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Abstract
We study the task of agnostically learning half-
spaces under the Gaussian distribution. Specif-
ically, given labeled examples (x, y) from an
unknown distribution on Rn × {±1}, whose
marginal distribution on x is the standard Gaus-
sian and the labels y can be arbitrary, the goal is
to output a hypothesis with 0-1 loss OPT + ϵ,
where OPT is the 0-1 loss of the best-fitting
halfspace. We prove a near-optimal computa-
tional hardness result for this task, under the
widely believed sub-exponential time hardness
of the Learning with Errors (LWE) problem.
Prior hardness results are either qualitatively sub-
optimal or apply to restricted families of algo-
rithms. Our techniques extend to yield near-
optimal lower bounds for related problems, in-
cluding ReLU regression.

1. Introduction
A halfspace or Linear Threshold Function (LTF) is any
Boolean-valued function f : Rn → {±1} of the form
f(x) = sign (⟨w,x⟩ − t), where w ∈ Rn is called the
weight vector and t ∈ R is called the threshold. Here
the univariate function sign : R → {±1} is defined as
sign(u) = 1 if u ≥ 0 and sign(u) = −1 otherwise.
The task of learning an unknown halfspace is a classi-
cal problem in machine learning that has been extensively
studied since the 1950s, starting with the Perceptron algo-
rithm (Rosenblatt, 1958), and has lead to practically im-
portant techniques such as SVMs (Vapnik, 1998) and Ad-
aBoost (Freund & Schapire, 1997). In the realizable set-
ting (Valiant, 1984), halfspaces are known to be efficiently
learnable (see, e.g., (Maass & Turan, 1994)) without dis-
tributional assumptions. In contrast, in the distribution-
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free agnostic model (Haussler, 1992; Kearns et al., 1994),
even weak learning is computationally hard (Guruswami &
Raghavendra, 2006; Feldman et al., 2006; Daniely, 2016;
Tiegel, 2022). Due to this computational intractability, a
significant branch of research has focused on agnostically
learning halfspaces in the distribution-specific setting. In-
tuitively, the underlying structure of the data distribution
can potentially be leveraged to obtain non-trivial efficient
algorithms robust to adversarial label noise.

Here we focus on the well-studied task of agnostically
learning halfspaces when the underlying distribution on ex-
amples is assumed to be Gaussian. That is, we are given
i.i.d. samples from a joint distribution D on labeled exam-
ples (x, y), where x ∈ Rn is the example and y ∈ R is the
corresponding label, and the goal is to compute a hypothe-
sis that is competitive with the best-fitting halfspace. More-
over, we assume that the marginalDx on Rn is the standard
Gaussian N (0, I). As we will explain subsequently, the
distributional assumption makes the learning problem com-
putationally easier, as compared to the distribution-free set-
ting. Interestingly, even the Gaussian version of the prob-
lem exhibits information-computation tradeoffs that we ex-
plore — and essentially resolve — in this paper.

For concreteness, we introduce some notation followed
by the definition of the aforementioned problem. For a
boolean-valued hypothesis h : Rn → {±1} and a distri-
bution D supported on Rn × {±1}, we use R0−1(h;D)
to denote the 0-1 error of h with respect to D, i.e.,
R0−1(h;D)

def
= Pr(x,y)∼D[h(x) ̸= y]. For a class C

of boolean-valued functions on Rn, we use R0−1(C;D)
to denote the minimum 0-1 error of any h ∈ C, i.e.,
R0−1(C;D)

def
= minh∈C R0−1(h;D).

Problem 1.1 (Agnostically Learning Halfspaces under
Gaussian Marginals). Let LTF be the class of halfspaces
on Rn. Given an error parameter 0 < ϵ < 1 and i.i.d.
samples (x, y) from a distribution D on Rn×{±1}, where
the marginal Dx on Rn is the standard Gaussian N (0, I)
and no assumptions are made on the labels y, the goal
of the learning algorithm A is to output a hypothesis h :
Rn → {±1} such that R0−1(h;D) ≤ R0−1(LTF;D) + ϵ
with high probability. We will say that the algorithm A
agnostically learns halfspaces (or LTFs) under Gaussian
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marginals to additive error ϵ.

Prior Work on Problem 1.1 By standard results (Haus-
sler, 1992; Kearns et al., 1994), it follows that the sample
complexity of the agnostic learning problem for halfspaces
is O(n/ϵ2). The L1-regression algorithm of (Kalai et al.,
2008) solves Problem 1.1 with sample complexity and run-
ning time nO(1/ϵ2) (Diakonikolas et al., 2010a;b). While
the L1-regression algorithm is not proper, recent work de-
veloped a proper learner with qualitatively similar sample
and time complexities (namely, npoly(1/ϵ)) (Diakonikolas
et al., 2021a). Importantly, the L1-regression algorithm re-
mains the most efficient known algorithm for the problem.

Given the gap between the sample complexity of the prob-
lem and the complexity of known algorithms, it is natural
to ask whether the limitations of known efficient algorithms
are inherent. There are two general approaches to establish
information-computation tradeoffs for statistical problems.
One approach focuses on restricted families of algorithms
(e.g., Statistical Query algorithms or low-degree polyno-
mial tests). It should be noted that such results do not have
any implications for the family of all polynomial-time al-
gorithms. Another, arguably more convincing approach,
is via efficient reductions from known (average-case) hard
problems. This is the approach we adopt in this work.

Returning to Problem 1.1, a line of work (Goel et al., 2020;
Diakonikolas et al., 2020b; 2021b) has established tight
hardness in the Statistical Query (SQ) model. SQ algo-
rithms (Kearns, 1998) are a class of algorithms that are
only allowed to query expectations of bounded functions
of the distribution rather than directly access samples. (Di-
akonikolas et al., 2021b) leveraged the framework of (Di-
akonikolas et al., 2017) to show that any SQ algorithm for
the problem either requires 2n

Ω(1)

queries or at least one
query of very high accuracy (suggesting a sample complex-
ity lower bound of nΩ(1/ϵ2)). Interestingly, it is known (see,
e.g., (Dachman-Soled et al., 2015)) that the L1-regression
algorithm can be efficiently implemented in the SQ model.
However, since the SQ model is restricted, this SQ lower
bound has no implications for general efficient algorithms.

Prior to the our work, the only known computational hard-
ness for Problem 1.1 is due to Klivans and Kothari (Kli-
vans & Kothari, 2014). That work gave a reduction from
the problem of learning sparse parities with noise to Prob-
lem 1.1. Under the plausible assumption that learning k-
sparse parities with noise over {0, 1}n requires time nΩ(k),
the reduction of (Klivans & Kothari, 2014) implies a com-
putational lower bound of nΩ(log(1/ϵ)) for Problem 1.1. In-
terestingly, this lower bound cannot be improved in the
sense that the corresponding hard instances can be solved
in time nO(log(1/ϵ)).

Finally, we note that for the qualitatively weaker error

guarantee of C · OPT + ϵ, for a sufficiently large uni-
versal constant C > 1, poly(d/ϵ) time algorithms are
known (Awasthi et al., 2017; Daniely, 2015; Diakonikolas
et al., 2018).

In summary, the best known algorithm for Problem 1.1
has sample complexity and running time npoly(1/ϵ), while
the best known computational hardness result gives an
nΩ(log(1/ϵ)) lower bound. Moreover, a tight lower bound
is known for the restricted class of SQ algorithms. This
raises the following natural question:

Can we establish a near-optimal computational hardness
result for Problem 1.1?

In this paper, we answer this question in the affirmative
by exhibiting a computational hardness reduction from a
classical cryptographic problem, showing that current algo-
rithms are essentially best possible. Specifically, we prove
a complexity lower bound of npoly(1/ϵ) (Theorem 1.3), as-
suming the widely believed sub-exponential hardness of
the Learning with Errors (LWE) problem (Definition 2.2).

The task of learning halfspaces is as a special case of the
more general setting that the underlying function is of the
form σ((⟨w,x⟩ − t)), where σ : R → R is a univariate
activation. If the activation is better behaved than the sign
function, specifically if σ is monotone and Lipschitz (aka
the setting of Generalized Linear Models), then the learn-
ing problem can be easier computationally. Here we show
that our techniques can be extended to prove near-optimal
hardness for some of these cases as well. Specifically, we
focus on the well-studied problem of ReLU regression.

A ReLU is any function f : Rn → R+ of the form f(x) =
ReLU (⟨w,x⟩ − t), where w ∈ Rn is called the weight
vector and t ∈ R is called the threshold. The activation
ReLU : R → R+ is defined as ReLU(u) = max{0, u}.
ReLUs are the most commonly used activations in modern
deep neural networks. Moreover, finding the best-fitting
ReLU with respect to square-loss is a fundamental primi-
tive in the theory of neural networks. A line of work studied
this problem from the perspectives of both algorithms and
lower bounds, see, e.g., (Soltanolkotabi, 2017; Goel et al.,
2017; Manurangsi & Reichman, 2018; Goel et al., 2019;
Frei et al., 2020; Diakonikolas et al., 2020a; 2022c; Awasthi
et al., 2022). Similarly to the case of halfspaces, ReLU re-
gression is efficiently solvable in the realizable setting and
computationally hard (even for weak error guarantees) in
the distribution-independent agnostic setting (Manurangsi
& Reichman, 2018; Diakonikolas et al., 2022a). Here we
study the agnostic setting with Gaussian marginals.

