Published as a conference paper at ICLR 2024

MEMORY-CONSISTENT NEURAL NETWORKS FOR IMI-
TATION LEARNING

Kaustubh Sridhar', Souradeep Dutta', Dinesh Jayaraman', James Weimer!-2, Insup Lee!
University of Pennsylvania, 2Vanderbilt University
{ksridhar, duttaso, dineshj, weimerj, lee}@seas.upenn.edu

ABSTRACT

Imitation learning considerably simplifies policy synthesis compared to alternative
approaches by exploiting access to expert demonstrations. For such imitation
policies, errors away from the training samples are particularly critical. Even rare
slip-ups in the policy action outputs can compound quickly over time, since they
lead to unfamiliar future states where the policy is still more likely to err, eventually
causing task failures. We revisit simple supervised “behavior cloning” for conve-
niently training the policy from nothing more than pre-recorded demonstrations,
but carefully design the model class to counter the compounding error phenomenon.
Our “memory-consistent neural network” (MCNN) outputs are hard-constrained to
stay within clearly specified permissible regions anchored to prototypical “memory”
training samples. We provide a guaranteed upper bound for the sub-optimality gap
induced by MCNN policies. Using MCNNs on 10 imitation learning tasks, with
MLP, Transformer, and Diffusion backbones, spanning dexterous robotic manipu-
lation and driving, proprioceptive inputs and visual inputs, and varying sizes and
types of demonstration data, we find large and consistent gains in performance,
validating that MCNNSs are better-suited than vanilla deep neural networks for
imitation learning applications.'

1 INTRODUCTION

For sequential decision making problems such as robotic control, imitation learning is an attractive
and scalable option for learning decision making policies when expert demonstrations are available
as a task specification. Such demonstrations are typically easier to provide than the typical task
specification requirements for reinforcement learning and model-based control, namely, dense rewards
and good models of the environment. Furthermore, imitation learning is also typically less experience-
intensive than reinforcement learning and less expertise-intensive than model-based control.

We consider the simplest and perhaps most widely used imitation learning algorithm, behavior cloning
(BC) [29], which reduces policy synthesis to supervised learning over the expert demonstration data.
For example, a neural network policy for an autonomous car could be trained to mimic human driving
actions [2]. While the policy is synthesized with supervised learning, the evaluation setup is very
different: rather than merely achieving low average error on states from the training data, as common
in supervised learning, the trained policy must, when rolled out in the world, successfully accomplish
the demonstrated task.

This sequential deployment makes the behavior of imitation policy functions away from their training
data particularly critical. To see this, observe that during rollout, the policy’s own output actions
determine its future input states. Task performance is most closely tied to the policy’s behavior on this
self-induced set of states, which can deviate from the training dataset of expert demonstrations. In
particular, a minor error in the policy’s action output at any time may induce a future input state that
is subtly different from expert states. If the policy behaves erratically under such small deviations, as
it often does in practice, the situation quickly snowballs into a vicious cycle of compounding errors
leading to task failure.

" Our website: https://sites.google.com/view/mcnn-imitation.

Published as a conference paper at ICLR 2024

Past solutions to this compounding error problem have focused on modifying the be-
havior cloning setup, such as by permitting online experience [13, 34], reward labels
[28], queryable experts [37], or modifying the demonstration data collection procedure
[19]. Instead, we retain the conveniences of the plain BC setup and focus on design-
ing a model class that encourages better behavior beyond the training data, which in turn
could boost task performance by mitigating the compounding error phenomenon discussed
above. We provide a simple plug-in approach to improve BC with any deep neural network.
It is well known that vanilla deep neural networks, only by

themselves, can generate large errors when evaluated away 300%

from the training points, and even rare errors could derail ; — — Median trend
an entire task rollout. These large errors are particularly _ @ 250% .

evident when the expert demonstrations are few in num- 5 § 200% ¢ | S
ber such as in robotics where human demonstrations are &2 .

essential for imitation learning. To tame these errors, we 5 % 150% ;’ .'r:* =% T

propose semi-parametric ‘“‘memory-consistent neural net- %= AR

works” (MCNN). MCNNe s first subsample the dataset into cs et e ::] So
representative prototype “memories” to form the scaffold ::E 50% ¢ 8 “: ~ P
for the eventual function. They then fit a parametric func- ° = S < i
tion to the rest of the training data that is hard-constrained hEaE B B
by the very formulation of the model class, to exactly fit 10! 102 103

the training data at all the memories, and further, to stay Number of Demonstration Trajectories

within double-cone-like zones of controllable shapes and
sizes centered at each memory. As a result, an MCNN P \
behaves mostly like a nearest-neighbor function close to gerformance on realistic demongtratlon
. . . atasets. We plot the percentage increase
memories, and mostly like a deep neural network (subject . ° " MIONN over DARL BC 9]
tg the. douple-cone constraints) fal'r from Fhern. Al'l fgnc- for various number of demonstrations across
tions in this MCNN model class lie within “permissible many tasks. In this plot, each point is a sep-
regions” centered on each memory, meaning that function arate MCNN policy. We see significant im-
values away from the training points are bounded. Un- provements in the few demonstrations regime
der mild assumptions on the expert policy, we show that where most realistic imitation learning tasks
this property of MCNNs induces an upper bound on the ~can be found. The choice of model class is
suboptimality of the learned BC policy. Visualizations of ~crucial in such regimes and MCNN shines.
MCNNSs can be found in Figure 2. Additional details are in Appendix F.

Figure 1: MCNN significantly improves

Using MCNNSs on 10 imitation learning tasks, with MLP, Transformer and Diffusion backbones,
spanning dexterous robotic manipulation and driving, proprioceptive inputs and visual inputs, and
varying sizes and types of demonstration data, we find large and consistent gains in performance,
validating that MCNNSs are better-suited than vanilla deep neural networks for imitation learning
applications. Figure 1 visualizes the percentage increase in return with MCNN policies compared to
the vanilla BC results reported in D4RL [9] for various quantities of training demonstrations across
tasks. The trend of the median demonstrates that MCNNS are highly effective in the low data regime
where generalization to test trajectories is stressed.

2 RELATED WORK
We present a detailed related work discussion in Appendix D & summarize closely related work here.

Compounding errors in imitation learning have previously been tackled by permitting online
experience [13, 34], reward labels [28], queryable experts [37], or modifying the demonstration
data collection procedure [19]. Our work is orthogonal to these methods and creates a model class
that avoids compounding errors by construction. Other works that propose new models for IL such
as Implicit BC (IBC) [7], Behavior Transformer (BeT) [38], Action Chunking Transformer [48],
and Diffusion Policies [44, 1] are orthogonal to our approach. MCNN can be used as a plug-in
approach to improve any of these methods. In fact, we show that MCNN with a BeT backbone
outperforms vanilla BeT and MCNN with a diffusion model outperforms diffusion BC on all tasks in
our experiments in Section 5. We also show that MCNN outperforms IBC in Section 5.

Non-parametric and semi-parametric methods in imitation learning such as nearest neighbors
[39], RBFs [35], and SVMs [20] have historically shown competitive performance on various robotic
control benchmarks. But, only recently, a semi-parametric approach consisting of neural networks for
representation learning and k-nearest neighbors for control was proposed in Visual Imitation through

Published as a conference paper at ICLR 2024

Nearest Neighbors (VINN) [26]. This is the closest paper to our work and in Section 5, we compare
with VINN and demonstrate that we outperform their method comprehensively.

Theoretical guarantees on the sub-optimality gap in imitation learning with MCNN are provided
in this paper. Such guarantees are not available with vanilla neural networks. Our theorem builds on
earlier work on reductions for imitation learning in [36, 31, 2, 32] and leverages intuitions from [25]
on bounding the width of the model class.

3 PROBLEM FORMULATION

A Markov Decision Process (MDP) is a tuple £ = (S, A,P,R,~,Z), where S C R" is the set
of states, A is the set of actions, P(s’|s,a) is the probability of transitioning from state s to s’
when taking action a, R (s, a) is the reward accrued in state s upon taking action a, v € [0,1) is
the discount factor, and Z is the initial state distribution. We assume that the MDP operates over
trajectories with finite length H, in an episodic fashion. Additionally, we assume the set of states S
to be closed and compact. Given a policy 7 : S — A, the expected cumulative reward accrued over
the duration of an episode is given by the following,

H
J(m) :Eﬂ[ZR(st,atﬂ. (1)

In imitation learning, we assume that there exists an expert policy 7* unknown to the learner. This
policy induces a distribution d - on the state-action space S x A obtained by rollouts on the MDP.
The learner agent has access to an expert trajectory dataset D = {(so,ao), (s1,a1),..., (sn,an)}
drawn from distribution d,~. The goal of imitation learning is to estimate a policy 7, which mimics

the expert’s policy and reduces the sub-optimality gap: J(7*) — J (7).

4 APPROACH

Our approach involves developing a new model class, memory consistent neural networks (MCNN),
and training it with supervised learning to clone the expert from the demonstration data. We start by
setting up the MCNN model class in Sec 4.1, analyze its theoretical properties for imitation learning
in Sec 4.2, and finally describe our behavior cloning algorithm that uses MCNNs in Sec 4.3.

4.1 THE MODEL CLASS: MEMORY-CONSISTENT NEURAL NETWORKS

First, we develop the semi-parametric MCNN model class for imitation learning. MCNNs rely on
a code-book set of “memories” B := {(s;, a;)}! | which are subsampled from the expert training
dataset and summarize it. In practice, such a memory code-book can be created using one of various
off-the-shelf approaches. We describe our algorithmic choices later in Sec 4.3. For notational
convenience, we describe the approach for a scalar action space, but it is easily generalizable to the
vector action spaces we evaluate in our experiments.

Given this memory code-book 53, we now define a “nearest memory neighbor policy”. For a finite

set S C S, and an input z € S, we first define its closest element in S as, C's(z) = argmin d(s, x),
seS

where d is some distance metric defined on the space S. We denote by 5|, and] 4 as the set of all

states and actions captured by the memory code-book B. With slight abuse of notation, we denote

B(s) as the action assigned by the codebook for a state input s. Using the above, we now define a

nearest neighbor regression function fVV as the following,

Definition 4.1 (Nearest Memory Neighbor Function). For an input 2 € S, assume that 5" = Cj| (x),
then VN (z) := B(s').

