. Let w € B(1V) be any fixed vector. Let ty,

be defined by (P) given w and a sample set of size m =

Ow.,1/(d/€*/?). Then, E(x y)wD[(uw(W x) - y)? ] =
8(OPT + ¢€) + 4b%||w — w*||3.

Proof Sketch of Theorem 4.2. For this sketch, we consider

the case ||[w*|2 = b3/u*(v/OPT + \/€) so that the i 1n1-
tialization subroutine generates a point witl € {wiri}io

such that [|(w*) ™ [l < pllw*||2/(4b), by Lemma 4.1.
Fix this initialized parameter w;)’ p» = Wil at step k* and
drop the subscript k£* for simplicity. Since we constructed
a grid with width n/e, there exits an index j* such that
|Bj= — [[w*||2] < nv/e. We consider the intermediate for-
loop at this iteration j*, and show that the inner loop with
normalizer /3;- outputs a solution with error O(OPT) + e.
This solution can be picked using standard testing proce-
dures. We now focus on the iteration j*, and drop the
subscript j* for notiational simplicity.

Let w! = ||[w*|[o(W!/||W!|2) and denote v! := (w*)Lwt.
Expanding ||w!*! —w*||3 and applying Proposition 3.1 and
Lemma 4.3, we get

H — 41 ~t nvz\sur“{,t, ﬁt>

= [|W" = w13 + n?[|V Lo (W15 0") 3
—217V£5ur(w at) - (wh —w*)

< W' = w3 +7°(10(OPT + ¢) + 4b% || W' — w*[3)
+27(2(VOPT + V) [ W' — w*||5 — u||v*]3)
+ 47(OPT +€)/b

< (14 49%0%)|w' (2402 + 4n/b)(OPT + ¢)
+27(2(VOPT + Ve)|[w' — w*|ls — ul[V'[[3),  (8)

- w3 =|lw - w3

- w5+

where in the last inequality we used |[w® — w||2 < ny/e.

Since w! and w* are on the same sphere, |[w! — w* ||y <
[[vt|l2. In particular, letting p; = ||v*||2/||w*]|2, we have
[[wt —w*||3 < (1 + p2)||vt]|3 < 2||v!||3. Recall that the
algorithm is started from w" that satisfies pg < 11/(4b). If
pe < 1/ (4b), then [[w' — w3 < (1+ (1/(4))°)[Iv" 3
Assuming in addition that ||vt||s = (1/u)(vVOPT + /e),
and choosing the stepsize 77 = 1/ (4b?), (8) implies that

(1= p?/(326)IV'1]3,

and thus, in addition, p;41 < p/(4d). Therefore, by an
inductive argument, we show that as long as w is still far

from w*, i.e., [|[vl|2 = (1/u)(vVOPT + /€), we have

(1= p?/(320%) V'3 and per1 < 1o/ (4D).

Hence, after T = O((b*/u?)log(1/e)) iterations, it must
be ||[vT]l2 < (1/u)(vVOPT + /), which implies

Iw" — w3 < 2|v" |5 = O(OPT) +e.

VS < W' —wr <

[ =
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Finally, by Claim 4.4, hypothesis 47 (W - x) achieves L3-
error O(OPT) + ¢, which completes the proof. O

5. Conclusion

We presented the first constant-factor approximate SIM
learner in the agnostic model, for the class of (a,b)-
unbounded link functions under mild distributional assump-
tions. Immediate questions for future research involve ex-
tending these results to other classes of link functions. More
specifically, our results require that b/a is bounded by a
constant. It is an open question whether the constant-factor
approximation result in the agnostic model can be extended
to all b-Lipschitz functions (with ¢ = 0). This question is
open even when the link function is known to the learner.
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Supplemental Material

Organization The appendix is organized as follows. In Appendix A, we highlight some useful properties about the
distribution class and the activation class. Appendix B provides a detailed introduction about the notion of local error
bounds and its relation to our alignment sharpness structural result. In Appendix C, we provide detailed proofs that are
omitted in Section 3, and in Appendix D we complete the proofs omitted in Section 4. In Appendix E, we provide a detailed
discussion about computing the optimal empirical activation. Finally, in Appendix F we state and prove the standard uniform
convergence results that are used throughout the paper.

A. Remarks about the Distribution Class and the Activation Class

In this section, we show that without the loss of generality we can assume that the parameters L, R in the distributional
assumptions (Definition 1.2) can be taken less than 1, while the parameters a, b of the activations functions (see Definition 1.3)
can be taken as a, 1/b < 1.

Remark A.1 (Distribution/Activation Parameters, (Definition 1.2 & Definition 1.3)). We observe that if a distribution Dy
is (L, R)-well-behaved, then it is also (L', R')-well-behaved for any 0 < L’ < L,0 < R’ < R. Hence, it is without loss
of generality to assume that L, R € (0, 1]. Similarly, if an activation is (a, b)-unbounded, it is also an (a, b’)-unbounded
activation with &’ > b. Thus, we assume that b > 1. We can similarly assume a < 1.

In addition, we remark that the (L, R)-well behaved distributions are sub-exponential.

Remark A.2 (Sub-exponential Tails of Well-Behaved Distributions, Definition 1.2). Definition 1.2 might seem abstract,
but to put it plain it implies that the random variable x has a 1/L-sub-exponential tail, and that the pdf of the projected
random variable xy- onto the space V' is lower bounded by L. To see the first statement, given any unit vector p, let x, be
the projection of x onto the one-dimensional linear space V,, = {z € Re:z =tp,t € R}, ie., Xp = p - x € V}. Then, by
the anti-concentration and concentration property, we have

Pr(p-x| > 1] = Pr{jxp| > 1] < /

lr|>r’7(ﬂ?) dz < Q/T Eexp(—Lm) dz = ﬁeXp(—Lr),

which implies that x possess a sub-exponential tail.

B. Local Error Bounds and Alignment Sharpness

Given a generic optimization problem miny, f(w) and a non-negative residual function r(w) measuring the approximation
error of the optimization problem, we say that the problem satisfies a local error bound if in some neighborhood of “test”
(typically optimal) solutions W* we have that

r(w) > (p/v) dist(w, W*)¥. )
In other words, low value of the residual function implies that w must be close to the test set YW*.

Local error bounds have been studied in the optimization literature for decades, starting with the seminal works of (Hoffman,
1952; Lojasiewicz, 1963); see, e.g., Chapter 6 in (Facchinei & Pang, 2003) for an overview of classical results and (Bolte
et al., 2017; Karimi et al., 2016; Roulet & d’ Aspremont, 2017; Mei et al., 2018; Liu et al., 2022) and references therein for a
more cotemporary overview. While local error bounds can be shown to hold generically under fairly minimal assumptions
on f and for r(w) = f(w) — miny f(w’) (Lojasiewicz, 1963; 1993), it is rarely the case that it can be ensured with a
parameter p that is not trivially small.

On the other hand, learning problems often possess very strong structural properties that can lead to stronger local error
bounds. There are two main such examples we are aware of, where local error bounds can be shown to hold with v = 2 and
an absolute constant p > 0. The first example are low-rank matrix problems such as matrix completion and matrix sensing,
which are unrelated to our work (Bhojanapalli et al., 2016; Zheng & Lafferty, 2016; Jin et al., 2017). More relevant to our
work are the recent results in (Mei et al., 2018; Wang et al., 2023) which proved local error bounds of the form

r(w) > gdist(w,W*)z (10)

for the more restricted problem than ours: (Mei et al., 2018) only dealt with the additive zero-mean noise, and was given the
knowledge of the activation, and in addition, they assumed that the marginal Dy is sub-Gaussian; while in (Wang et al.,

11
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2023) they considered the agnostic learning of SIMs also with a known activation function but under somewhat more general
distributional assumptions. In (Wang et al., 2023), the residual function was defined by r(w') = VL, (W' u*) - (wh —w*),
where V Lqur (W' u*) is the gradient of an empirical surrogate loss, and the resulting local error bound referred to as
“sharpness.”

Our structural result can be seen as a weak notion of a local error bound, where the residual function for the empirical
surrogate loss expressed as r(w?, @) = VLgy (Wt at) - (Wt — w*) is bounded below as a function of the magnitude of the
component of w* that is orthogonal to w'. Compared to more traditional local error bounds and the bound from (Wang
et al., 2023), which bound below the residual error function as a function of the distance to WW*, this is a much weaker local
error bound since it does not distinguish between vectors of varying magnitudes along the direction of w*. Since our lower
bound is related to the “sharpness’ notion studied in (Wang et al., 2023), we refer to it as the “alignment sharpness” to
emphasize that it only relates the misalignment (as opposed to the distance) of vectors w' and w* to the residual error. To
the best of our knowledge, such a form of a local error bound, which only bounds the alignment of vectors as opposed to
their distance, is novel. We expect it to find a more broader use in learning theory and optimization.

C. Omitted Proofs from Section 3
C.1. Proof of Proposition 3.1

This subsection is devoted to the full version of the proof of Proposition 3.1.

Proposition C.1 (Alignment Sharpness of the Convex Surrogate). Suppose that Dy is (L, R)-well-behaved, U, 1) is as
in Definition 1.3, and €,6 > 0. Let ju > a?LR*/b. Given any w' € B(W), denote by u* the optimal solution to (P) with
respect to w' and the sample set S = {(xV, y)Y, drawn i.i.d. from D. If m satisfies

m > AW L4 log*(d/(e0))(1/€*/? + 1/(d)) ,
then, with probability at least 1 — ¢,

VL (whsil) - (wh = w*) > pl| (w*) w13
— 2(OPT +¢€) /b — 2(VOPT + ve)|[w' — w*|| .

Proof of Proposition 3.1. Given any weight parameter w! € B(W) and @' from the lemma statement, let u’ be the
population-optimal activation, which recall was defined as the solution of the optimization problem (EP). Given a sample
set S = {(x 4}  suppose, hypothetically, that we could construct a new sample set S* using x(*)’s from S but
with the true labels without noise: S* = {(x(®,y*@)}m  9*() = 4*(w* - x(¥)). For this reason, we define the following

sub-problem, to use as reference:
m

1 _ .
ik € argmin — Y (u(w - x®) — )2, (P*)
UEU(a,b) m ;

For a parameter w', we will denote @%,, by @*' for simplicity. Recall that the population version of @** was defined by
(EP*).

To prove Proposition 3.1, we decompose V Ly, (W' if) - (w'

— w*) into three summation terms, as follows.
VL (what) - (wh — w*)

(at(wt - X(z‘)) — y(i))(wt —w") . x(@

3=
M

i=1

((ﬂt(wt X(z)) 7 ﬂ*t(wt X(z)))(wt 7 W*) . X(z) + (ﬁ*t(wt . X(z)) . y*(i))(wt o W*) X(z))

I
3=
NE

1

%

1 m ) ) ) .
L3 () _ Y (wh - x® — w* . x@). 11
+m;(y y)(wh-x —wr . xV) )

%A local error bound of this form was first used in (Zhang & Yin, 2013) under the name “restricted secant inequality.”

12
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We tackle each term in (11) separately, using the following arguments. Because the proofs of these claims are technical, we
defer them to later subsections in Appendix C.

The first claim stated that the first summation in (11) is of order (1/e + vVOPT)|w’ — w*|2 + (OPT + €) /b with high
probability.

Claim C.2. Let S = {(x(,4()}™ | be m i.i.d. samples from D where m is as specified in the statement of Proposition 3.1.
Let 4! be the solution of optimization problem (P) given w! € B(W) and S. Furthermore, denote the uncorrupted version of
Sby S* = {(x, y* @) where y*() = u*(w* - x()). Let 4** be the solution of problem (P*). Then, with probability
at least 1 — ¢, it holds

m

Z((ﬁt(wt x@) —at(wt - xD))(wh — w*) - xD > —(y/e + VOPT)||w! — w*|s — (e + OPT) /b .

i=1

1
m

The proof of Claim C.2 proceeds in the following routine: first, as we showed in Appendix F that due to some standard
uniform convergence results the sample-optimal activations @ and 4*¢ are close to their population counterparts, u! and
u*!, in L3 distance. Therefore, applying Chebyshev’s inequality we are able to swap the sample-optimal activations in
(11) by their population-optimal counterparts with high probability. Therefore, the proof boils down to lower bounding the
following right-hand side:

Z((,&t(wt,X(i))_ﬂ*t(wt,x(i)))(wt_ *)- x> error; + — Z (w' X()) uwt(wt- X()))(Wt—w*)'x(i)-

i=1 i=1

Recall that in Lemma 3.3 we have shown that Exp,[(u!(w! - x) — u**(w! - x))?] < OPT, thus using Chebyshev’s
inequality we can further show that the second term in the right-hand side of the inequality above can be lower bounded by
some small error terms as well, completing the proof of the claim.

The second claim implemented the misalignment lemma (Lemma 3.2) and showed that the second summation term in (11) is
basically some constant multiple of ||(w*)1wt||2, which is the main positive dominant factor among the three summations.

wt

Claim C.3. Let S* = {(x(",4*®)}™  be a sample set such that x(?)’s are m i.i.d. samples from Dy, and y*(*) =
u*(w* - x()) for each i. Let m be the value specified in the statement of Proposition 3.1. Then, given a parameter
w' € B(W), with probability at least 1 — § it holds that

- ~ % 3 * [ CG2LR4 * *
D@t (wh - xV) -y ) (wh —w*) x> —  lw )53 — Vellw' = w2 — /b,

where C is an absolute constant.

The proof of Claim C.3 is rather technical. We first define an ‘empirical inverse’ of the activation u*, and denote it by f .

Note that u*(z) € U(q,p) is not necessarily strictly increasing when z < 0, therefore (u*)~! is not defined everywhere on R,

and the introduction of this ‘empirical inverse’ function f is needed. Then, adding and subtracting f (@t (w - x®)) in the

wt x( Q) —w* x( Q) term, we get

(ﬁ*t (Wt . x(i)) —u* (W* . X(i)))(wt _ W*) . X(i)

NE

1
m
i

ﬂ*t(wt .X(i)) —ut(w* - X(l)))(w cx(@® f(ﬁ*t(wt ‘X(i))))

Msl

1
m

Z (@t (' - x9) (w0 (0wt x9)) w0,

S\Hﬁ

Studying the KKT condition of the optimization problem (P*), we obtain a critical observation that the first term in
the equation above is always positive. Then, observe that by our definition of f it works similar to the inverse of
(u*)~! and has the property that |f(a*(w! - x(V)) — w* - x| > (1/b)[a**(w! - xD) — w*(w* - x(D)| as well as

13
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(@t (wt - x®D) — u*(w* - xD))(f(a* (w! - xD)) —w* - x(D)) > 0, thus, the second term in the equation above can be
lower bounded by 7= > (@ (wt - x(V) — u*(w* - x(V)))2. By some standard concentration techniques, the quantity

above concentrates around its expectation Exp_[(4*(w! - x) — u*(W* - x))?], hence deploying the main structural result

on alignment sharpness Proposition 3.1 completes the proof of Claim C.3.

Similar to Claim C.2, the last claim showed that the third summation term in (11) is of order vVOPT||w* — w'||5, which is
relative small compared to the positive term in Claim C.3.

