
Near-Optimal Algorithms for
Gaussians with Huber Contamination:

Mean Estimation and Linear Regression

Ilias Diakonikolas
University of Wisconsin–Madison

ilias@cs.wisc.edu

Daniel M. Kane
University of California, San Diego

dakane@cs.ucsd.edu

Ankit Pensia
IBM Research
ankit@ibm.com

Thanasis Pittas
University of Wisconsin–Madison

pittas@wisc.edu

Abstract

We study the fundamental problems of Gaussian mean estimation and linear
regression with Gaussian covariates in the presence of Huber contamination.
Our main contribution is the design of the first sample near-optimal and almost
linear-time algorithms with optimal error guarantees for both these problems.
Specifically, for Gaussian robust mean estimation on Rd with contamination
parameter ϵ ∈ (0, ϵ0) for a small absolute constant ϵ0, we give an algorithm with
sample complexity n = Õ(d/ϵ2) and almost linear runtime that approximates
the target mean within ℓ2-error O(ϵ). This improves on prior work that achieved
this error guarantee with polynomially suboptimal sample and time complexity.
For robust linear regression, we give the first algorithm with sample complexity
n = Õ(d/ϵ2) and almost linear runtime that approximates the target regressor
within ℓ2-error O(ϵ). This is the first polynomial sample and time algorithm
achieving the optimal error guarantee, answering an open question in the literature.
At the technical level, we develop a methodology that yields almost-linear time
algorithms for multi-directional filtering that may be of broader interest.

1 Introduction

Modern machine learning systems operate with vast amounts of training data, which are difficult to
carefully curate. Consequently, outliers have become a fixture of modern training datasets. This contra-
dicts the standard i.i.d. assumption of classical statistical theory and has spurred the development of ro-
bust statistics, which seeks to develop algorithms that perform well in the presence of outliers [HR09;
DK23]. The standard contamination model of outliers was first formalized by Huber [Hub64]:
Definition 1.1 (Huber Contamination Model). Given 0 < ϵ < 1/2 and a distribution family D, the
algorithm specifies n ∈ N and observes n i.i.d. samples from a distribution P = (1 − ϵ)G + ϵB,
where G is an unknown distribution in D, and B is an arbitrary distribution. We say G is the
distribution of inliers, B is the distribution of outliers, and P is an ϵ-corrupted version of G.

The Huber contamination model has since served as a bedrock for the development and evaluation of
robust algorithms. Given that estimating properties of Gaussian distributions is a prototypical task in
statistics, Gaussian estimation under Huber contamination is, analogously, a central problem in robust
statistics. The univariate version of this problem is addressed in Huber’s work [Hub64]. In this paper,
we focus on estimating high-dimensional Gaussian distributions under Huber contamination.

Authors are in alphabetical order.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Consider the fundamental problem of estimating the mean µ of a d-dimensional isotropic Gaussian
N (µ, I) given samples from an ϵ-corrupted distribution (Definition 1.1). [DKKLMS18] gave an
n = poly(d/ϵ) sample and poly(n)-time algorithm for this problem, achieving the information-
theoretically optimal error of Θ(ϵ). Despite being polynomial in sample and time complexity,
these guarantees are far from the linear sample complexity and linear runtime of the sample mean
on uncontaminated data. While a number of works [CDG19; DHL19; DKPP22] have developed
near-linear time Gaussian robust mean estimation algorithms, all these prior methods inherently
suffer a sub-optimal error guarantee of Ω(ϵ

√
log(1/ϵ)).1 Given the fundamental nature of Gaussian

robust mean estimation [DM22], these contrasting sets of results raise the question of whether it
is possible to achieve the best of both worlds. In other words:

Can we obtain O(ϵ) error for Gaussian mean estimation with Huber contamination
in near-linear time and sample complexity?

While mean estimation is the most basic unsupervised learning task, linear regression is arguably the
most basic supervised learning task. Here we study the basic case of Gaussian covariates.
Definition 1.2 (Gaussian Linear Regression). Fix σ > 0 and β ∈ Rd. LetG be the joint distribution of
pairs (X, y), with X ∈ Rd, y ∈ R, such that X ∼ N (0, Id) and y = β⊤X+ η, where η ∼ N (0, σ2)

independently of X . The goal of the algorithm is to compute β̂ such that ∥β − β̂∥2 is small.

The information-theoretic error for robust Gaussian linear regression with Huber contamination
is Θ(σϵ). However, all known polynomial time algorithms for this task incur a higher error of
Ω(σϵ

√
log(1/ϵ)) [DKS19; PJL20; CATJFB20; BP21], raising the following open question in [BP21]:

Can we obtain O(σϵ) error for Gaussian linear regression with Huber contamination
in polynomial time and sample complexity?

Perhaps surprisingly, despite the extensive algorithmic progress on robust statistics over the past
years [DKKLMS16; LRV16; DK19; DK23], these basic questions have remained open.

1.1 Our Results

Robust Mean Estimation We begin by stating our result for Gaussian robust mean estimation:
Theorem 1.3 (Almost Linear-Time Algorithm for Robust Mean Estimation). Let ϵ0 be a sufficiently
small positive constant. There is an algorithm that, given parameters ϵ ∈ (0, ϵ0), c ∈ (0, 1), δ ∈
(0, 1), and n ≫ 1

ϵ2 (d+ log(1/δ)) polylog(d/ϵ) ϵ-corrupted points from N (µ, Id) (in the Huber
contamination model per Definition 1.1), computes an estimate µ̂ such that ∥µ̂− µ∥2 = O(ϵ/c) with
probability at least 1− δ. Moreover, the algorithm runs in time (nd+ 1/ϵ2+c)polylog(d/ϵδ).

Taking c to be a small positive constant, our algorithm achieves the optimal asymptotic error (see,
e.g., [CGR18]) up to constant factor with near-optimal sample complexity [CGR18] and almost-linear
runtime. Moreover, the runtime of our algorithm is near-optimal in the regime when ϵ ≥ d−2/c,
which is the main regime of interest.2 Moreover, we note that the algorithm continues to work for
a wider family of distributions than Gaussians; See Remark 2.2.

Our techniques are also amenable to the streaming framework of [DKPP22], and Theorem 1.3 can
be extended to a streaming algorithm (with polynomial time and sample complexity) that uses only
Õ(d+ poly(1/ϵ))-memory, which is optimal up to the additive poly(1/ϵ) term (see Appendix E).

Robust Linear Regression We next consider robust Gaussian linear regression (Definition 1.2).
As existing polynomial-time algorithms for robust Gaussian linear regression can achieve error
of O(σϵ log(1/ϵ)), we assume without loss of generality that the true regressor satisfies ∥β∥2 =
O(σϵ log(1/ϵ)) (in fact, it can be ensured in nearly-linear time; see, e.g., [CATJFB20, Theorem 2.5]).

Using a novel reduction of linear regression to robust mean estimation for Gaussians, we prove:
1These prior algorithms continue to work in the total variation/strong contamination model with error

O(ϵ
√

log(1/ϵ)). Still, their underlying algorithmic approaches provably cannot obtain better error in the Huber
model — the fundamental contamination model and the focus of our work; See Section 1.3 for details.

2Using the expression n = d/ϵ2, the runtime is dominated by nd when ϵ > n−2/(4+c). Note that the sample
complexity requirement directly implies that ϵ > 1/

√
n.

2

Theorem 1.4 (Almost Linear-Time Algorithm for Robust Linear Regression). Let ϵ0 be a suffi-
ciently small positive constant. Let G be the joint distribution over (X, y) following the Gaussian
linear regression model (Definition 1.2) with unknown parameters σ > 0 and β ∈ Rd satis-
fying ∥β∥2 = O(σϵ log(1/ϵ)) There is an algorithm that, given ϵ ∈ (0, ϵ0), c ∈ (0, 1) and
n ≫ (d/ϵ2)polylog(d/ϵ) i.i.d. labeled examples (x, y) from an ϵ-corrupted version of G, the al-
gorithm returns a β̂ such that ∥β̂ − β∥2 = O(σϵ/c), with probability at least 0.9. Moreover, the
algorithm runs in time (nd+ 1/ϵ2+c)polylog(d/ϵ).

For a constant c > 0, Theorem 1.4 has optimal asymptotic error [CGR16], near-optimal sample com-
plexity [CGR16] for constant failure probabilities, and near-optimal runtime (up to an additive factor
of 1/ϵc). Thus, we provide the first polynomial time and sample algorithm (in fact, near-optimal
time and sample complexity) for robust Gaussian linear regression with Huber contamination.

1.2 Our Techniques

Our first major result is a near-optimal sample and almost-linear time algorithm for learning a Gaussian
mean to error O(ϵ) in the Huber contamination model. At a high level, our technique borrows
ideas from the O(ϵ) error algorithm of [DKKLMS18] and the fast robust estimation techniques of
[DKPP22]. We emphasize that a number of challenges need to be overcome in order to achieve this
result, as elaborated below.

Roughly speaking, the fast algorithm of [DKPP22] works via a careful implementation of the
standard filtering algorithm [DKKLMS16; DKKLMS17; DK19]. If the empirical covariance matrix
has no direction of large variance, this serves as a certificate that the remaining outliers do not
substantially affect the mean. If the empirical covariance matrix has any large eigenvalue, the
algorithm projects all the points onto a (randomly chosen) direction of large variance and removes
outliers in this direction.3 Moreover, if there is such a direction, a careful analysis can be used to
show that the filtering removes more outliers than inliers and that it improves a carefully chosen
potential function — based on the trace of an appropriate power of the (translated) empirical
covariance matrix Σ′, roughly tr((Σ′ − I)log d). Repeating this procedure only polylog(d/ϵ) many
times eventually yields a sample set with no directions of large variance, whose sample mean is
guaranteed to be close to the true mean. Crucially, to achieve this fast runtime, [DKPP22] must
consider random directions of large variance obtained by applying a suitable power of the (translated)
empirical covariance matrix to a random vector. This is to ensure that the outliers cannot be arranged
so that they will end up orthogonal to the directions considered.

Conceptually, the O(ϵ)-error algorithm in Huber’s model [DKKLMS18] works via a more compli-
cated filter whereby if the covariance matrix has k (for k = Ω(log(1/ϵ)) moderately large eigenvalues
1 + Ω(ϵ), the algorithm projects all points onto the subspace spanned by these k directions and re-
moves those points whose projections are too far from the mean. The usage of multiple orthogonal
directions permits better concentration bounds of Gaussians (namely, the Hanson-Wright inequality)
and achieves stronger filtering that translates to a smaller final error. In particular, the standard filter
cannot reduce the leading eigenvalue to 1+ o(ϵ log(1/ϵ)), while this improved multi-directional filter
can reach the threshold 1 +O(ϵ) for the k-th largest eigenvalue. A brute-force approach is then used
to learn the projection of the mean onto the subspace of the k largest eigenvalues, while the sample
mean is used as an approximation to the mean in the orthogonal directions.4. However, [DKKLMS18]
takes quadratic time, nd2, to run because the subspace used to remove points is deterministic and
outliers may be arranged in a way that filtering does not remove the outliers that lie in the orthogonal
subspace. A natural idea is to use insights from [DKPP22] to improve the algorithm in [DKKLMS18].

Unfortunately, combining these techniques is highly non-trivial. While [DKPP22] filters based on
a single random direction, [DKKLMS18] requires a multi-directional filter with Ω(log(1/ϵ)) many
(nearly-) orthogonal directions. If the technique of [DKPP22] for producing random directions is
called several times in order to produce the directions necessary, it may (if the sample covariance
matrix is dominated by only a few large eigenvalues) produce essentially the same vectors over and
over. We deal with this by considering two complementary cases. In the first case, where the random

3We note that [DKPP22] uses a JL-sketch matrix of polylog(d/ϵ) size instead of a single direction. However,
that is a superficial difference, and a random direction also works; see, for example [DK23; DKPP23].

4The brute-force approach takes 2Ω(k) time. Hence, k is chosen to be Θ(log(1/ϵ)) to satisfy the filter
requirement while ensuring the brute-force approach runs in polynomial time.

3

directions selected by the technique of [DKPP22] have small inner product, we show that we can
simply take k = Θ(log(d/ϵ)) many random directions and perform the multi-directional filter of
[DKKLMS18] in these directions. When this is not the case, the covariance matrix must have a small
number of dominant eigenvectors. We take one of these eigenvectors and put it aside (for now) and
instead consider the projections of our original points on the orthogonal subspace. Via a careful
analysis, it can be shown that either of these steps will lead to a substantial drop in the potential
function of [DKPP22]. This guarantees that after a small number of filter steps, we are left with a
matrix with small eigenvalues, allowing us to use the sample mean to approximate the true mean, at
least in the directions orthogonal to those put aside.

In the directions that have been put aside, we still need to compute the sample mean. Fortunately, this
reduces to the case where the dimension is polylog(d/ϵ). Although a brute-force approach will not
run in polynomial time for such a large subspace, a careful analysis of [DKKLMS18] can be made to
yield an appropriate runtime, because the “effective” dimension is now only polylog(d/ϵ).

We now sketch our algorithm for robust linear regression with Gaussian covariates. Our algorithm
for robust linear regression in the Huber model achieves near-optimal error of O(ϵσ) by leveraging
our above-described robust mean estimation algorithm. Prior to our work, no polynomial time
algorithm was known to achieve this optimal error guarantee. As an additional bonus, our algorithm
has near-optimal sample complexity and runs in almost-linear time. The basic idea here is to consider
the distribution of X conditioned on the value of y (or more precisely, after rejection sampling based
on y in a carefully chosen way). We show that this conditional distribution will be a nearly-spherical
Gaussian whose mean is proportional to β, the true regressor. By using our robust mean estimation
algorithm on this conditional distribution, we can obtain our final estimate of β.