In other words, the nearest memory neighbor function assigns actions according to a nearest neighbor
look-up in the memory code-book B. We are now ready to define memory-consistent neural networks
(MCNN), which permit interpolating between nearest neighbor functions and parametric deep neural
network (DNN)-based functions. Let f? denote a DNN function parameterized by #, which maps
from MDP states to actions.

Published as a conference paper at ICLR 2024

Example function classes for A=1, L=1, and 4 memories

Nearest Neighbor Function I Neural Network Functlon Class = Memory-Consistent Neural Net Class
2 y = f(x)e A e y=L(1—e) o(f(x)) y =%
1
=1
-2 =
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
X X X

More Examples of MCNN Model Class

'V‘l‘".l‘ “\f 'V‘l‘

25 50 15 100 25 50 100 25 50 15 100 oo 25 50 75 100 500 75 100 oo 25 100
X x x

Increasing A = Increasmg L ——>

0
-1 -1
2,

Figure 2: The elements of the MCNN model class. In the top row, the left panel shows the nearest memory
neighbour component with memories subsampled from the training dataset shown in red circles. The middle
panel depicts the constrained neural network function class, where the blue shaded regions represent the
permissible regions; by design, the function cannot take values outside these shaded regions. Finally, the right
panel shows the combined MCNN model class. The size of the permissible regions can be modulated by
increasing A (bottom left) or by decreasing the number of memories (bottom right). The second row shows many
such MCNN model families with increasing capacity. For additional plots, see Appendix A.

Definition 4.2 (Memory-Consistent Neural Network). A memory-consistent neural network ¢ is
defined using the codebook and DNN function pair (3, %), and hyperparameters A\ € Rt, L € R as

B @ = P N@) (e D) L (1= e D) (s () @)

Nearest Memory Neighbour Function ~ Constrained Neural Network Function Class

where, s = Cp|, () is the nearest memory to x, and o : R ~ [~1, 1] is a compressive non-linearity
that imposes hard limits on the outputs of f¢. In practice, we use tanh or similar functions.

We refer the reader to Figure 2 to drive the intuition. For inputs that are close to the points in the code-
book B, the function predicts values that are similar to the one observed in the training dataset. More
concretely, the value predicted by the function is a simple mixture: af ¥ (z)+(1 —) L o(f%(z)),
where the mixing factor « € [0, 1] changes in proportion to the distance to the nearest memory. Thus,
for points further away more weight is placed on the neural network and the memories have little
influence. The degree of permissible deviation from nearest neighbor prediction fV is controlled
by the parameter A\. Thus, we obtain a purely nearest neighbor function for A = 0, and a vanilla
deep neural network function for A = co. Note that the MCNN function values in regions far away
from memories are in the set [— L, L]. For this reason, we normalize output actions to [— L, L] before
training an MCNN function.

4.2 THEORETICAL ANALYSIS OF MCNNS FOR IMITATION LEARNING

For fixed hyperparameters L, A and memory codebook 5, we denote by §, the class of memory-
consistent functions outlined in Equation 2. Note that a choice of the DNN function parameters 6
fixes a specific function in this class as well.

Assumption 4.3 (Realizability). We assume that the expert policy 7* belongs to the function class §.

This assumption trivially holds at the memories, where the MCNN exactly reproduces expert actions.
For all other points, we assume that there exist some parameters ¢, which can capture the policy 7*
with sufficient accuracy, for a choice of L and X. For a point z at a distance of d(s’, z), the vanilla

—Xd(z,s")

DNN can affect the predictions only by an amount of L (1 —e) Without this restriction,

we might have been able to capture behaviors that went well beyond these ranges. This is reasonable
since, expert policies do not make sudden unbounded jumps in their actions. What we propose here
is a way to enforce this bound using a zeroth order nearest neighbor estimate.

Published as a conference paper at ICLR 2024

We analyze the behavior of this function class, and present some useful lemmas along the way. For
a set of memories present in B|g, we wish to capture the maximum value that the distance term:
d(x, s") can take in Equation 2. To that end, we define the most isolated state as the following:

Definition 4.4 (Most Isolated State). For a given set of memory points B|g, we define the most

isolated state sg := arg max(miél‘ d(s,m)), and consequently the distance of the most isolated
sesS mebB|s

ointas dl, = min d(sL _,m
P Bls ~ edls (5501
The distance of the most isolated state captures the degree of emptiness that persists with the current
knowledge of the state space due to memory code-book 5.

Lemma 4.5. Assume two sets of memory code-books B;, Bj, such that B; C Bj, then déi Is > dllsj Is

Proof: The proof of the above lemma is straightforward, since the infimum of a subset (13;) is larger
than the infimum of the original set (B;).

This observation is useful when we study the effects of increasing the size of the code-book B. Note,
when learning a memory-consistent neural network é‘f[BC, we deploy the standard SGD based training
to adjust the parameters 6. The choice of the number of memories in 5 is kept as a hyperparameter.
This allows us to bound the maximum width of the function class, first described in [25] . We analyze
this for single output functions next.

Lemma 4.6. (Width of Function Class) The width of the function class §, ¥ 01,02 € O, and Vs € S,
I
defined as maz | (feMg - 91‘7/1,’%) (8)| is upper bounded by : 2L x (1 —e dB\S)
i,0; ’

Proof: Please see Appendix B.
Theorem 4.7. The sub-optimality gap J(7*) — J(7t) < min{H, H?|A|L(1 — e déls)}
Proof: Please see Appendix C.

I
Corollary 4.8. Using Lemma 4.5 we know that if B; C B, then (1 —e déi\s) > (1 — e M Bj1s)
This can result in lower performance gap according to Theorem 4.7, when H > H2|A|L(1 —

=X dy;o
e Bls) Hence, reflecting the utility of adding more memories in such cases.

Takeaways. We summarize the insights from the above theoretical analysis here. First, our MCNN
class of functions is bounded in width (Lemma 4.6) even though it uses a high-capacity function
approximator like DNNs. No such bound is available for vanilla neural networks. This translates to a
bounded sub-optimality gap (Theorem 4.7) also not available in vanilla neural networks. Finally, our
Corollary states that we can likely gain better imitation learning performance by simply adding more
memories (up to a limit).

4.3 ALGORITHM: IMITATION LEARNING WITH MCNN POLICIES

We now describe our algorithm to use MCNNSs for imitation learning. The first step in our method is
to learn the memory code-book B from the expert trajectory dataset D. The goal of Algorithm 1 is to
build the nearest memory neighbor function f™VV. This is followed by details on the training aspects
of the MCNN parameters from the imitation dataset D, in Algorithm 2.

For building the memory code-book, we leverage an off-the-shelf approach, Neural Gas [8], that
selects prototype samples to summarize a dataset. For completeness, we summarize this approach
briefly below.

Definition 4.9 (Neural Gas). A neural gas G := (N,), is composed of the following components,

1. A set NV C S of the nodes of a network. Each node m; € A is called a memory in this paper.
2. AsetE C {(my,m;) € N2 i # j} of edges among pairs of nodes, which encode the topological
structure of the data. The edges are unweighted.

Neural gas. The neural gas algorithm [8, 30, 22] is primarily used for unsupervised learning tasks,
particularly for data compression or vector quantization. The goal is to group similar data points
together based on their similarities. The algorithm works by creating a set of prototype vectors, also
known as codebook vectors or neurons. These vectors represent the clusters in the data space. The
algorithm works by adaptively placing prototype vectors in the data space and distributing them like

Published as a conference paper at ICLR 2024

Algorithm 1 Learning Memories

Input: Offline dataset D = {(s;, a;)}’_, , number of memories m
Output: A nearest neighbor based function fNV : § — A
: Nodes N, edges £ « NeuralGasClustering(S, m) // learns the distribution induced by D
2: Nodes N, D(N") «+ For each node in , find the closest observation in D, and call this N”'. Additionally,
return the corresponding action taken by the expert in D, denoted by the map D(N”)
3: G « Define neural-gas with nodes A/, and edges £.
4: Define a memory code-book B using B|s = G and B|4 = D(N”). Pairing nodes in the neural-gas to its
corresponding actions.
5: Define a nearest neighbor function f& ™, along the lines described in Definition 4.1 using .
6: return YN

—

a gas in order to capture the density. For more details we refer the reader to [8]. We use this in
Algorithm 1 (Line 1) to get the initial clustering. We can now go ahead and outline how “memories”
are picked in our case.

Learning memories. Algorithm 1 first uses the neural-gas algorithm to pick candidate points
(nodes) N in the state space. However, these points could be potentially absent in the dataset D,
making it hard to associate the correct action. To remedy this situation, we replace these points with
the closest states from the training set as memories. Such memory states come with the corresponding
actions taken by the expert. This is then used to define a nearest neighbor function by building the
memory codebook B and defining a function as outlined in Definition 4.1.

Algorithm 2 Behavior Cloning with Memory-Consistent Neural Networks: Training

Input: Dataset D = {(s;,a;)}Y,, nearest neighbor function f& ™, neural network function f?(.), batch
size, total training steps 7', parameters A and L.
Output: Learned policy fgj\:IBc
1: for step=1to 7 do
2: Sample batch B from D.

3: Forward propagate (s;, a;) ~ B, f3'5 (z) = f5 ™ (z) (cfA d@’sl)) +L (1 —e? d(z’sl)) a(fb(x))
where, s’ is the nearest neighbor of x in B|s, og(x) is a tanh-like activation function given by og(z) =
2 [LeakyReLU, (251) — (1 — B)ReLU (£31)] — 1 and 8 = max (0,1 — | =2]).

4: Update 0 « 0 — VE(,, ;)5 L(f25 (i), a;) where L is the negative log-likelihood or mean squared

loss or other loss function.
5: end for

Training MCNNSs. Finally, we train MCNN policies through gradient descent on the parameters 6
of the neural network over the expert dataset D.. For the compressive non-linearity, we use the oz
function given in Algorithm 2 which is similar to tanh. We describe this in detail in Appendix F.

Figure 3: The environments here include: Adroit Pen, Hammer, Relocate, and Door [33], CARLA’s Town03
and Town04 [3], and Franka Kitchen [11]. The four Adroit environments and Franka Kitchen have proprioceptive
observations and the CARLA environment has image observations.