Claim C.4. Let S = {(x, )} be m i.i.d. samples from D, and denote $* = {(x(, y*())}™ | the uncorrupted
version of S where 3*(V) = u*(w* - x(V)). Under the condition of Proposition 3.1, given a parameter w' € B(TV) with
probability at least 1 — ¢ it holds:

1 & . ) ) .
— Y (@ =y D)y (wh - xD —w* . x) > —VOPT||w* — w'|| — (OPT +€)/b..
i=1

The proof of Claim C.4 follows from a routine similar to Claim C.2.

Plugging the bounds from Claim C.2, Claim C.3, and Claim C.4 back into (11), we get that with probability at least 1 — 34,

~ Ca’LR*
VEur(w'5) - (w' = w*) = T (w) e F = 2(VOPT + Ve) [w! = w12 = 2(0PT + ) /b,
for some absolute constant C, and the proof is now complete. O

C.2. Proof of Lemma 3.2

We restate and prove Lemma 3.2.

Lemma C.5 (Lower-Bounding L3 Error by Misalignment). Let u* € U(a,p)» Dx be (L, R)-well-behaved, and f : R — R
be square-integrable with respect to the measure of the distribution Dy. Then, for any w,w* € R, it holds that

B (%) — " (w” %)) 2 PLRY(w') > 3

Proof. The statement holds trivially if w is parallel to w*, so assume this is not the case. Let v = (w*)*v = w* — (w* -

w)w/||w||3. Suppose first that w - w* > 0. Then w* = aw + v, for some a > 0. Let V be the subspace spanned by w, v.
Then,

E [(f(w-x)—uw'(w %)) = B [(f(w-xy)—u'(wx))%] > B [(f(w-xy)—u"(w"xy))"L{xy € 4],

x~Dy x~Dy x~Dy

for any A C R<. For ease of notation, we drop the subscript V, and we assume that all x are projected to the subspace
V. We denote by w = w/||wl|2 (rtesp. v = v/||v||2) the unit vector in the direction of w (resp. v). We choose
A={w-x>0,v-x € (R/16,R/8) U (3R/8,R/2)}.

The idea of the proof is to utilize the non-decreasing property of u* and the fact that the marginal distribution Dy is
anti-concentrated on the subspace S. In short, for any |V - x| < R, by the non-decreasing property of u* we know that
f(w - x) falls into one of the following four intervals:
(=00, w*(aw - x + |[vl[212/32)], (u*(aw - x + |[v[2R/32), u(aw - x + [|v[2R/4)],
(u*(aw - x + [[v][2R/4), u*(aw -x + [|v[2R)], (u*(aw - x + [|v[[2R), +00).
When f(w - x) belongs to any of the intervals above, we can show that with some constant probability, the difference

between w* - x and w - x is proportional to ||v||2 and hence u*(w* - x) is far away from f(w - x), due to the well-behaved
property of the marginal Dy.

To indicate that f(w - x) belongs to one of the intervals above, denote
Li(x) = f(w-x) —u"(aw - x + [|v|2R/32),
L(x) = f(w-x) —u"(aw - x + [|v]2R/4),
I3(x) = f(w-x) —u"(aw - x+ ||V|2R).

>

»
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For any x € R, using the assumption that u* is non-decreasing, we have that I;(x) > I5(x) > I3(x); as a consequence, it
must be that [ (x)I3(x) > 0 or I2(x)I3(x) > 0.

u(ow - X+ Vv - x) f(w-x)
O o O o ®
. IvleRY . Ivi2R . [vll2R
U (aw X+ 16 u |l aw - x+ 3 u | aw-x+ 1

Figure 1: Under the assumption that v - x € (R/16, R/8), and I (x) > 0, Is(x) > 0, the distance between f(w - x) and
u*(w* - x) is at least |u* (aw - x + ||v|[2R/4) — u*(w* - x)| > a||v|2R/8.

Case 1: f(w-x) € (u*(aw -x+||v]|2R/4), 0o). Then I1(x) > I5(x) > 0.Let B:={w-x>0,v-x € (R/16, R/8)}
and notice that B C A. We have that when x € B,

(W' x) =u(aw - x+ [|[v]2V - x) € (u*(aw - x + ||v]|2R/16), u*(aw - x + ||v]2R/8)),
thus we can conclude that

(flw-x)— u*(w* -x))*1{x € B}

* * * * 2
= ({f(w-x) = (aw - x + |[v[2R/4)} + {u"(aw - x + [[v[2R/4) —u"(w" - x)})"1{x € B}

(u*(OéW x+ [[v[2R/4) —w(w" - x))*1{x € B} ,
where in the last inequality we used that I>(x) = f(w - x) — u*(aw - x + ||v][2R/4) > 0 and u*(aw - x + ||v||2R/4) —
u*(w* - x) > 0 by the non-decreasing property of u* and that if a,b > 0 then (a + b)> > max(a, b)?. Further, using
u*(t) —u*(t') > a(t —t') fort > t' > 0 (which holds by assumption) and w* = aw + v, we have

(u*(aw - x + ||v|[2R/4) — u*(W* - x))?1{x € B} > a*(||v|2R/4 — v - x)*1{x € B}
> a®||vI[3(R/8)*1{x € B} ,

where in the last inequality we used that 0 < v - x < R/8 (by the definition of the event B). A visual explanation of the
result above is displayed in Figure 1.

Case 2: f(w-x) € (—oo, u*(aw - x + ||v][2R/32)). Then 0 > I;(x) > I»(x). We follow a similar argument as in the
previous case. In particular, we begin with

(f(w-x) —u*(w*-x))*1{x € B}
= ({f(w -x) —u*(aw - x + ||v|[2R/32)} + {u* (aw - x + |V|2R/32) — u™ (W* -x)})gll{x € B}. (12)

Note that 71 (x) < 0 and u*(W* - x) = u*(aw - x + ||[v]]2V - X) > u*(aw - x + ||V||2R/32) since V- x > R/16 > R/32
for x € B, thus the two terms in curly brackets in (12) have the same sign and we further have:

(f(w-x) —u*(w*-x))?1{x € B} > (u*(aw - x + ||v[2R/32) — u*(Ww* - x))*1{x € B}
> ?|[vIB(R/32)°1{x € B},

where in the first inequality we used the fact that (a + b)? > max{a?, b*} when both a,b < 0.

By Case 1 and Case 2, we can conclude that when I (x)I2(x) > 0, it must be:
(f(w-x) —u*(w*-x))?1{x € B} > a®||v|3R?/2"°1{x € B}. (13)
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Case 3: f(w-x) € (u*(aw - x + ||v]|2R), +00). Then I5(x) > I3(x) > 0 and we choose B’ = {w-x > 0,v-x €
(3R/8, R/2)}. Following the same reasoning as in the previous two cases, we have

(f(w-x) —w(w" - x))*1{x € B'}
= ({f(w-x) = u*(aw-x + [VI]2R)} + {u" (ow - x + [[v[2R) — u*(w" - x)})*1{x € B}
(u*(aw - x + ||v|[2R) — u*(W* - x))?1{x € B’}

>
> a®||v[|5(R/2)*1{x € B'}.

Case 4: f(w-x) € (—oo,u*(aw - x + ||v]|2R/4)). Then 0 > I5(x) > I5(x). It follows that

(f(w-x) —u(w"-x))*1{x € B’}
= ({f(w-x) —u (aw - x + |v[2R/4)} + {u"(aw - x + [[v[2R/4) — u(w* - x)})*1{x € B'}
> a?||v[3(R/8)*1{x € B'}.

Thus, we conclude from Case 3 and Case 4 that when I5(x)I3(x) > 0, we have

(f(w-x) —u*(w*-x))*1{x € B'} > a?||v|5(R*/64)1{x € B'}. (14)

Recall that for any x, at least one of the inequalities I3 (x)I2(x) > 0 or I>(x)I5(x) > 0 happens, thus, 1{I;(x)I2(x) >
0} > 1-1{I2(x)I5(x) > 0}. Therefore, the probability mass of the region (BN{I;(x)[2(x) > 0})U(B' N{Iz(x)I3(x) >
0}) can be lower bounded by:

Pr {X € (BN{lL(x)Ix(x) > 0}) U (B' N {L(x)I3(x) > O})}
= /v <]1{x € BY1{L(x)2(x) > 0} + 1{x € B'}1{I>(x)I3(x) > O})’y(x) dx
> / (IL{X € B}{I1(x)[2(x) > 0} + 1{x € B’ }1{Iz(x)I3(x) > O})de
Vixllw<R

> L/ (]l{x € B} + (1{x € B’} — 1{x € BH)1{Ix2(x)I3(x) > O}) dx, (15)
Vilxlleo <R

where in the first inequality we used the assumption that Dy is (L, R)-well-behaved. As a visual explanation of the lower
bound above, we include the following Figure 2.

To finish bounding the probability in (15), it remains to bound the integral from its final inequality, which now does not
involve the pdf anymore, as we used the anti-concentration property of Dy to uniformly bound below ~(x). Recall that by

definition, I (x), I5(x), I3(x) are functions of w - x that do not depend on v - x. Denote the projection of x on the standard
basis of space V' by x4 = W - x and Xy = v - x. Then, we have:

/ <IL{X eB'}-1{xe B})]I{IQ(X)I:g(X) >0} dx
Vixllo<R

[ (1fx e (B0 5) - 1{xee (5. §) ) axotnn 20,0010 2 0) dxs
= /lx“R]l{xw >0, I3(x)I3(x) > 0} dxg /x§|<R <]1{x;, € (?’f, ];)} - ]l{x;, € <1]Z, ];) }) dxg

>0,

16



Robustly Learning Single-Index Models via Alignment Sharpness

7'y
y axis: Xy
IS I (x)I2(x) >0 I(x)I3(x) >0
IV L(x)I5(x) > 0
s < Il(X)Ig(x) >0
R R 3R R| =z axis:'xv
16 8 8 2

Figure 2: On the 2-dimensional space V' spanned by (Xy, Xw ), at each point x € B U B, it must be that I (x)I3(x) > 0
or Is(x)I3(x) > 0. T'y denotes the interval of X = W - X such that f(w - x) > u*(aw - x + ||v||2R), hence both
I (x)I2(x) > 0, Io(x)I3(x) > 0; 'y denotes the interval of X, such that f(w - x) € (u*(aw - x + ||v]|2R/32), u* (aw -
X + ||vl2R/4)), hence I5(x)I3(x) > 0; finally, T's denotes the interval of Xy such that f(w - x) € (u*(aw - x +
[vl]2R/4), u*(aw - x + ||v]|2R/)), hence I,(x)I2(x) > 0. The area of the union of the red and blue regions is the lower
bound on the probability in (15). As displayed in the figure, the sum of the blue and red region is lower bounded by
1{x € B} + (I1{x € B'} — 1{x € B})1{I2(x)I3(x) > 0}.

Plugging the inequality above back into (15), we get:
Pr {x € BN{L(x)lz(x) > 0} + B'Nn{lz(x)I3(x) > 0}
ZL/ I{w-x>0,9-x € (R/16, R/8)} dx
Vixlle <R

= L//(]l{xv;, € (0, R)} dxg)1{x; € (R/16, R/8)} dxy = LR?/16. (16)

We are now ready to provide a lower bound on the L3 distance between f(w -x) and u*(w* - x). Combining the inequalities
from (13) and (14), we get

E [(f(w: x)—u"(w" x))’

x~Dy
2 B (f(w-xv) —u' (W xv))"L{xy € A}]
> a®(R?/1024) | v[3 LB [H{{xv € BA{L(x)1a(x) 2 01} U{B' N {L(x)Is(x) = 0}}}]

> a®(R*/27)L||v[I3 ,
where we used (16) in the last inequality.

Now for the case where w - w* < 0, it holds w* = aw + v with a < 0. Considering instead A = {w - x < 0,v-x €
(R/16,R/8)U(3R/8,R/2)} and similarly B = {w-x < 0,v-x € (R/16,R/8)}, B’ = {w-x < 0,v-x € (R/3,R/2)},
then all the steps above remains valid without modification. This completes the proof of Lemma 3.2. O

C.3. Proof of Lemma 3.3

In this section, we restate and prove Lemma 3.3. We first show the following claim, which is inspired by Lemma 9 in
(Kakade et al., 2011).
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Claim C.6. Let w' € B(W) and let u*',u’ be defined as solutions to (EP*), (EP), respectively. It holds that
Ex y)~pl(u' (W' x) —v(w' - x))(y — u'(w' - x))] > 0, for any v € U, p); similarly, it holds that Ey ,)p[(u*(w" -

x) — o' (W' x))(y* —u(w' - x))] >0, for any v' € Uq ).

Proof of Claim C.6. The proof is Let us denote by F; the set of functions of the form f(x) = u(w" - x), where u € U(, ;)
and w' is a fixed vector in B(W). We first observe that F; is a convex set of functions. This is because for any « € [0, 1],
for any f1, fo € F; such that f1(x) = ug (W' - x), fo = ua(w' - x), let uz(-) = aui(-) + (1 — @)us(-), it holds:

afi(x) + (1 —a)f2(x) = auy (W' - x) + (1 — a)ug(Wh - x) = uz(w' - x),

note that 3 is also (a, b)-bounded, non-decreasing, and u3(0) = 0, hence u3 € Uy, p) and f3(x) = ug(w' - x) € Fy, thus,
JF is convex.

Since F; is a convex set of functions, essentially we can regard u®(w? - x) as the Lo projection of i (which is a function of

x) onto the convex set F;. Classic inequalities of /2 projection can be seamlessly transformed in our case. In particular,
below we prove that

B Sl (W x) —o(w" - x))(y —u' (W' x))] 2 0,Y0 € Upa - (17)
To prove (17), note first that f,(x) = u’
for any o € (0,1), we have af,(x) + (
E(x,y)~p[(t (W' - x) = )] < E(x )~

(w'-x) € Fyand f,(x) = v(w'-x) € F; since u’,v € Uyp). Thus,
1—a) u( ) € F;. Furthermore, by definition of u!, Vf € F, we have
f(x) — y)?], therefore, it holds:

! 1 t t 2
0<~ (X’END[(afv(x) + (1= a)fulx) = )] - o ’END[(U (w - x) — )]
L t(wt t byt 2 trot 9
- E(::,Ew“u (W' x) —y +ao(w" - x) —u' (W' -x)))" = (' (W' - x) = y)]
= (x7£~p[2(ut(wt ' X) - y)(U(Wt . X) — Ut(Wt . X)) =+ a(v(wt . X) _ ut(wt . X))Q].

Let o | 0, and note that Exp, [(v(w! - x) — u!(w' - x))?] < +00, we thus have

LB (w0 (! 3))(y — ' (! x))) > 0,

proving the claim.

We can show that a similar result also holds for u*! and y*. Specifically, we have:

( ]E;) D[(u*t(wt x) — v (whx))(y* —ut(wh-x))] >0,V € Ula,p)- (18)
X,Y)~
This completes the proof of Claim C.6. O

We now proceed to the proof of Lemma 3.3.