Since ReLU regression is a real-valued task, we will require
the analogous terminology. For a real-valued hypothesis
h : Rn → R and a distributionD supported on Rn×{±1},
we useR2(h;D) to denote the L2

2-error of hwith respect to
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D, i.e., R2(h;D)
def
= E(x,y)∼D[(h(x)− y)2]. For a class C

of real-valued functions on Rn, we use R2(C;D) to denote
the minimum L2

2-error of any h ∈ C, i.e., R2(C;D)
def
=

minh∈C R2(h;D).
Problem 1.2 (ReLU Regression under Gaussian
Marginals). Let ReLU be the class of ReLUs on Rn
with weight vectors in the set {w ∈ Rn : ∥w∥2 ≤ 1}.
Given an additive error parameter 0 < ϵ < 1 and i.i.d.
samples (x, y) from a distribution D on Rn × R, where
the marginal Dx on Rn is the standard Gaussian N (0, I)
and the labels y are bounded, the goal of the learning
algorithm A is to output a hypothesis h : Rn → R such
that R2(h;D) ≤ R2(ReLU;D) + ϵ with high probability.
We will say that the algorithm A agnostically learns
ReLUs under Gaussian marginals to additive error ϵ.

Prior Work on Problem 1.2 While there is no black-box
relation with Problem 1.1, the situation for both problems
is analogous. (Diakonikolas et al., 2020a) gave an algo-
rithm for Problem 1.2 with sample complexity and runtime
npoly(1/ϵ). While poly(n/ϵ) time algorithms are known
with weaker guarantees (Goel et al., 2019; Diakonikolas
et al., 2020a; 2022c), the fastest known algorithm with
OPT+ ϵ error is the one of (Diakonikolas et al., 2020a). In
terms of computational hardness, (Goel et al., 2019) gave
a reduction from sparse noisy parity implying a computa-
tional lower bound of nΩ(log(1/ϵ)) for Problem 1.2. In the
restricted SQ model, (near-optimal) SQ lower bounds of
npoly(1/ϵ) have been shown (Goel et al., 2020; Diakoniko-
las et al., 2020b; 2021b).

In summary, the best known algorithm for Problem 1.2
has sample complexity and running time npoly(1/ϵ), while
the best known computational hardness result gives an
nΩ(log(1/ϵ)) lower bound. It is thus natural to ask whether
computational hardness of npoly(1/ϵ) can be established.
Similarly to the case of LTFs, we prove such a statement
(Theorem 1.4) under the sub-exponential hardness of LWE.

1.1. Our Results and Techniques

We start with an informal definition of the LWE prob-
lem. In the LWE problem, we are given samples
(x1, y1), . . . , (xm, ym) and the goal is to distinguish be-
tween the following two cases:

• Each xi is drawn uniformly at random (u.a.r.) from Znq ,
and there is a hidden secret vector s ∈ Znq such that yi =
⟨xi, s⟩ + zi, where zi ∈ Zq is discrete Gaussian noise
(independent of xi).

• Each xi and each yi are independent and are sampled
u.a.r. from Znq and Zq respectively.

Formal definitions of LWE (Definition 2.2) together with

the precise computational hardness assumption (Assump-
tion 2.3) we rely on are given in Section 2.

For Problem 1.1 we prove:
Theorem 1.3 (Hardness of Agnostically Learning Gaus-
sian Halfspaces). Assume that LWE cannot be solved in
2n

1−Ω(1)

time. Then for any constants c > 0 and α < 2
the following holds: If ϵ ≤ 1/ log1/2+c(n), any algo-
rithm that agnostically learns LTFs on Rn with Gaussian
marginals to additive error ϵ requires running time at least
min{nΩ(1/(ϵ

√
logn)α), 2n

0.99}.

Some comments are in order to interpret this statement.
The minimum of the two terms is necessary to handle the
case where ϵ is very small, specifically ϵ = Õ(1/

√
n).

(Since the problem can always be solved in time 2Õ(n) via
brute-force, the first term cannot be a time lower bound
for this range of ϵ.) On the other hand, for Ω̃(1/

√
n) =

ϵ ≤ 1/ log1/2+c(n), Theorem 1.3 gives a time lower bound
of nΩ(1/(ϵ

√
logn)α), for any constant α < 2. This bound

nearly matches the upper bound of nO(1/ϵ2) (Kalai et al.,
2008), up to the

√
log n factor in the exponent. Note that

the extraneous factor of
√
log n is negligible if ϵ is suffi-

ciently small. For example, if ϵ ≤ 1/ log n, the implied
lower bound is nΩ(1/ϵα) for any constant α < 1. For
ϵ = O(n−c), for a small constant c > 0, we get a lower
bound of nΩ̃(1/ϵα), for any constant α < 2.

Independent Work In independent and concurrent
work, (Tiegel, 2022) showed a quantitatively similar lower
bound as our Theorem 1.3. Their result requires that ϵ ≤
1/

√
n in Problem 1.1, while our result allows a wider range

of ϵ, roughly as long as ϵ ≤ 1/
√

log(n).

For Problem 1.2 we prove:
Theorem 1.4 (Hardness of Gaussian ReLU Regression).
Assume that LWE cannot be solved in 2n

1−Ω(1)

time. Then
for any constants c > 0 and α < 1/2 the following holds:
If ϵ ≤ 1/ log2+c(n), any algorithm for ReLU regression
on Rn under Gaussian marginals with additive error ϵ re-
quires running time at least min{nΩ(1/(ϵ log2 n)α), 2n

0.99}.

Intuitively, the above statement says that any algorithm for
Problem 1.2 requires time at least n(1/ϵ)

Ω(1)

, if ϵ is suffi-
ciently small (e.g., ϵ = O(1/ log3 n)) and not too small
(in which case the latter term dominates the obvious brute-
force algorithm). This runtime lower bound qualitatively
matches the upper bound of npoly(1/ϵ) (Diakonikolas et al.,
2020a) and exponentially improves on the best known com-
putational lower bound of nΩ(log(1/ϵ)) (Goel et al., 2019).

1.2. Techniques

Our computational hardness reductions build on two main
ideas. The first idea is inspired by the approach of (Di-
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akonikolas et al., 2022b). We note that (Diakonikolas
et al., 2022b) established a hardness reduction from LWE
to distribution-free PAC learning halfspaces with Massart
noise. While the Massart noise model is technically easier
than the adversarial label noise model, here we are inter-
ested in the (much simpler) regime where the marginal dis-
tribution is Gaussian. Indeed, the results of (Diakonikolas
et al., 2022b) have no implications for the Gaussian setting.
Yet one of their ideas is useful in our context.

The key idea of (Diakonikolas et al., 2022b) is that by ap-
plying rejection sampling to a continuous variant of LWE
supported on Rn (this variant was shown to be as hard
as the standard LWE problem supported on Znq in (Gupte
et al., 2022),) one obtains either (i) a standard Gaussian in
the null hypothesis case or (ii) a distribution that is approx-
imately a discrete Gaussian plus a little noise in a hidden
direction and a standard Gaussian in the orthogonal direc-
tions in the alternative hypothesis case. By taking a mix-
ture of such rejection sampling distributions, (Diakoniko-
las et al., 2022b) manage to produce a joint distribution on
(x, y) over Rn × {±1} such that:

(i) in the null hypothesis case, y is independent of x, and

(ii) in the alternative hypothesis case1, y is given by a Poly-
nomial Threshold Function (PTF) applied to x with
Massart noise.

Given the above, (Diakonikolas et al., 2022b) conclude that
any learner for Massart halfspaces LTFs can be used to dis-
tinguish between the alternative and null hypothesis cases,
and thus solves the LWE problem.

In this paper, we apply a similar technique to the tasks of
agnostically leaning halfspaces and ReLUs under Gaussian
marginals. A key difference in our setting is that we require
the distribution of x be the standard Gaussian — a prop-
erty inherently not satisfied by the aforementioned con-
struction. Roughly speaking, (Diakonikolas et al., 2022b)
showed that it is LWE-hard to distinguish between a stan-
dard Gaussian and a distribution that is standard Gaussian
in all directions except for a hidden direction in which it
is approximately a specified mixture of discrete Gaussians
plus a little noise. The learning application in (Diakoniko-
las et al., 2022b) was obtained via the construction of a PTF
with Massart noise such that both the conditional distribu-
tions on y = 1 and on y = −1 were such (noisy) mixtures
of discrete Gaussians. In our context, we need to construct
different pairs of such conditional distributions.