6

Published as a conference paper at ICLR 2024

5 EXPERIMENTAL EVALUATION

We now perform a thorough experimental evaluation of MCNN-based behavior cloning in a large
variety of imitation learning settings.

Environments and Datasets: We test our approach on 10 tasks, in 6 environments: 4 Adroit dextrous
manipulation, | CARLA environment, and the Franka Kitchen environment as pictured in Figure 3.
Demonstration datasets are drawn from D4RL [9] for Adroit and CARLA and from the multimodal
relay policy learning dataset [11] for Franka Kitchen. For each Adroit task, we evaluate imitation
learning from 2 different experts: (1) small realistic human demonstration datasets (‘human’) with 25
trajectories per task (5000 transitions), and (2) large demonstration datasets with 5000 trajectories (1
million transitions) from a well-trained RL policy (‘expert’). In CARLA, we train on demonstrations
from a hand-coded expert. The Franka Kitchen demos were collected by humans wearing VR
headsets. For observations, we use high-dimensional states in Adroit and Franka Kitchen, and 48 x 48
images in CARLA. Action spaces are 24-30 dimensional in the Adroit, 9-D in Franka Kitchen, and
2-D in CARLA. Further, in all Adroit environments, a goal is randomly chosen at reset and goal
information is included in the observation vector (more in Appendix F).

Baselines: We run the following baselines for comparison. (1) Behavior Cloning: We obtain results
with a vanilla MLP architecture. The details of the architecture can be found in Appendix F. We
report results from our implementation of BC and also report results given in D4RL [9] under the
names ‘MLP-BC’ and ‘D4RL BC’ respectively. Our BC implementation has only one difference
from [9]’s implementation: we normalize the observations. Normalizing observations has been shown
to improve BC’s performance [10]. (2) 1 Nearest Neighbours (1-NN): We set up a simple baseline
where the action for any observation in the online evaluation is the action of the closest observation
in the training data. In the expert and cloned datasets for each environment, this amounts to having to
perform a search amongst a million datapoints online at every step (which is highly inefficient). (3)
Visual Imitation with (k) Nearest Neighbours (VINN) [26]: VINN is a recent method that performs
a Euclidean kernel weighted average of some k nearest neighbors. In the Adroit case, we directly
perform the k nearest neighbors on the raw observation vectors. In the CARLA case, we perform it in
the same embedding space that we use to create memories (we discuss this embedding space more
below). (4) CQL-Sparse (CQL-S): We learn a policy using the CQL offline RL algorithm [18] and
a sparse reward given for task completion only. (5) Implicit BC (IBC) [7]: We report the results
from [7] which performs BC with energy models on the human tasks. (6) Behavior Transformer
(BeT-BC) [38]: We train and evaluate a behavior transformer using the official implementation on
all tasks. (7) Diffusion BC (Diff-BC) [44, 1]: We also train and evaluate a diffusion-based BC
policy using the implementations in [44, 1]. We provide additional details for all baselines and
comprehensive hyperparameter sweeps in Appendix F.

Learning memories and MCNN: We learn memories using the incremental neural gas algorithm for
10 epochs starting from 2.5% of the total dataset to 10% of the total dataset for each task. We update
all the transitions in each dataset by appending the closest memory observation and its corresponding
target action (Algorithm 1). We train the MCNN on this dataset following Algorithm 2 for 1 million
steps and evaluate on 20 trajectories after training and repeat each experiment for a minimum of 3
seeds. We report results with an MLP, a behavior transformer (BeT), and a diffusion policy as the
underlying neural network under the names ‘MCNN+MLP’, ‘MCNN+BeT’, and ‘MCNN-+Diff’
respectively. We expand on the experimental setup and all hyperparameters in Appendix F.

Embedding CARLA images: In the CARLA tasks, we use an off-the-shelf ResNet34 encoder [2]
that has been shown to be robust to background and environment changes in CARLA to convert the
48 x 48 images to embeddings of size 512. We use this embedding space as the observation space
for learning memories and policies.

Performance Metrics: All our environments come with pre-specified dense task rewards which we
use to define performance metrics. We report the cumulative rewards (return) for each task. For the
aggregate plots on a set of four tasks, we compute the percentage increase in return of a method over
D4RL BC in all four tasks and report the median.

Results: First, for the “human” tasks with the most realistic imitation learning setup, we plot
aggregate and taskwise results in Figure 4. In aggregate-human, we see that MCNN+MLP with fixed
hyperparameters performs the best followed by MCNN+Diff and IBC at second place. We also see
that the MCNN variants of MLP, BeT and Diffusion consistently outperform the vanilla versions.

Published as a conference paper at ICLR 2024

aggregate-human pen-human-vl hammer-human-vl

150% 3500

2500

a
2

100

100% 3000

Il II 2000 o
%
L 0
1500 I- -5
- -100 -

1000 0
-100% -200 -15

500

Ll

Return
Return
Return

Return over BC[8]
s

Median of % Increase in
g
*

relocate-human-vl door-human-v1
500

Return

e ‘ 1
‘e'Rg R "

-100

200

@»osrLec @GEDVNN @D BC @ oif-sC [l MCNN+BeT (Fixed) JREBREIMCNN+MLP (Fixed)

@) 1-NN @Dcao-s @DseteC @D MvLP-BC I MCNN+Diff

(Fixed)

Figure 4: Adroit human tasks [25 demos]: Comparison of returns (across 20 evaluation trajectories and 3
random seeds) between baselines and our methods (MCNN+BeT, MCNN+Diff, and MCNN+MLP). Our MCNN

methods use the same fixed set of hyperparameters across all tasks.

40% aggregate-expert pen-expert-vl door-expert-vl
5000
4000 3000
. 20% 3500 4000
% — 2500
09 3000
S
= I. £ £ 2000 £ 3000
=23 22500 2 2
M Q Q U
5 €-20% -4 < o
3 2000
52 1500 2000
D
9 o 1500
s -40%
1000
1000 1000
-60% J_
-
@DosRiEC @EDVNN @EDbeTEC @D MLP-BC ISR VNN -+

@ 1NN @D coLs @ oifisc [MCNN+BeT (Fixed)

relocate-expert-vl hammer-expert-vl

18000

16000

14000
12000 L B

10000

8000

6000

il 4000
L AL

Diff (Fixed) IRl MCNN+MLP (Fixed)

Return

Figure 5: Adroit expert tasks [5000 demos]: Comparison of returns (across 20 evaluation trajectories and 3
random seeds) between baselines and our methods (MCNN+BeT, MCNN+Diff, and MCNN+MLP). Our MCNN

methods use the same fixed set of hyperparameters across all tasks.

In pen-human-vl, MCNN+MLP outperforms the nearest baseline
by 33%. It is also the only method to shoot past the expert
ceiling of 100 (depicted by a dashed red line). In hammer-human-
vl, MCNN+MLP is the only method to obtain a positive return
outpacing the nearest baseline by an order of magnitude (from -11
to 262). In relocate-human-vl, MCNN+BeT is the only method
to achieve a positive return. We attribute, like previous work [24],
the stronger performance of MCNN+BeT over other MCNN
variants in the relocate task to the ‘memory’ advantage available
to transformers that is specifically suited for this task (where
the historical states inform whether the ball has been grasped).
Lastly, in door-human-v1, MCNN+Diff outperforms all but the
IBC baseline by an order of magnitude. In this task, where
repeated attempts at grasping and opening the door handle are
usually required for success, we see methods that enable such
repetition (energy models in IBC and diffusion in MCNN+Diff)
succeed.

carla-lane-v0
500

450

@ D4RL BC
@D 1-NN

@ NN

@ BeT-BC

@D vLP-BC

[MCNN-+BeT (Fixed)
B MCNN+MLP (Fixed)

Figure 8: CARLA [400 de-
mos]: Comparison of return (across
20 evaluation trajectories and 3
random seeds) between baselines
and our methods (MCNN+BeT and
MCNN+MLP). For the results shown
here, our MCNN methods use the
same fixed set of hyperparameters
across all tasks.

400

Return
w w
g I
3 g

N
5
3

On the expert tasks in Figure 5, even with a large Table 1: Franka Kitchen [566 demos]: Com-
amount of data, we see MCNN+MLP come in first Pparison of probabilities/success rates of interacting

outperforming the nearest baseline in the aggregate

with 1 to 5 objects (given by pl to p5 respectively)

plot by over 100%. MCNN-+Diff comes in second in in Franka Kitchen between baselines and one of

aggregate with a 40% improvement over the nearest

our methods (MCNN+Diff).

baseline. Here too, MCNN variants outperform the
vanilla versions across all tasks. Also, MCNN+MLP

Franka Kitchen
pl p2 p3 p4 p5

and MCNN+Diff are the only methods to exceed

LSTM-GMM [21] 1.0 0.9 074 0.34 0

the expert ceiling in all four tasks. Across expert IBC 099 08 061 024 0
tasks both MCNN+MLP and MCNN-+Diff perform BeT-BC 099 093 071 044 0
competitively and obtain up to a 25% improvement e Ly R ot

over the nearest baseline.

Published as a conference paper at ICLR 2024

pen-human-vl hammer-human-v1
3500 hammer-expert-v1 carla-lane-v0 door-human-v1 pen-human-vl
00

250
170
3000 520
2500 200 16800 0 3600
500 40
c
£ 2000 150 16600 3400
@15 30
« 1500 100 16400 L 480
3 £3200
1000 £ e 20 £
16200 £ Z 460
: | | | g o
16000 02028
0 o = S g B

IS oSS Sl o sl S g5 s oSSl 15800

Return

g

Return

Return
et

2800
Num Memories Num Memories

15600 2 2600

@ et

w®

Figure 6: Number of Memories in MCNN+MLP:
Comparison of returns (across 20 evaluation trajecto-
ries) with our method (MCNN+MLP) using between
2.5% to 80% of the dataset as memories. We find a
"sweet spot" for number of memories at 10-20%. We
also see the expected decrease to 1-NN performance
as number of memories increases to 100%.

Figure 7: Fixed vs Tuned Hyperparameters in
MCNN+MLP: Comparison of returns (across 20 eval
trajectories and 3 seeds) between our method with
fixed hyperparameters across all tasks and with hy-
perparameters tuned online. Hence, it’s possible to
improve performance with limited online interaction.