Lemma C.7 (Closeness of Population-Optimal Activations). Let w' € B(W) and let u*!, u® be defined as solutions to
(EP*), (EP), respectively. Then,
E [(u'(w'-x)—u*(w'-x))?] < OPT.

x~Dy

Proof. Summing up the first and second statement of Claim C.6 (i.e., (17) and (18)) with v = u*! € U(a,py in (17) and
v =u' € Uy in (18), we get:

0 B (w30~ (w' - 30))(y (- 30) o+ (w7 (w' - 30) ' (w - 0) (3" — ™ (w' - x)]

= E [('(w x)—u"(wx)(y—y +u(whx) — (W' x))]

(x,y)~D
= (X,END[(ut(wt X)) — u*f(w X))y —y")] - XNEDX[(ut(Wt x) — u*t(wt .X))Q]

18
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Therefore, moving the second term above to the left-hand side, then applying the Cauchy-Schwarz inequality, we have

E [(W'(w'x)—u"(w %)< E_[(u(w x)—u" (W x))y—y)

x~Dx (x,y)~D
S VLB [(uf(whx) —urt(wh-x))2 Ef(y —y7)?],
completing the proof of Lemma 3.3. O

C.4. Proof of Corollary 3.4

Corollary C.8 (Closeness of Idealized and Attainable Activations). Let ¢,5 > 0. Given a parameter w* € B(W) and

m > dlog*(d/(ed))(b2W3 /(L%€))3/2 samples from D, let i be the sample-optimal activation on these samples given W',

as defined in (P). Then, with probability at least 1 — 0,
B [(a'(w'x) = u(w" - x))?)

< 3(e + OPT + b?||w' — w*||3)

Proof. The corollary follows directly from the combination of Lemma F.4 and Lemma 3.3, as we have:

E [(@'(w' x) —u"(w" x))?]

x~Dy
= xNEDX[(iLt(Wt x) —ul(whx) +ut(wh - x) —ut(whx) F et (wh o x) — et (wtx))F
3B (W) —u (w4 B [ x) — w024 B [t —ut(w )?)

< 3(e + OPT + b%||w' — w*|2),

where we used that because u*! € argmin, ey, Exop, [(u(w! - x) — u*(w* - x))?], we have Exwp_[(u*t(w! - x) —

u*(W* - x))?] < Exop, [(u' (W - x) — u*(W* - x))?] < b?||w! — w*||3, with the last inequality following from the fact
that u™ € Uq p)- O

C.5. Proof of Claim C.2

In this subsection, we prove Claim C.2 that appeared in Appendix C.1, the proof of Proposition 3.1.

Claim C.9. Let S = {(x(,4®)}™ | be m i.i.d. samples from D where m is as specified in the statement of Proposition 3.1.
Let 4! be the solution of optimization problem (P) given w! € B(W) and S. Furthermore, denote the uncorrupted version of
Sby S* = {(x, y* @) where y*() = u*(w* - x(9)). Let 4** be the solution of problem (P*). Then, with probability
atleast 1 — 4, it holds

72 (wt - x@) —a*t(wt - xD))(w! — w*) - xD > —(y/e + VOPT)||w! — w*|2 — (e + OPT) /b .

Proof. Adding and subtracting u*(w* - x(V) and u**(w' - x(V)), we have

% Z((ﬂt(wt . X(z‘)) _ ﬂ*t(wt . X(i)))(wt o w*) Cx(®

1« ,
il (Z) (#) x(® u*t( (1) (@) t_w*) - x®
- ;z (wh-x ut(wh - x)) (w' + — E (wh-x ot (wh - x))(wh —w*) - x
1 m
— E twt - x@) —wt(wh - xO))(wh — w*) - x), (19)
m
i=1

To proceed, we use that both 4*!(2) and 4 (2) are close to their population counterparts u?(z) and u*!(z), respectively. In
particular, in Lemma F.4 and Lemma F.2, we showed that using a dataset S of m samples such that

b2w3)3/2

m 2 dtog? 0/ (e0)“ .
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we have that with probability at least 1 — &, for all w!, w* € B(W) it holds

E [(a'(w'-x)—u'(w'-x))?]<e, E [(@"(w' x)—u (W' x))?] <e (20)

x~Dy x~Dy

Now suppose that the inequalities in (20) hold for the given w? € B(1V) (which happens with probability at least 1 — §).
Applying Chebyshev’s inequality to the first summation term in (19), we get:

1

Pr { m Z(ﬁt(wt : x(i)) —uf(w' -x(i)))(wt —w") Cx(® XNEDX[(ﬂt(wt x) —ut(whx)(wh —w*) - x]| > 5]
< B ()~ )P x ) @1

since x(?) are i.i.d random variables. The next step is to bound the variance. Note that Dy possesses a 1 / L-sub-exponential
tail, thus we have Pr[|(w! — w*) - x| > [[w! — w*|[or] < (2/L?)exp(—Lr). Choose r = 2 log(2/(L?¢')); then, we

have Pr||(w! — w*) - x| > r] < €. Now we separate the variance under two events: A = {x : [(w! — w*) - x| < r} and
TA={x:|(w—w") x| >7}.

E [(a'(w' x)—u'(w' x))*(w!-x —w* x)?]

x~Dy
= B [(@(w'x) — u'(w xR (w o x - w e x)P1{A)] 22)
£ B [ x) —u(whx)Pwx = w1 - 1A},

Using that Exwp, [(4f(w! - x) — ul(w! - x))?] < ¢, the first term in (22) can be bounded as follows:

B (w0~ ul (w0 (e x - W xPUAN <72 B[t w e x) — u'(w! %))

4W2e
<rle= — log?(2/(L%€)). (23)
The second term in (22) can be bounded using that both 4! and u! are non-decreasing b-Lipschitz and vanish at zero (thus
lat(wt - x)| < blw? - x| and |uf(w! - x)| < b|w? - x|, with their signs determined by the sign of w' - x) and then applying
Young’s inequality:
B [((w-x) - u(w' - x))2(w' - x = w* - x)%(1 — 1{A})

x~Dy

<b? E [(w'-x)*(w' x—w"x)?(1—1{A})]

x~Dy

<2° B [(wx)t+ (whx)?(w %)) (1 - 1{A})].

x~Dy

Since Dy is sub-exponential, we have E[(v - x)8] < ¢2/L8 for some absolute constant ¢, hence

E [(w'-x)'(1-1{A})] < \/XNbe[WS((wt/||wt||2) X[ Pr[w! x| > r] < W'V /LY.

x~Dy
Similarly, for E[(w! - x)?(w* - x)?(1 — 1{A})], we have:

B [(w'-x)(w" %)= 1H{A}] <2 B [((w' 3" + (w' - x))(1 = L{A})] < 2e(W/L)*VE.

x~Dy x~Dy
Combining the inequalities above with (23), we get the final upper bound on the variance in (22):

W2e
12

B (w0 — ul (w2 (w e x - w e x)?) <

log?(2/(L%¢)) + 6¢b*(W/L)*Ve.

Thus, choosing s = €/b in (21), € = €2, and using m > W*b* log®(1/¢)/(eSL*) samples we get

N 1zcb2W4\/§> b2Les (W% log? ( 1 ) N b2W4e)

<
L* L? L4

< ’ <5,
e2Wbtlog*(1/e)

Iz 10g2(2/(L€/))

1 [4W3e
Le

ms?
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Plugging the inequality above back into (21) and recalling that Exp, [(4f(w! - x) — u!(w! - x))?] < € (from (20)), we
finally have with probability at least 1 — 4,

% Z(ﬁt(wt . X(z‘)) —uf(wh X(i)))(wt —w)- «(
> xgx[(ﬁt(wt -x) — ut(wt - x))(wt —w*) - x] — /b
>~ [ B @) — w7 B W x w7 — /b

> —Vellw' = w*||2 —¢/b,

where in the second inequality we used the Cauchy-Schwarz inequality and in the last inequality we used the assumption
that Dy is isotropic, i.e., Exp, [xx '] = I. Finally, note that (20) holds with probability at least 1 — &, applying a union
bound we get that with probability at least 1 — 2§, we have

> @ (whxD) —ut(wh - xD))(wh = w*) x> —\e|lw' = w|y — €/b,

i=1

1
m
In summary, to guarantee that the inequality above remains valid, we need the batch size to be:

- dW9/2b410g4(d/(65)( 1 1).

m

< i IR (24)

We finished bounding the first term in (19).

Since the same statements hold for the relationship between @** and «*? as they do for 4! and !, using the same argument
we also get that with probability at least 1 — 24,

m

Z(ﬁ*t(wt 'X(i)) _ u*t(wt X(z)))(wt _ W*) X(z) > —\/EHWt _ W*||2 o E/b,

which is the lower bound for the second term in (19).

Lastly, for the third term in (19), since in Lemma 3.3 we showed that for any w? it always holds:

E [(u'(w' x)—u"(w' x))’] <OPT,

x~Dy

the only change of the previous steps is at the right-hand side of (23), where instead of having the upper bound of r2¢, we
have

B [(ut(w! - x) — (w2 (w! - x — w - x)?1{A}] < r20PT = 20T

E 5 log?(2/(L%¢).

And in the same reason, we have

E [(u'(w'- x)—u"(w'- x))*(w! x—w" -x)*(1-1{4})] < 6Cb2(W/L)4\/€7.

x~Dy

As a result, Chebyshev’s inequality yields:

Pr HTZ Z(ut(wt .x(i)) — i (w! .X(i)))(wt —w) Cx(@® xN]%X[(ut(Wt ) — ut w3 —w*) x| > S]
S B (w0 - (w0 wx - w )7
2 2T
< W;(ZWL?PTIOg%?/(LQe’)) + W)
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Now instead of choosing s = ¢, we let s = (OPT + ¢) /b and keep €’ as €2 to get

1 (4W2OPT 2( 2 ) 12cb2W\/Z')
————log +

ms2 L2 L2%¢ LA
- b2L4ed (W2OPT1 ) (1) b2W4e> <
~ dW9/2b4 log*(d/(€8))(OPT + €)2 L2 Le L+ )=

under our choice of m as specified in (24). Thus, we have that with probability at least 1 — &, it holds

% Z(ut(wt . X(z‘)) _ u*t(wt . X(i)))(wt _ W*> - x(®
> B [(u'(w'x)—u" (W' x))(w' —w").x] - (OPT +¢)/b

x~Dy

> —OPT||w! — w*||s — (OPT + ¢) /b,

where in the last inequality we used the fact that

E [(u'(w' x)—u"(w'x))(w' —w") x]| < \/ E [(u'(w'-x) —w(w'-x))?] E [(w—w*) x)’]

x~Dy x~Dy x~Dy

< VOPT|w! — wll,
since Exwp, [(uf(w! - x) — u*!(w’ - x))?] < OPT by Lemma 3.3.

Therefore, combing the upper bounds on the three terms in (19) we get that with probability at least 1 — 59, it holds:

D@ (wh - xD) —art(wh - xD))(wh = w*) - x> —(2y/e + VOPT)|[w' — w*|l3 — (3¢ + OPT)/b.  (25)

=1

1
m

Since (25) was proved using arbitrary €, > 0, it remains to replace § « ¢/5 and € < ¢/4 to complete the proof of
Claim C.2. O

C.6. Proof of Claim C.3

In this subsection, we prove Claim C.3 that appeared in the proof of Proposition 3.1 in Appendix C.1.

Claim C.10. Let S* = {(x®,y**)}™  be a sample set such that x(")’s are m i.i.d. samples from D, and y*(*) =
u*(w* - x()) for each i. Let m be the value specified in the statement of Proposition 3.1. Then, given a parameter
w'! € B(WW), with probability at least 1 — § it holds that

- ~ % 1 *(7 * 1 CCL2LR4 * *
S (w' - x @) -y O (w! —w) x> T (w ) = Vellw! - w2 — efb

where C is an absolute constant.

Proof. Before we proceed to the proof of the claim, let us consider first the inverse of u*. Since u*(2) € U, p) is strictly
increasing when z > 0, hence (u*)~!(a) exists for a > 0. However, when z < 0, u*(z) could be a constant on some
intervals, hence (u*)~! () might not exist for every a < 0. We consider instead an ‘empirical’ version of (u*)~!(a) based
on S*, which is defined on every a € R. Given a sample set S* = {(x(*), y*())} where y*(*) = u*(w* - x(*)), let us sort
the the index ¢ in the increasing order of w* - x® ie.,w* - x1) <. <wre x(™) Since u* is a monotone function, this
implies y*(i)’s are also in increasing order, i.e., we have y*(l) << y*(m). We then partition the set {y*(i)};il into
blocks
As = {y*(k571+1)7 sy y*(kS)}v s.t. y*(k571+1) == y*(k“) = Ts,

fors =1,...,s'. Since {yy*(V} is sorted in increasing order, we have 7,_; < 7, for s = 2,..., s'. Note that since u*(2) is
strictly increasing when z > 0 and that «*(0) = 0, A, is a singleton set whenever 75, > 0. Furthermore, let’s denote s* as
the largest index among 1, . .., s’ such that 75« < 0.
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Suppose first that 7.« < 0, let’s define a function f : R — R in the following way:

(u*)~Hw), a>0
w* - x (k) 4 e (wr -x (k) a € [1g, 0]
fla) = wrxks), ‘ a=T1s,8=1,...,8—1 (26)
w* ox(ka-1) 4 T (w xRt g x(be-1)) g€ (1o, ), s = 2,0, 8"
w* - x(D 4 FHa—m1), o € (—oo,m)
When 7,- = 0, we define (0 — 7, ) /74 = —1, and hence f(0) = 0. The rest remains unchanged. A visualization of f with

respect to ReLLU activation is presented in Figure 3.

£ O >
O O——0O

“(wex®)  wr(w o x®) (w” - x©) VC(
w* . x®
w*-x? Q@
Figure 3: Given u*(z) = max{0,z} and a dataset S* = {(x,u*(w* - xD)), ... (xO w*(w* - x())} where

w* o xM < w* . x@ <wr . xB) <, f the empirical inverse of u*, has image above.

The function f has the following properties. First of all, f(a) satisfies f(0) = 0, (a1 — az)/a > f(a1) — f(az), for all
a1 > ay > 0, since f(a) = (u*)"'(a) when @ > 0 and u* € U(a,p)- Secondly, flon) = f(az) > (a1 — az)/bfor all
a1,ae € R, a; > ay. This is because each segment of f has tangent at least 1/b. Thirdly, for any a > u*(w™* - x(i)), it
holds that f(a) — w* - x(® > (o — u*(w* - x(0)) /b. This is because that suppose u* (w* - x()) € A, for any a > 7 it
holds

fl@)=w x> f(a) = w*-x®) = f(a) = f(r) = f(a) = flu(w* - xD)) = (a —u*(w" - xP)) /b,

by the fact that tangent of f () is lower bounded by 1/b. In addition, for any o < u*(w* -x(®), it holds w* - x(!) — f(a) >
(u*(w* - x(¥) — @) /b. This can be seen similarly from the construction of f. Suppose u*(w* - x()) € A,, then for any
a < T, it holds

w'ox — f(a) 2w x®ot — fla) = f(r) = fla) = fur(w™ - xD)) = f(a) 2 (" (w" - x) —a)/b.

Again, we used the fact that f(al) — f(ag) > (aq —ag)/bforall ag,as € R, a1 > as in the last inequality.