We do this as follows. Let x be sampled from a standard
Gaussian and consider the function fs(x) = (−1)⌊⟨x,s⟩⌋

1This leverages a construction of such a distribution from (Di-
akonikolas & Kane, 2022).

for some unknown vector s with relatively large norm. If
we consider the distribution of x conditioned on fs(x) = 1,
we obtain a distribution that is (i) Gaussian in the directions
orthogonal to s, and (ii) a Gaussian conditioned on ⌊⟨x, s⟩⌋
being even in the s-direction. One can see that this is a
mixture of discrete Gaussians. The same can be argued for
the distribution of s conditioned on fs(x) = −1. Thus,
using the techniques described above, we can show that
given labeled samples (x, y) with x a standard Gaussian,
it is LWE-hard to distinguish between the cases that (i) y
is independent of x, and (ii) y = fs(x) for some unknown
vector s.

This result forms the basis for our two learning applica-
tions. Specifically, for the problem of agnostically learning
Gaussian LTFs, it is not hard to show that there exists an
LTF g such that Ex∼N (0,I)[fs(x)g(x)] = ϵ = Ω(1/∥s∥2).
This implies that any algorithm that agnostically learns
LTFs to error OPT+ ϵ/3, where OPT = R0−1(LTF;D),
can be used to distinguish between the case that y is in-
dependent of x (in which case OPT = 1/2) and the case
described above (i.e., y = fs(x) = (−1)⌊⟨x,s⟩⌋), where
OPT = 1/2− ϵ. This implies that the agnostic learning of
Gaussian LTFs is LWE-hard.

For ReLU regression, we show that there exists a ReLU g
such that Ex∼N (0,I)[fs(x)g(x)] = ϵ = Ω(1/∥s∥22). In par-
ticular, this correlation means that the L2

2-distance between
f and an appropriately scaled version of g is bounded away
from 1 in the negative direction. Thus, it is LWE-hard to
distinguish between the case where y = fs(x) (and thus the
minimal L2

2-error for ReLUs is at most 1− ϵ2) and the case
where y is independent of x (in which case the minimum
L2
2-error of any ReLU is at least 1).

The above sketch glossed over the following important
technical point. By applying the aforementioned reduction
directly to the standard version of the (continuous) LWE
problem (Bruna et al., 2021) which has secret vector s with
∥s∥2 =

√
n, we can obtain a time lower bound for our ag-

nostic learning problems only if the additive error ϵ is tiny,
namely ϵ = Õ(1/

√
n). In order to prove lower bounds

for a wider range of ϵ, we will need to instead start from a
small norm version of the continuous LWE problem, where
the secret vector s roughly satisfies ∥s∥2 ≈ 1/ϵ. We ac-
complish this via a non-trivial modification of a reduction
in (Gupte et al., 2022), which we view as an additional
technical contribution of this work. Specifically, (Gupte
et al., 2022) gave a reduction of the standard discrete LWE
problem to a discrete LWE problem with a sparse secret
(namely, secret vector s ∈ {0,±1}n with ∥s∥1 = k). (This
itself leverages an idea in (Micciancio, 2018).) After that,
(Gupte et al., 2022) further reduces the sparse secret dis-
crete LWE problem to a continuous LWE problem whose
secret vector has small ℓ2-norm. The limitation here is
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that their ℓ2-norm bound has a factor of
√
logm, where

m is the number of samples. Unfortunately, this quantita-
tive dependence prevents us from obtaining the near opti-
mal lower bound for our learning LTFs tasks. To address
this issue, we present a (slightly) improved reduction (see
Lemma B.5), removing the

√
logm factor on the secret

vector norm. This allows us to apply our reduction tech-
nique to the small norm continuous LWE problem, giving
nearly tight lower bounds for our learning problems.

2. Preliminaries
Notation We use ⟨x,y⟩ for the inner product between
vectors x,y ∈ Rn. For p ≥ 1 and x ∈ Rn, we use
∥x∥p

def
= (

∑n
i=1 |xi|p)

1/p to denote the ℓp-norm of x.
We use Sn−1 to denote the unit sphere in Rn, i.e., the set
Sn−1 def

= {x ∈ Rn : ∥x∥2 = 1}. For q ∈ N, we de-
note Zq

def
= {0, 1, · · · , q − 1} and Rq

def
= [0, q). We use

modq : Rn → Rnq to denote the function that applies the
modq operation on each coordinate of the vector x. For a
set S ⊂ Rn, we use U(S) to denote the uniform distribu-
tion over S. We use x ∼ D to denote a random variable
x with distribution D. For a random variable x (resp. a
distribution D), we use Px (resp. PD) to denote the prob-
ability density function or probability mass function of the
random variable x (resp. distribution D). We will require
the following notion of partially supported Gaussian.

Definition 2.1 (Partially Supported Gaussian Distribu-
tion). For σ ∈ R+ and x ∈ Rn, let ρσ(x)

def
=

σ−n exp
(
−π(∥x∥2/σ)2

)
. For any countable set2 S ⊆ Rn,

we let ρσ(S)
def
=
∑

x∈S ρσ(x), and letDN
S,σ be the distribu-

tion supported on S with pmf PDN
S,σ

(x) = ρσ(x)/ρσ(S).

For consistency, we will use DN
Rn,

√
2πσ

to denote the n-
dimensional Gaussian distribution N (0, σ2I).

Learning with Errors The Learning with Errors (LWE)
problem was introduced in (Regev, 2005). Here we use a
slightly more generic definition for the convenience of later
reductions between different variants of LWE problems.

Definition 2.2 (Generic LWE). Let m,n ∈ N,
q ∈ R+, and let Dsample, Dsecret, Dnoise be
distributions on Rn,Rn,R respectively. In the
LWE(m,Dsample, Dsecret, Dnoise,modq) problem,
we are given m independent samples (x, y) and want to
distinguish between the following two cases:

(i) Alternative hypothesis: A vector s is drawn from
Dsecret (s is called “the secret vector”). Then each sam-
2We will take the sets S to be shifts of lattices, guaranteeing

that ρσ(S) is finite and the distribution is well-defined.

ple (x, y) is generated by taking x ∼ Dsample, z ∼
Dnoise, and letting y = modq(⟨x, s⟩+ z).

(ii) Null hypothesis: The random variables x and y are in-
dependent. Moreover, x has the same marginal distri-
bution as in the alternative hypothesis, and y has the
marginal distribution as U(S) where S is the support
of the marginal distribution of y in the alternative hy-
pothesis.

An algorithm A solves the LWE problem with advantage
α > 0, if palternative − pnull ≥ α where palternative (resp.
pnull) is the probability that A outputs “alternative hypoth-
esis” if the input distribution is from the alternative hypoth-
esis (resp. null hypothesis). When a distribution in LWE is
uniform over some set S, we may abbreviate U(S) as S.

Our hardness assumption is the following:
Assumption 2.3 (Sub-exponential LWE Assumption). Let
c > 0 be a sufficiently large constant and q ∈ N.
For any constants β ∈ (0, 1), κ ∈ N, the problem
LWE(2O(nβ),Znq ,Znq , DN

Z,σ,modq) with q ≤ nκ and σ =

c
√
n cannot be solved in 2O(nβ) time with 2−O(nβ) advan-

tage.

This is a widely-believed conjecture, supported by our cur-
rent understanding of the field. (Regev, 2005; Peikert,
2009) gave a polynomial-time quantum reduction from ap-
proximating (the decision version of) the Shortest Vec-
tor Problem (GapSVP) to LWE (with similar n, q, σ pa-
rameters). We note that the fastest known algorithm for
GapSVP takes 2O(n) time (Aggarwal et al., 2020). Thus,
refuting the conjecture would be a major breakthrough. A
similar assumption was also used in (Gupte et al., 2022)
and (Diakonikolas et al., 2022b) to establish computational
hardness of learning Gaussian mixtures and distribution-
independent learning of Massart halfspaces.

In addition to the standard LWE problem above, we will
also consider a continuous variant of the LWE problem (in-
troduced in (Bruna et al., 2021)) where supports of the dis-
tributions are continuous. In particular, the first part of our
proof is the following proposition which slightly modifies
the proof in (Gupte et al., 2022) and gives the reduction
from the standard LWE to the continuous LWE. The proof
is deferred to Appendix B.
Proposition 2.4 (Hardness of continuous LWE (cLWE)
with Small-Norm Secret). Under Assumption 2.3, for
any n ∈ N, any constants β ∈ (0, 1), κ ∈ N,
γ ∈ R+ and any logγ n ≤ k ≤ cn where c > 0
is a sufficiently small universal constant, the problem
LWE(nO(kβ), DN

Rn,1, Sn−1, DN
R,σ,modT ) with σ ≥ k−κ

and T = 1/(c′
√
k log n) where c′ > 0 is a sufficiently

large universal constant cannot be solved in nO(kβ) time
with n−O(kβ) advantage.
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3. Hardness of Agnostically Learning
Gaussian LTFs

In this section, we continue from Proposition 2.4 (the proof
of which is deferred to Appendix B) which is the first step
of our reduction, and give the second and main part of the
reduction. We thereby establish the desired cryptographic
hardness of agnostically learning LTFs under the Gaussian
distribution.