1.3 Related Work

Our work lies in the field of algorithmic robust statistics, an active area of research since [DKKLMS16;
LRV16]; see [DK23] for a recent book on this topic and Appendix A for additional discussion.

Contamination Models The strong contamination model works as follows: a computationally
unbounded adversary inspects all the samples and can replace ϵ-fraction of samples with points
of their choice [DKKLMS16; DK19]. In contrast, the Huber model is additive and preserves
independence among data points. In the rest of this paragraph, we focus on the task of robust
(isotropic) Gaussian mean estimation. Despite these differences between the contamination models,
the information-theoretic error in both of these models is Θ(ϵ). However, the computational
landscape of the problem changes considerably. First, [DKKLMS18] was able to achieve this error
with polynomial samples and time. However, under the strong contamination model, there is evidence
in terms of statistical query lower bounds (and low-degree hardness using [BBHLT20]) that all poly-
nomial time algorithms must incur a larger error of Ω(ϵ

√
log(1/ϵ)) [DKS17], matching the existing

polynomial time algorithms [DKKLMS16], which necessitates that we consider Huber’s model.5

Gaussianity and Identity Covariance assumptions First, even for Gaussians, knowing the co-
variance matrix is crucial for computationally-efficient algorithms.6 [DKKLMS18] that gets O(ϵ)
error runs in polynomial time for isotropic covariances, while the algorithm for unknown covariance
matrix runs in quasi-polynomial time [DKKLMS18].7 Thus, we focus our attention to (nearly)
isotropic distributions in this work and improve the runtime of the algorithm from [DKKLMS18]
from a large polynomial to almost-linear. Looking beyond Gaussianity assumption, it is impossible
(information-theoretically) to obtain O(ϵ) error for arbitrary isotropic subgaussian distributions, even
in a single dimension and Huber contamination model [DK23]. Finally, our results can be extended
to a subset of symmetric isotropic subgaussian distributions; see Remark 2.2.

5The lower bound from [DKS17] continues to hold for total variation corruption model, which is stronger
than the Huber model but weaker than the strong corruption model.

6For example, all polynomial-time (statistical query and low-degree testing) algorithms for Gaussian mean
estimation must use Ω̃(d2) samples to get o(

√
ϵ) error [DKS19; DKKPP22] as opposed to O(ϵ) error achievable

with Oϵ(d) samples using a computationally-inefficient algorithm.
7[DKKLMS16] gets a larger error O(ϵ

√
log ϵ−1) for unknown covariance in polynomial time and samples.

4

Outlier-robust Estimators in Nearly-Linear Time Several recent works have developed nearly-
linear time algorithms for problems in robust statistics: mean estimation [CDG19; DL22; DHL19;
LLVZ20; DKKLT21; DKPP22; CMY20], linear regression [CATJFB20], and PCA [JLT20; DKPP23].

2 Preliminaries
Notation We denote [n]:={1, . . . , n}. Forw : Rd→[0, 1] and a distribution P , we use Pw to denote
the weighted by w version of P , i.e., the distribution with pdf Pw(x) = w(x)P (x)/EX∼P [w(X)].
We use µP ,ΣP for the mean and covariance of P . When the vector µ is clear from the context, we use
ΣP to denote the second moment matrix of P centered with respect to µ, i.e., ΣP := EX∼P [(X −
µ)(X−µ)⊤]. We use ∥ · ∥2 for ℓ2 norm of vectors and tr(·) and ∥ · ∥op for trace and operator norm of
matrices, respectively. For a subspace V , we use ΠV to denote the orthogonal projection matrix that
projects to V , use ProjV(x) to denote the orthogonal projection of x onto V , and use V⊥ for the sub-
space orthogonal to V . We use x ≲ y to denote that x ≤ Cy for some absolute constantC. We use the
notation a≫ b to mean that a > Cb where C is some sufficiently large constant. We use polylog() to
denote a quantity that is poly-logarithmic in its arguments and use Õ, Ω̃(), and Θ̃ to hide such factors.

2.1 Goodness Condition

Our algorithm builds on the following (slightly modified) goodness condition from [DKKLMS18]
Definition 2.1 ((ϵ, α, k)-Goodness). We say that a distribution G on Rd is (ϵ, α, k)-good with
respect to µ ∈ Rd, if the following conditions are satisfied:

(1) (Median) For all v ∈ Sd−1, PrX∼G[|v⊤(X − µ)| ≳ ϵ] < 1/2.

(2) For every weight function w with EX∼G[w(X)] ≥ 1− α, the following hold:

(2.a) (Mean) ∥µGw
− µ∥2 ≲ α

√
log(1/α),

(2.b) (Covariance) ∥ΣGw
− Id∥op ≲ α log(1/α),

(2.c) (Concentration along nearly-orthogonal vectors) For any U ∈ Rk×d with tr(U⊤U) = k
and ∥U⊤U∥op ≤ 2k/ log(k/ϵ), the degree-2 polynomial p(x) := ∥U(x − µ)∥22 satisfies
EX∼Gw

[p(X)1(p(x) > 100k)] ≤ ϵ/ log(1/ϵ).

The first condition, (1), states that the median is a good estimate in each direction. The next two
conditions, (2.a) and (2.b), state that the mean and covariance of the inliers change by at most
α
√
log(1/α) and α log(1/α), respectively, when α-fraction of the dataset is deleted; these two

conditions with α = ϵ have been extensively used in the strong contamination model for (sub)-
Gaussian distributions but the resulting algorithms necessarily get stuck at error ϵ

√
log(1/ϵ) error.

Condition (2.c), is crucial in obtaining O(ϵ) error because it provides stronger concentration for
projections along k-dimensional (nearly-orthogonal) projections using Hanson-Wright inequality. In
particular, it implies that at most O(ϵ

k log(1/ϵ))-fraction of inliers have p(x) > 10k. In contrast, using
only Conditions (2.a) and (2.b) would require the threshold to be much larger, p(x) ≳ k log(k/ϵ),
which is insufficient for our application. We show in Appendix B that if G is a set of n ≫
(d+ log(1/δ)) polylog(d/ϵ)/ϵ2 i.i.d. samples from N (µ, I), then G satisfies the goodness condition
mentioned above with probability 1− δ; Prior work [DKKLMS18] had only shown poly(d/ϵ) bound
for the sample complexity.
Remark 2.2. Our proof for the sample complexity directly extends to all distributions satisfying the
following: (i) their linear projections are subgaussian and centrally symmetric with constant density
around the median, and (ii) their quadratic projections satisfy Hanson-Wright inequality. In particular,
this extension is crucial for deriving our results for robust linear regression.

Throughout the algorithm, we will assume that the inliers and the outliers satisfy the following:
Setting 2.3. Let ϵ ∈ (0, ϵ0) for a sufficiently small constant ϵ0, C > 0 be a large enough constant,
P be a uniform distribution on n points of Rd that has the mixture form (1 − ϵ)G + ϵB for some
G that is (ϵ, α, k)-good (cf. Definition 2.1) with respect to µ ∈ Rd, where α = ϵ/ log(1/ϵ) and
k = Θ(log2(d/ϵ)). Let w : Rd → [0, 1] be a weight function with EX∼G[w(X)] ≥ 1− α such that
−CϵI ⪯ ΣPw

− I ⪯ Cϵ log2(1/ϵ)I.

The condition on ΣPw
in Setting 2.3 amounts to a “warm start” for our algorithm, which can be

obtained in nearly-linear time by running the algorithm from [DKPP22] first (see Appendix B).

5

The following result gives a sufficient condition for the (weighted) sample mean using (2.a) and (2.b):

Lemma 2.4 (Certificate Lemma). In Setting 2.3, if ∥ΣPw
∥op≤1 + λ, then ∥µPw

− µ∥2 ≲ ϵ+
√
λϵ.

In light of the certificate lemma, our goal will be to downweigh outliers until the top eigenvalue (in
the subspace of interest) is at most 1 +O(ϵ). That would make the bound above O(ϵ).

We now explain the filtering procedure that we use. A filtering algorithm takes weights w(x) for
each point and scores τ(x) (that capture how much of an outlier the point is) the procedure updates
the weights to w′(x) such that: (i) it removes much more mass from outliers than inliers, and (ii)
ϵEX∼B [w

′(x)τ(x)] (the contribution to the weighted average of scores by the outliers) is small after
filtering. By considering appropriate scores τ(x) that use multi-directional projections of the form of
Condition (2.c) of Definition 2.1, we show the following in Appendix B.
Lemma 2.5 (Multi-Directional Filtering). Consider Setting 2.3. Given a nearly-orthogonal matrix
U ∈ Rk×d satisfying ∥U⊤U∥op ≤ 2 tr(U⊤U)/ log(1/ϵ), there is an algorithm that reads ϵ, the
n points, their weights w(x), and returns weights w′ in time ndk + polylog(d/ϵ, ∥U∥2F) such that

(i) EX∼G[w(X)− w′(X)] < (ϵ/ log(1/ϵ))EX∼B [w(X)− w′(X)].

(ii) ϵEX∼B [w
′(X)∥U(X − µPw

)∥22] ≲ ϵ tr(U⊤U).

2.2 Polynomial Time Algorithm

We now record a (refined) guarantee of the algorithm from [DKKLMS18], which would be useful
later on. This algorithm uses the multi-directional filter from Lemma B.27 with U set to be the top-k
eigenvectors of the covariance matrix until the top-k eigenvalues are 1 +O(ϵ) for k = Θ(log(1/ϵ)).
Lemma 2.4 then guarantees that the empirical mean in the subspace of the (d− k) last eigenvalues
is O(ϵ)-close to µ. Finally, the algorithm employs a brute force procedure that uses median and
(Condition (1)) to estimate the mean in the remaining k-dimensional subspace.
Lemma 2.6 (Adapted From [DKKLMS18]). Let T be a set of n i.i.d. samples from an ϵ-corrupted
version ofN (0, Id) and let r, δ ∈ (0, 1) be parameters. If n≫(d+ log(1/δ))/ϵ2)polylog(d/ϵ), then
there is an algorithm that, when having as input T , ϵ, and r, after time Õ(nd2 + 1

ϵ2+r), it outputs a
vector µ̂ ∈ Rd such that ∥µ̂− µ∥2 ≲ ϵ/r with probability 1− δ.

Since the refined runtime above does not appear in [DKKLMS18], we provide a proof in Appendix B.
In particular, it is important that the runtime is nd2+ 1

ϵ2+r . Even though this is super-linear in the size
of the input, nd, our main algorithm in the next section will apply Lemma 2.6 only after projecting
the entire dataset to a subspace of a much smaller dimension (polylog(d/ϵ) in place of d before).

3 Almost-Linear Time Algorithm for Robust Mean Estimation
In this section, we describe the main ideas of the almost-linear time algorithm for Gaussian robust
mean estimation that achieves Theorem 1.3.

As described earlier, our algorithm runs in two stages, both of which will run in almost-linear time. In
the first stage, our goal is to find a low-dimensional subspace V (of dimension at most polylog(d/ϵ))
and a vector that isO(ϵ) close to µwhen projected in subspace V⊥. In the second stage, we deploy the
basicO(ϵ) algorithm from [DKKLMS18] on the input data after projecting it onto V and estimate µ in
that subspace. By a refined analysis of their argument (Lemma 2.6), the second stage runs fast because
dim(V) = O(polylog(d/ϵ)). By combining these two estimates we get an approximation of µ in the
whole Rd. Since the second stage algorithm’s analysis closely follows [DKKLMS18], in the reminder
we focus on the first stage, below: (the probability of success can be boosted by standard arguments)
Theorem 3.1 (First Stage in Almost-Linear Time). Given a set of n samples, the uniform distribution
on which has the form (1− ϵ)G+ ϵB for some G satisfying Conditions (2.a) to (2.c) of Definition 2.1
with respect to µ ∈ Rd and parameters α = ϵ/ log(1/ϵ) and k = Θ(log2(n+ d)). Algorithm 1 takes
as input the n points and ϵ, and with probability 0.99, returns a vector µ̂ and a subspace V such that
∥ProjV⊥(µ̂−µ)∥2 ≲ ϵ and dim(V)=polylog(d/ϵ). The algorithm runs in timeO(ndpolylog(d/ϵ)).

Theorem 3.1 is realized by Algorithm 1. Without loss of generality, we assume Setting 2.3 holds
at the beginning of the algorithm. Recall the high-level strategy that was outlined in Section 1.2:
We want to iteratively downweigh points and add directions to V so that (i) the weight removed

6

from inliers is at most O(ϵ/ log(1/ϵ)), (ii) the downweighted dataset along every direction in V⊥

has variance at most 1 +O(ϵ), (iii) and dim(V) ≤ polylog(d/ϵ). Having the first two, the certificate
lemma (Lemma 2.4) implies that the empirical (weighted) mean is O(ϵ)-close to µ along V⊥. The
way to achieve (i) and (ii) in [DKKLMS18] was by using the matrix U to be the top-k eigenvectors
of the covariance matrix (also, the algorithm of [DKKLMS18] does not add directions to V until
the very end; see Section 2.2)). As mentioned earlier, this approach runs in quadratic time. Our main
technical insight is to (a) randomize the choice of U when safe to do so, and (b) when it is not safe,
allow the algorithm to remove a direction by adding it to V at any time (as opposed to waiting until
the end). We first describe the notation below for a more detailed overview.