In the high dimensional CARLA lane task as well, we see in Figure 8 that MCNN+MLP outperforms
the nearest baseline by 27%. MCNN+BeT comes in a close second.

In Table 1, we compare MCNN+Diff with various baselines in the multimodal Franka Kitchen task.
Following previous work [1], we compare the probability of success in interacting with 1 to 5 objects
(p1-p5). MCNN+Diff performs similarly to Diff-BC [1] and obtains 100% success on p1 to p4. On
pS, where baselines have failed to show any success, MCNN+Diff obtains a 4x improvement over the
nearest baseline. Additional figures and all means and standard deviations of our results can be found
in Appendix G.

Discussion: We identify some high-level trends across our results here. For every architecture —
MLP, BeT, or Diffusion, plugging in MCNN significantly improves performance in every task. The
best-performing method in nearly every task is an MCNN-based method. MCNN can even improve
the performance of simple MLP architectures to beyond that of more sophisticated recent architectures
such as Diffusion models. For example, in pen-human-v1 in Figure 4, diffusion outperforms MLP
but MCNN+MLP significantly improves upon Diffusion. The above statements remain true across
different types and sizes of expert data and across disparate tasks. We discuss some ablations next.

Ablations: We plot return against number of memories in Figure 6 for MCNN+MLP. It demonstrates
the existence of a "sweet spot" for the number of memories around 10-20% of the dataset. This
allows for more efficient inference in MCNN than in baselines like VINN and 1-NN. It also shows
the expected degradation to 1-NN performance as the number of memories increases towards 100%.
Additional discussion on computation cost and improved efficiency of MCNN compared to VINN
and 1-NN can be found in Appendix F.

In Figure 7, we show that given limited online interaction (20 episodes), selecting the best-performing
hyperparameters (\, L, and number of memories) further improves MCNN+MLP performance. We
show the significance of neural gas-based memories by comparing MCNN+MLP with a version
that uses randomly chosen memories in Figure 13 in Appendix G. We observe significant reduction
in performance with randomly chosen memories. Neural-gas uses competitive Hebbian learning
algorithm which is better at capturing the distribution of training points (creating memories that are
"spread out"). This reduces the distance to the most isolated state, improving imitation performance.
Ablation results on the values of A and other tasks is in Appendix G.

6 CONCLUSIONS AND LIMITATIONS.

Imitation learning, and in particular behavior cloning, is one of the most promising approaches when
it comes to transferring complex robotic manipulation skills from experts to embodied agents. In
this work, we introduced MCNNSs, a semi-parametric approach to behavior cloning that significantly
increases the performance of behavior cloning methods across diverse realistic tasks and datasets
regardless of the underlying architecture (MLP, transformer, or diffusion). While our theoretical and
empirical results support the idea that appropriately constraining the function class based on training
data memories improves imitation performance, MCNNSs are only one heuristic way to accomplish
this; it is very likely that there are even better-designed model classes in this spirit, that we have not
explored in this work. Finally, we would like in future work to explore MCNNs as model classes
beyond just behavior cloning, such as in reinforcement learning and meta-learning.

Published as a conference paper at ICLR 2024

Acknowledgements: This work was supported in part by ARO MURI W91 1NF-20-1-0080, NSF
2143274, and ONR N00014-22-1-2677. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views the Army
Research Office (ARO), Office of Naval Research (ONR), the Department of Defense, or the United
States Government.

Reproducibility Statement: To ensure reproducibility, we have released all code for
MCNN variants and the baselines at our website https://sites.google.com/view/
mcnn—imitation. We have also described all environments, datasets, baselines, and MCNN
variants in detail (with their hyperparameters) in Section 5 and Appendix F.

10

Published as a conference paper at ICLR 2024

REFERENCES

(1]

(2]

(3]

[4

[}

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137,2023. (Citedon 2,7, 8,9, 17, 18, 19)

Felipe Codevilla, Eder Santana, Antonio M Lopez, and Adrien Gaidon. Exploring the limitations
of behavior cloning for autonomous driving. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9329-9338, 2019. (Citedon 1, 3, 7, 17, 18)

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla:
An open urban driving simulator. In Conference on robot learning, pp. 1-16. PMLR, 2017.
(Cited on 6)

Souradeep Dutta, Yahan Yang, Elena Bernardis, Edgar Dobriban, and Insup Lee. Mem-
ory classifiers: Two-stage classification for robustness in machine learning. arXiv preprint
arXiv:2206.05323,2022. (Cited on 18)

Souradeep Dutta, Kaustubh Sridhar, Osbert Bastani, Edgar Dobriban, James Weimer, Insup Lee,
and Julia Parish-Morris. Exploring with sticky mittens: Reinforcement learning with expert
interventions via option templates. In Conference on Robot Learning, pp. 1499-1509. PMLR,
2023. (Cited on 18)

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 12873—12883, 2021. (Cited on 18)

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs,
Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning.
In Conference on Robot Learning, pp. 158—168. PMLR, 2022. (Cited on 2, 7, 17, 18, 19, 22,
23)

Bernd Fritzke. A growing neural gas network learns topologies. In Proceedings of the 7th
International Conference on Neural Information Processing Systems, NIPS’94, pp. 625-632,
Cambridge, MA, USA, 1994. MIT Press. (Cited on 5, 6)

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020. (Cited on 2,
7,18, 20, 21, 22, 23)

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132-20145, 2021. (Cited on 7)

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay
policy learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv
preprint arXiv:1910.11956, 2019. (Cited on 6, 7, 18)

Philippe Hansen-Estruch, Amy Zhang, Ashvin Nair, Patrick Yin, and Sergey Levine. Bisimula-
tion makes analogies in goal-conditioned reinforcement learning. In International Conference
on Machine Learning, pp. 8407-8426. PMLR, 2022. (Cited on 18)

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016. (Cited on 2, 17)

Kuk Jin Jang, Souradeep Dutta, Jean Park, James Weimer, and Insup Lee. Memory classifiers
for robust ecg classification against physiological noise. Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), 2023. (Cited on 18)

Xiayan Ji, Hyonyoung Choi, Oleg Sokolsky, and Insup Lee. Incremental anomaly detection with
guarantee in the internet of medical things. In Proceedings of the 8th ACM/IEEE Conference on
Internet of Things Design and Implementation, 10TDI °23, pp. 327-339, New York, NY, USA,
2023. Association for Computing Machinery. ISBN 9798400700378. doi: 10.1145/3576842.
3582374. URL ht tps://doi.org/10.1145/3576842.3582374. (Cited on 18)

11

Published as a conference paper at ICLR 2024

[16] Ramneet Kaur, Susmit Jha, Anirban Roy, Sangdon Park, Edgar Dobriban, Oleg Sokolsky, and
Insup Lee. idecode: In-distribution equivariance for conformal out-of-distribution detection.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 7104-7114,
2022. (Cited on 18)

[17] Ramneet Kaur, Kaustubh Sridhar, Sangdon Park, Susmit Jha, Anirban Roy, Oleg Sokolsky, and
Insup Lee. Codit: Conformal out-of-distribution detection in time-series data. arXiv preprint
arXiv:2207.11769, 2022. (Cited on 18)

[18] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning
for offline reinforcement learning. Advances in Neural Information Processing Systems, 33:
1179-1191, 2020. (Cited on 7, 18, 19, 22, 23)

[19] Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan, and Ken Goldberg. Dart: Noise injection
for robust imitation learning. In Conference on robot learning, pp. 143-156. PMLR, 2017.
(Cited on 2, 17)

[20] Minwoo Lee and Charles W Anderson. Robust reinforcement learning with relevance vector
machines. Robot Learning and Planning (RLP 2016), pp. 5, 2016. (Cited on 2, 17)

[21] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni,
Li Fei-Fei, Silvio Savarese, Yuke Zhu, and Roberto Martin-Martin. What matters in learning
from offline human demonstrations for robot manipulation. arXiv preprint arXiv:2108.03298,
2021. (Cited on 8)

[22] T.M. Martinetz, S.G. Berkovich, and K.J. Schulten. 'neural-gas’ network for vector quantization
and its application to time-series prediction. IEEE Transactions on Neural Networks, 4(4):
558-569, 1993. doi: 10.1109/72.238311. (Cited on 5)

[23] Vincent Micheli, Eloi Alonso, and Francois Fleuret. Transformers are sample efficient world
models. arXiv preprint arXiv:2209.00588, 2022. (Cited on 18)

[24] Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers
shine in r1? decoupling memory from credit assignment. arXiv preprint arXiv:2307.03864,
2023. (Cited on 8)

[25] Ian Osband and Benjamin Van Roy. Model-based reinforcement learning and the eluder dimen-
sion. In Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 1, NIPS’ 14, pp. 1466—-1474, Cambridge, MA, USA, 2014. MIT Press. (Cited
on 3,5, 18)

[26] Jyothish Pari, Nur Muhammad Shafiullah, Sridhar Pandian Arunachalam, and Lerrel Pinto.
The surprising effectiveness of representation learning for visual imitation. arXiv preprint
arXiv:2112.01511,2021. (Cited on 3, 7, 18, 19, 22, 23)

[27] Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating
human behaviour with diffusion models. arXiv preprint arXiv:2301.10677, 2023. (Cited on 17)

[28] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.
(Cited on 2, 17)

[29] Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural computation, 3(1):88-97, 1991. (Cited on 1)

[30] Y. Prudent and A. Ennaji. An incremental growing neural gas learns topologies. In Proceedings.
2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2, pp. 1211-1216
vol. 2, 2005. doi: 10.1109/IJCNN.2005.1556026. (Cited on 5)

[31] Nived Rajaraman, Lin F. Yang, Jiantao Jiao, and Kannan Ramchandran. Toward the fundamental
limits of imitation learning. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS 20, Red Hook, NY, USA, 2020. Curran Associates Inc.
ISBN 9781713829546. (Cited on 3, 17, 18)

12

Published as a conference paper at ICLR 2024

[32] Nived Rajaraman, Yanjun Han, Lin Yang, Jingbo Liu, Jiantao Jiao, and Kannan Ramchandran.
On the value of interaction and function approximation in imitation learning. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 1325-1336. Curran Associates, Inc., 2021.
URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
09dbc1177211571ef3elcad6lcc39363-Paper.pdf. (Cited on 3, 17, 18)