The high-level idea is the following. Given sam-
ples (x, y) from a distribution D on Rn × RT ,
which is an instance of the cLWE problem
LWE(nO(kβ), DN

Rn,1, Sn−1, DN
R,σ,modT ) (note that

T is the “period” of the periodic signal on the hidden
direction) from Proposition 2.4, we efficiently generate
samples (x, y′) (we leave x unchanged) from a distribution
D′ on Rn × {±1} such that:

(i) If D is from the alternative hypothesis case, then
there exists an LTF h : Rn → {±1} such that
R0−1(h;D

′) ≤ 1/2− Ω(T ).

(ii) If D is from the null hypothesis case, then for
(x, y′) ∼ D′, we have that y′ = +1 with probability
1/2 and y′ = −1 with probability 1/2 independent of
x; thus, no hypothesis can achieve error non-trivially
better than 1/2.

Given the above properties, if an algorithm can ag-
nostically learn LTFs with Gaussian marginals to error
R0−1(LTF;D

′) + o(T ), then it can distinguish the two
cases above and solve the LWE problem.

In the body of this section, we describe our reduction and
formalize the above. The main theorem of this section,
stated and proved below, establishes hardness for a natu-
ral decision version of agnostically learning LTFs.

Theorem 3.1 (Cryptographic Hardness of Agnostically
Learning Gaussian LTFs). Under Assumption 2.3, for any
n ∈ N, for any constants β ∈ (0, 1), γ ∈ R+ and any
logγ n ≤ k ≤ cn where c is a sufficiently small constant,
there is no algorithm that runs in time nO(kβ) and distin-
guishes between the following two cases of a joint distri-
bution D of (x, y) supported on Rn ×{±1} with marginal
Dx = DN

Rn,1, with n−O(kβ) advantage:

(i) Alternative Hypothesis: There exists an LTF with
0-1 error non-trivially smaller than 1/2, namely
R0−1(LTF;D) ≤ 1/2− Ω

(
1/
√
k log n

)
.

(ii) Null Hypothesis: A sample (x, y) ∼ D satisfies the
following: y = +1 with probability 1/2 and y = −1
with probability 1/2 independent of x.

Proof. We give an efficient method taking as input sam-
ples from a distribution D′ — that is either from
the alternative hypothesis or the null hypothesis of
LWE(nO(kβ), DN

Rn,1, Sn−1, DN
R,σ,modT ) from Proposi-

tion 2.4 — and generates samples from another distribu-
tion D with the following properties: If D′ is from the
alternative (resp. null) hypothesis of the LWE problem,
then the resulting distribution D will satisfy the alternative
(resp. null) hypothesis requirement of the theorem for the
agnostic LTF learning decision problem.

The reduction process is the following: For a sam-
ple (x, y′) from a distribution D′, which is an instance
of the problem LWE(nO(kβ), DN

Rn,1, Sn−1, DN
R,σ,modT )

from Proposition 2.4, we simply output (x, y) ∼ D, where
y = +1 if y′ ≤ T/2 and y = −1 otherwise. We argue
that D satisfies the desired requirements stated above. We
first note that the marginal Dx of D satisfies Dx = DN

Rn,1,
therefore it suffices to verify that R0−1(LTF;D) = 1/2−
Ω
(
1/

√
k log n

)
and y = +1 with probability 1/2 indepen-

dent of x for each case respectively.

For the alternative hypothesis case, let D′ be from the al-
ternative hypothesis case of the LWE. Let s be the secret
vector in the LWE problem. We consider the following
two LTFs: h1(x) = sign(⟨s,x⟩ − T/6) and h2(x) =
sign(−⟨s,x⟩+ T/3). If we can show that R0−1(h1;D) +
R0−1(h2;D) ≤ 1 − Ω(T ), then either h = h1 or h = h2
satisfies R0−1(h;D) ≤ 1/2 − Ω(T ), which implies that
R0−1(LTF;D) ≤ R0−1(h;D) ≤ 1/2 − Ω(1/

√
k log n)

by the definition of T .

To show thatR0−1(h1;D)+R0−1(h2;D) ≤ 1−Ω(T ), we
examine the subset of the domain where h1 and h2 agree,
namely the region

B
def
= {t ∈ Rn | h1(t) = h2(t)}
={t ∈ Rn | ⟨s, t⟩ ∈ [T/6, T/3]} .

Since for any t ∈ B, it is always the case that h1(t) =
h2(t) = +1, we can write

R0−1(h1;D) +R0−1(h2;D)

=Pr(x,y)∼D[y ̸= h1(x)] +Pr(x,y)∼D[y ̸= h2(x)]

=Pr(x,y)∼D[x ̸∈ B ∧ y ̸= h1(x)]

+Pr(x,y)∼D[x ̸∈ B ∧ y ̸= h2(x)]

+ 2Pr(x,y)∼D[x ∈ B ∧ y = −1] .

Since for any x ̸∈ B we have that h1(x) ̸= h2(x), the first
two terms sum to Pr(x,y)∼D[x ̸∈ B]. Therefore, we have

6



Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces and ReLU Regression under Gaussian Marginals

that

R0−1(h1;D)) +R0−1(h2;D)

=Pr(x,y)∼D[x ̸∈ B] + 2Pr(x,y)∼D[x ∈ B ∧ y = −1]

=1 +Pr(x,y)∼D[x ∈ B ∧ y = −1]

−Pr(x,y)∼D[x ∈ B ∧ y = +1]

=1−Pr[x ∈ B](1− 2Pr(x,y)∼D[y = −1 | x ∈ B]) .

From the definition of B and x ∼ DN
Rn,1, we have Pr[x ∈

B] = Ω(T ). Thus, we obtain

R0−1(h1;D) +R0−1(h2;D)

=1− Ω(T )
(
1− 2Pr(x,y)∼D[y = −1 | x ∈ B]

)
.

(1)

If we can show that Pr[y = −1 | x ∈ B] ≤ 1/3,
then we are done since this implies that R0−1(h1;D) +
R0−1(h2;D) ≤ 1− Ω(T ).

We note that from the definition of the Alternative case dis-
tribution of the LWE problem, we have

y′ = modT (⟨s,x⟩+ z) ,

and that y = −1 only if y′ > T/2, which in turn happens
only if

⟨s,x⟩+ z > T/2 or ⟨s,x⟩+ z < 0 .

For x ∈ B, we have that ⟨s,x⟩ ∈ [T/6, T/3], therefore
y = −1 only if |z| ≥ T/6. Notice that z ∼ DN

R,σ and
Proposition 2.4 states that the LWE problem is hard for any
fixed constant κ ∈ N and σ ≥ k−κ. Given the constant γ ∈
R+ in this theorem, we will take κ = ⌈1/(2γ) + 1/2 + 1⌉
which is a fixed constant. Then, by Proposition 2.4, the
LWE problem is hard for σ = k−κ = 1/(k3/2

√
log n) =

o(T ). Therefore, we have that

Pr(x,y)∼D[y = −1 | x ∈ B] ≤ Prz∼DN
R,σ

[|z| ≥ T/6]

= o(1) .

Thus, plugging the above back to (1), we can conclude that

R0−1(h1;D) +R0−1(h2;D)

=1− Ω(T )
(
1− 2Pr(x,y)∼D[y = −1 | x ∈ B]

)
≤1− Ω(T ) .

Then, as argued above, if both h = h1 and h = h2 do not
satisfy R0−1(h;D) ≤ 1/2 − Ω (T ), then R0−1(h1;D) +
R0−1(h2;D) > 1 − Ω (T ), a contradiction. Thus, either
h = h1 or h = h2 satisfies R0−1(h;D) ≤ 1/2 − Ω(T ) ≤
1/2 − Ω

(
1/
√
k log n

)
. This completes the proof for the

alternative hypothesis case.

For the null hypothesis case, it is immediate that y =
+1 with probability 1/2 independent of x, since y′ ∼

U([0, T )) independent of x in the null hypothesis case of
the LWE problem. This completes the proof of correctness.

It remains to verify the time lower bound and the distin-
guishing advantage for agnostically learning LTFs. From
Proposition 2.4, we know that under Assumption 2.3,
for the problem LWE(nO(kβ), DN

Rn,1, Sn−1, DN
R,σ,modT )

with any σ ≥ k−κ (where κ ∈ N is a constant) and
T = 1/(c′

√
k log n), where c′ > 0 is a sufficiently large

universal constant, the problem cannot be solved in nO(kβ)

time with n−O(kβ) advantage. Therefore, under the same
assumption, there is no algorithm that solves the decision
version of the agnostic learning LTFs problem (defined in
the theorem statement) in time nO(kβ) with n−O(kβ) ad-
vantage.

The following corollary immediately follows from Theo-
rem 3.1.

Corollary 3.2. Under Assumption 2.3, for any constants
α ∈ (0, 2), γ > 1/2 and any c/(

√
n log n) ≤ ϵ ≤

1/ logγ n where c is a sufficiently large constant, there is
no algorithm that agnostically learns LTFs on Rn with
Gaussian marginals to additive error ϵ and runs in time
nO(1/(ϵ

√
logn)α).