Notation for Algorithm 1. For each round t ∈ [tmax] of our algorithm, we maintain weights
wt : Rd → [0, 1] over the dataset, capturing the confidence in the points being inliers, i.e., w(x) = 0
represents outliers and w(x) = 1 represents inliers. We also maintain a (low-dimensional) subspace
Vt with the goal of making the covariance of the projections of the data on V⊥

t be small at the end. Let
µ⊥
t ,Σ

⊥
t be the sample mean and covariance of the data after projected on V⊥

t and weighted bywt, and
define B⊥

t ≈ Σ⊥
t −ΠV⊥

t
(see Lines 5 to 7 and 4 for precise definitions). We use the potential function

ϕt := tr((M⊥
t)

⊤(M⊥
t)) = ∥M⊥

t ∥2F to track the progress of our algorithm, where M⊥
t = (B⊥

t)
p for

p = log d. Observe that the potential function ϕt ignores the contribution from the directions in Vt.

Algorithm 1 Robust Mean Estimation Under Huber Contamination (Stage 1)
Input: Parameter ϵ ∈ (0, 1/2), uniform distribution over n points that can be written as
P = (1− ϵ)G+ ϵB where G satisfies Definition 2.1 with appropriate parameters.
Output: An approximation of the mean in a subspace V⊥ and the orthogonal subspace V .

1: Let C be a sufficiently large constant, k = C log2(n+ d), tmax = (log(d/ϵ))C .
2: Initialize V1 ← ∅ and w1(x) = 1 for all x ∈ Rd.
3: for t = 1, . . . , tmax do
4: Let Vt be the subspace spanned by the vectors in Vt, and V⊥

t be the perpendicular subspace.
5: Let Pt be the distribution P re-weighted by wt, i.e., Pt(x) = wt(x)P (x)/EX∼P [w(X)].
6: Let µ⊥

t ,Σ
⊥
t be the mean and covariance of ProjVt

(X) when X ∼ Pt
7: Define B⊥

t = (EX∼P [w(X)])2Σ⊥
t − (1− C1ϵ)ΠV⊥

t
, where ΠV⊥

t
is the orthogonal projec-

tion matrix for V⊥
t , and M⊥

t := (B⊥
t)

p for p = log(d).
8: Calculate λ̂t such that λ̂t/∥B⊥

t ∥op ∈ [0.1/10] using power iteration. ▷ cf. Appendix B
9: If λ̂t ≤ Cϵ then return µt and Vt.

10: Let qt := Prz,z′∼N (0,I)[|⟨M⊥
t z,M

⊥
t z

′⟩| > ∥M⊥
t z∥2∥M⊥

t z
′∥2/k2].

11: Calculate an estimate q̂t such that |q̂t − qt| ≤ 1
10(k2tmax)

.
12: if q̂t ≤ 1/(k2tmax) then ▷ Case 1 (cf. Section 3.1)
13: for j ∈ [k] do
14: vt,j ←M⊥

t zt,j for zt,j ∼ N (0, I).
15: Ut ← [vt,1, . . . , vt,k]

⊤ i.e., the matrix with rows vt,j for j ∈ [k].
16: wt+1 ← MULTI-DIRECTIONALFILTER(P,w, ϵ,Ut) ▷ cf. Lemma B.27
17: else ▷ Case 2 (cf. Section 3.2)
18: ut ← (B⊥

t)
p′z/∥(B⊥

t)
p′z∥2 for p′ := C log2(dtmax),z ∼ N (0, I). ▷ Power iteration

19: Vt+1 ← Vt ∪ {ut}.
20: Let µVt = EX∼Pt [ProjVt

(X)] be the mean of Pt after projection to Vt.
21: return µVt and Vt.

We will show that in every iteration, the potential function decreases multiplicatively, i.e.,
ϕt+1 ≤ (1− polylog(ϵ/d))ϕt while removing at most O(ϵ/ log(1/ϵ)) fraction of inliers throughout
the algorithm (so that we do not fall outside of Setting 2.3). Since ϕt at t = 0 is at most poly((d/ϵ)p)
and the algorithm necessarily terminates when it reaches below ϵp (because this implies that
∥B⊥

t ∥op ≤ (ϕt)
1/p = O(ϵ) which would cause Line 9 to activate), then after tmax = polylog(d/ϵ)

iterations the algorithm yields a µPw
such that ∥ProjV⊥(µPw

− µ)∥2 = O(ϵ) by Lemma 2.4. Since
each iteration is implementable in Õ(nd) time, the whole algorithm terminates in Õ(nd) time.

7

In the next two subsections, we explain how the algorithm decides whether to expand the subspace Vt
or to remove outliers. This decision is based on Line 12, which checks if two random M⊥

t z,M
⊥
t z

′

for z, z′ ∼ N (0, I) are nearly-orthogonal with reasonable probability.

3.1 Case 1: Many Large Eigenvalues

By construction, “Case 1” corresponds to the case where the rows of Ut are nearly-orthogonal
(with high probability); see Line 12. Thus, Ut will be nearly-orthogonal, permitting the use of the
multi-directional filtering algorithm from Lemma B.27.

The explanation above ensures that the multi-directional filtering procedure with random vi’s is correct.
The reason that it is significantly faster than [DKKLMS18] is that the vi’s are now randomized along
the top eigenvalues of B⊥

t because they are of the form Mtz/∥Mtz∥; In contrast, [DKKLMS18]
sets vi’s deterministically equal to the top-k eigenvalues of B⊥

t . As outlined in the introduction, the
random choice of vi’s prevents the “adversary” to place the outliers in such a way that the outliers
in the orthogonal subspace are unaffected during filtering. In particular, filtering with the random
vi’s reduces the contribution of outliers, not only along the exact top-k eigenvectors of B⊥

t , but also
along all directions with variance comparable to the top eigenvector. We use the technical insights
from [DKPP22] to show that the potential function decreases multiplicatively:
Claim 3.2. With high constant probability, for every round t that Line 12 succeeds, ϕt+1 ≤ 0.99ϕt.
Moreover, EX∼G[wt(X)] ≥ 1− ϵ/ log(1/ϵ) throughout the algorithm’s execution.

Proof Sketch. We first sketch how Ut is valid for the multi-directional filter, Lemma B.27. Since the
check of Line 12 succeeds, with high probability, we have that for each t ∈ [tmax] rounds, the angles
of every pair of rows of Ut formed in line 15 have cosine at most 1/k2. Also, Hanson-Wright inequal-
ity implies that with high probability, ∥vt,j∥22 ≲ tr(U⊤

t Ut) log(k). Combining both of these with
Gershgorin Discs Theorem and the choice of k, we have that ∥U⊤

t Ut∥op ≤ 2tr(U⊤
t Ut)/ log(1/ϵ),

satisfying the requirements in Lemma B.27 and ensuring EX∼G[wt+1(X)] ≥ 1− ϵ/ log(1/ϵ).
To show that ϕt+1 reduces, we first use the following linear-algebraic result to relate ϕt+1 with

tr(M⊥
t B

⊥
t+1M

⊥
t) from [DKPP22]: ϕt+1 = tr((M⊥

t+1)
2) ≤ d1/2p

(
tr(M⊥

t B
⊥
t+1M

⊥
t)
) 2p

2p+1 . By
the definition of B⊥

t , we have tr(M⊥
t B

⊥
t+1M

⊥
t) ≈ EPt+1

[∥M⊥
t (x− µ)∥22 − tr((M⊥

t)
2)]. To upper

bound this, we will use the guarantees of the multi-dimensional filter along with the goodness condi-
tions and the fact that ∥M⊥

t (x− µ)∥22 ≈ ∥Ut(x− µ)∥22 (since Ut is a Johnson-Lindenstrauss sketch
of M⊥

t with k ≳ log(n); see Appendix B) as follows: we show in the appendix that the contribution
from inliers is small by Definition 2.1 and the contribution from outliers, ϵEBt+1 [∥Ut(x − µ)∥22,
is controlled by Lemma B.27. Combining the two aforementioned arguments with some algebraic
manipulations we can formally show that:

Lemma 3.3 (Filtering Implication). After the filtering, tr(M⊥
t B

⊥
t+1M

⊥
t) ≤ 0.1∥B⊥

t ∥optr((M⊥
t)

2).
Combining Lemma C.4 with ϕt+1 ≤ d1/2p

(
tr(M⊥

t B
⊥
t+1M

⊥
t)
) 2p

2p+1 from earlier, and noting that
d1/2p = d1/2 log d ≤ 3 and ∥B⊥

t ∥2pop ≤ tr((M⊥
t)

2) = ϕt, we have ϕt+1 ≤ 0.99ϕt, as desired.

3.2 Case 2: A Few Large Eigenvalues

Consider now the alternate case where qt from Line 10 is large. Then the approach from the previous
case is inapplicable because M⊥

t z’s will be highly correlated vectors. The following result formally
proves that this happens only when the top eigenvalue of M⊥

t contributes significantly to its spectrum.

Claim 3.4. If Prz,z′∼N (0,I)

[|⟨M⊥
t z,M

⊥
t z

′⟩|
∥M⊥

t z∥2∥M⊥
t z

′∥2
> γ

]
≥ α, then

∥M⊥
t ∥2

op

tr((M⊥
t)2)

≥ poly(α, γ).

Proof Sketch. Let qt be the probability from the statement. Pretend for simplicity that ∥M⊥
t z∥22

is equal to its expectation tr((M⊥
t)

2). Applying Markov’s inequality, we see that α < qt ≤
γ−2 E[⟨M⊥

t z,M
⊥
t z

′⟩2]/tr((M⊥
t)

2) = γ−2∥(M⊥
t)

2∥2F/tr((M⊥
t)

2). Further using the standard fact
that ∥A∥2F ≤ tr(A)∥A∥op for a psd matrix A applied to M⊥

t completes the proof.

Since α, γ are polylog(d/ϵ) in our setting (Line 12), Claim 3.4 reveals that the top eigenvalue of
(M⊥

t)
2 is at least ϕt/polylog(d/ϵ). Thus, our algorithm can take a top eigenvector u of M⊥

t and add it

8

to the subspace of directions to ignore, Vt, i.e., project all data on the subspace perpendicular to u in the
future iterations. Formally, we show that the potential decreases if u has large projection along M⊥

t :

Claim 3.5. Let Vt+1 = Vt ∪ {u} for some unit vector u ∈ V ⊥
t , then ϕt+1 ≤ ϕt − u⊤(M⊥

t)
2u.

Proof Sketch. Going from step t to step (t+ 1), the effect of adding u in the subspace Vt+1 is that
B⊥
t+1 = ∆B⊥

t ∆ for the projection matrix ∆ = I− uu⊤. Then by properties of the trace operator
and Lieb-Thirring inequality: ϕt+1 = tr((B⊥

t+1)
2p) = tr((∆B⊥

t ∆)2p) = tr((B⊥
t ∆)2p) ≤

tr((B⊥
t)

2p∆2p) = tr((B⊥
t)

2p∆) = tr((B⊥
t)

2p)− u⊤(B⊥
t)

2pu = ϕt − u⊤(M⊥
t)

2u.

Claims 3.4 and 3.5 imply that if we use u equal to the top eigenvector of M⊥
t , then our proof will

be completed. However, the algorithm cannot compute exact eigenvectors in almost-linear time.
Fortunately, power iteration in Line 20 computes a fine enough approximation such that u⊤(M⊥

t)
2u

is a constant fraction of ∥M⊥
t ∥2op. Thus, we obtain ϕt+1 ≤ (1− 1/polylog(d/ϵ))ϕt as desired.

4 Robust Linear Regression: Optimal Error In Almost-Linear Time

In this section, we focus our attention to linear regression in Huber contamination model and sketch
the proof of Theorem 1.4. Recall that each inlier sample (X, y) is distributed according to the
Gaussian linear regression model of Definition 1.2.

Algorithm 2 Robust Linear Regression Under Huber Contamination

Input: ϵ > 0, multiset S of Rd+1 containing pairs of the form (x, y) with x ∈ Rd, y ∈ R.
Output: A vector in Rd.

1: Set σ̂2
y ← TRIMMEDMEAN({y : (x, y)∈S}). ▷ σ̂2

y = σ2
y(1±O(ϵ log(1/ϵ)))

2: Draw a ∈ R uniformly at random from [−σ̂y, σ̂y].
3: Define the interval I := [a− ℓ, a+ ℓ] for ℓ := σ̂y/ log(1/ϵ). ▷ Random choice of I
4: S′ ← {x : (x, y) ∈ S, y ∈ I}. ▷ Simulating GI
5: β̂I ← ROBUSTMEAN(S′, 10ϵ) ▷ Algorithm from Theorem 1.3

6: return ̂
β = (σ̂2

y/a)β̂I . ▷ Rescaling

Our main technical insight is a novel reduction to robust mean estimation. Existing reductions in the
literature (see, e.g., [BDLS17]) rely on the fact that E[yX] = E[XX⊤β+Xz] = β. However, it is un-
clear how to estimate the mean of yX up to errorO(ϵ) under Huber contamination because yX is very
far from Gaussian; e.g., yX is subexponential as opposed to (sub)-Gaussian, and it is not even symmet-
ric around β, implying median might not even work along a direction. Thus, existing approaches using
this methodology have error Ω(σϵ log(1/ϵ)). In contrast, our reduction reduces to robust (almost)-
Gaussian mean estimation by using the conditional distribution ofX given y = a under Definition 1.2.
Claim 4.1 (Conditional Distribution). Let (X, y) ∈ Rd+1 follow Definition 1.2. Given a ∈ R,
denote by Ga the distribution of X given y = a. Similarly, given an interval I ⊂ R, let GI
represent the conditional distribution of X given y ∈ I . Define σ2

y := σ2 + ∥β∥22. Then, Ga =

N
(
a
σ2
y
β, Id− 1

σ2
y
ββ⊤) andGI = 1

Pr[y∈I]
∫
I
ϕ(a′; 0, σ2

y)N
(
a′

σ2
y
β, Id− 1

σ2
y
ββ⊤)da′, where ϕ(z; 0, ν2)

denotes the pdf of the N (0, ν2) at z ∈ R.