[33] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017. (Cited on 6)

[34] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087,2017. (Cited on 2, 17)

[35] Aravind Rajeswaran, Kendall Lowrey, Emanuel V Todorov, and Sham M Kakade. Towards
generalization and simplicity in continuous control. Advances in Neural Information Processing
Systems, 30, 2017. (Cited on 2, 17)

[36] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings
of the thirteenth international conference on artificial intelligence and statistics, pp. 661-668.
JMLR Workshop and Conference Proceedings, 2010. (Cited on 3, 17, 18)

[37] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pp. 627-635. JMLR Workshop and
Conference Proceedings, 2011. (Cited on 2, 17)

[38] Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning & modes with one stone. Advances in neural information processing
systems, 35:22955-22968, 2022. (Cited on 2, 7, 17, 19, 22, 23)

[39] Devavrat Shah and Qiaomin Xie. Q-learning with nearest neighbors. Advances in Neural
Information Processing Systems, 31, 2018. (Cited on 2, 17)

[40] Kaustubh Sridhar, Souradeep Dutta, James Weimer, and Insup Lee. Guaranteed conformance of
neurosymbolic models to natural constraints. arXiv preprint arXiv:2212.01346, 2022. (Cited
on 18)

[41] Kaustubh Sridhar, Oleg Sokolsky, Insup Lee, and James Weimer. Improving neural network
robustness via persistency of excitation. In 2022 American Control Conference (ACC), pp.
1521-1526. IEEE, 2022. (Cited on 18)

[42] Yihao Sun. Offlinerl-kit: An elegant pytorch offline reinforcement learning library. https:
//github.com/yihaosunl124/0fflineRL-Kit, 2023. (Cited on 19)

[43] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017. (Cited on 18)

[44] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022. (Cited
on2,7,17,19,22,23)

[45] Yahan Yang, Ramneet Kaur, Souradeep Dutta, and Insup Lee. Interpretable detection of distri-
bution shifts in learning enabled cyber-physical systems. In 2022 ACM/IEEE 13th International
Conference on Cyber-Physical Systems (ICCPS), pp. 225-235. IEEE, 2022. (Cited on 18)

[46] Yahan Yang, Souradeep Dutta, Kuk Jin Jang, Oleg Sokolsky, and Insup Lee. Incremental
learning with memory regressors for motion prediction in autonomous racing. In Proceedings
of the ACM/IEEE [4th International Conference on Cyber-Physical Systems (with CPS-IoT
Week 2023), pp. 264-265, 2023. (Cited on 18)

13

Published as a conference paper at ICLR 2024

[47] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning

invariant representations for reinforcement learning without reconstruction. arXiv preprint
arXiv:2006.10742, 2020. (Cited on 18)

[48] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023. (Cited on 2, 17)

14

Published as a conference paper at ICLR 2024

APPENDIX

A EXAMPLES OF THE MCNN FUNCTION CLASSES

We demonstrate the effects of varying number of memories, A, and L in Figures 9, 10, and 11
respectively. By increasing L or decreasing the number of memories, we directly increase the
width of the model class. By increasing A, we quicken the interpolation from the nearest neighbor
components to the neural network function class. Similarly, by decreasing A\, we slow this transition.

Example function classes for A=1, L=1, and 2 memories

Nearest Neighbor Function Neural Network Function Class Memory-Consistent Neural Net Class
5 y=N(x)eAdxs) , Y=La-e) o(ff(x)) y =1%(x)
1 1 1
> 0 M > 0 > 0 b i|<
-1 -1 -1
-2 -2 -2
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
X X X
Example function classes for A=1, L=1, and 3 memories
Nearest Neighbor Function Neural Network Function Class Memory-Consistent Neural Net Class
5 y =il (x)eAdxs) , y=L1-e?) o) 5 y =15
1 1 1
>~ 0 M >~ 0 }‘ > 0 X %
-1 -1 -1
-2 -2 -2
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
X X X
Example function classes for A=1, L=1, and 4 memories
Nearest Neighbor Function Neural Network Function Class Memory-Consistent Neural Net Class
) y=MN(x)eAdxs) , Yy=L1-e? M a(fx)) y =50
1 1 1

y
<)
e
*
C-x
LS
y
o
y
o

0.0 25 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 25 5.0 7.5 10.0
X X X

Example function classes for A=1, L=1, and 5 memories

Nearest Neighbor Function Neural Network Function Class Memory-Consistent Neural Net Class
) y =N(x)eAdxs) 5 Yy=L1-e? M o(fx)) y =50

1 1 1
SRR, 4 1 { T
-1 -1 -1
-2 -2 -2

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

X X X

Figure 9: Effects of varying number of memories (keeping A and L fixed) on the MCNN function
class.

15

Published as a conference paper at ICLR 2024

Example function classes for A=0.5, L=1, and 4 memories

Nearest Neighbor Function Neural Network Function Class Memory-Consistent Neural Net Class
) y = fiN(x)eAdx.5)) y=L(1—e x5 g(ff(x)) 2 y =f%x)
1
> 0
-1
-2 -2 -2
0.0 25 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 25 5.0 7.5 10.0
X X X
Example function classes for A=1, L=1, and 4 memories
Nearest Neighbor Function Neural Network Function Class Memory-Consistent Neural Net Class
) y =N (x)e) , y=La-e? o)) ¥ =1500
1 1
> 0 > 0
-1 -1
-2 -2 -2
0.0 25 5.0 7.5 10.0 0.0 25 5.0 7.5 10.0 0.0 2.5 5.0 75 10.0
X X X
Example function classes for A=2, L=1, and 4 memories
Nearest Neighbor Function Neural Network Function Class Memory-Consistent Neural Net Class
5 y = N(x)e—Adxs) , y=La-e) o(fx)) y=1f5%x)
1 1 1
> 0 > 0 > 0
-1 -1 -1
-2 -2 -2
0.0 25 5.0 7.5 10.0 0.0 25 5.0 7.5 10.0 0.0 25 5.0 7.5 10.0
X X X

Figure 10: Effects of varying A (keeping L. and number of memories fixed) on the MCNN function
class.

Example function classes for A=1, L=0.5, and 4 memories

Nearest Neighbor Function Neural Network Function Class Memory-Consistent Neural Net Class
5 y = ANx)e <) , y=L1-et) o(f(x) 5 ¥ =1500
1 1
> 0 > 0
-1 -1
-2 -2 -2
0.0 25 5.0 7.5 10.0 0.0 25 5.0 7.5 10.0 0.0 25 5.0 7.5 10.0
X X X
Example function classes for A=1, L=1, and 4 memories
Nearest Neighbor Function Neural Network Function Class Memory-Consistent Neural Net Class
N y = fl(x)e—ds) , y=La-e?) o)) ¥ =150
1 1
> 0 > 0
-1 -1
-2 -2 -2
0.0 25 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
X X X
Example function classes for A=1, L=2, and 4 memories
Nearest Neighbor Function Neural Network Function Class Memory-Consistent Neural Net Class
) y=N(x)e) , y=La-e) o(f(x)) ¥ =150
1
> 0
-1
-2

0.0 2.5 5.0 7.5

Figure 11: Effects of varying L (keeping A and number of memories fixed) on the MCNN function
class.

16

Published as a conference paper at ICLR 2024

B PROOF OF LEMMA 4.6

The width of the function class JF, V60,000, andVseS, defined as
I
max \ (fé\i’fg - f%g) (s)| is upper bounded by 2L x (1 —e dB|S)

iYj

Proof. Using Equation 2, we can express the difference as the following :

215 = 1761 @) = 1L (1= e 4eD) (% (@) = L (1= e 9D o(@) @)

.y (1 e d<w/>) o (% (x)) — o(f% (x))| “
<L (1=) o (@) - o7 @) ©)
Now, observing that |O-(f0i (z)) — J(f‘)j (z))| < 2 completes the proof. U

C PROOF OF THEOREM 4.7

The sub-optimality gap J(7*) — J(#) < min{H, H?|A|L (1 _ e s)}

Proof. In order to take advantage of well-known results in the imitation learning literature [36, 31,
2, 32], we restrict ourselves for the purpose of this analysis to the discrete action-space A scenario,
where the policy 7 : S — A(A). Even still, the intuitions developed through this analysis guide our
algorithmic choices in continuous environments. The actions picked in the expert dataset D induce a
dirac distribution over the actions corresponding to each input state.

Recall that in imitation learning, if the population total variation (TV) risk T(7,7*) < e, then,
J(m*) — J(7) < min{H, H?¢} (See [31] Lemma 4.3). We note the following for population TV
risk:

H
< D Baege, AL(L e)
t=1

H

7 3 gy, [TV (107" (o)

t=1
(—)\ dE\ s)

(6)
where fL. is the empirical distribution induced on state s* obtained by rolling out policy 7*. For the
first inequality in the above derivation, we use Lemma 4.6. Using this, in the performance gap lemma
gives us the following:

J(x*) = J(7) < min{ H, HAIL (1 - e %15)}

D EXTENDED RELATED WORK

Compounding errors in imitation learning have previously been tackled by permitting online
experience [13, 34], reward labels [28], queryable experts [37], or modifying the demonstration
data collection procedure [19]. Our work is orthogonal to these methods and creates a model class
that avoids compounding errors by construction. Other works that propose new models for IL such
as Implicit BC (IBC) [7], Behavior Transformer (BeT) [38], Action Chunking Transformer [48],
and Diffusion Policies [44, 1, 27] are orthogonal to our approach. MCNN can be used as a plug-in
approach to improve any of these methods. In fact, we show that MCNN with a BeT backbone
outperforms vanilla BeT and MCNN with a diffusion model outperforms diffusion BC on all tasks in
our experiments in Section 5. We also show that MCNN outperforms IBC in Section 5.

Non-parametric and semi-parametric methods in imitation learning such as nearest neighbors
[39], RBFs [35], and SVMs [20] have historically shown competitive performance on various robotic
control benchmarks. But, only recently, a semi-parametric approach consisting of neural networks for
representation learning and k-nearest neighbors for control was proposed in Visual Imitation through

17

Published as a conference paper at ICLR 2024

Nearest Neighbors (VINN) [26]. This is the closest paper to our work and in Section 5, we compare
with VINN and demonstrate that we outperform their method comprehensively.