Now we turn to the summation displayed in the statement of the claim. To proceed, we add and subtract f(a*!(w* - x)) in
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the second component in the inner product, which yields:

m

il Z —ut(w* - X(i)))(wt —w)- x(®

Z A*t _ u*(w* . X(i)))(wt . X(i) _ f(ﬁ*t(wt . X(i))))
%Z (wh-x@D) —u*(w* - xON(Fatwt - xD)) —w - xD). 27

To bound below the first term in (27), we make use of the following Fact C.11. The proof of Fact C.11 can be found at
Appendix C.7.

Fact C.11. Let w' € B(W). Given m samples S = {(xW y* W) . (x(m) y*(m))] et 4** be one of the solutions to
the optimization problem (P*) , i.e., 4** € argmin, gy, (1/m) Py 1( (wt - x( )) — y*()2 Then

m

S (@t (wt - x@) @) (wt x® — flat(wt - x0))) > 0,

i=1
for any function f : R — R such that f(0) =0, (aq —a2)/a > f(a1) — f(az) forall a3 > @y > 0, and f(a1) — flag) >
(a1 — o) /b, Vi, a0 € R, a1 > as.
As we showed previously, f satisfies the prerequisite of Fact C.11, hence applying Fact C.11 we observe that the first term
in (27) is non-negative:

m

LSt x0) w0 f (- x0))) > 0. (28)
=1

Therefore, plugging (28) back into (27), we get:
L3 (@ (w - x ) -y @) ! - w) x> if — )t (wt - x)) —w o xD). (29)
m - m —

Recall that we have showed the function f satisfies f(a)—w*-x(®) > (a—u*(w*-x?))/b > 0 whenever a > u*(w*-x(?),
and moreover, w* - x(V — f(a) > (u*(w* - x") — ) /b > 0 when a < u*(w* - x(?)). Therefore, let o = @**(wt - x(?)),
combining these results we get

(ﬁ*t(wt . X(z)) _ u*(w* . X(z)))(f(a*t(wt . X(z))) —w*. X(z)) > (ﬁ*t(wt . X(i)) o ’LL*(W* . X(i)))2.

Bringing the inequality above back to (29) we then get

1 Axt/ot (%) *(7) (z) 1 (Z) *(i) 2 0
- E . E w - X . 3
i l(u (W X ) )(W w* ) ( )

The goal now is to bound below the right-hand side of (30) by E[(4*!(w! - x) — y*)?] and some small error terms using
Chebyshev inequality as we did in Claim C.2. Plugging in Lemma 3.2 we can further lower bound E[(7*!(w! - x) — y*)?]
by [|(w*)1wt ||3 and then we are done with the proof of this claim. Note that Chebyshev’s inequality yields

1
> s] < e xwl%x[(ﬂ*t(wt X)) — y*)ﬂ. 31

Hm Z(a*f(wt X(z)) _ y*(i))Q _ E [(,&*f(wf -X) _ y*)2]

x~D.
=1 *
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We now bound Eyp_[(4* (W' - x) — y*)*]. Observe that

B L@ x) —y) Y = B[ (whx) — a (w0 + u (wx) )it w! %) - )]
<4 B (@ (w'x) - o) (@ (') + (7))
+4 B [ (w'x) =y (@ (wh - x)? + (")) (32)

We focus on the two terms in (32) separately. Again, choosing r = 2 log(2/(L?¢’)), then by the L-sub-exponential tail
bound of Dy, it holds Pr[|w’ - x| > 7] < €, Pr[|lw* - x| > r] < ¢. Since y* = u*(w* - x) and both u* and @** are
non-decreasing b-Lipschitz, it holds:

E (@ (w' %) —u (wh - x))2((@"(w' - x))? + (57)?)

x~Dy
<8 B (@ whex) - wtw! e x)A(w e x) + (wx)?)
=8 B (@ (w' %)~ u(wh e x)A(w )P (w0 E{w X < e x| < )
F0 B (@ x) -t w e x)P((w %)% + (w0 w x> or w x| 2 7))
< B (@ (w'x) - ut(w! %)
w2t B R(wx)((w %0+ ()R {[w x| > or [ x| > 7)) (33)

The first term in (33) can be upper bounded using Lemma F.2, which states that when m 2
dlog(1/5)(b*W3log?(d/e)/(L%€))3/?), with probability at least 1 — § it holds Exp,_[(7*(w' - x) — u*(w' - x))?] < €
for all w* € B(W). Now suppose this inequality is valid the given w! € B(W) (which happens with probability at least
1 — §). For the second term in (33), note that for any unit vector a it holds Exp_[(a - x)8] < ¢?/L8 for some absolute
constant ¢ > 0, and furthermore, the magnitude of r ensures that Pr[|w? - x| > 7 or |w* - x| > r] < 2¢, therefore,

combining these bounds, we get:
ED 2(w! - x)*((w'-x)? + (w* - x))I{|w' - x| > ror |[w*-x| > r}]

<2,/ E [(wt-x)8]Pr[|wt x| >7ror|w" x|>7]

x~Dy

+ 2\/2( ED [(wt-x)8] 4+ ED [(w* - x)8]) Pr[|w? - x| > r or [W* - x| > 1]
< 24¢(W/L)*Ve .
Plugging back into (33), we have

E [(a*(w! x) —u*(wh-x))2((0*(w! - x))2 + (y*)?)] < 2b%1%€ + 48¢(bW/L)* V¢,

x~Dy
which is the upper bound on the first term of (32).

For the second term in (32), since by definition we have u* € argmin, ez Ex~p, [(u(w? - x) — y*)?], it holds that

B (0 (w'x) —y)?) £ B [ (W) —u'(w' - x0)) <8 B [(w = w) %)% < 8w — w3,

x~Dy x~Dy x~Dy

since x is isotropic. Thus, using similar steps as in (33), we have
LB (rt(w %) =) (@ (W' X)) + (7))

<2v*r? E [(uw(w'-x)—y")?

x~Dy

+ 2b* E;D 2((w' %)% + (w* - x)?)?1{|w’ - x| > 7 or |[w* - x| > r}]

X~ Dy

< 2b*r?|\wh — w*||2 + 48¢(bW/L)*V/e.
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In summary, combining all the results and plugging them back into (32), we finally get the upper bound for the variance:

32622
Akt t . _ o x\4 <
E (@) -y < S

log?(2/(L2e)) (b |wh — w*||2 + €) + 384c(bW/L)* Ve

Let s = by/e||w! — w*||2 + €/b and plug the last inequality back into (31) to get:

H m Z(ﬁ*t(wt x) =yt D)2 — B [(a(w' - x) — )]

x~D.
i=1 *

> byelw! = willa + ¢/

1 20°W2 ., 2
1 2 t * |12 4 L 4 1.
T o () (I = w4 )+ asiclw /L)

Choosing € = ¢2/b* and using similar arguments as in Claim C.2, we get that the right-hand side of the inequality
above is bounded by 8, given our choice of m > db*W?®/2log*(d/(ed))(1/€%/? + 1/(ed)) as specified in the statement

of Proposition 3.1. In summary, after a union bound on the probability above and the event that Exp, [(4*!(w! - x) —

u*t(w' - x))?] < ¢, we have with probability at least 1 — 24,

— Z (w'ox) =y D)2 > B [(@"(w'x) —y)%] = Vebl|w' — w2 — ¢/b.

Recall that in Lemma 3.2 we showed that Exp_[(7* (W' - x) — u*(W* - x))?] > Ca?LR*||(w*)*w*||3 for an absolute
constant C'; thus, our final result is that with probability at least 1 — &,

72 (wh - xD) = = @) (wh — w) - mZ%Z(ﬁ*t(wt.}((i))_y*(w)z
m
=1

Ca*LR* . .
2 ———ll(w )Ewt |13 — Vellw! — w*||a — €/b.

This completes the proof of Claim C.3. O

C.7. Proof of Fact C.11

We prove a modified version of Lemma 1 (Kakade et al., 2011), presented as the statement below. The statement considers a
smaller activation class and a function f with different properties compared to (Kakade et al., 2011), and the proof is based
on a rigorous KKT argument.

Fact C.12. Let w! € B(WW). Given m samples S = {(x(1),y*M)) ... (x(™) 4*(M))1 et 4 be one of the solutions to
the optimization problem (P*) , i.e., 4" € argmin, ey, , (1/m) 227%, (w(w' - x() — y*()2 Then

S (at (wt - x0) = @) (wh - x O — p(at(wt - x))) = 0,

i=1
for any function f : R — R such that f(0) = 0, (a; — a2)/a > f(a1) — f(ag) forall ag > ag > 0, and f(a1) — f(ag) >
(a1 — a2)/b, Va2 €R, a1 > as.

Proof. We transform the optimization problem (P*) to a quadratic optimization problem with linear constraints. To
guarantee that the solution of this quadratic problem corresponds to a function that is (a, b)-unbounded, we add a sample
(x®) 4*(k)) = (0, 0) to the sample set. Let z; = w' - x() such that (perhaps after some permutation) z; < zo < --- < 2,
and z; = 0, we solve the following optimization problem:
m
i (9 *(1))2
min @ =)
By 2
st 0< gt g 1<i<k-—1,
, . (34)
a(zipr —2) < g — g0 k<i<m-—1,
gt — g <b(zipg —z), 1<i<m-—1,
g* =0,
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Denote the solution of (34) as (), i = 1,--- ,m. Let 4*!(z) be the linear interpolation function of (z;,9*(*)), then
@*t € U,y since @7(0) = @ (z,) = §*(F) = 0, @** is b-Lipschitz and @ (2) — 4**(2’) > a(z — 2) forall z > 2’ > 0.
In other words, finding a solution of (P*) is equivalent to solving (34).

Now observe that the summation Y7 | (5*() — y*@)(2; — f(§*(?)) can be transformed into the following:
S0 =5 = 1) = 3 (6D - ) ) = 10 = G = JGE). 69
i=1 i=1 N j=1

where we let 2,41 = 0, 77,1 = 0 (and hence f(g;, ;) = 0as f(0) = 0).

To fully utilize the information that §*() is the minimizer of the optimization problem (34), we write down the KKT
condition for the optimization problem (34) described above:

§ O =y D (N = N 2= = Nin)/2 = (/Ui = kY, i =1 m (36)

XY gy =0, i =1, k- 1; (37)

Ai(a(zips —z) = (D =g @) =0, i =k, m - 1 (38)

M@ =g ) = b(zip1 —2)) =0, i = 1,-- ;m— 1 (39)

ng ™ =0, (40)

where \;, A, > 0,fori =1,...,m — 1, and v, € R are dual variables, and we let \y = A, = 0 for the convenience of

presenting (36).
Summing up (36) recursively, we immediately get that

i

SO0~y @) = SN~ A~ el > K.

j=1
Bringing this equality above back to (35), we have

SO =y )z - £

=1

<.

X — F@* D) = (zig1 — F@ET)) +

N
l\DM—l

S vz~ FG D) — (zier — FGEV)))
1=k

NgE HMS

s
Il
—

(N = Xi)(zi = F* ) = (ziga = F@ON)) + vz — FF) = (s — FGTTD)). @D

DN | =

Since by definition, z,, 1 = f(§*"*1) =0, 2, = 0, and as §*(), i € [m], is a feasible solution of (34), it holds 7*(*) = 0,
we thus have
k(2 — F@* ™) = (2mg1 — F@T)) = 0.

Bringing this back to (41), we get

>~y O)es 1) = 3 S0  FG D)~ i~ FGED). @)
i=1 =
Consider first when ¢ = 1,...,k — 1. Suppose for some ¢ € {1,...,k — 1} we have A}, \; > 0, then according to the
complementary slackness condition (37) and (38) it holds that 0 = ¢*(“+1) — Q*(i) = b(zi41 — 2;). Therefore, the we have
(N = Xi) (2 — F*D) = (zig1 — f(7*0FD))). Suppose for some i € {1,. — 1}, it holds A, > 0. Then, it must be
the case that § y *(@+1) _ g#() = p(z;41 — 2;) > 0, according to the KKT cond1t10n (39). Since f(A*(ZH)) flr®y >
(g*0+1) — 5*()) /b by assumption on f, we thus have (z; — f(3*®) — (zi11 — f(§*+1))) > 0. Finally, if A; > 0, then

37) indicates that 0 = §*(+1) — §*() Therefore, as zj.1 > z;, the i** summand is also positive. In summary, the first
summation in (42) is positive.
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Now consider i € {k,...,m}. Observe that if for some i € {k,...,m} it holds A; > 0 and A, > 0 at the same
time, then KKT conditions (38) and (39) imply that a(z;41 — 2;) = () — () = b(zit1 — 7), as a < b it
has to be z;1, — 2z = 7"+t — §*() = 0, which indicates that the i*" summand in the second term must be 0, i.e.,
(N = A)(zi = F(*) = (zisa = f(570FD))) = 0.

Now suppose for some ¢ € {1,...,m}, A, > 0and \; = 0, then by the complementary slackness conditions (38) and (39),
it must be that 7* (1) — §*() = p(z;, 1 — 2;) > 0. Again, since f satisfies f(7* (1)) — f(7*) > () — @) /b for
any §*0+1) > ¢*() we thus have z; — z;11 + (f(7*0TY) — f(7**)) > 0. Thus it holds that (X} — \;)(z; — f(7*(V) —
(zit1 — f@“””))) 2 0.

On the other hand, if A} = 0 and ); > 0, then complementary slackness implies that §*(*+1 — 5*() = q(z; 1, — z;) > 0.
Furthermore, since §*(* > ¢*(*) > 0 when i > Fk, using the assumption that (1 — ag)/a > f(a1) — f(a2) when
ar > ag >0, we get 2 — zip1 +(f(5*0TD) = f(§71)) < 0,and hence (X, — A;) (2 — f(§*")) = (zi01 = f(570F1))) > 0
holds as well.

In summary, since each summand in (42) is positive, we finally get that

m

D@~y ) - ) = Y (Z@*@ - y*@)) (20 = FG") = (zgr = FGT)) 2 0.

i=1 i=1 Nj=1
This completes the proof of Fact C.11. O

C.8. Proof of Claim C.4

We restate and prove Claim C.4 that appeared in the proof of Proposition 3.1 in Appendix C.1.

Claim C.13. Let S = {(x(V,5(")}™ be m i.i.d. samples from D, and denote S* = {(x(,y*)}™ | the uncorrupted
version of S where 3*(Y) = u*(w* - x(9). Under the condition of Proposition 3.1, given a parameter w* € B(WW) with
probability at least 1 — § it holds:

S @ =y (w' - x - w* . xD) > —VOPT||w* — w'|ly — (OPT +€)/b .

=1

1
m

Proof. By Chebyshev’s inequality, we can write

m
1

= O =y xD —wrx) = B[y —y)(wh - wT) -]

Pr {
m = (x.y)~D

S

_ Epeyeonly” —9)* (W' x —w* - x)
B ms?

’]

Letr = 2% log(2/(L?¢’)), then by the fact that Dy is sub-exponential, we have Pr[|(w! —w*)-x| > r] < €. Furthermore,
since |y| < M where M = 2 1og(166*TW* /€?), as stated in Fact F.3, the variance can be bounded as follows:

(" —y)?(w' - x—w" - x)?]

(x,y)~D
< Bl - 0P x - wxPE{|(w - w) x] < )
LB =) x w0 {w —w) x] 2 )
X,y)~
<r? B [(uf(wF-x)—y)?
< B [(wx)— )]

B R () + gt w0 L w) x> )]

<r?0PT+ E [2(0*(w' x)? + M?)(w'-x —w* - x)*1{|(w! —w*) -x| > r}].