Since the conditional distribution Ga above is just a Gaussian whose mean is scaled version of β
(and roughly isotropic covariance), one would ideally like to get (O(ϵ)-corrupted) samples from Ga,
then use the robust mean estimator from Theorem 1.3, and finally scale the result back appropriately.

Obviously, it is impossible to simulate Ga using G since there is zero probability over the inliers
that y is exactly equal to a in our dataset. Instead, we can simulate the conditional distribution given
y ∈ I for some interval I centered around a. The length ℓ of I needs to be carefully selected. On the
one hand, I should be sufficiently narrow to ensure that the mean of GI closely approximates the
mean of Ga. On the other hand, it should not be excessively narrow to avoid rejecting a significant
portion of our samples. As we show later, an interval of length Θ(σ/ log(1/ϵ)) meets both of these
criteria as long as ∥β∥2 ≲ σϵ log(1/ϵ). Also, a set of i.i.d. samples from GI for such a small interval
satisfy the goodness condition with the correct parameters because GI will be roughly isotropic.

9

Finally, it is critical to ensure that the fraction of outliers in the simulated samples from Ga remains
O(ϵ). In fact, this may not be true depending on the choice of the interval I . For example, if the
adversary knows I , then outliers could all happen to have their labels inside I , which would cause
the contamination rate to blow up. To overcome this, we randomize the selection of I: Since the
distributions of outliers is independent of I , choosing the center of I to be random means that the bad
event of the previous sentence is now a small probability event.

4.1 Proof Sketch of Theorem 1.4

The algorithm is given in Algorithm 2. We now give the proof sketch of Theorem 1.4: We claim
that the following three events hold simultaneously with probability at least 0.9 (β̂0, β̂1 and σ̂2

y are
defined in Algorithm 2):

(i) |σ̂2
y − σ2

y| ≲ σ2
yϵ log(1/ϵ) (ii) |a| > 0.0001σ̂y (iii) ∥β̂I − µGI

∥2 ≲ ϵ. (1)

Given the above, we first show that β̂ is O(σϵ)-close to β. For simplicity, let us assume momentarily

that σ̂2
y = σ2

y . Then by triangle inequality ∥β̂ − β∥2 ≤
σ2
y

|a| (∥β̂I − µGI
∥2 + ∥µGI

− a
σ2
y
β∥2) ≲

σyϵ+ σy∥µGI
− a

σ2
y
β∥2. The second term arises from the fact that we use GI instead of Ga in the

algorithm (since simulating samples from Ga is algorithmically impossible). Using the expression
for GI from Claim 4.1, we can upper bound this term by σy∥µGI

− a
σ2
y
β∥2 ≤ ℓ∥β∥2

σy
. Since

∥β∥2 ≲ σϵ log(1/ϵ) and ℓ := σy/ log(1/ϵ), this expression is overall O(σϵ).

Now, we show why the events in (1) above hold. The first is simply the guarantee of the trimmed mean
on a subexponential distribution (cf. Appendix B) and the second holds because a ∼ U([−σ̂y, σ̂y]).
The third is significantly more involved. We first claim that Line 4 approximately preserves (within
log factors) the size of the dataset and maintains the ratio of inliers to outliers (within constants).
Recall that we use G for the inlier distribution and B for the distribution of outliers.

Lemma 4.2. Consider the context of Theorem 1.4 and Algorithm 2. First, for every possible choice of
I that can be made in Line 3, Pr(X,y)∼G[y ∈ I] ≳ ℓ/σy . Second, EI

[
Pr(X,y)∼B [y ∈ I|I]

]
≲ ℓ/σy ,

where the outer expectation is taken with respect to the random choice of the center of I .

Proof Sketch. For inliers, y ∼ N (0, σ2
y) and thus the fraction of inliers in S that belong to S′ is at

least Ω(ℓ/σy) since I ⊂ [−2σy, 2σy] with length ℓ. For outliers, we may assume without loss of
generality that y ∈ [−σy−ℓ, σy+ℓ] always (since otherwise y ̸∈ I). Since I is independent of (X, y),
we may treat (X, y) as fixed and only I as random. Thus, the probability of y ∈ I is at most the ratio
of the length of I to the length of [−σy − ℓ, σy + ℓ], which is at most O(ℓ/σy) as claimed.

Observe that the set S′ = {(x, y) : (x, y) ∈ S, y ∈ I} in Line 4 consists of i.i.d. points from
(1− ϵI)GI + ϵIBI , where GI is the conditional distribution from Claim 4.1, BI is the conditional
distribution of the outliers, and ϵI :=

ϵPr(X,y)∼B [y∈I]
(1−ϵ) Pr(X,y)∼D [y∈I]+ϵPr(X,y)∼B [y∈I] ≤

ϵPr(X,y)∼B [y∈I]
(1−ϵ) Pr(X,y)∼D [y∈I] .

By Lemma 4.2, EI [ϵI] = O(ϵ) and thus by Markov’s inequality, with high constant probability we
will have that ϵI = O(ϵ). Finally, it remains to show that S′ satisfies the goodness conditions as
dictated by Theorem 1.3. This requires technical effort and is deferred to Appendix D.2.

5 Discussion

In this paper, we provided fast algorithms for mean estimation and linear regression that achieve
optimal error under Huber contamination model for isotropic Gaussian inlier distributions. Several
open problems and avenues for improvement remain. First, the sample complexity of our linear
regression algorithm is multiplicative in log(1/δ), where δ is the failure probability, as opposed
to additive in the information-theoretic sample complexity [CGR16]. More broadly, it is an
open problem to design algorithms that achieve similar optimal guarantees for other fundamental
tasks: robust principal component analysis, sparse mean estimation, and covariance estimation. In
particular, the best known algorithm for the covariance estimation (or mean estimation with unknown
covariance) achieving the optimal error runs in quasi-polynomial time [DKKLMS18].

10

Acknowledgments

Ilias Diakonikolas is supported by NSF Medium Award CCF-2107079, NSF Award CCF-1652862
(CAREER), and a DARPA Learning with Less Labels (LwLL) grant. Daniel Kane is supported by
NSF Medium Award CCF-2107547 and NSF Award CCF-1553288 (CAREER). Ankit Pensia was
supported by NSF Awards CCF-1652862, and CCF-1841190, and CCF-2011255; The majority of
this work was done while Ankit Pensia was at UW–Madison. Thanasis Pittas is supported by NSF
Medium Award CCF-2107079 and NSF Award DMS-2023239 (TRIPODS

References
[ABHHRT72] D. F. Andrews, P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, and J. W.

Tukey. Robust Estimates of Location: Survey and Advances. Princeton, NJ, USA:
Princeton University Press, 1972.

[BBHLT20] M. Brennan, G. Bresler, S. B. Hopkins, J. Li, and T.Schramm. “Statistical Query Al-
gorithms and Low-Degree Tests Are Almost Equivalent”. In: CoRR abs/2009.06107
(2020).

[BDLS17] S. Balakrishnan, S. S. Du, J. Li, and A. Singh. “Computationally Efficient Robust
Sparse Estimation in High Dimensions”. In: Proc. 30th Annual Conference on
Learning Theory (COLT). Vol. 65. 2017, pp. 1–44.

[Ber18] D. S. Bernstein. Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formu-
las. Revised and expanded edition. Princeton: Princeton University Press, 2018.

[Bha13] R. Bhatia. Matrix analysis. Vol. 169. Springer Science & Business Media, 2013.
[BLM13] S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: A Nonasymp-

totic Theory of Independence. Oxford University Press, 2013.
[BP21] A. Bakshi and A. Prasad. “Robust Linear Regression: Optimal Rates in Polynomial

Time”. In: Proc. 53rd Annual ACM Symposium on Theory of Computing (STOC).
ACM Press, 2021, pp. 102–115.

[CATJFB20] Y. Cherapanamjeri, E. Aras, N. Tripuraneni, M. I. Jordan, N. Flammarion, and
P. L. Bartlett. “Optimal Robust Linear Regression in Nearly Linear Time”. In:
abs/2007.08137 (2020).

[CDG19] Y. Cheng, I. Diakonikolas, and R. Ge. “High-Dimensional Robust Mean Estimation
in Nearly-Linear Time”. In: Proc. 30th Annual Symposium on Discrete Algorithms
(SODA). SIAM, 2019, pp. 2755–2771.

[CDGS20] Y. Cheng, I. Diakonikolas, R. Ge, and M. Soltanolkotabi. “High-Dimensional Robust
Mean Estimation via Gradient Descent”. In: Proc. 37th International Conference
on Machine Learning (ICML). 2020.

[CDGW19] Y. Cheng, I. Diakonikolas, R. Ge, and D. P. Woodruff. “Faster Algorithms for High-
Dimensional Robust Covariance Estimation”. In: Proc. 32nd Annual Conference on
Learning Theory (COLT). 2019.

[CDKGGS22] Y. Cheng, I. Diakonikolas, D. M. Kane, R. Ge, S. Gupta, and M. Soltanolkotabi.
“Outlier-Robust Sparse Estimation via Non-Convex Optimization”. In: Advances in
Neural Information Processing Systems 35 (NeurIPS). 2022.

[CFB19] Y. Cherapanamjeri, N. Flammarion, and P. L. Bartlett. “Fast Mean Estimation
with Sub-Gaussian Rates”. In: Proc. 32nd Annual Conference on Learning Theory
(COLT). 2019.

[CGR16] M. Chen, C. Gao, and Z. Ren. “A General Decision Theory for Huber’s ϵ-
Contamination Model”. In: Electronic Journal of Statistics 10.2 (2016), pp. 3752–
3774.

[CGR18] M. Chen, C. Gao, and Z. Ren. “Robust Covariance and Scatter Matrix Estima-
tion under Huber’s Contamination Model”. In: The Annals of Statistics 46 (2018),
pp. 1932–1960.

[CMY20] Y. Cherapanamjeri, S. Mohanty, and M. Yau. “List decodable mean estimation in
nearly linear time”. In: Proc. 61st IEEE Symposium on Foundations of Computer
Science (FOCS). 2020.

11

[CTBJ22] Y. Cherapanamjeri, N. Tripuraneni, P. L. Bartlett, and M. I. Jordan. “Optimal Mean
Estimation without a Variance”. In: Proc. 35th Annual Conference on Learning
Theory (COLT). 2022.

[Dep20] J. Depersin. “A Spectral Algorithm for Robust Regression with Subgaussian Rates”.
In: CoRR abs/2007.06072 (2020).

[DHL19] Y. Dong, S. B. Hopkins, and J. Li. “Quantum Entropy Scoring for Fast Robust Mean
Estimation and Improved Outlier Detection”. In: Advances in Neural Information
Processing Systems 32 (NeurIPS). 2019.

[DK19] I. Diakonikolas and D. M. Kane. “Recent Advances in Algorithmic High-
Dimensional Robust Statistics”. In: CoRR abs/1911.05911 (2019).

[DK23] I. Diakonikolas and D. M. Kane. Algorithmic High-Dimensional Robust Statistics.
https://sites.google.com/view/ars-book/. Cambridge University Press,
2023.

[DKKLMS16] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. “Robust
Estimators in High Dimensions without the Computational Intractability”. In: Proc.
57th IEEE Symposium on Foundations of Computer Science (FOCS). 2016, pp. 655–
664.

[DKKLMS17] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. “Be-
ing Robust (in High Dimensions) Can Be Practical”. In: Proceedings of the 34th
International Conference on Machine Learning, ICML 2017. 2017, pp. 999–1008.

[DKKLMS18] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. “Robustly
Learning a Gaussian: Getting Optimal Error, Efficiently”. In: Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018.
Full version available at https://arxiv.org/abs/1704.03866. 2018, pp. 2683–2702.

[DKKLSS19] I. Diakonikolas, G. Kamath, D. Kane, J. Li, J. Steinhardt, and A. Stewart. “Sever: A
Robust Meta-Algorithm for Stochastic Optimization”. In: Proceedings of the 36th
International Conference on Machine Learning, ICML 2019. 2019, pp. 1596–1606.

[DKKLT21] I. Diakonikolas, D. M. Kane, D. Kongsgaard, J. Li, and K. Tian. “List-decodable
mean estimation in nearly-pca time”. In: Advances in Neural Information Processing
Systems 34 (NeurIPS). Vol. 34. 2021.

[DKKLT22] I. Diakonikolas, D. M. Kane, D. Kongsgaard, J. Li, and K. Tian. “Clustering Mixture
Models in Almost-Linear Time via List-Decodable Mean Estimation”. In: Proc.
54th Annual ACM Symposium on Theory of Computing (STOC). 2022.

[DKKPP22] I. Diakonikolas, D. M. Kane, S. Karmalkar, A. Pensia, and T. Pittas. “Robust
Sparse Mean Estimation via Sum of Squares”. In: Proc. 35th Annual Conference on
Learning Theory (COLT). 2022.

[DKKPS19] I. Diakonikolas, D. M. Kane, S. Karmalkar, E. Price, and A. Stewart. “Outlier-
Robust High-Dimensional Sparse Estimation via Iterative Filtering”. In: Advances
in Neural Information Processing Systems 32 (NeurIPS). 2019.

[DKLP22] I. Diakonikolas, D. M. Kane, J. C. H. Lee, and A. Pensia. “Outlier-Robust Sparse
Mean Estimation for Heavy-Tailed Distributions”. In: Advances in Neural Informa-
tion Processing Systems 35 (NeurIPS). 2022.

[DKP20] I. Diakonikolas, D. M. Kane, and A. Pensia. “Outlier Robust Mean Estimation with
Subgaussian Rates via Stability”. In: Advances in Neural Information Processing
Systems 33 (NeurIPS). 2020.

[DKPP22] I. Diakonikolas, D. M. Kane, A. Pensia, and T. Pittas. “Streaming algorithms
for high-dimensional robust statistics”. In: International Conference on Machine
Learning. PMLR. 2022, pp. 5061–5117.