Theoretical guarantees on the sub-optimality gap in imitation learning with MCNN are provided
in this paper. Such guarantees are not available with vanilla neural networks. Our theorem builds on
earlier work on reductions for imitation learning in [36, 31, 2, 32] and leverages intuitions from [25]
on bounding the width of the model class.

Learning a codebook of prototypes, like our memories, has been previously explored for image
reconstruction [43, 6], physics-constrained learning [40], online RL [23, 47, 12, 5], interpretable
OOD detection [45, 16, 17, 15], robust classification [4, 14, 41], and motion prediction [46]. The
closest related usage of memories that are representative of the topology of the input space is in [40].
But, here, external information in the form of physics and medical constraints plays a key role in
enforcing constraints at these pivotal points. In this paper, our prior is simply a kind of “consistency”
with no external information utilized.

E COMPUTE

We ran the experiments on either two Nvidia GeForce RTX 3090 GPUs (each with 24 GB of
memory) or two Nvidia Quadro RTX 6000 GPUs (each with 24 GB of memory). The CPUs used
were Intel Xeon Gold processors @ 3 GHz. Videos of our policies for many random goals across
environments as well as our code can be found in our website https://sites.google.com/
view/mcnn—-imitation.

F DETAILED EXPERIMENTAL SETUP

Additional information about our task definition: Following notation in prior works [9, 18, 7],
we define an imitation learning task as a tuple of (environment, reward function, and demonstration
dataset). Since we perform experiments with both "expert" and "human" demonstrations, our
experiment list has the following 9 tasks: pen-human-v1, pen-expert-vl, hammer-human-v1, hammer-
expert-v1, door-human-v1, door-expert-v1, relocate-human-v1, relocate-expert-v1, and carla-lane-v0.

Additional information for Adroit environments: All policies learned in the four Adroit envi-
ronments are goal-conditioned. The goal positions and orientations are provided as part of the
observation vector. Every time that the environment is reset (such as for a new evaluation rollout), the
goal is randomly chosen. These include random goal orientations of the pen, goal locations for the
relocate task, door locations in the door task, and nut-and-bolt location in the hammer task. In Adroit
human tasks in particular, with only 25 demonstrations, it is not possible to cover every random goal
location for each of the four environments (such as every possible pen orientation) in the training
dataset. This increases the difficulty of the four adroit tasks. Even with this challenge, MCNN
methods outperform baselines across environments and demonstrate their ability to generalize even
from small datasets of demonstrations.

We also provide videos of the Adroit human demos in our website. The multimodality in these
datasets collected by humans wearing VR gloves is visible in these videos. Some examples include
(1) in the hammer task, some demonstrations move the hammer above the bolt before hitting it, some
move it below, and some directly hit the bolt and (2) in the pen task, some demonstrations have the
little finger above the pen and some have it below the pen throughout the episode. MCNN helps
address the significant compounding error challenge which MLP-BC fails to address and hence results
in MCNN+MLP having an overall better performance than Diffusion-BC even though Diffusion
is better equipped to handle multimodality [1]. Our results in Franka Kitchen (see Appendix G)
highlight this where MCNN+Diffusion improves upon the already strong Diffusion-BC baseline.

Additional information for Franka Kitchen environment: In this environment, a Franka robot arm
interacts with various items in a Kitchen such as a kettle, microwave, light switch, cabinets, burners,
etc. We use the multimodal relay policy learning dataset [11] with 566 demonstrations collected
by humans wearing VR headsets interacting with 4 objects (out of a total 7 in the environment) in
each episode. The goal is to execute as many demonstrated tasks as possible and the metrics capture
the probability of successful interactions with various numbers of objects. These metrics, following

18

Published as a conference paper at ICLR 2024

previous work [1], have been named p1 to p5 for the probability of success in interacting with 1 to 5
objects respectively.

Normalization of inputs: We normalized all observations by subtracting the mean and dividing by
standard deviation. We didn’t have to normalize the actions as they are already in the range [—1, 1]
but if we are learning transition models instead, the outputs (next state or reward) would have to be
normalized.

Our tanh-like dynamic activation function: We plot our activation function o(.) described in
Algorithm 2 in Figure 12. It is exactly like the tanh function for S = 0 as seen in Figure 2. Further,
as given in Algorithm 2’s Line 3, we set 8 = max (0,1 — Lgltgé)J) Hence, 8 = 0 after 100 steps
until 1 million steps during training. We also set § = 0 during inference. For $ = 0, our activation
function reduces to —1 for x < —1, z for —1 < x < 1, and 1 for x > 1. This is exactly like tanh.
The reason for using this activation function is the very few initial steps when it is not like tanh where
gradients are available beyond [—1, 1] during which time, the neural network component adjusts for
the presence of the nearest neighbor component. We use the standard tanh activation function for
our reimplementation of BC.

Implementation details for baselines and MCNN+MLP: In BC and MCNN+MLP, we use an MLP
with two hidden layers (three total layers) of size [256, 256] for Adroit tasks and [1024, 1024] for
CARLA. We use an Adam optimizer with a starting learning rate of 3e — 4 and train for 1 million
steps. We simply minimize the mean squared error for training the policies. We use a batch size
of 256 throughout. We describe the MCNN-specific hyperparameters, namely A, L, and number of
memories in another paragraph below. For all other BC hyperparameters, we use the recommended
values in the TD3-BC implementation in [42].

For VINN, we set k£ = 10 in the Euclidean weighted k nearest neighbors algorithm. This value was
recommended by the original paper [26].

For BeT, we follow the official implementation®>. We use 6 layers, 6 heads, and an embedding
dimension of 120 in the transformer model. We also 64 clusters for action discretization performed
on the actions seen in the first 100 steps. Since the original paper [38] did not run experiments on
DA4RL tasks, we ran a sweep over various choices of number of layers (4, 6), number of heads (4, 6),
and embedding dimension (32, 64, 120). Following previous work [7], we chose the hyperparameters
(6 layers, 6 heads, 120 embedding dimension) with the highest average scores on three human tasks.
We used these hyperparameters on all other tasks as well. For all other BeT hyperparameters, we use
the recommended values in the official BeT implementation.

For Diffusion-BC, we use the official implementation from [44]* in Adroit tasks and the official
implementation from [1]* in Franka Kitchen tasks. We also use the recommended hyperparameters
provided in the code for pen-human-v1 in the former repository in all human and expert Adroit tasks.
We similarly use the recommended hyperparameters provided in the latter repository along for the
kitchen task.

In CQL-Sparse, we use an MLP with three hidden layers (three total layers) of size [256, 256, 256)
for Adroit tasks. We give a reward of 1 for the last timestep in both expert and human datasets where
each trajectory achieves task completion. Hence, we run CQL-Sparse only on the human and expert
datasets where each trajectory has achieved task completion. We use a reward of 0 in all preceding
timesteps. For all CQL-sparse hyperparameters, we use the recommended values in [18]. We also
ran a sweep over the three key hyperparameters of CQL, namely actor learning rate (3e — 5, le — 4),
initial « (5, 10), and Lagrange threshold (5, None). We note that while performing the sweep, if the
Lagrange threshold is None, CQL was run with fixed a. Otherwise, « is tuned automatically, as
described in Kumar et al. [18], based on the Lagrange threshold and starting from its initial value.
We found that the recommended values in [18], i.e. actor learning rate = 3e — 5, initial o = 5, and
Lagrange threshold = 5 performed the best overall.

Implementation details for MCNN + Behavior Transformer (BeT): We train MCNN+BeT
following the official BeT implementation described above with one major change to the action
offsets output by the BeT model. Let us denote the sequence of input observations as 7 and the action

https: //github.com/notmahi/miniBET
https:/ /github.com/Zhendong-Wang/Diffusion-Policies—for-0ffline—-RI
4 https://github.com/real-stanford/diffusion_policy

19

Published as a conference paper at ICLR 2024

20— o{x)withB=1
15 o(x) with B =0 /
1.0

0.5

0.0

a(x)

-0.5

-1.0
~15 /
-2.0

-2.0 -15 -1.0 -05 0.0 0.5 1.0 15 20
X

Figure 12: Dynamic tanh-like activation function og(x) shown for 8 = 0 and 8 = 1.

offsets output by the BeT model as fBT(7). Then, the output of MCNN+BeT is given as follows:
D) = V() (70 4 L (1= e 0T 20(f5T(r) /2))

where 7/ is the nearest (memory) sequence to 7 and f4V (7) retrieves the corresponding sequence of
actions from the codebook. We also multiply and divide by two inside the tanh-like function since
each item in the sequence output by the BeT lies in [—2, 2].

Implementation details for MCNN + Diffusion: We augment the diffusion process to use memories
in every step. Rather than predicting the noise value, we predict the true values. This amounts to a
minor change to the loss function within the official implementation. We provide this code in our
repository.

MCNN-specific hyperparameters: We use a value of L = 1.0 for all runs. This is suitable for BC
because our actions in the range of [—1, 1]. For both MCNN+MLP(Fixed) and MCNN+BeT (Fixed),
we use the same set of hyperparameters across all tasks. In particular, the MCNN-specific hyperpa-
rameter values are A = 0.1 and 10% memories. We show an abltaion study of normalized scores with
varying number of memories (2.5%-80%) in Figure 14. We also show an ablation study with both
varying A (0.1, 1.0, 10.0, 100.0) values and number of memories (2.5%, 5%, and 10%) in the 3D bar
charts of Figure 15. We also tabulate the highest value across all MCNN-specific hyperparameters
(obtained by evaluating on 20 trajectories) in the MCNN+MLP(Tuned) and MCNN+BeT(Tuned)
columns of Tables 2 and 3.

Implementation details for Figure 1: We run MCNN+MLP experiments on randomly sampled
subsets of the human and expert task datasets and report our performance normalized with that of
the DARL BC scores from [9]. This means that for many points in Figure 1 we used a smaller set of
datapoints from a particular task for training an MCNN+MLP policy and yet performed better than
D4RL BC’s score on that task.