X~ Dy
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Since for any unit vectors a, b we have Exp_[(a-x)*] < ¢?/L* and Exp, [(a-x)*(b - x)*] < ¢?/L8, we have:

202 x~EDx[<Wt x)3(whox — w - x2)2 | (wh —w*) x| > )]

< 4b2(W/L)4\/XNF;DX[((Wt/IIthlz) (W= wH)/[wh = wH2) - )] Pr{|(w — w*) - x| > 7]

< 4eb?*(W/L)*Ve,
and in addition,

E [M*((w'—w") x)"L{|(w' — w") - x| > r}]

x~Dy

<202, [ E [((wh = w) - x)TPrll(w! —w?) - x| = 7] < eM*(W/L)*Ve.

x~Dy

Let s = (OPT + €)/b, € = ¢2, under our choice of m > db*W /2 log*(d/(e6))(1/€*/? + 1/(ed)), it holds that

1 <4W210g2(1/(L26’))OPT

3 + (4cb*(W/L)* + cM2(W/L)2)\@> <4

ms

Thus, with probability at least 1 — ¢ it holds that

LS -y wt o xO —wx) > B [(y—y*)w! —w*)-x] — (OPT +)/b,
m - (x,y)~D

Since

: \/ E [(y—y)? E [(w'—w") x)?| < VOPT||w" — w2,

(x,y)~D x~Dx

we finally have

1 & ) . . .
- Z(y*(l) —y ) (wt - xD —w* . xD) > —VOPT|w* — w'|y — (OPT + €)/b,
i=1
completing the proof of Claim C.4. O

D. Omitted Proofs from Section 4
D.1. Proof of Lemma 4.1

Our algorithm for initialization is the following Algorithm 2:

Algorithm 2 Initialization

1: Input: w° = 0; ¢,6 > 0; positive parameters a,b, L, R, W; u < a>LR*/b, step size n = p*/(27b*), number of
iterations to < (b/p)% log(b/1);
2: fort =0 to ty do
3: Draw mg > W20 %dlog*(d/(6))/(L*1186€3/2) i.i.d. samples from D
4 ' = argmin - i (u(wt - x®) — ()2,
uEU(a,b) =1
5. Via(what) = L 3 (at(wh - x®) — y@)x®,

mo
i=

6: witl=wt— nVEsur(wt; at).
end for
: Return: {w" ... wio}

[o BN |

We restate and prove Lemma 4.1 in below.
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Lemma D.1 (Initialization). Let u = Ca®?LR*/b for an absolute constant C > 0 and let ¢,5 > 0. Choose the step size
n = p3/(27b*) in Algorithm 2. Then, drawing my i.i.d. samples from D at each iteration such that

- W20 log" (d/ (ed))

~ L4u65€3/2 )

mo

ensures that within to < b°log(b/u)/u® iterations, the initialization subroutine Algorithm 2 generates a list of size t that
contains a point W° such that || (w*) w0 ||y < max{p||w*||2/(4b), 64b? /13 (v OPT + \/€)}, with probability at least 1 — 5.
The total number of samples required for Algorithm 2 is Ny = tomy.

Proof. Assume first that |[w*||s < 64b%/u®(v/OPT + /e). Then, for the parameter w® = 0, it holds that
[(w*)twolle = [[w*|l2 < 6462/ (VVOPT + /e). Hence, w® = 0 satisfies the condition ||(w*)1w0|y <
max{p[[w*||2/(4b), 646> /u*(VOPT + /€) }.

Now suppose [|w*[|2 > 64b%/13(v/OPT + /€). Let v denote the component of w* that is orthogonal to w?; i.e.,
vt = w* — (w* - whw'/|wt||3 = (w*)1tw', where w? is defined in Algorithm 2. Our goal is to show that when
[[vtll2 > u|lw*||2/(4b) at iteration ¢, the distance between w'™! and w* contracts by a constant factor 1 — ¢ for some ¢ < 1,
ie., [wiTt —w*|l2 < (1 — ¢)||w! — w*||2. This implies that when ||v!||5 is greater than p||w*||2/(4b), |[w't! — wi||,
contracts until ||v¥||a > u||w*||2/(4b) is violated at step to; this w'® is exactly the initial point we are seeking to initialize
the optimization subroutine.

Applying Proposition 3.1 we get that under our choice of batch size m, with probability at least 1 — 9, at each iteration it
holds

R 2L 4

Vi (whalt) - (wh —w*) > CGTR

We now study the distance between w'*! and w*, where w'*! is updated from w* according to Algorithm 2.

I(w*) =[5 = 2(VOPT + Ve) [w' — w*[|2 = 2(OPT +¢) /b.

w3 = (W = VL (W a') — w3

= [lw" = W[5 + |V Lour (w5 @) |3 — 20V Lowe (W' ) - (W' —w"). (43)

[w

Applying Lemma 4.3 to (43), and plugging in Proposition 3.1, we get that under our choice of batch size m it holds that
with probability at least 1 — 4,

Wit — w5 < [w" — w*[|5 + n*(10(OPT + €) + 46%||w" — w*||3)
+29(2(OPT + €) /b + 2(VOPT + Vo) [w' — w*||a — p||v![|2)
< (L4400 |w" = w*[[3 + 2n(2(VOPT + ve)[|lw" — w*[|2 — p[|v*]3)
+50(OPT + ¢, (44)

where ;1 = Ca?LR*/b and C is an absolute constant. Note that in the last inequality we used that < 1/10, hence
10772 <, and that b > 1.
Note that we have assumed VOPT + /e < 13 /(64b2)||w*||2. Furthermore, when ¢t = 0, v% = w* hence we would have
[[VOl2 > u||w*||2/(4b). Suppose that at iteration ¢, ||v!||a > p||w*||2/(4b) is still valid. Then, (44) is transformed to:
Iw"h = w*[|3 < (1 + 4b%°)||w" — w13 + 5n(OPT + ¢)
+2n((1%/(326%)) | W' — w2 w2 — (7 /(166%)) [[w* ) (45)

We will use an induction argument to show that at iteration ¢, |[w’ — w*||s < ||w*||2, which will eventually yield a

contraction |[w!™t — w*||3 < (1 —¢)||w’ — w*||% for some constant ¢ < 1. This condition ||[w! — w* |2 < ||w*||2 certainly
holds for the base case t = 0 as w’ = 0 hence ||w" — w*||2 = ||w*||2. Now, suppose ||[w! — w*||2 < ||w*||2 holds for all
the iterations from O to ¢. Then, bringing in 7 = 3 /(27b*) to (45), we get:
Wt — w3 < (1 4+ 40%0%) [w' — w13 + 2n((1®/(326%)) — (4 /(166%))) [ w' — w*[[2[w*||2 + 5n(OPT + €)
< (1+49%0° — 20 /(326%)) | W' — w*[[3 + 5%/ (276") (OPT + ¢)
< (1= /@1 Iw' — w5 + 5%/ (270%) (OPT +¢).
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Since we have assumed vVOPT + (/e < p3/(64b%)||w*||2, it holds |[w! — w*|o > |[vl]a > pl|w*|2/(4b) >
(16b/u?)(v/OPT + /), thus, we have (noting that y < 1):
5u”/(276*) (OPT + ¢) < 51 /(276*) (VOPT + Ve)* < 8/ (2"26°) | w' — w||.
Therefore, combining the results above, we get:
[w = w3 < (1= p®/2"20%)lw" — w13,

for any iteration ¢ such that || vt||2 > p|[w*||2/(4b) holds. This validates the induction argument that ||w! —w*||s < ||[w*||2
for every t = 0,...,to and at the same time yields the desired contraction property of the sequence ||[w! — w*||z,
t=0,...,to. Now, since ||[w® — w*|2 = ||w*||2 and ||[w’ — w*[|2 > ||v!||2, we have

VU < (1= p®/(2200) [w™ (I3 < exp(—tu®/(2720°)) w5
Thus, after at most ¢y = 21265 1og(4b/ ) /u® iterations, it must hold that among all those vectors v1, ..., v, there exists a
vector v'o such that ||v?o |y < ul|w*|2/(4b). Since there are only a constant number of candidates, we can feed each one
as the initialized input to the optimization subroutine Algorithm 3. This will only result in a constant boost up in the runtime
and sample complexity.

Finally, recall that we need to draw

m

o Wbt log"(d/(ed)) (1 1
~ L4 63? 5 .
new samples at each iteration for (44) to hold with probability 1 — §, and the total number of iterations is ¢y. Thus, applying

a union bound we know that the probability that (44) holds for all ¢y is 1 — #y6. Hence, choosing § < dt(, and note that
to ~ b%/ulog(b/p), it yields that setting the batch size to be

o — @<W9/2b4 log4(d/(€5))( L bﬁlog(b/u)» _ @(Wg/%mdlog‘*(d/(s(s)))

L4 €3/2 1ubed LAuS5e3/2

suffices and the total number of sample complexity for the initialization process is tgmg. O

D.2. Proof of Theorem 4.2

In this subsection, we restate and prove our main theorem Theorem 4.2. The full version of the optimization algorithm as
well as the main theorem Theorem 4.2 is displayed below:

Theorem D.2 (Main Result). Let D be a distribution in R* x R and suppose that Dy is (L, R)-well-behaved. Furthermore,
let U, p) be as in Definition 1.3, and € > 0. Let j1 = Ca?LR*/b, where C'is an absolute constant. Running Algorithm 1
with the following parameters: step size 1 = p/(4b?), batch size to be m > dW>5b"* log®(d/e) /(L u€*/?) and the
total number of iterations to be T' = toJT = O(Wb'/(u®/€)log(1/e)), where T = O((b/1)*log(1/€)), then with
probability at least 2/3, Algorithm 1 returns a hypothesis (., W) where U € U, )y and W € B(W') such that

4

Lalwid) =0 (w

)OPT +€,
using N = O(T'm) = O(dW5b%* /(L4 1i*8¢2)) samples.

Proof. As proved in Lemma 4.1, the initialization subroutine Algorithm 2 outputs a starting point w° such that
[[(w*) s [l2 < max{p| w*||2/(4b), 646° /11> (VOPT +/€) }. Suppose first that yi]| w*[|2/(4b) < 6462/ (VOPT +/e).
Then this implies that |[w*||; < 2560%/u*(v/OPT + /€). Therefore, applying Claim 4.4 we immediately get that the
trivial hypothesis (w = 0,u(z) = 0) works as a constant approximate solution, as Lo(w;u) < 8(OPT + ¢€) + 4b%||w*||2 =
O((b/1)®)OPT + e. This hypothesis (w = 0,u(z) = 0) is contained in our solution set P (see Algorithm 3) and will be
tested in Algorithm 4. Thus, we assume this is not the case and the initial point W satisfies ||(w*)1w0 |lo < p||w*||2/(4b).
Since there exists a witi € {wi"}*°_ such that H(W*)LW;«'}*i 2 < u||w*||2/(4d). Let us consider this initialized parameter

at k* step V_VJQ - = Witl and ignore the subscript k* for simplicity. Since we constructed a grid with grid width 7+/€ from
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Algorithm 3 Optimization

1: Input: w'™ = 0; ¢ > 0; positive parameters: a, b, L, R, W; let u < a®? LR*/b; step size n = u/(4b?), number of
iterations 1" = O((b/u)2 log(1/€)).

2: {wi, ..., witi} = Initialization[w'™™] (Algorithm 2)

3: for k = 0 to to < (b/1)%log(b/u) do

4 Pr={}

5. forj=1toJ =W/(n/e) do

6: WY, = wpl.

7 Bj = jny/e. > find an 7)y/e approximation of |w*|2
8 fort=0toT — 1do

9: Wy = Bi(Wh L /IIWE ll2)- > normalize w
10: Draw m > W52 log®(d/e)d/(L*1€*/?) new i.i.d. samples from D

11: = argminueu(a , (1/m) o (u(wh cx(®) — (D)2,

12: V'C'aur( Wiiks gk) (1/m) Zz 1 (@ jk‘(/\tk X(z)) y(i))x(i)'

13: witl =wt, =V Lour (W whosah )

14: end for

15: 'Pk%'PkU{( Wik jk)}

16: end for

17 P=U" P U{(w=0;u(z) =0)}

18: end for

19: (w; @) = Test[(w; u) € P] (Algorithm 4) > testing

20: Return: (w; )

Algorithm 4 Testing

Input: € > 0; positive parameters: a, b, L, R, W; list of solutions P; let r 2> + log(bW /(Le) log?(1/e))
Draw m’ > (bW/L)*log®(1/€)/€? new i.i.d. samples from D.

1:
2:
3 (W) = argmin y,,ep {5 T (u(w - x?) = y@)2 1w - x| < Wr} ).
4: Return: (w; Q)

0 to W to find the (approximate) value of ||w™||2, there must exist an index j* such that the value of 3;+ is 1y/€ close to

Hw ll2, i€, |Bj+ — [[w*|l2| < nv/e. We now consider this 5**® outer loop and ignore the subscript j* for simplicity. Let
w! = ||lw*||2(W!/||W?||2), which is the true normalized vector of w' that has no error.
We study the squared distance between w1 and w*:
W — w3 = W' = nV Lo (W) — w73
= [|W' — w3 + 7 Hv£sur(/\t a')l3 - QWV»Cbur(W a') - (W —w). (46)

Applying Lemma 4.3 to (46), and plugging in Proposition 3.1, we get that when drawing

S dW9/2b* log*(d/(€6)) ( 1 1 ) @)

A L4 327 &

samples from the distribution, it holds with probability at least 1 — ¢ that:

W — w3 < IW" = w*[|3 +7°(10(OPT + ) + 40°[|W" — w*|[3)

. (48)

+20(2(OPT + €)/b + 2(VOPT + Ve)|W! — w*||2 — p||v![|3),
where ;1 = Ca?LR*/b with C being an absolute constant, and where v' is the component of w* that is orthogonal to W',
ie.,

Vi W (W WOR R = (e,
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Note that || vt||2 is invariant to the rescaling of W, in other words, w* has the same orthogonal component v* for all wt, w'
and w'.

Since [|[w! — wt||2 < n1/€, we have
W' = w3 = W' —w' +w' = w5 < [[w' = w¥[[3 +ne + 2V w' — w7 (49)

In addition, by triangle inequality we have ||w' — w*||3 < ||w’ — w*||3 4+ nv/€. Therefore, substituting w' with w’ in (48),
we get:

Wi — w3 < W' — w3 + e + 2nv/el|w' — w2
+n?(10(OPT + €) + 4b%|w" — w*||3 + 4b*n%e + 8b?ny/e|w' — w*|2)
+20(2(0PT + €) /b + 2(VOPT + Ve) (| w' — w* |l + nv/e) — ul|[v'[|3)
< lw' = w3 + 7 (24(OPT + ¢) + 4b%||w* — w*|3)
+29(2(0PT + €)/b + 4(VOPT + Ve) [w" — w*[|2 — ul|v'[[3), (50)

where we used 4b?1? < 1, which holds because 7 = 1/ (4b?).