[DKPP23] I. Diakonikolas, D. M. Kane, A. Pensia, and T. Pittas. “Nearly-Linear Time and
Streaming Algorithms for Outlier-Robust PCA”. In: Proc. 40th International Con-
ference on Machine Learning (ICML). 2023.

[DKS17] I. Diakonikolas, D. M. Kane, and A. Stewart. “Statistical Query Lower Bounds for
Robust Estimation of High-Dimensional Gaussians and Gaussian Mixtures”. In:
58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017.
Full version at http://arxiv.org/abs/1611.03473. 2017, pp. 73–84.

12

https://sites.google.com/view/ars-book/

[DKS19] I. Diakonikolas, W. Kong, and A. Stewart. “Efficient Algorithms and Lower Bounds
for Robust Linear Regression”. In: Proc. 30th Annual Symposium on Discrete
Algorithms (SODA). 2019.

[DL22] J. Depersin and G. Lecué. “Robust Sub-Gaussian Estimation of a Mean Vector in
Nearly Linear Time”. In: The Annals of Statistics 50.1 (Feb. 2022), pp. 511–536.

[DM22] A. S. Dalalyan and A. Minasyan. “All-In-One Robust Estimator of the Gaussian
Mean”. In: The Annals of Statistics 50 (2022).

[HLZ20] S. B. Hopkins, J. Li, and F. Zhang. “Robust and Heavy-Tailed Mean Estimation
Made Simple, via Regret Minimization”. In: Advances in Neural Information Pro-
cessing Systems 33 (NeurIPS). 2020.

[HR09] P. J. Huber and E. M. Ronchetti. Robust Statistics. John Wiley & Sons, 2009.
[HR21] L. Hu and O. Reingold. “Robust Mean Estimation on Highly Incomplete Data

with Arbitrary Outliers”. In: Proc. 24th International Conference on Artificial
Intelligence and Statistics (AISTATS). 2021.

[Hub64] P. J. Huber. “Robust Estimation of a Location Parameter”. In: The Annals of Mathe-
matical Statistics 35.1 (Mar. 1964), pp. 73–101.

[JLT20] A. Jambulapati, J. Li, and K. Tian. “Robust sub-gaussian principal compo-
nent analysis and width-independent schatten packing”. In: Advances in Neu-
ral Information Processing Systems 33 (NeurIPS) (2020). arxiv preprint at
https://arxiv.org/abs/2006.06980.

[KKM18] A. Klivans, P. K. Kothari, and R. Meka. “Efficient Algorithms for Outlier-Robust
Regression”. In: Proc. 31st Annual Conference on Learning Theory (COLT). 2018.

[KSKO20] W. Kong, R. Somani, S. Kakade, and S. Oh. “Robust Meta-learning for Mixed Linear
Regression with Small Batches”. In: Advances in Neural Information Processing
Systems 33 (NeurIPS). 2020.

[KSS18] P. K. Kothari, J. Steinhardt, and D. Steurer. “Robust Moment Estimation and
Improved Clustering via Sum of Squares”. In: Proc. 50th Annual ACM Symposium
on Theory of Computing (STOC). ACM Press, 2018, pp. 1035–1046.

[LLVZ20] Z. Lei, K. Luh, P. Venkat, and F. Zhang. “A Fast Spectral Algorithm for Mean Esti-
mation with Sub-Gaussian Rates”. In: Proc. 33rd Annual Conference on Learning
Theory (COLT). 2020.

[LM21] G. Lugosi and S. Mendelson. “Robust Multivariate Mean Estimation: The Optimality
of Trimmed Mean”. In: The Annals of Statistics 49.1 (2021), pp. 393–410.

[LRV16] K. A. Lai, A. B. Rao, and S. Vempala. “Agnostic Estimation of Mean and Covari-
ance”. In: Proceedings of FOCS’16. 2016.

[LY20] J. Li and G. Ye. “Robust Gaussian Covariance Estimation in Nearly-Matrix Multipli-
cation Time”. In: Advances in Neural Information Processing Systems 33 (NeurIPS).
2020.

[MM15] C. Musco and C. Musco. “Randomized block krylov methods for stronger and faster
approximate singular value decomposition”. In: Advances in neural information
processing systems 28 (2015).

[PBR19] A. Prasad, S. Balakrishnan, and P. Ravikumar. “A Unified Approach to Robust
Mean Estimation”. In: CoRR abs/1907.00927 (July 2019).

[PJL20] A. Pensia, V. Jog, and P. Loh. “Robust Regression with Covariate Filtering: Heavy
Tails and Adversarial Contamination”. In: CoRR abs/2009.12976 (Sept. 2020).

[Tuk60] J. W. Tukey. “A survey of sampling from contaminated distributions”. In: Contribu-
tions to probability and statistics 2 (1960), pp. 448–485.

[Ver18] R. Vershynin. High-Dimensional Probability: An Introduction with Applications in
Data Science. Cambridge University Press, 2018.

[Wai19] M. J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cam-
bridge University Press, 2019.

[XCM13] H. Xu, C. Caramanis, and S. Mannor. “Outlier-Robust PCA: The High-Dimensional
Case”. In: IEEE Transactions on Information Theory 59.1 (2013), pp. 546–572.

[ZJS22] B. Zhu, J. Jiao, and J. Steinhardt. “Robust Estimation via Generalized Quasi-
Gradients”. In: Information and Inference: A Journal of the IMA 11.2 (2022),
pp. 581–636.

13

Appendix

Table of Contents

A Additional Related Work 14

B Additional Preliminaries 15

B.1 Linear Algebraic Facts . 15

B.2 Concentration of Measure Facts . 15

B.3 Existing Robust Algorithms: Trimmed Mean and [DKPP22] 16

B.4 Goodness Condition and Its Sample Complexity 17

B.5 Filtering Procedure . 22

B.6 Algorithm from [DKKLMS18] . 23

C Omitted Proofs from Section 3 25

C.1 Deterministic Conditions for Algorithm 1 . 26

C.2 Case 1 . 26

C.3 Case 2 . 28

C.4 Combining Everything Together . 31

D Omitted Proofs from Section 4 32

D.1 Conditional Distribution of Covariates . 32

D.2 Robustness of Goodness Conditions to Spectral Noise 33

D.3 Proof of Theorem 1.4 . 34

E Adaptation of Algorithm 1 to the Streaming Setting 36

A Additional Related Work

A systematic study of robust statistics was initiated in the 1960s ([Tuk60; Hub64; ABHHRT72]). We
refer the reader to the book [HR09] for a classical treatment of this topic. The theoretical investigation
in these studies often focused on the asymptotics of sample size going to infinity. A non-asymptotic
analysis of the sample complexity can be found in, for example, [CGR18; CGR16; LM21].

Algorithmic high-dimensional robust statistics has been an active area of research since the publication
of [DKKLMS16; LRV16]. Various high-dimensional inference tasks have been investigated in the
literature: (i) Unsupervised learning tasks include mean estimation [DKKLMS16; LRV16; KSS18;
CFB19; DKP20; HLZ20; CTBJ22; HR21], sparse estimation [BDLS17; DKKPP22; DKLP22;
DKKPS19], covariance estimation [CDGW19; LY20], and PCA [XCM13; KSKO20; JLT20], and (ii)
Supervised learning tasks include linear regression [DKS19; KKM18; CATJFB20; PJL20; Dep20;
BP21], and general stochastic optimization tasks [PBR19; DKKLSS19].

Within algorithmic robust statistics, our work is related to a line of work that develops novel
algorithmic approaches to robust inference. For example, approaches based on gradient-descent
and matrix multiplicative weights update [CDGS20; ZJS22; HLZ20; CDKGGS22]. In particular,
several recent works have developed fast algorithms, often nearly linear time as opposed to simply
polynomial time algorithms, for robust inference [CDG19; CDGW19; LY20; ZJS22; CDKGGS22;
DHL19; CMY20; DKKLT21; DKKLT22].

14

B Additional Preliminaries

In this section, we state the results that will be used in the proofs later. Appendices B.1 and B.2
contain facts pertaining to linear algebra and concentration of measure, respectively. Appendix B.3
records some results from both folklore and prior works in robust statistics that are needed in this
paper. Appendix B.4 focuses on the goodness condition and proves the samples complexity and
key properties of good sets. Appendix B.5 formally states the guarantee of the multi-directional
filtering procedure. Finally, Appendix B.6 presents the improved runtime guarantee of the algorithm
in [DKKLMS18].

B.1 Linear Algebraic Facts

Fact B.1. Let A be a PSD matrix. Then for any unit vector x and m ≥ 1, x⊤Amx ≥ (x⊤Ax)m.

Fact B.2. If A ∈ Rd×d is symmetric and p ≥ 1, the Schatten norms of A satisfy the following:
∥A∥p+1 ≤ ∥A∥p ≤ ∥A∥p+1d

1
p(p+1) .

In the following we let C denote the set of complex numbers, though throughout the paper we will
only work with real matrices.

Definition B.3 (Gershgorin Discs). For any complex n × n matrix A, for i ∈ [n], let R′
i(A) =∑

j ̸=i |aij | and let G(A) =
⋃n
i=1{z ∈ C : |z − aii| ≤ R′

i(A)}. Each disc {z ∈ C : |z − aii| ≤
R′
i(A)} is called Gershgorin disc and their union G(A) is called the Gershgorin domain.

Fact B.4 (Gershgorin’s Disc Theorem). For any complex n× n matrix A, all the eigenvalues of A
belong to the Gershgorin domain G(A).

Fact B.5. If A,B,C are symmetric d×d matrices with A ⪰ 0 and B ⪯ C then tr(AB) ≤ tr(AC).

The following two linear algebra results follow from the Lieb-Thirring inequality.

Fact B.6 (Lemma 7 in [JLT20]). Let A,B be positive semidefinite matrices with B ⪯ A and p ∈ N.
Then, tr (Bp) ≤ tr

(
Ap−1B

)
.

Fact B.7 (Lieb-Thirring Inequality; see, e.g., Problem IX.8.1 in [Bha13]). Let A,B be positive
semidefinite matrices. For all k ∈ N, tr((AB)k) ≤ tr(AkBk).

Fact B.8. Let A be a PSD matrix. Then, ∥A∥F ≤
√
∥A∥op∥A∥1. In particular, if ∥A∥op ≤ ∥A∥1/t,

then ∥A∥2F ≤ ∥A∥21/t.
Fact B.9 (See, e.g., [Ber18, Proposition 11.10.34]). Let R and M be two square matrices, then
∥RM∥F ≤ min ((∥R∥F∥M∥op , ∥R∥op∥M∥F) and ∥RM∥op ≤ ∥R∥op∥M∥op.

B.2 Concentration of Measure Facts

Fact B.10 (Power iteration). For any positive semidefinite matrix A ∈ Rd×d and η, δ ∈ (0, 1), if
p > C

η log(d/(ηδ)) for a sufficiently large constant C, and u := Apz for z ∼ N (0, I), then

Pr
[
u⊤Au/∥u∥22 ≥ (1− η)∥A∥op

]
≥ 1− δ .

Definition B.11 (Sub-Gaussian and Sub-exponential Random Variables). A one-dimensional random
variable Y is sub-Gaussian if ∥Y ∥ψ2

:= supp≥1 p
−1/2 E [|Y |p] is finite. We say that ∥Y ∥ψ2

is
the sub-Gaussian norm of Y . A random vector X in Rd is sub-Gaussian if for every v ∈ Sd−1,∥∥v⊤X∥∥

ψ2
is finite. The sub-Gaussian norm of the vector is defined to be

∥X∥ψ2
:= sup

v∈Sd−1

∥∥v⊤X∥∥
ψ2
.

We call a centered one-dimensional random variable Y a (ν, α)+ sub-exponential if E[exp(λY)] ≤
ν2λ2/2 for all λ ≤ 1/α. We call ∥Y ∥ψ1

:= supp≥1 p
−1 E[|Y |p] the sub-exponential norm of Y . We

extend our definition to vectors as before.

Lemma B.12 (Properties of Sub-exponential Random Variables [Wai19; BLM13]). The class of
sub-exponential random variables satisfy the following:

15

1. [Wai19, Proposition 2.9] If Y is a centered (ν, α)+ sub-exponential random variable, then
with probability 1− δ, Y ≲ ν

√
log(1/δ) + α log(1/δ).

2. [BLM13, Theorem 2.3] If Y is a centered random variable satisfying that for all δ ∈ (0, 1),
Y ≤ ν

√
log(1/δ) + α log(1/δ), then Y is (ν′, α′)+ sub-exponential with ν′ ≲ ν + α and

α′ ≲ α.

3. [Wai19, Section 2.1.3] Let Y1, . . . , Yk be k centered independent (ν, α)+ sub-exponential
random variables. Then

∑k
i=1 Yi is a (ν

√
k, α)+ sub-exponential random variable.

Fact B.13 (Hanson-Wright Inequality). Let X ∼ N (0, I) Then, for every t ≥ 0:

Pr[|X⊤AX −E[X⊤AX]| > t] ≤ 2 exp

(
−0.1min

(
t2

K4∥A∥2F
,

t

K2∥A∥op

))
.