Discussion on computational costs: The computation cost of MCNN during inference is dominated
by the 1 nearest neighbors search among the) memories in an observation space R?. From the
neural gas, we obtain a graph connecting memories. The search for the nearest memory is O(Md)
for the first observation. For every subsequent observation, we simply perform a nearby breadth-first
search starting from the previous memory. This is ©(nearby search depth * d) in the average case.
Please note that the nearby search depth is kept small (1, 2, 3, 4). The search for the first memory can
also be further reduced to O(dlog M) with the K-D trees data structure. Alternatively, leveraging the
parallel processing power of GPUs, this search can be done very quickly (<1 ms) in practice even
without a graph and by simply searching amongst all memories for the closest memory.

Further, since the vanilla neural net is a component of MCNN, we are less efficient at in-
ference than the vanilla neural net component alone. But, MCNN is more efficient than baselines like
VINN and 1-NN since we only have M memories, and this value is set to 10% of the total number of
datapoints or lower. VINN and 1-NN have to perform nearest neighbors search on a much larger

20

Published as a conference paper at ICLR 2024

dataset than MCNN. Further VINN requires the top k neighbors (usually k=10) while we require
only the 1 nearest memory.

G ADDITIONAL FIGURES AND DETAILED RESULTS TABLES

We tabulate all reward values from our previous bar charts in Table 2. We tabulate all corresponding
normalized scores obtained following the methodology in D4RL [9] in Table 3. We plot all the
ablation results for replacing neural gas memories with random memories for human and expert tasks
in Figure 13. We plot performance variation against number of memories (from 2.5% to 80%) for all
human tasks in Figure 14. We also plot a comparison of scores with varying As (0.1, 1.0, 10.0, 100.0)
and varying number of memories (2.5%, 5%, and 10%) for each task in the 3D bar charts of Figure
15.

21

(44

Table 2: Comparison of returns (across 20 evaluation trajectories and 3 random seeds) between baselines, our reimplementation of BC, and our methods —

MCNN+MLP, MCNN+BeT, and MCNN+Diff (see smaller table below) on the Adroit and CARLA domains. Here, we show both our MCNN results with the same
fixed set of hyperparameters across all tasks (Fixed) and with hyperparameters tuned online (Tuned).

Task Name Baselines Ours
D4RL BC BeT-BC 1-NN VINN CQL-Sparse Implicit BC MLP-BC MCNN+MLP MCNN+MLP MCNN + BeT MCNN + BeT

[9] [38] [26] [18] + 0/1 reward 171 (Relmpl.) (Fixed Hypers) (Tuned Hypers) (Fixed Hypers) (Tuned Hypers)
pen-human-v1 1122 841 + 60 1982 + 227 1490 =+ 152 377 £55 2586 + 65 1845 £ 213 3285 + 209 3405 + 328 1050 + 119 1089 =+ 110
pen-expert-v1 2633 1853 £ 117 3102 £ 275 3157 £ 88 671 & 14 - 3194 £ 127 3947 + 227 4051 £ 195 2033 £ 1.8 2103 £ 101
pen-cloned-v1 1792 1348 428 1902 + 148 1909 + 35 - - 1806 4+ 72 2208 + 82 2820 + 119 1595 £ 15 1604 + 12
hammer-human-v1 -79 -189 £ 11 -66 £ 20 -232 £ 10 241 £03 -132 £ 25 -1 £ 118 262 £+ 107 262 + 107 -130 £ 52 -130 £ 52
hammer-expert-v1 16140 2731 + 261 10069 =+ 770 10551 =+ 1010 11311 =+ 502 - 13710 =+ 2002 16027 + 383 16387 + 392 3605 + 663 4417 + 297
hammer-cloned-v1 -170 -235+39 =207 £ 17 -230 + 7.8 - - 2232413 -233 +5.2 -155 + 61 =229 +26 228+ 1.3
relocate-human-v1 -6.4 27+16 -47+04 -4.7 +£0.0 -20 £ 04 -0.1 2.1 52417 -47 408 -4740.8 82 +42 10 + 6.8
relocate-expert-v1 4289 490 + 42 1095 + 268 1283 £+ 123 1910 £ 1168 - 4361 + 55 4566 + 47 4566 + 47 558 + 66 558 + 66
relocate-cloned-v1 -11 -4.9 +0.1 -8.5 £2.1 -9.0 £ 04 - - 9.0 £ 04 -8.1+04 -6.0 £ 04 29 +21 03+13
door-human-v1 -42 -54 + 0.1 25485 -39 +94 -66 4 0.3 361 + 67 -53+23 54 +15 9.0 +29 54403 -53+03
door-expert-v1 969 560 =+ 256 2716 + 24 2760 + 2.6 2731 £ 117 - 2798 + 33 3033 +0.3 3035 + 7.0 902 + 50 1038 =+ 141
door-cloned-v1 -59 -59 £ 02 -59 £ 0.6 -59 £ 0.0 - - -59 £ 03 -59 +£03 -59 £ 09 -58 £0.1 -58 + 0.1
carla-lane-v0 325 327 £ 14 348 +30 297 + 41 - - 358 £31 441 £35 466 =+ 50 390 £+ 2.7 390 £ 2.7
carla-town-v0 -161 - -458 + 179 -315 £ 102 - - -497 + 128 =511 £+ 210 -465 + 215 - -
Task Name Baseline Ours

Diff-BC MCNN + Diff MCNN + Diff

[44] (Fixed Hypers) (Tuned Hypers)

pen-human-v1 2021.41+£ 46.50 2188.03£ 14.01 2345.40+ 160.95
pen-expert-v1 3194.86+ 424.14 3516.77+ 284.64 3568.63+ 284.05
pen-cloned-v1 - - -
hammer-human-v1 -159.854 56.20 17.894 128.08 130.284 154.21

hammer-expert-v1
hammer-cloned-v1
relocate-human-v1
relocate-expert-v1
relocate-cloned-v1
door-human-v1
door-expert-v1
door-cloned-v1
carla-lane-v0
carla-town-vQ

14044.84 £ 121.54

-4.31+ 1.70
4361.09+ 12.72

121.77+ 44.94
2800.39+£ 11.16

16088.83+ 67.96

-2.61+ 1.70
4572.25+ 1527

179.04+ 57.27
3000.40+ 3.23

16181.62+ 88.87

0.78+ 3.82
4574.80+ 16.96

197.25+ 32.60
3032.12 + 1.47

$202 q1DI e Joded oouaiojuos e se paysiqng

€C

Table 3: Comparison of normalized scores (across 20 evaluation trajectories and 3 random seeds) between baselines, our reimplementation of BC, and our methods —
MCNN+MLP, MCNN+BeT, and MCNN+Diff (see smaller table below), on the Adroit and CARLA domains. Here, we show both our MCNN results with the same
fixed set of hyperparameters across all tasks (Fixed) and with hyperparameters tuned online (Tuned).

$202 q1DI e Joded oouaiojuos e se paysiqng

Task Name Baselines Ours
D4RL BC BeT-BC 1-NN VINN CQL-Sparse Implicit BC MLP-BC MCNN+MLP MCNN+MLP MCNN + BeT MCNN + BeT
[9] [38] [26] [18] + 0/1 reward [71 (Relmpl.) (Fixed Hypers) (Tuned Hypers) (Fixed Hypers) (Tuned Hypers)
pen-human-v1 344 25.0 £2.0 63.27 +7.63 46.77 £ 5.10 9.43 4 1.86 83.53 +£2.18 58.68 +7.14 107.0 + 7.00 111.01 + 11.00 32.0 +40 333 +37
pen-expert-v1 85.1 58.95 +3.91 100.83 +9.23 102.68 +2.94 19.28 4+ 048 - 103.94 +4.25 129.20 +7.63 132.70 + 6.55 64.98 4+ 0.06 67.34 +3.39
pen-cloned-v1 56.9 42 £0.94 60.60 + 4.96 60.81 + 1.18 - - 57.36 £243 70.86 £ 2.75 91.38 + 4.00 50.3 £0.52 50.6 £ 04
hammer-human-v1 1.5 0.66 + 0.087 1.60 £ 0.15 0.33 £0.08 0.26 + 0.002 1.09 £ 0.19 2.02 + 0.9 4.11 £0.82 4.11 +0.82 1.11 04 1.11 £ 04
hammer-expert-v1 125.6 23.0 £20 79.15 +5.89 82.84 +£17.73 88.65 4 3.84 - 107.01 + 15.32 124.74 £ 293 127.49 + 3.00 29.69 £ 5.07 359 +227
hammer-cloned-v1 0.8 0.302 4+ 0.03 0.52 +0.13 0.34 +0.06 - - 0.33 +0.10 0.32 +£0.04 0.92 + 047 0.353 +0.02 0.36 &+ 0.01
relocate-human-v1 0.0 0.089 + 0.038 0.04 +0.01 0.04 4 0.00 -0.315 £ 0.01 0.15 +0.05 0.03 +0.04 0.04 £+ 0.02 0.04 +0.02 0.345 £+ 0.10 0.394 +0.16
relocate-expert-v1 101.3 1.7 £1. 2597 +633 30.40 +2.89 45.19 £27.54 - 103. £ 1.3 107.84 + 1.10 107.84 £+ 1.10 13.32 +1.56 13.32 £ 1.56
relocate-cloned-v1 -0.1 0.036 + 0.003 -0.05 £ 0.05 -0.06 + 0.01 - - -0.06 £ 0.01 -0.04 £ 0.01 0.01 £ 0.01 0.084 + 0.05 0.145 + 0.03
door-human-v1 0.5 0.096 + 0.002 1.07 +0.29 0.61 +0.32 -0.336 £ 0.01 14.22 +£2.28 0.13 +0.08 1.74 £ 051 2.23 £ 1.00 0.098 + 0.01 0.11 £ 0.01
door-expert-v1 349 20.98 + 8.7 94.39 +0.81 95.88 + 0.09 949 + 4.0 - 97.2 +1.13 105.18 £ 0.01 105.26 £+ 0.24 32,62+ 17 3727 £ 48
door-cloned-v1 -0.1 -0.068 + 0.007 -0.08 4 0.02 -0.07 4 0.00 - - -0.10 = 0.01 -0.10 = 0.01 -0.07 +0.03 -0.05 4 0.005 -0.05 4 0.005
carla-lane-v0 31.8 320+ 14 34.03 +2.95 29.09 + 3.96 - - 35.03 +3.00 43.14 £ 3.40 45.59 +4.90 38.13 +0.26 38.2 +0.26
carla-town-v0 -1.8 - -13.45 £ 7.00 -7.85 £ 4.00 - - -14.95 £ 5.00 -15.52 £8.20 -13.70 £ 8.40 - -
Task Name Baseline Ours
Diff-BC MCNN + Diff MCNN + Diff
[44] (Fixed Hypers) (Tuned Hypers)
pen-human-v1 64.59 + 1.56 70.18 £+ 047 7546 £ 54
pen-expert-v1 103.96 + 14.23 114.76 £9.55 116.5 £9.53
pen-cloned-v1 - - -
hammer-human-v1 0.88 +0.43 2.24 +0.98 3.1 +1.18
hammer-expert-v1 109.57 + 0.93 125.21 £ 052 125.92 + 0.68
hammer-cloned-v1 - - -
relocate-human-v1 0.05 £+ 0.04 0.09 £ 0.04 0.17 +0.09
relocate-expert-v1 103.0 £ 0.3 107.98 £ 0.36 108.04 + 0.4
relocate-cloned-v1 - - -
door-human-v1 6.07 +1.53 8.02 +£1.95 8.64 £ 1.11

door-expert-v1 97.27 £0.38 104.08 £ 0.11 105.16 £ 0.05
door-cloned-v1 - - -
carla-lane-v0 - - -
carla-town-v0 - - -