Our goal is to show that |[viT1||2 < [|[w!T! — w*||3 < (1 — ¢)||[v!||% + ¢, where ¢ € (0, 1) is a constant and € is a small
error parameter. However, this linear contraction can only be obtained when ||v?||5 is relatively small compared to ||w*||2.
Specifically, as will be manifested in Claim D.3 and the proceeding proof, the linear contraction is achieved only when
[[vtll2 < wl|lw*|l2/(4b). Luckily, we can start with a v° such that this condition is satisfied, due to the initialization
subroutine Algorithm 2, as proved in Lemma 4.1. We prove the following claim.

Claim D.3. Let 1 = 11/(4b?). Then, under the assumptions of Theorem 4.2, with probability at least 1 — §, we have

t+1 2 s t)12
It = wel < (1 o ) IVIB

whenever ||vt||2 > (96/1)(vVVOPT + /e).

Proof of Claim D.3. Since the norm of w' is normalized to w*, the quantity ||w’ — w*||? is controlled by [v!||3. In
particular, let w* = oy w' + v?. Then, since v | w', we have ||[w*||3 = o?||w'||3 + || v!]|3 = oZ||w*||3 + ||v!]|3, thus,
a =1—|v3/|lw*|3, and ||[v?|3 = (1 — a?)||w*||3. In addition, ||w’ — w*||3 can be expressed as a function of a; and
w™*, as

W' = wH[I3 = (1 — o) [ w3 + [V']l3 = 2(1 — ) [ W3- (51)

Note that since oy = /1 — [[vt[|3/[|w*||3, denoting p; = ||v*||2/||w*

2, we further have:

1, 1
o= 1= /1= [VIB/ w3 = 1= \/1— g} < 5p + 50t < ok, Vi € [0,1) (52)
Therefore, plugging (51) and (52) back into (50), we get:

W — w3 < 2(1 — a) [w*[|3 + 40°0* (2(1 — a) [w*|3) + 87(VOPT + v/e)v/2(1 — ) [[w*]|2
— 2nu||v?||3 + 24n*(OPT + €) 4 4n(OPT +¢)/b
< (o7 + POIIW™ 113 +46°0% (0} + pt) [ w* |5 + 8V2n(VOPT + v/e)pi[|w*| 2
— 2np||vt||3 + 24n*(OPT + €) + 4n(OPT +€) /b
= (1+ p} + 400 (1 + p})) |V'[3 + 120(VOPT + V) |[v*|l2 — 2nullv*|3
+4(6n* +1/b)(OPT + ¢)
< (1+ pf +40° 0 (1 + p))) V]I + 129(VOPT + Ve)[|[v'[|o — 2nul|v*[[5 + 5n(OPT +¢),  (53)

where in the last inequality we observed that since = ﬁ, it holds that 24n < 1, as p is small and b > 1.
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Note that we have assumed that || v'||2 > (96/u)(vVOPT + /€), which indicates
127(VOPT + V) [v']2 < gmbIIVtH%y

since b > 1, assuming without loss of generality. Furthermore, when ||vt||2 > (96/1)(v/OPT + /€), it also holds that
(96)
82

1
Sl s > nu(OPT + €) > 5n(OPT +¢),

since we have assumed 1 = Ca? LR*/b < 1 without loss of generality. Finally, as we will show in the rest of the proof, it
holds that ||vi*L||y < ||Vt fort = 0,1,...,T, thus as n = u/(4b?), we have ||[vi||a < /nul|w*|l2/2 = p|[w*||2/(4b),
since ||v0||2 < /mp||w*||2/2. This condition guarantees that

ez 1
pi = IV'I3/ w5 < S

Plugging these conditions back into (53), it is then simplified as (note that 1 + p? < 1+ (1/4)nu < 9/8 for nu < 1/2):
9 3
et = wel < (14 530207 - Son ) 1w

Therefore, when 7 = p/(4b%) we have

L x)12 ﬂQ )2
Iw 13 < (1= L ) IV,

completing the proof. O

We proceed first under the condition that ||vf||a > (96/u)(vOPT + /€) holds for t = 0,...,T and show that after
some certain number of iterations 7" this condition must be violated. Observe if ||[vt|2 < (96/ u)(\/ OPT + +/e), then it
holds || w! — w*[|3 < (1/u?)(OPT + ¢), implying that 4! (w? - x) is a hypothesis achieving constant approximation error
according to Claim 4.4, hence the algorithm can be terminated. However, note that 7" only works as an upper bound for
the iteration complexity of or algorithm, and it is possible that the condition ||v¢||s > (96/u)(v/OPT + /e) is violated
at some step t* < T. However, we will show later that the value of ||v” |5 can not be larger than c||v! |2 where ¢ is an
absolute constant. We observe that:

Vt+1 —w* — (W* . wt+1)wt+1/Hwt+1”§ —w* — (W wt+1) t+1/H 7t+1||2 _ (w*)lv’vt"’l,

therefore, ||[viT!|2 < ||w!T! — w*||3, which, combined with Claim D.3, yields

2 2 ¢ ’
p a o
e+ < (1 g IV < (1 g ) 1718 < e (o

The above contraction only holds when || vt||2 > (96/u)(v/OPT + /€). Hence, after at most

r-o(es (7))

inner iterations, the algorithm outputs a vector w!  with ||v?" ||y < 9—;(\/ OPT + \/e), where t* € [T].

Now suppose at step t* < T it holds that ||v! || < 96(v/OPT + /€)/u but at the next iteration ||v? 1|y > 96(v/OPT +
V/€)/ 1. Recall first that in Lemma 4.3 we showed that HVESM(At ') ||3 < 4b%| Wt — w*||3 + 10(OPT + €). Therefore,
revisiting the updating scheme of the algorithm we have

VS < W - w3 = W —Wfsur(”*;ﬁt*) - w3
< 2w = w3 + 202V Lo (W5 1) 13
< (248202 | Wt — w*||2 + 20 (OPT + ¢)
< 3[|w'" — w*||2 4 (OPT +¢),
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where in the last inequality we plugged in the value of 7 = y1/(4b?), and used the assumption that 2 < 1 and b > 1, hence
207% < 1 and 8b°n? < 1. Furthermore, recall that by the construction of the grid, |[W! — w!|y < ny/€, implying that
Wt —w*||2 < 2|w' — w*||3 + 2n%e by triangle inequality. Therefore, going back to the inequality of ||v* 1|3 above,
we get

IVE U2 < 6wt — w2 4+ 6n% + OPT + € < 6ljw" — w2 + 2(0PT + ¢).

Finally, observe that since ||[w' || = ||w*]|2, it holds [|w!™ — w* s < V/2||vt

2, hence, we get
V75 < 12)v" |5 + 2(0PT + ).

Now since ||[v? 1|y > 96(v/OPT + \/€)/pu, the value of ||v?||3 will start to decrease again for ¢ > ¢* + 1. This implies
that the value of ||vT||5 satisfies

Iv7 ]l < VIZ[v" [l2 + VE(VOPT + V) < ?’%(\WPT + Vo).

Combining Claim 4.4 and Lemma F.4, as we have guaranteed that ||vT ||y < (384/u)(vVOPT + +/€), the hypothesis
4T (WT - x) has the L2 error that can be bounded as:

2
Lo(wWTa") < 60PT + 3b%(4||v7 |3 + n’e) + € = O(ZQ(OPT + e)>.

Setting € < C’(b?/u?)e for some universal absolute constant C” we get Lo(W7;47) < O((6?/u?)OPT) + e.

It still remains to determine the batch size as drawing a sample set of size m as displayed in (47) only guarantees that the
contraction of ||v?||2 at step ¢ holds with probability 1 — d. Applying a union bound on all t,JT = O( Zib\z log(1/€))

iterations yields that the contraction holds at every step with probability at least 1 — ¢y J7T'J. Therefore, setting § < 6(toJT)
and bringing the value of § back to (47), we get that it suffices to choose the batch size as:

_ (Wb logtd/(ed) (1 WO N\ Wbt dlog® (d/(e))
m = A 372 m - LAp96e3/2 ’

to guarantee that we get a O(OPT) + e-solution with probability at least 1 — 6.

The argument above justifies the claim that among all to.J = W% log(b/p)/(111%+/€) hypotheses in P = {(wT;aT)}1o7,
there exists at least one hypothesis that achieves L3 error O(OPT) + e. To select the correct hypothesis from the set P, one
only needs to draw a new batch of m’ = ©(b*W*log(1/8)/(L*€?)) i.i.d. samples from D, and choose the hypothesis from
‘P that achieves the minimal empirical error defined in Algorithm 3. To be concrete, we prove the following claim, whose

proof can be found in Appendix D.5.

Claim D.4. Fix some positive real numbers 11, €, . Let 7 = + log(C£z¥4 log2(¥)) where C'is a large absolute constant.
Given a set of parameter-activation pairs P = {(w;; u;) 50:‘11 such that w; € B(W) and u; € U(q ) for j € [to]], where

toJ = 4b9W/(uB\/€), we have that using

b W4log(1/6) bW
’_ 5277
- (5e))

i.i.d. samples from D, for any (w;;u;) € P it holds with probability at least 1 — 4,

1 ) . )
o] > (uj(wy - xD) =y D)2 1w, - xD | < Wr} - " END[(uj(Wj -x) —y)?]| < 2

Therefore, according to Claim D.4, we know that testing each ({’\V;‘F, ﬁ;‘r) € P on a fresh set of m’ samples and choosing
the one that achieves minimum error yields a solution (w; ) that introduces at most 2¢ error with high probability. In
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conclusion, it holds by a union bound that the Algorithm 3 delivers a solution with O(OPT) + € error with probability at
least 1 — 29. The total sample complexity of our algorithm is
W54 dlog®(d/(ed))  b*W*log(1/8)log®(1/€) W64 d1ogb(d/(ed))
LAu185¢2 + L2 =0 LAu185¢2 :

N—tOJTerm’—@(

Choosing § = 1/6 above, we get that the Algorithm 3 succeeds with probability at least 1 — 26 = 2/3, completing the proof
of Theorem D.2. O

D.3. Proof of Lemma 4.3

This subsection is devoted to the proof of Lemma 4.3. To this aim, we first show the following lemmas that bound from
above the norm of the population gradient VL, (w'; @) and the difference between the population gradient and the
empirical gradient V Ly, (w'; @)

Lemma D.5. Let S be a sample set of m i.i.d. samples of size at least m > dlog*(d/(ed))(b*W?3/L?€)3/2. Furthermore,
given w' € B(W), let i be defined as in (P). Then, it holds that with probability at least 1 — 6,

IV Lans (w3 ") 3 < 8(OPT + ¢) + 20 [w' — w3.

Proof. By the definition of {5 norms, we have:

|V Lo (Whah)||2 = max VL (What) v
Ivilz=1

= max E [(@'(w' -x)—y)v-x
Iv]l2=1 (x,y)ND[( ( ) —Y) ]

= o { BV ) = 0t x) ) = ()]
+ B ) - w0 w0 - ) (vl

By the Cauchy-Schwarz inequality, we further have:
|V Lsur (Wt§ ﬂt) ll2

< max {\/x E [(a'(w! x)—ul(w!-x))?] E [(v-x)?]+,/ E [(ul(w! x)—ut(w!-x))2] E [(v-x)?]

~Dy x~Dy x~Dyx x~Dy

B T ) w0, [+ [ B T we 0~ 7B, (v 7

x~Ds x~Dx - x~Dx
< /B [@w ) —u(wh x)7 + [ B [(wlwx) - wt(wl )]

+ /B [wi(wh-x) —wr(w* - x)? [+ ) B [(ur(w*-x) —y)?],

x~Dyx x~Dy

where in the last inequality we used the fact that Dy is isotropic hence Exp, [(V - x)?] = 1. It remains to bound these four
terms above respectively. The first term is bounded by /¢ for every w! € B(W), with probability at least 1 — § according

to Lemma F.4. The fourth term is bounded by OPT, by definition. Recall that in Lemma 3.3 we showed that the second

term in the display above is upper-bounded: Exp, [(uf(w! - x) — u*!(w! - x))?] < OPT. For the third term, note that

u*t € argming, ey Exp, [(u(w' - x) — u*(w* - x))?], therefore, since u* € U, ), we have

B [t x) —wt(w e x)P < B (W) - (w %)) < Bt - w,

after applying the fact that «* is b-Lipschitz. Thus, in conclusion, we have
IV Laur (W' )| < 2VOPT + /e + bllw' — w*.
Furthermore, since (a + b)? < 2a? + 2b2 for any a,b € R, we get with probability at least 1 — &:
|V Lour(whs0')[|3 < 8OPT + 8¢ + 2b7 |w! — w™||3,

completing the proof of Lemma D.5. O
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Now we prove that the distance between V Ly (w'; i) and V Ly, (w'; at) is bounded by b2||w' — w*||2 + OPT + € with
high probability.

Lemma D.6. Let S be a sample set of m > (dW9/2b*log*(d/(ed))/L*)(1/€3/? 4+ 1/(€d)) i.i.d. samples. Given a vector
wt € B(W), it holds that with probability at least 1 — §,

IV LW ') = V Lo (W) |2 < /82w — w3+ OPT + c.

Proof. Since for any mean-zero independent random variables z;, we have E[|[ >, zj||3] = X ; E[||z;||3], hence, by
Markov: 1
PV Lo (w'5 ') = Vi (w'si) e 2 5] € -5 B[ (" x) ~ )] 54
By linearity of expectation, we have:
d
E at(wh - x) — y)x|]2] = E at(wh - x) — y)? (%)%,
W0~ =D B0 =)

where x;, = e}, - x and e, is the £*® unit basis of R, Let r = O(W/Llog(1/(Le'))), then it holds Pr[|x;| > r] < €.
Then, the variance above can be decomposed into the following parts:

(x7£ND[(ﬁt(wt -X) — y)ZX%] = (x,END[(ﬁt<Wt %) — y)zxzﬂ{|xk| -
+ (X,END[(ﬁt(Wt - x) — )21 {|xa| < 7).

Since |y| < M = O(bW/Llog(bW/e)), and Exp, [(W' - x)*x}] < W22 /L8, Exup, [x}] < ¢*/L* for Dy is L-sub-
exponential, we have
E [(@(w' x) —y)xql{lxe| >} <2 E [@(w'x)? +y?)xqil{|x| > r}]
(x,y)~D (x,y)~D

<2 (xji;}ND[(b(Wt -x))? 4+ ) x| xk| > 7}

< 202 \/ B [(wh-x)'x}] Prlje] > 7]

+ QMZ\/XNE% [x4] Pr(jx;| > ]

< (2eb*W? LYWV + (2eM? JLA)We < (4eM?JLPWe . (55)
In addition, (af(w! - x) — 3)? can be decomposed as the following:

E [@(w' x)-y)?’ <4 E [(@(W x)—u' (W x)’+4 E [(u'(w' x)—u(w' x))’

(x,y)~D x~Dyx x~Dy
+4 E [(u'(w' x)—u'(wx)’]+4 E[(w(w"-x)—y)’.
x~Dx (x,y)~D

The first term is upper bounded by 4e with probability at least 1 — § for every w! € B(W) whenever m 2>
dlog*(d/(e6))(b>W3/L2%€)3/2, as proved in Lemma F.4. The second term is smaller than 4OPT, which is shown in
Lemma 3.3. The third term can be upper bounded using again the definition of u*! = argmin, ey Bxp, [(u(wt - x) —

y*)?], as

4 E [(w'(w'x)—u' (W x) <4 B [(uf(whx)—u'(w"x))?] < 4b?[w — w3,

x~Dy x~Dy

using the fact that u* is b-Lipschitz and Dy is isotropic. Lastly, the fourth term is bounded by 4OPT by the definition of
u*(w* - x). In summary, we have

(X,END[(ﬁt(Wt . X) — y)2xi]1{|xk| < TH < 72 (xﬁgwp[(ﬂt(wt ) X) _ y)2}

< 4r?(b?||w' — w*||3 + 20PT + ¢),
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which, combining with (55), implies that the expectation Ex ,)p[(4! (W' - x) — y)?xZ] is bounded by:

( E) D[(ﬁt(wt -x) — y)?x3] < 4r20%||wt — w¥||2 + 472 (20PT + 2¢)
X, Y )~

cw? b «
< S tog* (12 )Pl —w' I + OPT )
where C is a large absolute constant. Note to get the inequality above we chose ¢ = C'e?(L/b)*, which then indicates that
de(M/ L)2\/§ < r2¢. Summing the inequality above from k = 1 to d delivers the final upper bound on the variance:

) ACW? b .
[t (wt - x) — p)x)2) < 27 1og? () (B[ w' — w*|3+ OPT + o).