Proof. We chose the parameter k in Theorem 3.1 to be the
value that ϵ = c/

√
k log n, where c is a sufficiently small

constant. Then any algorithm that agnostically learns LTFs
to additive error ϵ can solve the testing problem of Theo-
rem 3.1 with probability 2/3. Therefore, no such algorithm
should run in time nO(kβ) for any β ∈ (0, 1). Since ϵ =
c/
√
k log n, and if we chose β = α/2, then the time lower

bound can be rewritten as nO(kβ) = nO(1/(ϵ
√
logn)2β) =

nO(1/(ϵ
√
logn)α). This completes the proof.

4. Hardness of ReLU Regression with
Gaussian Marginals

In this section, we establish near-optimal computational
hardness for ReLU regression under Gaussian marginals.
It is worth pointing out that this hardness result would also
apply to any L-Lipschitz activation function f : R → R,
for L = O(1), such that there exists t ∈ R so that f(x) is
a constant for any x ≤ t. Roughly, our result says that any
algorithm that solves this problem to error OPT + ϵ with
Gaussian marginals requires npoly(1/(ϵ log

2 n)) time.

The idea is to show that the same hard instance as in Sec-
tion 3 can be distinguished by a ReLU regression algo-
rithm. The main theorem of this section, stated and proved
below, establishes hardness for a natural decision version
of agnostically learning ReLU.

Theorem 4.1. Under Assumption 2.3, for any constants
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β ∈ (0, 1), γ ∈ R+ and any logγ n ≤ k ≤ cn, where c
is a sufficiently small constant, there is no algorithm that
runs in time nO(kβ) and distinguishes between the follow-
ing two cases of joint distribution D on (x, y) supported
on Rn × {±1} with marginal Dx = DN

Rn,1, with n−O(kβ)

advantage:

(i) Alternative Hypothesis: There exists a ReLU
with L2

2-error non-trivially smaller than 1, namely
R2(ReLU;D) ≤ 1− Ω

(
1/(k log n)2

)
.

(ii) Null Hypothesis: A sample (x, y) ∼ D satisfies the
following: y = +1 with probability 1/2 and y = −1
with probability 1/2 independent of x.

Proof. We start with the following intermediate lemma.
The lemma roughly says that if there exists a ReLU non-
trivially correlated with a distribution, then there must be
another ReLU with nontrivial L2

2-error.

Lemma 4.2. Let ϵ ∈ (0, 1) and D be a joint distribution
of (u, y) supported on R × {±1} such that the marginal
Du = DN

R,1 and E(u,y)∼D[y] = 0. Suppose there is a
ReLU of the form f(u) = ReLU(u − t) such that t ≥ 0
and

∣∣E(u,y)∼D[yf(u)]
∣∣ ≥ ϵ. Then there exists k ∈ (−1, 1)

such that the ReLU g(u) = ReLU(ku − kt) satisfies
E(u,y)∼D[(y − g(u))2] ≤ 1− ϵ2.

Proof. We first note that g(u) = kf(u), thus

E(u,y)∼D[(y − g(u))2]

=E(u,y)∼D[y
2] +E(u,y)∼D[g(u)

2]− 2E(u,y)∼D[yg(u)]

=E(u,y)∼D[y
2] + k2E(u,y)∼D[f(u)

2]

− 2kE(u,y)∼D[yf(u)] .

Since y is supported on {±1}, we have that the first term
satisfies E(u,y)∼D[y

2] = 1 .

To bound the second term, we show that f(u)2 ≤ u2 for
any u. Notice that for u ≥ t, since t ≥ 0 by assumption,
we have that f(u)2 = (u − t)2 ≤ u2. For u < t, we have
that f(u)2 = 0 ≤ u2. Therefore, combining with the fact
that u ∼ DN

R,1, we can conclude that

E(u,y)∼D[g(u)
2] = k2E(u,y)∼D[f(u)

2]

≤ k2E(u,y)∼D[u
2] = k2 .

In summary, we get that

E(u,y)∼D[(y − g(u))2] ≤ 1 + k2 − 2kE(u,y)∼D[yf(u)] .

We now choose the value of k. If E(u,y)∼D[yf(u)] > 0,
then we take k = ϵ; otherwise, we take k = −ϵ, in which
case we always have k ∈ (−1, 1) (since ϵ ∈ (0, 1)) and

E(u,y)∼D[(y − h(u))2] ≤1 + ϵ2 − 2ϵ|E(u,y)∼D[yf(u)]|
≤1− ϵ2 .

We now give a reduction similar to the proof of The-
orem 3.1 using Proposition 2.4. We know that un-
der Assumption 2.3 the following holds: the problem
LWE(nO(kβ), DN

Rn,1, Sn−1, DN
R,σ,modT ) with any σ ≥

k−κ (κ ∈ N is a constant) and T = 1/(c′
√
k log n), where

c′ > 0 is a sufficiently large universal constant, cannot be
solved in nO(kβ) time with n−O(kβ) advantage. We will
give an efficient reduction of the LWE problem to the prob-
lem here.

For a sample (x, y′) from a distribution D′ which is an in-
stance of the problem
LWE(nO(kβ), DN

Rn,1, Sn−1, DN
R,σ,modT ), we will simply

output (x, y) such that: (i) y = +1 if y′ ≤ T/2, and (ii)
y = −1 otherwise as samples from another distribution D.
We argue that D will satisfy the following property: if D′

is from the alternative (resp. null) hypothesis of the LWE
problem, then the resulting distribution D will satisfy the
alternative (resp. null) hypothesis requirement of ReLU re-
gression decision problem of Theorem 4.1.

Since the marginal Dx of D satisfies Dx = DN
Rn,1, it is

enough to show that in the alternative hypothesis case, we
have R2(ReLU;D) = 1−Ω(1/(k log n)2), and in the null
hypothesis case, we have y = +1 with probability 1/2 in-
dependent of x.

For the alternative hypothesis case, we first introduce the
following lemma.

Lemma 4.3. For any s ∈ Sn−1, σ, T ∈ R+, let D be
the joint distribution of (x, y) supported on Rn × {±1}
such that each sample (x, y) is generated in the following
way. We take x ∼ DN

Rn,1, z ∼ DN
R,σ , and letting y =

+1 if modT (⟨x, s⟩ + z) ≤ T/2 and y = −1 otherwise.
Given σ = o(T ), then there is a ReLU of the form h(x) =
ReLU(⟨s,x⟩ − t) such that t ≥ 0 and

∣∣E(x,y)∼D[yh(x)]
∣∣ = Ω(T 2) .

Proof. We let ht(x)
def
= ReLU(⟨s,x⟩ − t) and r(t) =

E(x,y)∼D[yht(x)]. Then we just need to show that there
is a t > 0 such that |r(t)| = Ω(T ). We observe that the
derivative of r(t) is

r′(t) =
dE(x,y)∼D[yht(x)]

dt

=
dE(x,y)∼D[y(⟨s,x⟩ − t)1(⟨s,x⟩ > t)]

dt
=−Pr(x,y)∼D[y = +1 ∧ ⟨s,x⟩ > t]

+Pr(x,y)∼D[y = −1 ∧ ⟨s,x⟩ > t] ,
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and the second derivative of r(t) is

r′′(t) =−
d(Pr(x,y)∼D[y = +1 ∧ ⟨s,x⟩ > t])

dt

+
d(Pr(x,y)∼D[y = −1 ∧ ⟨s,x⟩ > t])

dt
=P⟨s,x⟩(t)(Pr(x,y)∼D[y = −1 | ⟨s,x⟩ = t]

−Pr(x,y)∼D[y = 1 | ⟨s,x⟩ = t])

=P⟨s,x⟩(t)
(
2Pr(x,y)∼D[y = −1 | ⟨s,x⟩ = t]− 1

)
.

Consider the interval t ∈ [T/6, T/3]. Note that y = −1
only if ⟨s,x⟩ + z = t + z ̸∈ [0, T/2]. Thus, y = −1 only
if |z| ≥ T/6. Notice z ∼ DN

R,σ and σ = o(T ). Thus, for
t ∈ [T/6, T/3], we have that

r′′(t) =P⟨s,x⟩(t)
(
2Pr(x,y)∼D′ [y = −1 | ⟨s,x⟩ = t]− 1

)
≤P⟨s,x⟩(t)

(
2Prz∼DN

R,σ
[|z| ≥ T/6]− 1

)
=− Ω(1) ,

where the last equality follows from σ = o(T ) and
P⟨s,x⟩(t) = Ω(1) since ⟨s,x⟩ ∼ DN

R,1 and t ∈ [T/6, T/3]
for T < 1.

We then prove that it holds either r(T/3) − r(T/4) =
Ω(T 2) or r(T/6)− r(T/4) = Ω(T 2). First note that either
r′(T/4) ≤ 0 or r′(T/4) > 0. If r′(T/4) ≤ 0, then

r(T/3)− r(T/4)

=r′(T/4)(T/12) +

∫ T/3

T/4

r′′(t)(T/3− t)dt

≤
∫ T/3

T/4

r′′(t)(T/3− t)dt = −Ω(T 2) .