Published as a conference paper at ICLR 2024

door-expert-vl

pen-human-vl 0 door-human-vl hammer-human-vl relocate-human-vl pen-expert-vl
4000
3000 -1 3040
-5 200
2500 -2 3800
3020
-10 1
00
2000 - e c-3 £3600 I
] El El El E 53000
g g-15 g g g g
1500 -4 < <_4 < <
0 3400
2980
1000 -20 _5
3200
~100 2960
500 -25 -6
3000
0 2940
@ g0 & g0 S (Sl S SRt
A\ A\ & N & N & N & N &
o e @ @ Qe ‘\a\,@ @ RO EOCR O

hammer-expert-vl

relocate-expert-vl

16500 4700

16000 4600

15500

4500
£15000
5 4400
@
&£ 14500
4300
14000
4200
13500
4100
13000

0> <
$a\“a\6 V@“Go

Return

& oo
NP
NSRS
W

Figure 13: Neural Gas vs Random Memories in MCNN+MLP: Comparison of returns (across 20 eval
trajectories) between our method with neural-gas-based memories and randomly chosen memories. This shows
that MCNN+MLP performs better with neural gas memories. We attribute this to the spread-out nature of neural
gas memories that reduces the distance to the most isolated state, improving imitation performance.

pen-human-v1 door-human-v1

3500 20

_I-
-20 I
-40
Ployes® Flslog

o[o O[o e|e
Num Memorles

3000

2500
£ 2000
3

0 |I|

Retu m

2
& 1500
1000

5

o
o

o‘o o[o o|o

c
=
=1
=}
]
o
100
) I
0

nh oh &

’\
Num Memones

hammer-human-v1 relocate-human-v1

0
-1
-2
c-3

2
2 -4
-5
Ill _6

Ia ol

-7
esloclo o|° floo7h 5 yo hoggslo

Num Memones Num Memones

Figure 14: Number of Memories in MCNN+MLP: Comparison of returns (across 20 evaluation trajectories)
with our method (MCNN+MLP) using 2.5% of the dataset as memories up to 80% of the dataset as memories.
We find a "sweet spot” for num memories at 10-20%. We also see the expected decrease to 1-NN performance
with as num memories increases to 100%.

24

Published as a conference paper at ICLR 2024

pen-human-vl pen-expert-vl

pen-cloned-vl

3000 fioce 2500
£ 3000 £ 2000 £
2000 3 2000‘3 15005
1000 10005 }3%%01
~100.0 1000 L ~100.0
25 N 25 10-% 25 N
Me,, 50 @ 10 Me,. 50 10 Me,. 5:0 @ 10
e”‘lor/@ 100 o1 e'"or,'e 100 o1 G"7"Or,'€, 100 o1
S (%) S (%) S (%)
hammer-human-v1l hammer-expert-vl hammer-cloned-v1
15000 ;igg
= ol [=
100005 22005
=220
50008 Zoa0
=260
< T o <
¢ ~100.0 S ~100.0
25 X 25 - 101
5.0 S 10 5.0 S 10
Me'ho,/-e 100 g1 Me'hor/e 10.0
S (%) S (o/o)
relocate-expert-vl relocate-cloned-v1
4000 _ 1-8
3000 5 =10 5
2000 @ ~12 g
1000 & r
o 16
< ~100.0 ~100.0
25 10’%
5.0 10
Melho,/e 100 01
S (%)
door-expert-vl
1 3000 Leg
= £ £
<203 2000 5 60 3
- 1000 61 ¢
o ~62
- @ “ .100.0 ¢ ~100.0 .100.0
25 K 100 25 100 } .
Me/n 5.0 Q. 10 ™ Me,,, 5.0 . .10 ™ Mem 5.0 . 10 ™
Orja. 100 01 Orja. 100 01 Ofjae 100 01
Qs (%) (S (%) s (%)
carla-lane-v0 carla-town-v0
[400 =s00g
1300 3 3
200 g —550g
100 =600
s 0
25 N 2.5 N
Ma,. 50 a4 5.0 -
e’77or,'e,s 100 10,0 e’"or/e,S 100 10,0
(%) (%)

Figure 15: Bar chart of returns for our method against various combinations of A and memories for

each task. Each of the 12 bars in each of the 14 subfigures represents the average performance across
20 evaluation trajectories and three seeds. We notice that the best performance can be obtained for A
values at the middle, i.e., A € {0.1, 1.0}, for any number of memories. This is where our method can
interpolate, by design, between the nearest memories and vanilla BC. These plots also demonstrate
that by training MCNNSs on offline data for a few sets of hyperparameters and simply choosing
the best hyperparameter with limited online interaction, we can obtain significant improvements in

performance.

25

Published as a conference paper at ICLR 2024

Figure 1 values: We provide the mean and standard deviation of the return values for various number
of demos for various tasks (across various runs) that were in the scatter plot in Figure 1 in Tables 4
and 5. Other points plotted in Figure 1 include the return values (across various runs) for all 9 tasks
at the full dataset sizes (25 demos for Adroit human tasks, 5000 for Adroit expert tasks, 400 for the
CARLA task) as given in Table 2.

Table 4: Returns with various methods on pen-expert-vl and door-expert-v1 for subsampled and
full datasets (where NA = Not Available). These values represent the means and standard deviations
obtained from various points (corresponding to various runs) in the scatter plot in Figure 1.

Task Method Number of demonstrations
100 demos 500 demos 1000 demos 2000 demos 4000 demos 5000 demos
(full dataset)
pen- MCNN+MLP 2724.61 2931.19 2991.88 3016.65 3025.47 3035
expert-v1 + 138.82 + 31.84 + 18.31 +9.83 + 331 + 7.0
D4RL BC NA 969
door- MCNN+MLP NA 3711.79 3807.97 3857.74 3933.75 4051
expert-v1 MCNN+MLP + 31.6 +5.58 +29.16 +41.83 + 195
D4RL BC NA 2633

Table 5: Returns with various methods on pen-human-v1l and hammer-human-v1 for subsampled
and full datasets (where NA = Not Available). These values represent the means and standard
deviations obtained from various points (corresponding to various runs) in the scatter plot in Figure 1.

Number of d trations
Task Method 5 demos 10 demos 15 demos 20 demos 25 demos
(full dataset)
pen- MCNN+MLP 2169.45 + 189.76 2542.62 + 128.38 2673.36 + 100.93 2988.21 + 155.0 3405 + 328
human-v1 D4RL BC NA 1122
hammer- MCNN+MLP 2529 +5.57 36.19 +3.27 113.73 4+ 3.08 154.24 +8.01 253.57 +3.26
human-v1 D4RL BC NA =79

Oversampling memories: We also compare MCNN+MLP with a vanilla MLP-BC algorithm that
oversamples the memories which comprise 10% of the dataset and report results in Table 6. It can
be clearly seen that MCNN+MLP significantly outperforms the oversampled MLP-BC for various
amounts of oversampling. Moreover, MLP+BC with oversampling performs similar to vanilla
MLP+BC.

Table 6: Comparison of MCNN+MLP with vanilla MLP-BC with memories (or codebook entries)
oversampled by various amounts. Here, we use *Nx sampled’ to denote that each memory was
sampled N times in each training epoch.

Task Name Baselines Ours
MLP-BC MCNN +MLP MCNN + MLP

normal 2x sampled 3xsampled 6x sampled (Fixed Hypers) (Tuned Hypers)
pen-human-v1 1845 + 213 2080.13 2093.24 2114.11 3285 + 209 3405 + 328
pen-expert-v1 3194 + 127 3106.64 3136.44 3285.47 3947 + 227 4051 + 195
hammer-human-v1 -11 £ 118 -10.86 -10.86 -4.33 262 4 107 262 £ 107
hammer-expert-v1 13710 + 2002 13447.58 13447.58 13970.34 16027 + 383 16387 + 392
relocate-human-v1 52417 -5.95 -5.94 -5.66 -4.7+08 -4.7 +038
relocate-expert-v1 4361 £ 55 4403.49 4403.49 4445.89 4566 + 47 4566 + 47
door-human-v1 -53 +23 -48.64 -46.79 -35.6 54415 9.0 +29
door-expert-v1 2798 + 33 2821.83 2851.2 2909.94 3033 +£03 3035 +7

26

	Introduction
	Related Work
	Problem Formulation
	Approach
	The Model Class: Memory-Consistent Neural Networks
	Theoretical Analysis of MCNNs for Imitation Learning
	Algorithm: Imitation Learning With MCNN Policies

	Experimental Evaluation
	Conclusions and Limitations.
	Examples of the MCNN Function Classes
	Proof of Lemma 4.6
	Proof of Theorem 4.7
	Extended Related Work
	Compute
	Detailed Experimental Setup
	Additional Figures and Detailed Results Tables