Fact B.14 (Johnson-Lindenstrauss Sketch). Fix a set of n points x1, . . . , xn ∈ Rd. Let g(x) :=
∥A(x− b)∥22 be a polynomial for some A ∈ Rd×d and b ∈ Rd, and let U be the (random) matrix
having as rows the vectors ui = Azi/

√
k for zi ∼ N (0, Id), i = 1, . . . , k. Define g̃(x) :=

∥U(x− b)∥22. If C is a sufficiently large constant and k > C log((n+ d)/δ), then with probability
at least 1− δ, the following holds:

1. 0.8g(xi) ≤ g̃(xi) ≤ 1.2g(xi) for every i ∈ [n],

2. 0.8∥A∥2F ≤ ∥U∥2F ≤ 1.2∥A∥2F.
Fact B.15. For any d× d symmetric matrix A, we have that Varz,z′∼N (0,Id)[⟨Az,Az′⟩2] = ∥A2∥2F.
If A is a PSD matrix, then for any β > 0, it holds Prz∼N (0,I)[z

⊤Az ≥ βtr(A)] ≥ 1−
√
eβ.

Fact B.16 (VC inequality). Let F be a class of Boolean functions with finite VC dimension VC(F)
and let a probability distribution D over the domain of these functions. For a set S of n independent
samples from D

sup
f∈F

∣∣∣ Pr
X∼S

[f(X)]− Pr
X∼D

[f(X)]
∣∣∣ ≲√VC(F)

n
+

√
log(1/τ)

n
,

with probability at least 1− τ .

B.3 Existing Robust Algorithms: Trimmed Mean and [DKPP22]

In this section, we state the guarantees of the trimmed mean and the fast robust mean estimation
algorithm from [DKPP22].

We begin with the guarantee of the trimmed mean. The following holds even in the strong contami-
nation model where an adversary can edit ϵ-fraction of the samples arbitrarily. We will need it to
estimate the (unknown) variance of the labels in our linear regression algorithm.
Fact B.17 (Univariate Trimmed Mean, see, e.g., [LM21]). Let ϵ0 be a sufficiently small absolute
constant. There is an algorithm (trimmed mean) that, for every ϵ ∈ (0, ϵ0) and a univariate distribu-
tion D that has ψ1-norm at most σ2 (cf. Definition B.11), given a set of n≫ log(1/δ)/(ϵ log2(1/ϵ))
samples from D with corruption at rate ϵ, outputs a µ̂ such that |µ̂ − EX∼D[X]| ≲ σ2ϵ log(1/ϵ)
with probability at least 1− δ.

The following result is implicit in [DKPP22]. It will serve as a preprocessing step to ensure small
operator norm of the covariance matrix in our robust mean estimation algorithm.
Lemma B.18. There exists an algorithm for which the following is true. If S is a set of n points in
Rd containing a G ⊂ S such that the uniform distribution on G satisfies conditions (2.a) and (2.b)
of Definition 2.1 with α = ϵ/ log(1/ϵ), then the algorithm run on input S and ϵ, outputs weights
w(x) ∈ [0, 1] for each x ∈ S such that the following hold with probability at least 0.999:

1. 1
|G|
∑
x∈G w(x) ≥ 1− ϵ

log(1/ϵ) .

2. Let Q be the discrete distribution on S that assigns probability mass w(x)/
∑
x∈S w(x)

to each x ∈ S. Then, the top eigenvalue of the covariance matrix of Q is at most 1 +
O(ϵ log2(1/ϵ)).

16

Moreover, the algorithm runs in time O(ndpolylog(d/ϵ)).

Proof. The algorithm that achieves the guarantee is a slightly modified version of Algorithm 1
in [DKPP22] where: (i) instead of outputting an estimate of the mean, the algorithm outputs the
underlying weights that it has been updating and (ii) the “DownweightingFilter” procedure is replaced
by Algorithm 3 with β = log(1/ϵ), i.e., the only difference is on the threshold that is used to decide
when to stop filtering. Algorithm 3 increases the threshold by the factor β = log(1/ϵ), which as we
show in Lemma B.27 results in removing log(1/ϵ) times more mass from the outliers than inliers.
The increase in the filtering threshold translates to having an extra log(1/ϵ) factor in Item 2 (without
this increased threshold, the variance along every direction would have been ϵ log(1/ϵ)), and the
fact that this filter now removes log(1/ϵ) times more mass from the outliers than inliers translates to
having ϵ divided by log(1/ϵ) in Item 1.

B.4 Goodness Condition and Its Sample Complexity

We first restate the definition of the conditions. Recall that for a weight function w : Rd → [0, 1]
we let Gw denote weighted by w version of the distribution G. The matrix ΣGw below denotes
EX∼Gw [(X−µ)(X−µ)⊤] (as opposed to the covariance matrix ΣGw := EX∼Gw [(X−µGw)(X−
µGw

)⊤]).
Definition 2.1 ((ϵ, α, k)-Goodness). We say that a distribution G on Rd is (ϵ, α, k)-good with
respect to µ ∈ Rd, if the following conditions are satisfied:

(1) (Median) For all v ∈ Sd−1, PrX∼G[|v⊤(X − µ)| ≳ ϵ] < 1/2.

(2) For every weight function w with EX∼G[w(X)] ≥ 1− α, the following hold:

(2.a) (Mean) ∥µGw
− µ∥2 ≲ α

√
log(1/α),

(2.b) (Covariance) ∥ΣGw − Id∥op ≲ α log(1/α),
(2.c) (Concentration along nearly-orthogonal vectors) For any U ∈ Rk×d with tr(U⊤U) = k

and ∥U⊤U∥op ≤ 2k/ log(k/ϵ), the degree-2 polynomial p(x) := ∥U(x − µ)∥22 satisfies
EX∼Gw

[p(X)1(p(x) > 100k)] ≤ ϵ/ log(1/ϵ).
Remark B.19. We note that once the conditions of Definition 2.1 are established, then they also
hold for projections of the data on a subspace, something that we will need later on in our proofs.
Concretely, let V be any subspace of Rd. Then Conditions (1), (2.a) and (2.b) continue to hold
for the projected points ProjV(x). This is because all of these conditions concern properties of
one-dimensional projections of the data. Regarding the third condition, if the rows of U belong in
the subspace V (which will be the case in our analysis later on), the last condition also continues to
hold for the points ProjV(x) since the ∥UProjV(x)∥22 = ∥UΠVx∥22 = ∥Ux∥22, where we used that
UΠV = U because the rows of U already live in the space V .

B.4.1 Sample Complexity

In our results, we use the goodness condition from Definition 2.1 with parameters α = ϵ/ log(1/ϵ)

and k = polylog(d/ϵ). The following result implies that a set of (d+log(1/τ))polylog(d/ϵ)
ϵ2 i.i.d. samples

from the inliers satisfies the desired stability condition.
Lemma B.20. Let ϵ0 be a small enough positive constant, let ϵ ∈ (0, ϵ0), and let τ ∈ (0, 1). Let
S ⊂ Rd be a set of n independent samples from N (µ, Id) for n ≫ k3(d log(d/ϵ)+log(1/τ))

min(α2,ϵ2/ log2(1/ϵ))
. If G

denotes the uniform distribution over S, then with probability at least 1− τ , G is (ϵ, α, k)-good.

Proof. We prove the results for each condition separately.

Condition (1) As the VC dimension of Linear Threshold Functions (LTFs) is d, the VC inequality
(Theorem B.16) implies that there exists a sufficiently large universal constant C such that for any unit
vector v and γ, |PrX∼S [v

⊤(X − µ) > γ] − PrX∼N (0,1)[X > γ]| ≤ C(
√
d/n +

√
log(1/τ)/n)

with probability 1− τ .

We next apply Taylor’s Theorem to the complementary cumulative function of the Gaussian,
Φ̄(t) := PrX∼N (0,1)[X > t] = (1/

√
2π)

∫∞
t
e−x

2/2dx. The first two derivatives are Φ̄′(t) =

17

−e−t2/2/
√
2π and Φ̄′′(t) = te−t

2/2/
√
2π and thus there exists a ξ between 0 and t such that

Φ̄(t) = 1/2− t/
√
2π+ t2ξe−ξ

2/2/(2
√
2π) ≤ 1/2− t/

√
2π+ t3/(2

√
2π). Combining with the VC

inequality, with probability 1− τ , we have that

Pr
X∼G

[v⊤(X − µ) > γ] ≤ 1/2− γ/
√
2π + γ3/(2

√
2π) + C(

√
d/n+

√
log(1/τ)/n) . (2)

By our assumption that
√
d/n+

√
log(1/τ)/n is O(ϵ) and thus taking γ = Θ(ϵ), we obtain that the

right hand side is less than 1/2.

Conditions (2.a) and (2.b) Let G be the uniform distribution over a set of n samples drawn from
N (0, I). We recall the following result from the recent robust statistics literature:

Lemma B.21 ([DK19; DKKLMS16]). Let α ∈ (0, ϵ0) for a small enough positive constant ϵ0. Let P
be anO(1)-subgaussian distribution with mean µ and covariance Σ, where ∥Σ−I∥op ≤ α log(1/α).
The uniform distribution over a set of n≫ (d+ log(1/δ))/α2 points drawn i.i.d. from P satisfies
Conditions (2.a) and (2.b) from Definition 2.1 with probability 1− δ.

Condition (2.c) First we argue that EX∼N (µ,I)[1(p(X) > 100tr(U⊤U))] < ϵ/ log(1/ϵ) for all
the polynomials p(x) described in Condition (2.c). Fix such a p(x) and observe that E[p(x)] =
tr(U⊤U). Under the Gaussian distribution, by Hanson-Wright inequality (Fact B.13), we have that

Pr
X∼N (µ,I)

[∣∣(X − µ)⊤U⊤U(X − µ)− tr(U⊤U)
∣∣ > t

]
≤ 2 exp

(
−0.1min

(
t2

∥U⊤U∥2F
,

t

∥U⊤U∥op

))
.

(3)

Let k′ := log(k/ϵ)/2. Using our assumption ∥U⊤U∥op ≤ tr(U⊤U)/k′, Fact B.8 implies that
∥U⊤U∥2F ≤ tr(U⊤U)2/k′. Plugging in t = 99tr(U⊤U) above, we obtain that

Pr
X∼N (µ,I)

[∣∣(X − µ)⊤U⊤U(X − µ) ≥ 100tr(U⊤U)
∣∣] ≤ 2 exp(−48k′) = 2ϵ24/k24 , (4)

where we use the definition of k′. Moreover, integrating the tail inequality Equation (3) implies that
E[p2(X)] ≲ (E[p(X)])2 + ∥U⊤U∥2F ≲ tr(U⊤U)2. Alternatively, Equation (3) implies that with
probability 1− δ,

pU(x)1(pU(x) ≥ 2E[pU(X)]) ≤ 2(pU(x)−E[pU(X)])1(pU(x) ≥ 2E[pU(X)])

≲
√
k2/k′

√
log(1/δ) + (k/k′) log(1/δ)

The covering argument is based on the following discretization of the unit sphere.

Fact B.22 (Cover of the sphere). Let r > 0. There exists a set C of unit vectors of Rd, such that
|C| ≤ (1 + 2/r)d and for every v ∈ Sd−1 we have that miny∈C ∥y − v∥2 ≤ r.

Let V be the set of all nearly orthogonal matrices:

V := {U ∈ Rk×d : ∥U⊤U∥op ≤ 2tr(U⊤U)/k′, tr(U⊤U) = k} .

Let Vη ⊂ V be the η-cover of V for some η ∈ (0, 1) such that for any U ∈ V , we have a matrix U′

such that ∥U −U′∥F ≤ η. We now bound the cardinality of η-cover Vη. Looking it as a vector
in Rdk as flattened vector, there exists an η-cover of size 2(3/η)dk, where we also use that we can
ensure Vη ⊂ V using [Ver18, Exercise 4.2.9].

For any U ∈ V , define pU(x) = ∥Ux∥22 and τU(x) = pU(x)1(pU(x) ≥ 100tr(U⊤U)). Let
X1, . . . , Xn be n i.i.d. random variables from N (0, I). We first claim that for X ∼ N (0, I),
τU(X)−E[τU(X)] is a (O(k2/k′), O(k/k′))-subexponential random variable and E[τU(X)] ≲ ϵ3.
For the latter, the Cauchy-Schwarz inequality along with Equation (3) applies that

E[τU(X)] = E[pU(X)1(pU(x) ≥ 100tr(U⊤U))] ≤
√
E[p2U(X)]

√
Pr(pU(X) ≥ 100tr(U⊤U))]

= O(k)O(ϵ12/k12) ,

18

which is less than ϵ3. For the former, we have that with probability 1− δ.

τU(x)−E[τU(X)] ≤ pU(x)1(pU(x) ≥ 2E[pU(X)]) ≲
√
k2/k′ log(1/δ) + (k/k′) log(1/δ).

Thus, Lemma B.12 implies that τU(x)−E[τU(X)] is a (O(k2/k′), O(k/k′)) subexponential random
variable. Applying the concentration properties of the mean of independent subexponenial random
variables (Lemma B.12), we obtain that for any fixed U ∈ Vη , with probability 1− τ ,

n∑
i=1

1

n
τU(xi) ≲ ϵ3 +

√
k2 log(1/τ)

k′n
+
k log(1/τ)

k′n
. (5)

Taking a union bound over every U ∈ Vη , we obtain the following: with probability 1− τ ,

∀U ′ ∈ Vη :
n∑
i=1

1

n
τU′(xi) ≲ ϵ3 +

√
k2 log(1/τ)

k′n
+
k log(1/τ)

k′n
+

√
dk3 log(1/η)

k′n
+
dk2 log(1/η)

k′n
.

(6)

Let U ∈ V and U′ ∈ Vη be arbitrary such that ∥U − U′∥F ≤ η. The goal now is to show that∑n
i=1

1
nτU(xi) and

∑n
i=1

1
nτU′(xi) are close to each other and thus the former is bounded similarly

to (6). Define the difference of the polynomials ∆p(x) := pU(x) − pU′(x). We will also use the
notation i ∼ [n] to denote the averaging over [n] samples. First, we have that

E
i∼[n]

[τU(xi)] = E
i∼[n]

[pU(xi)1(pU(xi) > 100k)]

= E
i∼[n]

[pU′(xi)1(pU′(xi) > 100k −∆p(xi))] + E
i∼[n]

[∆p(xi)1(pU(xi) > 100k)]

= E
i∼[n]

[pU′(xi)1(pU′(xi) > 100k −∆p(xi))] + E
i∼[n]

[|∆p(xi)|] . (7)

We start with the second term of (7).