If r′(T/4) > 0, then

r(T/6)− r(T/4)

=r′(T/4)(−T/12) +
∫ T/6

T/4

r′′(t)(T/6− t)dt

≤
∫ T/6

T/4

r′′(t)(T/6− t)dt = −Ω(T 2) .

Since either r(T/4) − r(T/3) = Ω(T 2) or r(T/4) −
r(T/6) = Ω(T 2), then one of |r(T/6)|, |r(T/4)|, |r(T/3)|
must be Ω(T 2). This completes the proof.

We will apply Lemma 4.3 on the joint distribution of (x, y)
here. Recall that Proposition 2.4 states that the LWE prob-
lem is hard for any fixed constant κ ∈ N and σ ≥ k−κ.
Given the constant γ ∈ R+ in this theorem, we will take
κ = ⌈1/(2γ) + 1/2 + 1⌉ which is a fixed constant. Then
from Proposition 2.4, the LWE problem is hard for σ =
k−κ = 1/(k3/2

√
log n) = o(T ). Therefore, by Lemma

4.3, there is a ReLU of the form h(x) = f(⟨s,x⟩) =
ReLU(⟨s,x⟩−t) such that t ≥ 0 and

∣∣E(x,y)∼D[yh(x)]
∣∣ =∣∣E(x,y)∼D[yf(⟨x, s⟩)]

∣∣ = Ω(T 2) = Ω(1/(k log n)). If we
apply Lemma 4.2 to the joint distribution of (⟨x, s⟩, y) and
the ReLU function f , we get that there must be a ReLU of
the form h′(x) = kf(⟨x, s⟩) = ReLU(⟨ks,x⟩ − kt) such
that k < 1 and

E(x,y)∼D[(y − h′(x))2] ≤ 1− Ω(1/(k log n)2) .

Since k < 1, we have that ∥ks∥2 ≤ ∥s∥2 = 1, thus h′ ∈
ReLU. This implies that

R2(ReLU;D) ≤ 1− Ω
(
1/(k log n)2

)
.

For the null hypothesis case, it is immediate that y = +1
with probability 1/2 and y = −1 with probability 1/2 in-
dependent of x, since y′ ∼ U([0, T )) independent of x in
the null hypothesis case of the LWE problem. This com-
pletes the proof.

The following corollary can be obtained directly from The-
orem 4.1.

Corollary 4.4. Under Assumption 2.3, for any constants
α ∈ (0, 1/2), γ > 2 and any c/(n log n)2 ≤ ϵ ≤
1/ logγ n where c is a sufficiently large constant, there is
no algorithm for ReLU regression on Rn under Gaussian
marginals to error R2(ReLU;D) + ϵ and runs in time
nO(1/(ϵ log2 n)α).

Proof. We chose the parameter k in Theorem 4.1 to be
the value so that ϵ = c/(k log n)2, where c is a suffi-
ciently small constant. Then any algorithm that agnosti-
cally learns a ReLU to additive error ϵ can solve the test-
ing problem of Theorem 4.1 with probability 2/3. There-
fore, no such algorithm should run in time nO(kβ) for any
β ∈ (0, 1). Since ϵ = c/(k log n)2, and if we chose
β = 2α, then the time lower bound can be rewritten as
nO(kβ) = nO(1/(ϵ log2 n)β/2) = nO(1/(ϵ log2 n)α). This com-
pletes the proof.
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APPENDIX

A. Additional Technical Background

For n, k ∈ N with k ≤ n, we use Sn,k to denote the k-sparse set Sn,k
def
= {x ∈ {0,±1}n : ∥x∥1 = k}. We use negl(λ) to

denote λ−ω(1).

The definition of the discrete Gaussian distribution will also be useful here. Essentially, the discrete Gaussian is a univariate
discrete distribution supported on equally spaced points on R such that the probability mass on any point in its support
is proportional to the probability density of a Gaussian on that point. Following Definition 2.1, the discrete Gaussian
distribution can be written as the following.

Definition A.1 (Discrete Gaussian). For T ∈ R+, y ∈ R and σ ∈ R+, we define the “T -spaced, y-offset discrete Gaussian
distribution with σ scale” to be the distribution of DN

TZ+y,σ .

Throughout our proofs, we will need to manipulate Gaussian distributions that are taken modulo 1 and those with noise
added to them. Due to this, it will be convenient to introduce the following definitions.

Definition A.2 (Expanded Gaussian Distribution from Rn1 ). For σ ∈ R+, let Dexpand
Rn1 ,σ

denote the distribution of x′ drawn
as follows: first sample x ∼ U(Rn1 ), and then sample x′ ∼ DN

Zn+x,σ .

Definition A.3 (Collapsed Gaussian Distribution on Rn1 ). For σ ∈ R+, we will use Dcollapse
Rn1 ,σ

to denote the distribution of
mod1(x) on Rn1 , where x ∼ DN

Rn,σ .

B. Hardness of cLWE with Small-Norm Secret
Here we give the proof of Proposition 2.4, which is the first step of our hardness reduction. Specifically, we reduce
the standard discrete LWE problem in Assumption 2.3 — where the support of Dsample is the discrete set Znq — into a
continuous LWE (cLWE) problem — where the support ofDsample is Rn. This kind of cLWE problem was first introduced
in (Bruna et al., 2021), where the paper gives a quantum reduction from approximating (the decision version of) the Shortest
Vector Problem (GapSVP) to cLWE. Subsequently, (Gupte et al., 2022) gave a classical reduction from the classic LWE
problem to cLWE problem, indicating that cLWE problem is at least as hard as the LWE problem.

Notably, we will not directly use the cLWE hardness statement here. Instead, we reduce the standard discrete LWE to
cLWE. The advantage of such a reduction is that we will be able to start from a sparse discrete LWE instance whose
secret vector s is sampled uniformly from Sn,k; after the reduction, we get a cLWE instance whose dimension is n and
the ℓ2-norm of the secret is roughly

√
k (

√
k ≈ log0.01 n, compared with the

√
n ℓ2-norm secret vector in (Bruna et al.,

2021)).

To achieve this, we slightly modify an idea from (Gupte et al., 2022) to get rid of the logm (where m is the number of
samples) blowup in the ℓ2-norm of the secret vector.

To prove the proposition, we start with the following lemma which reduces the standard LWE to an LWE with a k-sparse
secret vector (i.e., a secret vector s ∈ Sn,k).

Lemma B.1 (Corollary 4 in (Gupte et al., 2022)). For any n,m, q, l, λ, k ∈ N, σ ∈ R+ suppose that log(q)/2l =
negl(λ), σ ≥ 4

√
ω(log λ) + lnn+ lnm and k log2(n/k) ≥ (l + 1) log2(q) + ω(log λ). Then, if the testing prob-

lem LWE(n,Zlq,Zlq, DN
Z,σ,modq) has no T + poly(n,m, q, λ) time distinguisher with advantage ϵ, then the problem

LWE(m,Znq , Sn,k, DN
Z,σ′ ,modq) has no T -time distinguisher with advantage 2ϵm+ negl(λ), where σ′ = 2σ

√
k + 1.

The above lemma reduces LWE(n,Zlq,Zlq, DN
Z,σ,modq) to LWE(m,Znq , Sn,k, DN

Z,σ′ ,modq). The λ here acts as a security
parameter. Notice that the original problem LWE(n,Zlq,Zlq, DN

Z,σ,modq) has 2l log q possible choices of secret vector,
while the new problem LWE(m,Znq , Sn,k, DN

Z,σ′ ,modq) has roughly at least 2k log2(n/k) possible choices of secret vector.
This intuitively explains why there is the requirement of k log2(n/k) ≥ (l + 1) log2(q) + ω(log λ) in the lemma in terms
of entropy of the secret vector.

We then use a bit of extra Gaussian noise to massage the noise distribution from a discrete Gaussian DN
Z,σ to a continuous

Gaussian DN
R,σ′ where σ′ is going to be slightly larger than σ. This leads to the following lemma:
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Lemma B.2 (Lemma 15 in (Gupte et al., 2022)). Let n,m, q, λ ∈ N, σ ∈ R+, ϵ ∈ (0, 1] and suppose σ >√
4 lnm+ ω(log λ). For any S ⊆ Rn, suppose there is no T + poly(m,n, log(q), log(σ))-time distinguisher for

the problem LWE(m,Znq , S,DN
Z,σ,modq) with advantage ϵ. Then there is no T -time distinguisher for the problem

LWE(m,Znq , S,DN
R,σ′ ,modq) with advantage ϵ+ negl(λ), where we set

σ′ =
√
σ2 + 4 ln(m) + ω(log λ) = O(σ) .