E
(x,y)~D L2 Le

Thus, plugging the upper bound on the variance above back to (54), as long as m > (dW?/L?)log*(b/(Le))/d, we get
with probability at least 1 — 4,

IV B (W5 ) = Ve (w3 )|z < /B2l wt — w[[3 + OPT + c.

Noting that m > (dW/2b*log*(d/(ed))/L*)(1/€%/? + 1/(ed)) certainly satisfies the condition on 7 above as m >
(dW?/L?)1og?(b/(Le))/d, thus, we completed the proof of Lemma D.6 O

We can now proceed to the proof of Lemma 4.3, which can be derived directly from the preceding lemmas.

Lemma D.7 (Upper Bound on Empirical Gradient Norm). Let S be a set of i.id. samples of size m 2
(AW*2b  log* (d/(e6)) /L) (1/e¥/? + 1/(€0)). Given any w' € B(W), let ' € U,y be the solution of opti-
mization problem (P) with respect to w' and sample set S. Then, with probability at least 1 — 5, we have that

IV Lour (whs at)[[3 < 402[|w! — w* |3 + 10(OPT + ).
Proof. The lemma follows directly by combining Lemma D.5, Lemma D.6 and the triangle inequality. O

D.4. Proof of Claim 4.4

We restate and prove Claim 4.4.

Claim D.8. Let w be any vector from B. Let %4, be the activation defined as the empirical-optimal solution of the
optimization problem (P) for a fixed parameter vector w € R? with batch size m > dlog*(d/(ed))(b>W?3/(L?€))3/2. Then
the L3 error of iy (W - x) is bounded by: E x ) p[(lw (W - x) — )?] < 8(OPT + €) + 4b*||w — w*|3.

Proof. Let u},, uy be the optimal activation of problem (EP*) and (EP) under parameter w respectively. Then, direct
calculation gives:

(x,y)ND[(aw ) }
= B i) (030 + (W ) = 30 05, (W ) — () () — )]
< (0w )~ w02 4B (0w )~ (o)

+4 ED [(uf, (W - x) —u*(W* -x))?] + 4OPT
< 8(OPT + ¢) + 4b%|lw — w*||3, (56)
where in the second inequality we used the results from Lemma 3.3, Lemma F.4 and we applied the observation that:

LB ug(wex) —ut(w™ X))’ < B (' (wex) —ut(w - x))%] < lw — w5,

by the definition of w,. O
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D.5. Proof of Claim D.4

We restate Claim D.4 and show the number of samples needed for the testing subroutine Algorithm 4.

Cb4VI2/4
LSe
Given a set of parameter-activation pairs P = {(w; uj)}?]:‘]1 such that w; € B(W) and u; € U(q ) for j € [to]], where

toJ = 4b9W/(uB/€), we have that using

biW4log(1/6) bW
! 5 (Y7
o e ()

Claim D.9. Fix some positive real numbers 1, €, 8. Let 7 = + log( log2(¥)) where C'is a large absolute constant.

i.i.d. samples from D, for any (w;u;) € P it holds with probability at least 1 — 6,

o > (uj(wy - x@) =y D)2 1w, - x| < W} - " SJND[(UJ‘(WJ‘ -x) —y)?]| < 2
i=1 ’

Proof. Fix some r > 0, and fix any (w;,u;) € P. Since Dy is sub-exponential, we have Pr{|w; - x| > [|w;]|2r] <
2 exp(—Lr). Consider random variables Z; ; = (u;(w; - x) —yO)21{jw -xO| <r}i=1,--- m,j =1, toJ,
where (x(?), 5 are independent random variables drawn from D. Recall that using the result from Fact F.3, we can
truncate the labels y such that |y| < M, where M = C(bW/L)log(bW/e) for some large absolute constant C. Hence,
Z; 5] < 2(u2(wy - xD) + (yO))1{|w; - xO| < Wr} < 2(0°W?2r? + M?), note that we used the assumption that u is
b-Lipschitz in the last inequality. Therefore, applying Hoeffding’s inequality on Z; ; we get:

Pr |

where ¢ is an absolute constant. Since there are to.JJ = Wb6/(1u5n+/€) = 4b8W /(11" /€) elements in the set P, thus applying
a union bound yields:

’
m

em't?
Z(Zi,j - E[Zl}j])‘ 2 m't] < exp ( B (b2W2r2 + M2)2)’

i=1

’
m

> Zi;— EBlZi))

i=1

cm/t?

(b2W2r2  M2)

Pr |

> w'tvj e ]| <o - s + 0B/ (7))

Therefore, when

L (BPWE 4 M2 AW
= 1 log(1/6 57
we have that with probability at least 1 — §:
1 , , .
’m’ Z(uj(wj -x(’)) - y(l))2]l{|wj -x(z)\ <Wr}— x END[(uj(Wj -X) — y)2]l{|wj x| < Wr}]| <e, (58)
i=1 ’

forany (w;, u;) € P. Inaddition, as Pr[|w;-x| > Wr| < Pr[lw; x| > ||w;||ar] < & exp(—Lr),lete’ = 2 exp(—Lr),
we further have:

LB (w30 =) 1w x| = WY

<2 E [((uj(w;-x))* + M*)I{|w; - x| > Wr}]

x~Dy

< 2()2\/)(NED [(w; - x)4 Pr[lw; - x| > Wr] + M? Pr[lw; - x| > Wr]

< 22(W/L)PVe + M < (20*(W/L)? + M)V,

where in the second inequality we use Cauchy-Schwarz inequality and in the last inequality we used the property that
for any unit vector a it holds E[(a - x)*] < ¢?/L* for some absolute constant ¢ as x possesses a %—sub—exponential
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tail. Therefore, choosing r = %log(% 10g2(¥)) = O(% log(2¥)) for some large absolute constant C' renders
Ve < e/(2Ch*(W/L)?log® (bW /e)), and we have

(x yli;le[(uj(wj . x) _ y)2]l{|wj -X| > WT}] <e

Observe that B (1 (w;-X) ~)?] is the sum of B )~ (115 (w; %) =y) *I{[wj x| > Wr}] and By [(15 (w5
x) — y)?1{|w; - x| < Wr}], we thus have

(wjox) —y)?] — wi(wi - x) — )21 |w, - x r
0< (X,END[(“J( i %) —y)7] (XEND[( (Wi x) — )2 1{|w; - x| < Wr}]
< B (w3 — g, x| 2 W) <

Bringing the choice of r back to (57) we get that it is sufficient to choose m/’ as

m = —C log(lgg(l/e)) <b2 <12/)210g2 (%))2 <log (ilfz) + 10g(1/6)> = é(b4w2f§(1/5) log® (?f;))

Therefore, using m’ = Q(b*W*/(L*e?)) samples, (58) indicates that with probability at least 1 — d, for any (w;, u;) € P
it holds

’
m

1 i i i
’m/ > (u(wy - xD) =y 1wy - x| < Wr} - " END[(UJ'(WJ' -x) —y)?]
i=1 ’
1o . , .
= ’m’ > (uj(wy - xD) =y D)2 1w, - xD| < Wr} - (x £~D[(Uj(wj -x) —y)*1{|w; - x| < Wr}]
i=1 ’
+| B [(ui(wiox) =)’ = B [(u(w; %) — ) T{|lw; - x| < W?“}]‘
(x,y)~D (x,y)~D
< 2,
thus completing the proof of Claim D.4. O

E. Efficiently Computing the Optimal Empirical Activation

In this section, we show that the optimization problem (P) can be solved efficiently, following the framework from (Lu
& Hochbaum, 2022) with minor modifications. We show that, for any € > 0, there is an efficient algorithm that runs in
O(m?log(1/€)) time and outputs a solution o*(z) such that ||0%(z) — 4% (2)]ee < €.

Proposition E.1 (Approximating the Optimal Empirical Activation). Let ¢ > 0, and Dy be (L, R)-well behaved. Let
at e Uqp) be the optimal solution of the optimization problem Equation (P) given a sample set S of size m drawn from D
and a parameter w* € B(W). There exists an algorithm that produces an activation 0* € Uqp such that ||0* — i'[|oe < €
with computation complexity O(m? log(bW/(Le))).

To show Proposition E.1, we leverage the following result:

Lemma E.2 (Section 5 (Lu & Hochbaum, 2022)). Let f;(y) and h;(y) be any convex lower semi-continuous functions for

i =1,...,m. Consider the following convex optimization problem
m m—1
(01, 9m) = argmin > fi(y:) + > hi(yi — yit1), (59)
YirYm ;g i—=1
where y; € [-U, U] foralli =1, ..., m for some positive constant U. Then, for any € > 0, there exists an algorithm (the
cc-algorithm (Lu & Hochbaum, 2022)) that outputs an e-close solution {y1, ..., ym} such that ly; — 4;| < € for all i € [m)

with computational complexity O(m? log(U /¢)).
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Proof of Proposition E.I. We first formulate problem (P) into a quadratic optimization problem with linear constraints. To
guarantee that 4! is an element in U/, ;) that satisfies @*(0) = 0, we add a zero point (x(?),y(®)) = (0, 0) to the data set
S if S does not contain (0, 0) in the first place. We will thus assume without loss of generality that the data set contains
(0,0). Denote z; = w - x(¥) such that z; < 2y < --- < 2, after rearranging the order of (x(*),4(")’s, and suppose
z = w-xo = 0forak € [m]. Then (P) is equivalent to the following optimization problem:

m

GD, o gm)y = argnﬂul 33t
y<)l€ i=1

snogﬁ”“—dﬁléiék—h
a(zip1 —2z) < gD — g0 1 <i <k -1,
gt — g <b(zig —z), 1<i<m—1,
g(k) = 0.

Define h;(y) = Z—p(zs1—2),00(y) fori = 1... 0k — 1, hi(y) = L_p(z111—21),—a(zig1—2)) (y) fOri = k... ,m — 1, where
Zy(y) is the indicator function of a convex set ), i.e., Zy(y) = 0if y € Y and Zy,(y) = +oo otherwise. It is known that h;’s
are convex and sub-differentiable on their domain ;. In addition, let f;(y) = 2 (y — y)? for i # k and f),(y) = Ti0y (y).
Then, we have the following formulation for problem (P):

m—1
(510, g™) = argmin Z @) + 37 bl = ) 1)
g0 =1 m = i=1
Note that the functions f; and h; we defined above satisfy the conditions of Lemma E.2. Thus, it only remains to find the
bounds on the variables §(*). This is easy to achieve as all §(*) must satisfy || < b|z;| = b|lw - x(*)| and we know that
x (") are sub-exponential random variables. Therefore, following the same idea from the proof of Lemma F.2, we know
that for U = Z¥ log(m/(L6)), it holds that with probability at least 1 — &, |7 < blw - x| < bU for all i € [m].
Hence, applying Lemma E.2 to problem (P1), we get that it can be solved within e-error with computation complexity
O(m?log(bW/(Le))). O

Since the solution 9 is e-close to 4!, this approximated solution will only result in an e-additive error in the sharpness result
Proposition 3.1 and the gradient norm concentration Lemma 4.3. In more details, for the result of Proposition 3.1, we have

=|— Z(f)t(wt cxD) — at(wt - xD))(wh — w*) - x®

< a; |(wh —w") ~X(i)| < 2eU,

since |w! - x| < U and |w* - x()| < U with probability at least 1 — §. Therefore, choosing ¢ = ¢/U we have that
Proposition 3.1 holds for approximate activations 9% with an additional € error.

Let us denote the unit ball by B. For the gradient norm concentration lemma Lemma 4.3, note that at any iteration ¢, it
always holds that

m m

||stur( ooty — Vﬁsur( @')|2 = max 1 Z(@t(wt x@) —at(wt - x@))x® . v < max £ Z Ix® ..

veB m
i=1 =1

Since x is isotropic and v € B, we have Ex.p_[|x - v|] < /E[(x-Vv)2] < 1. Now since [x(?) - v| are independent
1/ L-sub-exponential random variables, applying Bernstein’s inequality it holds that for any v € B,

r HZb« B (x|

2.2

> s] < 2exp ( — c¢min {:;3/22’ {72}) = 2exp(—cmL?s?).
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Let N (B, €; (5) be the e-net of the unit ball B. Note that the cover number of these v € B is of order (1/¢)°(?), therefore,
applying a union bound on N (B, ¢; £2) and for all toJT = O(log(1/€)/+/€) iterations, and setting s = 1, it holds

1 .
Pr [VV € N(B, e ly), ‘mZIX“) V|- E [x-v]

1=

> 1} < 2exp(—emL? + ¢'dlog(1/e)) < 6,

m
1

where the last inequality comes from the fact that we have m > W9/2b'4dlog(1/8) log*(d/e) /(L* 1128€3/?) as the batch
size. Let v* = argmax,cp Y o, |x(V) - v|, there exists a v/ € N (B, €; £2) such that ||v/ — v*||2 < € and hence,

1 o, 1 o, 1 o=,

- (). y*| < = ) . (v — ) 4 () ./
RS DS v S
€ — NovE—v 1 :

£ (i) . - @) .y
SO DY O
£Z|x<i>.v*|+iz‘x<i>.vq7
mi:l m3

where the last inequality comes from the observation that as (v* — v’)/e < B, it holds >} | Ix) - (v =) /e)| <
S [x@ - v*|, by the definition of v*. Therefore, with probability at least 1 — § we have

IN

L) o 1 1o~
S v < = v <201+ E [lvex]) <4
i=1 i=1 *

This implies that ||V Lgu (w3 8%)||2 < ||V Loue(Wh; t)||2 + 4é for all iterations with probability at least 1 — §. Therefore,
Lemma 4.3 continues to hold for the approximately optimal activation 9 with only an additive € error.

Thus, we have the inequations (46) and (48) in the proof of Theorem 4.2 remains valid for ©* with an additional ¢ error, and
hence the results in Theorem 4.2 is unchanged.