E
i∼[n]

[|∆p(xi)|] = E
i∼[n]

[
∣∣〈U⊤U−U′⊤U′, xix

⊤
i

〉∣∣]
≤ ∥U⊤U−U′⊤U′∥F E

i∼[n]
[∥xi∥22]

≲ d2η ,

where we used two things: First that by Gaussian norm concentration (e.g., Hanson-Wright inequality
with A = I combined with Lemma B.12):

1

n

n∑
i=1

∥xi∥22 ≤ d+O

(
√
d

√
log(1/δ)

n
+

log(1/δ)

n

)
= O(d) , (8)

if n≫ log(1/δ) and, second, we used that∥∥U⊤U−U′⊤U′∥∥
F
=
∥∥∥U⊤ (U−U′) + (U−U′)

⊤
U′
∥∥∥
F

≤ 2max (∥U∥op, ∥U′∥op) ∥U−U′∥F ≤ 2dη.

We now bound the first term in (7),

E
i∼[n]

[pU′(xi)1(pU′(xi) > 100k −∆p(xi))]

= E
i∼[n]

[pU′(xi)1(pU′(xi) > 100k −∆p(xi))1(∆p(xi) ≤ k)]

+ E
i∼[n]

[pU′(xi)1(pU′(xi) > 100k −∆p(xi))1(∆p(xi) > k)]

≤ E
i∼[n]

[pU′(xi)1(pU′(xi) > 99k)] + E
i∼[n]

[|pU′(xi)|1(∆p(xi) > k)] (9)

The first term is bounded by (6)8.
8There is a small difference in the constant in front of k, but the same proof gives similar quantitative bounds.

19

Choose η = 0.001ϵ3/d2. Then second term in (9), Ei∼[n][|pU′(xi)|1(∆p(xi) > k)] is zero unless
there exists an xi in the sample set with ∥xi∥ > 10

√
d. This relies on the fact that ∆p(x) ≤

∥x∥22∥U⊤U−U′⊤U∥F ≤ 2dη∥x∥22 which becomes less than k if ∥x∥22 ≤ 100d and η = 0.001ϵ3/d2.
But the probability of the event ∥xi∥ > 10

√
d is exponentially small:

Pr
X1,...,Xn∼N (0,I)

[∃ ∈ S : ∥Xi∥2 > 10
√
d] ≤ ne−d/100 , (10)

by Gaussian norm concentration and a union bound.

Therefore taking η = 0.001ϵ3/d2, we have that with high probability the scores from V and Vη are
close up to ϵ3. Combining this with Equation (6) and the union bound over E when n≫ d+log(1/δ),
we obtain that that with probability at least 1− δ/2− ne−d/100, for all U ∈ V:

n∑
i=1

1

n
τU(x) ≲ ϵ3 +

√
k2 log(1/τ)

k′n
+
k log(1/τ)

k′n
+

√
k3d log(d/ϵ)

k′n
+
dk2 log(d/ϵ)

k′n
.

Thus, as soon as n = C k3(d log(d/ϵ)+log(1/τ))
k′ϵ2/ log2(1/ϵ)

for a sufficiently constant C, and ϵ ∈ (0, ϵ0) a
sufficiently small constant ϵ0, all of the terms above become less than ϵ/ log(1/ϵ). We also need
ne−d/100 to be at most δ/2. Using the same n as before, the quantity ne−d/100 is at most δ/2 if
d≫ poly log(ϵ−1δ−1). We can assume without loss of generality that the last condition is always
true as we can artificially augment the dimension by padding the data with Gaussian coordinates until
the resulting dimension becomes d′ ≫ poly log(ϵ−1δ−1) and it is easy to see that once the goodness
conditions get established for the augmented data, they continue to hold for the original data.

B.4.2 Helper Lemmata Related to Goodness Condition

We now record implications of the goodness conditions that we will use in our analysis of the main
algorithm. The first lemma below provides a certification that when the operator norm of the empirical
covariance is suitably bounded, the empirical mean closely approximates the true mean. This allows
us to halt the outlier filtering process and return the resulting vector.
Lemma B.23 (Certificate Lemma (restated)). Let 0 < α < ϵ < 1/4 and δ ∈ (0, 1). Let P = (1−
ϵ)G+ ϵB be a mixture of distributions, where G satisfies Conditions (2.a) and (2.b) of Definition 2.1
with respect to µ ∈ Rd. Let w(x) be such that EX∼G[w(X)] > 1 − α. Assume that the the top
eigenvalue of ΣPw

is less than 1 + λ. Then,

∥µPw − µ∥2 ≲ α
√
log(1/α) +

√
λϵ+ ϵ+

√
αϵ log(1/α) .

Proof. Let ρ = ϵEX∼B [w(X)]/EX∼P [w(X)]. Denote Pw(x) =
w(x)P (x)/EX∼P [w(X)], Bw(x) = w(x)B(x)/EX∼B [w(X)], Gw(x) =
w(x)G(x)/EX∼G[w(X)] the weighted by w(x) versions of the distributions P,B,G and
denote by ΣPw

,ΣBw
,ΣGw

their covariance matrices. We can write:

ΣPw = ρΣBw + (1− ρ)ΣGw + ρ(1− ρ)(µGw − µBw)(µGw − µBw)
⊤ . (11)

Let v be the vector in the direction of µGw
− µBw

. Since the top eigenvalue of ΣPw
is less than

1 + λ, we obtain the following:

1 + λ ≥ v⊤ΣPwv ≥ (1− ρ)v⊤ΣGwv + ρ(1− ρ)(v⊤(µBw − µGw))
2

≥ (1− ρ) (1− α log(1/α)) + ρ(1− ρ)(v⊤(µBw
− µGw

))22 ,

where the second step uses Equation (11) and the last step uses that G satisfies Conditions (2.a) and
(2.b) of Definition 2.1. The expression above implies the following:

(v⊤(µBw
− µGw

))2 ≤ λ+ ρ+ α log(1/α)

ρ(1− ρ)
.

We can now bound the error ∥µPw
− µ∥2 as follows:

∥µPw
− µ∥2 = |v⊤(µGw

− µ) + ρ(µBw
− µGw

)|

20

≤ |v⊤(µGw − µ)|+ ρ|v⊤(µBw − µGw)|
≤ ∥µGw

− µ∥2 + ρ|v⊤(µBw
− µGw

)|

≤ α
√
log(1/α) +

√
ρ

√
λ+ ρ+ α log(1/α)

1− ρ
,

where the last inequality uses that G satisfies Conditions (2.a) and (2.b). We now use bounds on ρ to
simplify the terms. Recall that ρ = ϵEX∼B [w(X)]/EX∼P [w(X)] ≤ ϵ/(1− α). As α < 1/2, we
get that ρ < 2ϵ. In addition, note that ρ < 1/2

∥µPw
− µ∥2 ≲ α

√
log(1/α) +

√
λϵ+ ϵ+

√
αϵ log(1/α) .

Recall the the goodness conditions are phrased in terms of the deviation from the true mean. However,
the true mean is unknown to the algorithm and the algorithm will use the empirical mean as an
approximation, which introduces. additional errors in our bounds. To analyze these errors, we require
the following lemmata.
Lemma B.24 (see, e.g., Lemma 2.13 in [DKPP22]). Let w : Rd → [0, 1] such that EX∼G[w(X)] ≥
1− α and let G be distribution satisfying Conditions (2.a) and (2.b) of Definition 2.1 with respect to
µ ∈ Rd with parameters (ϵ, α, k) .9 For any matrix U ∈ Rm×d and any vector b ∈ Rd, we have that

E
X∼Gw

[
∥U(X − b)∥22

]
= ∥U∥2F(1± α log(1/α)) + ∥U(µ− b)∥22 ± 2α

√
log(1/α) ∥U∥2F∥µ− b∥2 .

Lemma B.25. Let w : Rd → [0, 1] such that EX∼G[w(X)] ≥ 1 − α and let G be an (ϵ, α, k)-
good distribution with respect to µ ∈ Rd as in Definition 2.1. For any matrix U ∈ Rk×d, if we
define the polynomial τ(x) := ∥U(x − b)∥221(∥U(x − b)∥22 > 100tr(U⊤U)) and assume that
∥U(µ− b)∥22 ≤ tr(U⊤U), then it holds

E
X∼Gw

[τ(X)] ≤ 2ϵ

log(1/ϵ)
tr(U⊤U) + 2∥U(µ− b)∥22 .

Proof. We have that

∥U(x− b)∥22 ≤ 2∥U(x− µ)∥22 + 2∥U(µ− b)∥22
≤ 2∥U(x− µ)∥22 + 2tr(U⊤U) ,

where the first step uses the triangle inequality combined with the inequality (a+ b)2 ≤ 2a2 + 2b2.
Using the above, we can write

E
X∼Gw

[τ(X)] ≤ 2 E
X∼Gw

[∥U(x− µ)∥221(∥U(x− b)∥22 > 49tr(U⊤U)] + 2∥U(µ− b)∥22

≤ 2ϵ/ log(1/ϵ) + 2∥U(µ− b)∥22 ,

where the last line uses the goodness condition for G.

Lastly, the following lemma shows that if the matrix U used in the last goodness condition consists of
nearly orthogonal vectors, then the matrix satisfies the near-orthogonality condition mentioned there.
Lemma B.26. Let ui for i ∈ [k] be vectors in Rd and define U = [u1, . . . , uk]. If for every
i, j ∈ [k] with i ̸= j, it holds |⟨ui, uj⟩| ≤ ∥ui∥2∥uj∥2/k2, and maxi ∥ui∥22 ≤

log k
k tr(U⊤U) then

∥U⊤U∥op ≤ 2tr(U⊤U)/(k/ log k).

Proof. We note that by the Gershgorin circle theorem (Fact B.4),

∥U⊤U∥op ≤ max
i∈[k]
∥ui∥22 +

∑
i̸=j

|⟨ui, uj⟩|

9This lemma does not use the last goodness condition; thus the parameter k does not appear in the conclusion.

21

≤ max
i∈[k]
∥ui∥22 + k2

∥ui∥2∥uj∥2
k2

≤ 2max
i∈[k]
∥ui∥22 ≤ 2

tr(U⊤U)

k/ log(k)
.

B.5 Filtering Procedure

In this section, we formally describe the filtering procedure (Algorithm 3) and prove its formal
guarantee (Lemma 2.5).

Algorithm 3 Down-weighting Filter
1: Input: Distribution P on n points, weight w(x) for each point x, score τ̃(x) for every point x

with the guarantee τ̃(x) < r, threshold T > 0, parameters β > 0, ℓmax ∈ Z+.
2: Output: New weights w′(x).

3: Initialize w′(x) = w(x).
4: ℓmax ← r/(eT).
5: for i = 1, . . . , ℓmax do ▷ Can be implemented in O(log ℓmax) with Binary Search
6: if EX∼P [w

′(X)τ̃(X)] > Tβ then
7: w′(x)← w(x)(1− τ̃(x)/r).
8: else return w′.
9: return w′.

Lemma B.27 (Filtering Guarantee). Let P = (1− ϵ)G+ ϵB be a mixture of distributions supported
on n points and β > 1. If (1 − ϵ)EX∼G[w(X)τ̃(X)] < T , ∥τ̃∥∞ ≤ r and ℓmax > r/T then the
new weights w′(x) satisfy:

1. (1− ϵ)EX∼G[w(X)− w′(X)] < ϵ
β−1 EX∼B [w(X)− w′(X)]

2. EX∼P [w(X)τ̃(X)] ≤ Tβ.

The algorithm can be implemented in O(n log(r/T))) time.

Proof. The weight removed from inliers is:

(1− ϵ) E
X∼G

[w(X)− w′(X)] =
1− ϵ
r

E
X∼G

[w(X)τ̃(X)] ≤ T/r

The weight removed from outliers is:

ϵ E
X∼B

[w(X)− w′(X)] =
ϵ

r
E

X∼B
[w(X)τ̃(X)]

=
1

r

(
E

X∼P
[w(X)τ̃(X)]− (1− ϵ) E

X∼G
[w(X)τ̃(X)]

)
≥ T (β − 1)

r

Regarding runtime, for any ℓ > r/(eT) we have that EX∼P [wℓ(X)τ̃(X)] ≤
EX∼P [wℓ(X)τ̃(X) exp(−ℓτ̃(X)/r)] ≤ r

eℓ ≤ T , where we used the inequality xe−αx ≤ 1/(e · α).

Lemma 2.5 (Multi-Directional Filtering). Consider Setting 2.3. Given a nearly-orthogonal matrix
U ∈ Rk×d satisfying ∥U⊤U∥op ≤ 2 tr(U⊤U)/ log(1/ϵ), there is an algorithm that reads ϵ, the
n points, their weights w(x), and returns weights w′ in time ndk + polylog(d/ϵ, ∥U∥2F) such that

(i) EX∼G[w(X)− w′(X)] < (ϵ/ log(1/ϵ))EX∼B [w(X)− w′(X)].

(ii) ϵEX∼B [w
′(X)∥U(X − µPw

)∥22] ≲ ϵ tr(U⊤U).