We first note that the two requirements of parameters in Lemma B.2, σ >
√

4 lnm+ ω(log λ) and σ′ =√
σ2 + 4 ln(m) + ω(log λ) imply that σ′ =

√
σ2 + 4 ln(m) + ω(log λ) = O(σ). This says that we are only blowing

up the noise scale by at most a universal constant multiplicative factor. After this lemma, we again use a bit of extra
Gaussian noise to massage the sample distribution Dsample from U(Znq ) to U(Rnq ). We thus obtain the following:

Lemma B.3 (Lemma 16 in (Gupte et al., 2022)). Let n,m, q, λ ∈ N, σ, r ∈ R+ and ϵ ∈ (0, 1]. Let S ⊆ Rn where
all elements in the support have fixed ℓ2-norm r, and suppose that σ ≥ 3r

√
lnn+ lnm+ ω(log λ). Suppose there is

no T + poly(m,n, log(q), log(σ))-time distinguisher for LWE(m,Znq , S,DN
R,σ,modq) with advantage ϵ, then there is no

T -time distinguisher for the problem LWE(m,Rnq , S,DN
R,σ′ ,modq) with advantage ϵ+ negl(λ), where we set

σ′ =
√
σ2 + 9r2(lnn+ lnm+ ω(log λ)) = O(σ) .

Similarly, the statements σ ≥ 3r
√
lnn+ lnm+ ω(log λ) and σ′ =

√
σ2 + 9r2(lnn+ lnm+ ω(log λ)) imply that

σ′ = O(σ). So to make the samples continuous, we are again blowing up the noise scale by at most a constant multiplicative
factor. Then we give a modified version of Lemma 18 in (Gupte et al., 2022). We first need to introduce the following fact
from (Diakonikolas et al., 2022b).

Fact B.4 (Fact A.4 in (Diakonikolas et al., 2022b)). Let n ∈ N, σ ∈ R+, ϵ ∈ (0, 1/3) be such that σ ≥√
ln(2n(1 + 1/ϵ))/π. Then, we have

PDexpand
Rn1 ,σ

/σ(t)

PDN
Rn,1

(t)
=

PU(Rn1 )(mod1(σt))

PDcollapse
Rn1 ,σ

(mod1(σt))
= 1±O (ϵ) ,

for all t ∈ Rn, and

dTV

(
Dexpand

Rn1 ,σ

σ
,DN

Rn,1

)
, dTV

(
Dcollapse

Rn1 ,σ
, U(Rn1 )

)
= exp

(
−Ω(σ2)

)
.

Essentially, Fact B.4 says that, given x ∼ DN
Rn,σ , the distribution of mod1(x) is pointwise close (for its pdf function) to

U(Rn1 ) for sufficiently large σ. So if we consider the reverse of this process, given a v ∼ U(Rn1 ), we sample u ∼ DN
Rn+v,σ ,

then the distribution of u is sufficiently close to DN
Rn,σ . We can leverage this fact to change the sample distribution in the

LWE problem fromU(Rnq ) toDN
Rn,1 sinceU(Rnq ) is basicallyU(Rn1 ) after rescaling. The difference here is that the original

Lemma 18 takes a large σ so that dTV

(
Dexpand

Rn1 ,σ

σ , DN
Rn,1

)
≈ 1/m, thus m samples will not see the difference. However,

since these two distributions are actually pointwise close, we can instead take a smaller σ and do an extra rejection sampling
step on u to make the distribution exactly a Gaussian. This allows us to give the nearly optimal lower bound on agnostic
learning LTFs with Gaussian marginals. Now we give the modified version of Lemma 18 in (Gupte et al., 2022).

Lemma B.5 (Modified Lemma 18 in (Gupte et al., 2022)). Let n,m, q ∈ N, σ, r, α ∈ R+. Let S ⊆ Zn where
all elements in the support have fixed ℓ2-norm r. Suppose there is no T + poly(n,m, log(q))-time distinguisher for
the problem LWE(m,Rnq , S,DN

R,σ,modq) with ϵ advantage. Then there is no T -time distinguisher for the problem
LWE(m′, DN

Rn,1, S/r,D
N
R,ασ/q,modα) with ϵ+ 2−Ω(m) advantage, where

α = c/
(
r
√

log n
)
,

m′ = cm ,

and c > 0 is a sufficiently small universal constant.
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Proof. We will give a reduction argument. Given a sample (x, y) from LWE(m,Rnq , S,DN
R,σ,modq), we can generate a

sample (x′, y′) from the problem LWE(m′, DN
Rn,1, S/r,D

N
R,ασ/q,modα) with at least a constant success probability in the

following manner.

We take a σ̃ = 1/rα and sample x̃ ∼ DN
Zn+x/q,σ̃/σ̃. We define the function f : Rn → R as

f(t)
def
=

PDN
Rn,1

(t)

PDexpand
Rn1 ,σ̃

/σ̃(t)
.

With probability f(x̃)/maxt∈Rn f(t), we take x′ = x̃ and y′ = y/ (qrσ̃) and output (x′, y′) as a sample for
LWE(m′, DN

Rn,1, S/r,D
N
R,ασ/q,modα). Otherwise, we output failure.

We will prove that if (x, y) is from the alternative hypothesis case, then it must be x′ ∼ DN
Rn,1 and y′ = modα(⟨s′,x′⟩+z′),

where s′ ∼ U(S/q) and z′ ∼ DN
R,ασ/q . Since (x, y) is from the alternative hypothesis case, it must satisfy x ∼ U(Rnq )

and y = modq(⟨s,x⟩+ z), where s ∼ U(S) and z ∼ DN
R,σ . Then, the fact x̃ ∼ DN

Zn+x/q,σ̃/σ̃ implies that σ̃x̃−x/q ∈ Zn
and qσ̃x̃− x ∈ qZn; combined with s ∈ Zn, we have that

modq(⟨s,x⟩) = modq(⟨s, qσ̃x̃⟩+ ⟨s,x− qσ̃x̃⟩) = modq(⟨s, qσ̃x̃⟩) .

Then we can write

y′ =y/ (qrσ̃)

=modq(⟨s,x⟩+ z)/ (qrσ̃)

=modq(⟨s, qσ̃x̃⟩+ z)/ (qrσ̃)

=mod1(⟨s, σ̃x̃⟩+ z/q)/ (rσ̃)

=mod1/(rσ̃) (⟨s/r, x̃⟩+ z/ (qrσ̃))

=modα (⟨s/r,x′⟩+ αz/q) ,

where the last equality follows from the fact σ̃ = 1/(rα). Note that the three terms in the above expression, s/r, x′ and
αz/q are independent (since x′, s, z are independent). It only remains to verify the distribution of each of them.

It is immediate that s/r ∼ U(S/r). For the other two, we first define the following notation. For functions f, g : U → R,
we write f(u) ∝ g(u) if there is a constant c ∈ R \ {0} such that for all u ∈ U , it holds f(u) = cg(u). For x′, we first
notice that x/q ∼ Rn1 , and therefore x̃ ∼ Dexpand

Rn1 ,σ̃
/σ̃. Combining with the rejection sampling procedure we performed,

we have that

Px′(u) ∝ f(u)

maxt∈Rn f(t)
Px̃(u) =

f(u)

maxt∈Rn f(t)
PDexpand

Rn1 ,σ̃
/σ̃(u) =

PDN
Rn,1

(t)

maxt∈Rn f(t)
∝ PDN

Rn,1
(u) .

Thus, we conclude that x′ ∼ DN
Rn,1. For αz/q, notice that z ∼ DN

R,σ , and therefore αz/q ∼ DN
R,ασ/q .

For the null hypothesis case, it is easy to see that the marginals satisfy Dx′ = DN
Rn,1 and Dy′ = U(Rα), and x′ and y′ are

independent — since x and y are independent and x′ (resp. y′) only depends on x (resp y).

It remains to verify that the sampling will produce at least m′ many samples with 1 − 2−Ω(m) probability. We first
show that each individual rejection sampling succeeds with at least a positive constant probability. From Fact B.4, given
σ̃ = 1/rα =

√
log n/c for sufficiently small constant c > 0, we have

f(t) =
PDN

Rn,1
(t)

PDexpand
Rn1 ,σ̃

/σ̃(t)
∈ (1/2, 3/2) .

Notice that for any x, we accept the sample with f(x̃)/maxt∈Rn f(t) probability, which is at least 1/3 probability given
the bound above. Then, by an application of the Chernoff bound, we have that the rejection sampling succeeds at least
m′ = cm times with probability at least 1 − 2−Ω(m), where c > 0 is a sufficiently small constant. This completes the
proof.
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We note that Lemma B.5 is stronger than Lemma 18 in (Gupte et al., 2022) in the sense that the original Lemma 18
has α = c/

(
r
√
log n+ logm+ ω(log λ)

)
, compared with α = c/

(
r
√
log n

)
here. For the task of learning LTFs, if

one uses Lemma 18 instead of Lemma B.5 and follows the same argument for rest of the proof, one will still get am
nΩ(1/(ϵ

√
logn)0.99) lower bound — compared with the nΩ(1/(ϵ

√
logn)1.99) near-optimal lower bound we establish here.

Combining the above lemmas and Assumption 2.3, we establish the proof of Proposition 2.4.