F. Uniform Convergence of Activations

In this section, we provide some standard uniform convergence results showing that the empirical optimal activation
concentrates nicely around the population activations. We first bound the L2 distance between the sample-optimal and
population-optimal activations under w'. To do so, we build on Lemma 8 in (Kakade et al., 2011). Note that Lemma 8 from
(Kakade et al., 2011) only works for bounded 1-Lipschitz activations u : R +— [0, 1], hence it is not directly applicable to
our case. Fortunately, since Dy has a sub-exponential tail (see Definition 1.2), we are able to bound the range of u(w - x)
for u € Uy, ) and w € B(W) with high probability. Concretely, we prove the following lemma. Note that in the lemma
statement, ©*! is a random variable defined w.r.t. the (random) dataset S*, and thus the probabilistic statement is for this
random variable.

We make use of the following fact from (Kakade et al., 2011):

Fact F.1 (Lemma 8 (Kakad¢ et a_l., 2011)). LetV b_e the_ set of non-deceasing 1-Lipschitz functions such that v : R — [0, 1],
Vv € V. Given S, = {(x®,y®)}™,, where (x(*), y(*)) are sampled i.i.d. from some distribution 7', let

1 & ) )
3 in — (D)) _ ()2
Uy € argmin v(wW-x Y .
nin 3 (vtow-x) =)
Then, with probability at least 1 — § over the random dataset .S,,, for any w € B(W) it holds uniformly that

dlog(Wm/6)>2/3).

m

[(ow(w-x) —y)’] = inf B [(o(w-x)—y)’] = O(W<

(x,9)~D’ VEV (x,y)~D’

The first lemma states that with sufficient many of samples, the idealized empirical activation @** defined as the optimal
solution of (P*) is close to its population counterpart 1**, the optimal solution of (EP*).
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Lemma F.2 (Approximating Population-Optimal Noiseless Activation by Empirical). Let Dy be (L, R)-well behaved and let
wt € B(W). Provided a dataset S* = {(xV), y*())}, where x%) are i.i.d. samples from Dy and y* = u*(w* - x1)), let
*t be the sample-optimal activation on S* as defined in (P*). In addition, let u** be the corresponding population-optimal
activation, following the definition in (EP*). Then, for any €, > 0, if the size m of the dataset S* is sufficiently large

b2 WS 3/2
m 2, dlog4(d/(65))< 72; ) ,
we have that with probability at least 1 — &, for any wt € B(W):

x~Dy x~Dy

E [(@(w'-x)—u"(w"x)’] < E [(u(w'x)—u(w" %))’ +e,

and, furthermore,

B (@ (wx) - (w X)) < e

Proof. Our goal is to show that with high probability, the empirical optimal activation 4** € U(a,p) and the population
optimal activation u*! € U(a,p) can be scaled to 1-Lipschitz functions mapping R to [0, 1], then, Fact F.1 can be applied.

Since x possesses a sub-exponential tail, for any w € B(W) we have Pr[|w - x| > ||w||2r] < 2 exp(—Lr). Therefore,

with probability at least 1 — (&1 /m)? it holds [w - x| < 2 log(m/(Ld1)). Since we have m samples, a union bound
on these m samples yields that with probability at least 1 — 67 /m it holds |w - x| < 2 1qg(m /(Lé1)), for any gi_V(an
w € B(W). Let r = 2% log(m/(L4y)). In the remaining of the proof, we assume that w' - x(®) < 7 holds for every x(*) in
the dataset S*, which happens with probability at least 1 — §%/m > 1 — 6.

Let V be the set of non-decreasing 1-Lipschitz functions v : R — [0, 1] such that v(0) = 1/2, and v(z1) — v(22) >
(a/(2br))(z1 — 22) forall z; > 25 > 0. We observe that restricted on the interval |z| < r, (0*"(2)/(2br) + 1/2)|2<r
is 1-Lipschitz, non-decreasing and bounded in the interval [0, 1]. Thus, (4**(z)/(2br) 4+ 1/2)|.j<, = 0**(2)])2|<. for
some 9** € V. Furthermore, under the condition that [w* - x(V| < r, since (@*!(2)/(2br) + 1/2)|21<, = 0*4(2)|}21<» We

observe that v**(z2) is the optimal activation in the function space V, given the dataset S* and parameter w', i.e.,

m

o*! € argmin e Z(v(wt xD) — (u*(w* - xD)/(2br) +1/2))%
vey M i—1

In other words, @*!(z)/(2br) + 1/2 is the optimal empirical activation in the function class ) when restricted to the interval

|z] < r. Consider x ~ Dy, it holds that Pr[|w’ - x| > 7] < (§;/m)?. Then, for any w! € B(W), the expectation

Exp, [(0* (W' - x) — u*(W* - x))?] can be decomposed into the following terms

B (@ %)~ w(wx)P = B[ (w' )~ (w )P x] < r)]
+ B (@ (w' %)~ ut(w X)L {fw! x| > )
< B (@ (w'x) — (W x)*1{|w! x| < r)]
£2 B (@ (w'x))* + (0 (w %) 1w x| > 7))

Since both @*! and u* are (a, b)-unbounded functions such that 4*¢(0) = u*(0) = 0, hence it holds (4*!(w' - x))? <
W2 ((wt/||[wt]|2) - x)? and similarly, (u*(w* - x))? < b*W?2((w*/|[w*||2) - x)2. Furthermore, since for any unit
vector a, the random variable a - x follows a 1/L-sub-exponential distribution for Dy is (L, R)-well behaved, thus,
it holds that Ex.p_[(a - x)*] < ¢/L* for some absolute constant c. Therefore, after applying Cauchy-Schwarz to
E[(a*(w' - x))?1{|w’ - x| > r}] it holds

Bl (w' - 0)*1{[w' x| = )] <602, [ B (/T ]z) ) T Paliwt -] = ]

< cb*W?5,/(L*m), (60)
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and similarly, E[(u*(w* - x))21{|w’ - x| > r}] < cb*W?25;/(L?*m). Thus, bringing back to the upper bound on
Exp, [(0*(w! - x) — u*(W* - x))?] displayed above, we get

LE @ (whx) —ut(whx)? < B (@ (whx) —ut(w )P I{[w! x| < )

+ 2cb* W25, /(L*m).

We are now ready to apply Fact F.1 (note that V is a smaller function class compared to the class of 1-Lipschitz functions
described Fact F.1, hence the results in Fact F.1 applies). Denote A = {x : |w’ - x| < r}. Lety’ = y*/(2br) + 1/2,

y* = u*(w* - x). Since conditioning on the A, 4**(z)/(2br) + 1/2 is the optimal empirical activation, applying Fact F.1
we get with probability at least 1 — ds:

E [(@"(w' x)/(2br) +1/2 = (u"(W" - x)/(20r) +1/2))?|A]

x~Dy
= E [(0"(w' %) —y)|4]
< inf B [(v(w'x) = y')*|A] + O(W (dlog(m/b,)/m)*).

Let V| ;< and U(q 1) ||z | < be the functions from V and U(, ) restricted on the interval |z| < r, respectively. It’s easy to
see that by definition of U, 3y and V, (U(a 1) |21<r)/(20r) +1/2 C V||; <, Therefore,

inf B [(o(w'x) =)A< inf B [(u(w'x)/(2br) + 1/2 - y'?I4]

1
< : t k)2 .
< e lf, B ((u(w'-x) —y7)7|4]

Hence, with probability at least 1 — Jo,
E [(@"(w'-x) — u*(w" - x))*1{A}]

B
— 4t B (07w %)~ y')?14] Prl4]

<apr?inf B [(v(w' %)~ )% 4] PrlA] + O W (dlog(m/62) fm)*/*) Pr4]
< inf B [(u(w'x)—u(w" %)) L{A}] + O3 W (dlog(m/0) fm)?'*)

< inf B ((u(w! %)~ u'(w" %))+ O W (dlog(m/82) /m)?*)

Setting §; = d5 = §/2 and plugging everything back to (60), we finally get that with probability at least 1 — 4,

E [(@(w' x)—u"(w" x))’

x~Dy
< B [ (w'-x) — ' (w* - x)PU{w x| < ] 2007 W) (LPm)

i ¢ - WS, (m [ dlog(m/é)\**?
< inf, B, T 50— w0 o Pt (75 ) (R ) ).

To complete the first part of the claim, it remains to choose m as the following value
B2 3\ 3/2
m = O/ dlog*(d/(ed)) .
L3¢

For the second part of the claim, note that U, is a closed convex set of functions, and that the infimum
inf,cyy Exp, [(u(w! - x) — u*(w* - x))?] is attained by u**(2). As we have shown that with the sample size m specified

above, with probability at least 1 — 4, it holds

e> E [(@*(w'- x)—u*(w* %)) = (ut(wh - x) — ut(w* -x))Q]

x~Dy
= xgpx[(ﬁ*t(wt x) —u*t(whox)) (@ (whx) +ut(whx) = 2ut(WE - x)))]
= B [ x) (v x)) 2B [ (') (w0 (! x) ()]
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Since 4*t(2) € U(a,p)» applying the second part of Claim C.6 with v = * we get

xgx[(u*t(wt X)) — a(whx)) (uF (W x) —ut(whx))] > 0.

Thus, we have:

B (@ x) -t (w X)) < e

This completes the proof of Lemma F.2. O

To prove a similar uniform convergence result for the attainable activations @, we make use of the following fact from prior
literature, which shows that we can without loss of generality take the noisy labels to be bounded by M = O (2 log(bW/e)),
due to Dx being (L, R)-well behaved.

Fact F.3 (Lemma D.8 (Wang et al., 2023)). Lety’ = sign(y) min(|y|, M) for M = 2 log(m”élizw4). Then:

E [(u*(w"-x)—y)%] = OPT + <.
(x,y)~D

In other words, we can assume |y| < M without loss of generality by truncating labels that are larger than M. Under this
assumption, as stated in Lemma F.4 below, we bound the L3 distance between 4 and ! using similar arguments as in
Lemma F.2.

Lemma F.4 (Approximating Population-Optimal Activation by Empirical). Let w' € B(W). Given a distribution D whose
marginal Dy is (L, R)-well behaved, let S = {(x, y)}m | where (x),y D) fori € [m] are i.i.d. samples from D. Let
4t be a sample-optimal activation for the dataset S and parameter vector w', as defined in (P). In addition, let u® be the
corresponding population-optimal activation, as defined in (EP). Then, for any €, > 0, choosing a sufficiently large

b2w3 3/2
4
m 2 atogt(@/() ("o )

we have that for any w' € B(W), with probability at least 1 — § over the dataset S:

Atwt - x) — )2 wtw?t - x) — )2 + €
LBl ) <y Bl wex) — )% e

and, furthermore,

LB [(@(w' %)~ (wh %)% <

Proof. As in the proof of Lemma F.2, we choose 7 = 29% log(m /(L1 )) so that [w*-x ()| < r for all x(V)’s from the dataset
with probability at least 1 — 67 /m > 1 — &;. We now condition on the event that [w? - x(?)| < rforalli =1,...,m. Let V
be the set of non-decreasing 1-Lipschitz functions such that Vo € V, v(0) = 1/2, and v(z1) — v(z2) > (a/(20r))(z1 — 22)
for all z; > z; > 0. Then, conditioned on this event, we similarly have that (4/(z)/(2br) 4+ 1/2)|,<, = 0*(z) € V, and
0t(2) satisfies:

m

1 ) )
(2) € argmin — olwt - x®) — ()2,
() < smgmin > (u(wtx) ')

Again, studying the L2 distance between ! (z) and u’(z), we have:

(xgw[(at(wt x) —y)?Y = (X,END[(ﬁt(Wt -x) — )’ 1{jw" - x| < 7}]
(X,END[(ﬂt(Wt -x) —y)?1{|w" - x| > r}].
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The probability of |[w' - x| > r is small due to the fact that Dy possesses sub-exponential tail: Pr[|w’ - x| > 7] < (§;/m)2.
Now note that |y| < M and Exp,[((W!/||w']|2) - x)*] < ¢/L* by the sub-exponential property of D, we thus have:

LB w0 1wt x| > 1))

<2 B (W %)y {w x> )]

<2 B [PWA(w!/[w]s) %) 1wt x| > ]+ 202 Prlw! x| > 1]

< 22w [ B (Tl 0T Pt 1]+ 207 P’ x| > 1
< 2eb* W26y /(L*m) + 2M? (51 /m)?,

where in the second inequality we used the fact that 4! is b-Lipschitz and w? € B(TV), and in the third inequality we applied
Cauchy-Schwarz. Since M = YW 1og(1852) ' we have M2(8; /m) < eb*W?2/L? for m 2 log(bW/e), thus, in the end,
we get

E [(a'(w'-x)—y)?1{|w' x| >r}] < 4c(bW/L)*5;/m, 61)

for some absolute constant c.

The rest remains the same as in the proof of Lemma F2. Let A = {x : |w! - x| < r}. Lety/ = y/(2br) + 1/2. As
9t(z) = 4t (2)/(2br) + 1/2 is the optimal empirical activation in V given w' (conditioned on A), applying Fact F.1 we have
with probability at least 1 — §:

WE @ w e x)/(@br) +1/2) g P4 = B[ x) —y)1A]
<inf B [(w %) ~3/)°|A] + O(W (dlog(m/d)/m)?).

Since U(q p)||2<r/(20r) +1/2 C V| ;|<r, we further have

inf E [(v(w' x)-— y’)2|A] < inf E [(u(w' -x)/(2br) +1/2— y’)2|A]

veV (x,y)~D uEU(q by (x,y)~D
1
<—— inf E box) —y)?Al
= Up2r2 uellf}(a,b) (=, )ND[(“(W x) —y)7|A]

Therefore, Ex ,)p[(@' (W' - x) — y)?1{A}] can be bounded from above by
E [(@'(w'- x)—y)*1{A
LB )~ )1 {A)]

=4’ E [(0'(w'-x) —y')?A] Pr[4]
(x,y)~D

< 4b*r? irel\f2( I? D[(v(wt -x) — 9 )| A] Pr[A] + O(b*r*W (dlog(m/d2) /m)?/?)
v X,y)~

< dnf B () - 9)8{A)] + 00 W (dlog(m/0)/m)*)

< inf E [(u(w'-x) =)+ O0*?*W (dlog(m/s)/m)*?3).
UEU(a,b) (x,y)~D
Thus, combining with (61), we get with probability at least 1 — §; — da,
) - dlog(m/82)\** bW\ 26,
E [(@'(w'x)-y?’< E [(W'(w' x)-— 2+O(Wb2r2< +( =] =.
()gy)wp[( ( ) —y)] < (W)ND[( ( )= y)7] - ) o

Choosing the size of the sample set to be:

m= @<d10g4(d/(a5)) (%)3/2),
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and recall that r = 2¢¥ log(m/(L6;)), we finally have

E a(w-x)—y)?}< E ut(wh - x) —y)?] + e,
WE W x) <)) < B (w'x) - )]
with probability at least 1 — 4, after choosing d; = dy = 6/2.
To prove the final claim of the lemma, we follow the same routine as in Lemma F.2. Since we have just shown that with
probability at least 1 — 4, it holds

e> B (W x) - ) - (W(w'x) - p)?]
= B (@ (w'x) - ul (w0 42 B[ (W' x) — u(wt - )) (! (W' x) — ),

x~Dy x~Dy

applying the first statement in Claim C.6 finishes the proof.
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