Proof of Proposition 2.4. We provide an efficient reduction from Assumption 2.3 via Lemma B.1, Lemma B.2, Lemma
B.3 and Lemma B.5. More precisely, the reduction will follow the following steps:

1. Let the problem in Assumption 2.3 be solving LWE(2O(lβ
′
),Zlq,Zlq, DN

Z,σ′ ,modq) with 2−O(lβ
′
) advantage, where l

is the dimension.

2. We then use Lemma B.1 to reduce to solving the problem LWE(nO(kβ),Znq , Sn,k, DN
Z,c

√
kσ′ ,modq) with n−O(kβ)

advantage, where c is a sufficient large positive universal constant, n is the dimension and the secret vector is from
the sparse set Sn,k.

3. The we apply Lemma B.2 and Lemma B.3. The two lemmas make the sample and noise distributions continuous. As
we argued before, these two lemmas will only blow up the noise scale by a universal constant factor, so we reduce
to solving LWE(nO(kβ),Rnq , Sn,k, DN

R,c
√
kσ′ ,modq) with n−O(kβ) advantage, where c is a sufficiently large positive

universal constant.

4. To finish the reduction, we apply Lemma B.5 which mainly changes the sample distribution from U(Rnq ) to DN
Rn,1

and reduce to solving the problem LWE(nO(kβ), DN
Rn,1, Sn−1, DN

R,σ,modα) with n−O(kβ) advantage.

To start the reduction, we need to chose the values for parameters l, β′, q, σ′ in the first step. Let n, k, β, γ, κ be the param-
eters in the body of Proposition 2.4 which are the target parameters we want to get after the reduction. For convenience,
we let δ > 0 be the constant such that 1 − 3δ = β. Let ψ be the value such that k = logψ n (ψ has dependence on n and
k). We will chose the following values:

• l = logt n, where t = 1 + ψ(1− δ);

• β′ = 1+γ(1−2δ)
1+γ(1−δ) , which is a constant, and β′ ∈ (0, 1);

• q = kκ+1;

• σ′ = c
√
l, where c is a sufficiently large constant.

We now check validity of the parameters for each step of the reduction:

1. We first check that the parameters satisfy the requirements in Assumption 2.3. Notice that

q = kκ+1 = logψ(κ+1) n = lψ(κ+1)/t ≤ lψ(κ+1)/(ψ(1−δ)) = l(κ+1)/(1−δ) = lO(1) .

2. We then check the requirements in Lemma B.1. We chose the additional parameters as λ = 2l
β′

and m = nO(kβ). For
convenience, we first show that 2l

β′

= nω(k
β). Notice that

2l
β′

= 2log
tβ′ n = nlog

tβ′−1 n = nk
tβ′−1
ψ

.

Since k = logψ n and k ≥ logγ n, it follows that ψ ≥ γ; therefore, β′ = 1+γ(1−2δ)
1+γ(1−δ) ≥ 1+ψ(1−2δ)

1+ψ(1−δ) . Plugging this into
the above, we get that

2l
β′

≥ nk
t
1+ψ(1−2δ)
1+ψ(1−δ) −1

ψ
= nk

1−2δ

= nω(k
β) ,

where the last equality follows from the fact β = 1− 3δ. For the requirements, we have:
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(a) It is immediate that log(q)/2l = O(log l)/2l = negl(λ) (since q = lO(1) from the last step).
(b) For the requirement σ′ ≥ 4

√
ω(log λ) + lnn+ lnm, since σ′ = c

√
l, taking squares on both side, it can be

rewritten as
l = ω(log λ+ lnn+ lnm) .

Notice that log λ = O(lβ
′
), where β′ < 1; thus, l = ω(log λ). Since l = logt n, where t = 1 + ψ(1 − δ) ≥

1 + γ(1 − δ) and γ(1 − δ) is a positive constant, we have that l = ω(lnn). Then, since 2l
β′

= nω(k
β) as shown

above, and m = nO(kβ), we get that 2l
β′

= ω(m); thus, we get l = ω(lβ
′
) = ω(logm). Combining the above

gives us that l = ω(log λ+ lnn+ lnm).
(c) For the requirement k log2(n/k) ≥ (l + 1) log2(q) + ω(log λ), since l = ω(log λ) as shown above, we can

rewrite it as k log2(n) − k log2(k) ≥ 2l log2(q). Since q = poly(l) from step 1, it therefore suffices to show that
k log n− k log k = ω(l log l), which is k log n ≥ cl log l + k log k for any constant c. We prove this by analyzing
two cases, namely cl log l ≤ k log k and cl log l > k log k.
If cl log l ≤ k log k, then since k < c′n, where c′ is a sufficiently small universal constant, we get that k log n ≥
2k log k ≥ cl log l + k log k.
If cl log l > k log k, then it suffices to show that k log n = ω(l log l). Notice that k log n = log1+ψ n and
l log l = t logt n log log n. Thus,

k log n

l log l
=

log1+ψ−t n

t log log n
.

Notice that 1 + ψ − t = δψ ≥ δγ (since k ≥ logγ n and k = logψ n implies ψ ≥ γ) is at least a constant; thus,

k log n

l log l
=

log1+ψ−t n

t log log n
=

logδψ n

t log log n
= ω

(
logδψ/2 n

t

)
= ω

(
logδψ/2 n

1 + ψ

)
,

where the last equality comes from the fact that t = 1 + ψ(1 − δ) ≤ 1 + ψ. Therefore, we just need to show that
logδψ/2 n

1+ψ is at least a constant. Notice that for any sufficiently large n such that logδ/2 n ≥ e, we have that

logδψ/2 n = (logδ/2 n)ψ ≥ eψ ≥ 1 + ψ .

Thus, we have that
k log n

l log l
= ω(1) ,

which is k log n = ω(l log l).
Therefore, the requirement k log2(n/k) ≥ (l + 1) log2(q) + ω(log λ) is satisfied in both cases.

(d) It only remains to verify the time lower bound of 2−O(lβ
′
) and advantage 2ϵm + negl(λ) in Lemma B.1, where ϵ

is the advantage before the reduction. Notice that since 2l
β′

= nω(k
β), the time lower bound is at least any nO(kβ).

For the advantage, by taking ϵ = 2−3(lβ
′
), we have that

2ϵm+ negl(λ) = 2−3(lβ
′
)nO(kβ) + negl(2l

β′

) ≤ 2−2(lβ
′
) + negl(2l

β′

) = n−ω(k
β) ,

where the last inequality and equality follows from the statement 2l
β′

= nω(k
β) shown above. Thus, there is no

nO(kβ)-time distinguisher for solving LWE(nO(kβ),Znq , Sn,k, DN
Z,c

√
kσ′ ,modq) with n−O(kβ) advantage.

3. We then check the parameter requirements in Lemma B.2 and Lemma B.3. Note that it suffices to check that c
√
kσ′ ≥

3r
√
lnn+ lnm+ ω(log λ) for sufficiently large constant c. Since r =

√
k from its definition and we have already

shown that σ′ ≥ 4
√
ω(log λ) + lnn+ lnm in Step 2b, this inequality holds.

Then it only remains to verify the time lower bound and advantage. The time lower bound is nck
β −

poly(m,n, log(q), log(c
√
kσ′)). Since m = nO(kβ), log(q) = log(kκ+1) = O(log k), and log(c

√
kσ′) =

O(log k + log l) = O(log1+ψ n) = O(k log n), by choosing c to be a sufficiently large constant, the above lower
bound is any nO(kβ). Similarly, the advantage is any n−O(kβ). Thus, there is no nO(kβ)-time distinguisher for solving
the problem LWE(nO(kβ),Rnq , Sn,k, DN

R,c
√
kσ′ ,modq) with n−O(kβ) advantage.
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4. After applying Lemma B.5, we get that there is no nO(kβ)-time distinguisher for solving the problem
LWE(m′, DN

Rn,1, Sn,k/
√
k,DN

R,cα
√
kσ′/q

,modα) with n−O(kβ) advantage, where α = c/
(√
k log n

)
, m′ = cnO(kβ),

and c > 0 is a sufficiently small universal constant. We just need to check that it matches the values of σ,m, T in the
body of Proposition 2.4. For the noise scale σ, we have

cα
√
kσ′/q = c′

√
l/(
√
log nq) = c′ log nψ(1−δ)/2/q ≤ c′k1/2/kκ+1 = o(k−κ) = o(σ) ,

where the last inequality follows from k = logψ n. For the number of samples, we have that m′ = cnc
′(kβ) which

is any nO(kβ) by choosing c′ to be sufficiently large. For the parameter T , we have that α = c/
(√
k log n

)
= T .

Then, the only remaining difference is that the secret vector distribution is U(Sn,k/
√
k) instead of U(Sn−1). The catch

here is that we can do a random rotation on all the samples and this makes the secret vector also randomly rotated
and gives the U(Sn−1) distribution we want. Therefore, there is no nO(kβ)-time distinguisher for solving the problem
LWE(nO(kβ), DN

Rn,1, Sn−1, DN
R,σ,modT ) with n−O(kβ) advantage.

This proves Proposition 2.4.
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