22

Proof. Let g(x) := ∥U(x − µPw)∥22 and τ(x) := g(x)1(p(x) > 100tr(U⊤U)). Denote BPw :=
ΣPw − I. Using the goodness conditions and the certificate lemma:

E
X∼G

[w(X)τ(X)] ≤ 2ϵ

log(1/ϵ)
∥U∥2F + ∥U(µ− µPw

)∥22 (12)

≤
(

2ϵ

log(1/ϵ)
+ ∥µ− µPw∥22

)
∥U∥2F (by Lemma B.25)

≤
(

2ϵ

log(1/ϵ)
+ ϵ2 +O (∥BPw

∥opϵ)
)
∥U∥2F (13)

≲

(
ϵ

log(1/ϵ)
+ ϵ∥BPw

∥op
)
∥U∥2F (14)

≲

(
ϵ

log(1/ϵ)
+ ϵ2polylog(1/ϵ)

)
∥U∥2F (By Setting 2.3)

≲

(
ϵ

log(1/ϵ)

)
∥U∥2F , (15)

where the first inequality uses Lemma B.25 (this uses that ∥U(µ − µPw
)∥22 ≤ tr(U⊤U) which

follows by the certificate lemma and that ∥BPw
∥ < 1), the second inequality uses ∥U(x− µ)∥22 =

tr(U⊤U(x − µ)(x − µ)⊤) and then the fact tr(AB) ≤ tr(A)∥B∥op for A = U⊤U,B = (x −
µ)(x− µ)⊤, the third line uses the certificate lemma (Lemma 2.4).

We can thus apply the filtering lemma (Lemma B.27) with T equal to the right hand side of Equa-
tion (15), and β = log(1/ϵ) to obtain that EX∼P [w

′(X)τ(X)] ≤ Tβ ≲ ϵ∥U∥2F. In more detail,

ϵ E
X∼B

[w′(X)gt(X)] ≤ ϵ
(

E
X∼B

[w′(X)τt(X)] + 100tr(U⊤U)
)

≲ ϵ E
X∼B

[w′(X)τt(X)] + ϵtr(U⊤U)

≲ T log(1/ϵ) + ϵtr(U⊤U) (by Lemma B.27)

≲ ϵtr(U⊤U)

This completes the proof of part (ii). Part (i) follows directly from Lemma B.27.

B.6 Algorithm from [DKKLMS18]

We now describe (a simplified version of) the algorithm from [DKKLMS18] and state its improved
runtime.

23

Algorithm 4 Optimal Error Robust Mean Estimation Under Huber Contamination
1: Input: Parameters ϵ, r, and sets S1, S2 ⊂ Rd, where for each i = 1, 2 the uniform distribution

on Si is of the form (1 − ϵ)Gi + ϵBi for some Gi satisfying Definition 2.1 with appropriate
parameters.

2: Output: A vector in Rd.

3: Let k := r log(1/ϵ), and P be the uniform distribution on S1.
4: Calculate naïve estimate µ̂ s.t. ∥µ̂−µ∥2 = R for R = O(

√
d log(1/ϵ)). ▷ e.g., geometric mean

5: Initialize t← 0 and wt(x) = 1(∥x− µ̂∥2 ≤ 2R) for all x ∈ Rd
6: Denote by Pt the weighted by w version of P , by Σt the covariance of Pt.
7: Let vt,1, . . . , vt,d be the eigenvector decomposition of Σt and λt,1 ≥ . . . ≥ λt,d the correspond-

ing eigenvalues.
8: while

∑k
i=1

1
kλt,k ≥ 1 + λ for λ = C

r ϵ do
9: Define the polynomial gt(x) = ∥Ut(x− µt)∥22, where Ut = [vt,1/

√
k, . . . , vt,k/

√
k]⊤.

10: Define the score function τt(x) = gt(x)1(gt(x) > 100/r)
11: wt+1 ← Filter(P, ϵ, wt, τt) ▷ Algorithm 3
12: t← t+ 1, and update vectors vt,1, . . . , vt,k.
13: Let V = span{v1, . . . , vk} and V⊥ = span{vk+1, . . . , vd}.
14: µ1 ← ProjV⊥(µt).
15: µ2 ← BruteForce(S2, ϵ,V).
16: return µ1 + µ2.

Lemma 2.6 (Adapted From [DKKLMS18]). Let T be a set of n i.i.d. samples from an ϵ-corrupted
version ofN (0, Id) and let r, δ ∈ (0, 1) be parameters. If n≫(d+ log(1/δ))/ϵ2)polylog(d/ϵ), then
there is an algorithm that, when having as input T , ϵ, and r, after time Õ(nd2 + 1

ϵ2+r), it outputs a
vector µ̂ ∈ Rd such that ∥µ̂− µ∥2 ≲ ϵ/r with probability 1− δ.

Proof Sketch. The algorithm consists of two parts. The first part (while loop of Line 8) finds weights
for the points wt(x) and subspace V = span{v1, . . . , vk} such that the weighted empirical mean
approximates the true mean in that subspace within ℓ2-distance O(ϵ/r), and the second part runs a
brute force procedure (Lemma B.28) to approximate the true mean in the remaining k-dimensional
subspace. The brute force procedure runs in time exponential to the dimension of that subspace,
but since k = r log(1/ϵ), it becomes polynomial in 1/ϵ. Concretely, the runtime of the brute force
step is given in Lemma B.28. The dataset S2 that we use for this brute force step is of smaller
cardinality: since the dimension of the subspace is k, n′ = O(k/ϵ2) samples in S2 are enough
to satisfy the goodness conditions. Thus, the runtime from Lemma B.28 with n replaced by n′ is
O((d+ ϵ−2−r)polylog(d/ϵ)).

In the remainder, we sketch the runtime bound for the first stage of the algorithm, by arguing that the
number of iterations is Õ(d). If we let our algorithm compute exact eigenvalues and eigenvectors,
each iteration needs nd3 time, resulting in a total of Õ(nd4) for the runtime of the while loop of
Line 8. This can improved to Õ(nd2) by calculating approximate top k-eigenvectors (see, e.g.,
[MM15]).

To show that the number of iterations is Õ(d), we will show that every time that the filtering procedure
of Line 11 is used, it removes at least Ω̃(ϵ/d) mass from the points’ weights. Then, given that the
outliers themselves have mass at most O(ϵ), the algorithm would stop after Õ(d) iterations. The
mass removed per iteration is (by definition of the filtering procedure)

E
X∼P

[wt(X)− wt+1(X)] =
EX∼P [wt(X)τt(X)]

maxx:wt(x)>0 τt(x)
.

The denominator is upper bounded by maxx:wt(x)>0 τt(x) ≤ Õ(d) by the prepossessing of Line 3.10

For the numerator,
E

X∼P
[wt(X)τt(X)] = E

X∼P
[wt(X)gt(X)]− E

X∼P
[wt(X)gt(X)1(gt(X) ≤ 100/r)] .

10 Since the norm of the samples from the Gaussian distribution is tightly concentrated, the filtering procedure
removes o(ϵ/ log(1/ϵ)) fraction of inliers.

24

The first term is at least (1+λ) because of the condition in Line 8. We also claim that the second term
is at most (1+λ/2). These two would imply that EX∼P [wt(X)−wt+1(X)] = Ω(λ) = Ω(ϵ), which
implies that each iteration removes Ω̃(ϵ/d) fraction of points, completing the proof. The remaining
claim for bounding EX∼P [wt(X)gt(X)1(gt(X) ≤ 100/r)] is similar to [DKPP23, Lemma 2.14
(iv)]: We first note that EX∼G[wt(X)1(gt(X) ≤ 100/r)] = 1 − O(ϵ/ log(1/ϵ)), because at most
O(ϵ/ log(1/ϵ))-fraction of inliers have gt(x) > 100/r (cf. goodness condition (2.c) in Definition 2.1).
Then,∣∣∣ E

X∼P
[wt(X)1(gt(X) ≤ 100/r)]− 1

∣∣∣ ≤ (1− ϵ)
∣∣∣ E
X∼G

[wt(X)gt(X)1(gt(X) ≤ 100/r)]− 1
∣∣∣

+ ϵ
∣∣∣ E
X∼B

[wt(X)gt(X)1(gt(X) ≤ 100/r)]− 1
∣∣∣ .

The first term is upper bounded by λ/4 by the goodness condition (2.b) along with the certificate
lemma (Lemma B.23). For the second term we can use the bound

ϵ
∣∣∣ E
X∼B

[wt(X)gt(X)1(gt(X) ≤ 100/r)]− 1
∣∣∣ ≤ ϵ (100/r + 1) = O(ϵ/r) < λ/4 .

We will use the following brute force algorithm to estimate the mean in a low-dimensional subspace.
Lemma B.28. There exists an algorithm, BRUTEFORCE, that given a set of n samples in Rd from an
ϵ-corrupted version of a distribution G satisfying the first condition in Definition 2.1 and a subspace
V of dimension k, runs in time O

(
dnk + (n log n+ poly(k))2O(k)

)
and finds a vector µ̃ ∈ Rd such

that ∥ProjV(µ− µ̃)∥2 = O(ϵ).

Proof. The algorithm first projects the points to the k-dimensional subspace. It then computes an
η-cover C of the k-dimensional unit sphere, which by Fact B.22 consists of at most (4/r)k vectors,
and for every vector u ∈ C, it finds an estimate µu for the u-projection of the mean satisfying
|u⊤µ−µu| ≤ γ for γ = O(ϵ) being the same as in the right hand side of the first goodness condition
in Definition 2.1 (because of that goodness condition, letting µu be just the median in the u-direction
achieves γ-error). It then solves the linear program

find x s.t. |u⊤x− µu| ≤ 2γ ∀u ∈ C.

Let v ∈ Sd−1 be in the direction of x− µ and u = argminy∈C ∥v − y∥2. Then,

∥x− µ∥2 = |v⊤(x− µ)| ≤ |u⊤(x− µ)|+ |(v − u)⊤(x− µ)|
≤ |u⊤(x− µu)|+ |u⊤(µu − µ)|+ ∥v − u∥2 ∥x− µ∥2
≤ 4γ + η ∥x− µ∥2 , (16)

which establishes that ∥x− µ∥2 ≤ 4γ/(1− η).
Regarding runtime, the projection of the data takesO(dnk) time, solving the median in each direction
takes O((4/η)kn log n) time. For the LP, the separation oracle that checks all the constraints
exhaustively needs time (4/η)kk and the LP can be solved by O(poly(k) log(R/r)) calls to that
separation oracle, where R, r are bounds on the volume of the feasible set η ≤ vol({x ∈ Rk :
|u⊤x − µu| ≤ γ1 ∀u ∈ C}) ≤ R. For the lower bound we have that the volume of the feasible
set is at least the volume of a k-dimensional ball of radius γ because µ is a feasible solution and
µ+ γv remains feasible for any unit vector v. For the upper bound, we have that the feasible set is
included in a k-dimensional ball of radius 4γ/(1− η) by Equation (16). Thus the runtime for the LP
is O(poly(k) log(R/r)) = O(poly(k)). Finally, choosing η = 1/4, simplifies the total runtime to
O
(
dnk + (n log n+ poly(k))2O(k)

)
.

C Omitted Proofs from Section 3

We begin by stating additional conditions that must hold throughout the algorithm’s execution.
Subsequently, in Appendices C.2 and C.3, we present a comprehensive analysis of the two cases in
our main algorithm. Finally, in Appendix C.4, we combine all the components to conclude the proof
of Theorem 1.3.

25

C.1 Deterministic Conditions for Algorithm 1

Condition C.1 (Deterministic Conditions for Algorithm 1). Consider the notation in Algorithm 1.
For all t ∈ [tmax], the following hold:

(i) Spectral norm of B⊥
t : λ̂t ∈ [0.1∥B⊥

t ∥op, 10∥B⊥
t ∥op].

(ii) Frobenius norm ∥Ut∥2F ∈ [0.8k∥M⊥
t ∥2F, 1.2k∥M⊥

t ∥2F].

(iii) Scores: For all x ∈ support(P), ∥Ut(x− µt)∥22/∥M⊥
t (x− µt)∥22 ∈ [0.8k, 1.2k].

(iv) Maximum norm: maxj∈[k] ∥vt,j∥22 ≤
log k
k tr(U⊤

t Ut).

(v) Probability estimate: |q̂t − qt| ≤ 0.1/(k2tmax).

(vi) Ut almost orthogonal: For every pair ui, uj of distinct rows of Ut it holds |⟨ui, uj⟩| ≤
∥ui∥2∥uj∥2/k2.

(vii) Approximate eigenvector: ut from Line 19 satisfies u⊥t B
⊥
t ut ≥ (1− 1/p)∥B⊥

t ∥op.
Lemma C.2. Condition C.1 is satisfied with probability at least 0.9.

Proof. The spectral norm condition holds by using Fact B.10 with η = 0.9, δ = 0.001/tmax, and a
union bound over the tmax iterations of the algorithm.

The next two conditions hold with probability 0.999 by using Fact B.14 with A = M⊥
t

√
k and a

similar union bound.

Regarding condition (iv), with probability 0.999 we have the following regarding the vectors vt,j
from line 15

∥vt,j∥22 ≲
√

log(ktmax)∥(M⊥
t)

2∥F + log(ktmax)∥(M⊥
t)

2∥op

≲ log(ktmax)∥M⊥
t ∥2F ≲

log(ktmax)

k
∥U⊥

t ∥2F ≲
log(k)

k
∥U⊥

t ∥2F ,

where the first step uses Hanson-Wright inequality with probability of failure 1/(1000ktmax), the
second step uses the fact ∥A∥2F ≤ tr(A)∥A∥op ≤ tr(A)2 applied with A = (M⊥

t)
2, the third step

is due to condition (ii), and the last one is because tmax ≲ poly(k) for the choice of values that we
have made for tmax and k.

For Condition (v), if q̂t is the empirical average of 1(|⟨M⊥
t z,M

⊥
t z

′⟩| > ∥M⊥
t z∥2∥M⊥

t z
′∥2/k2)

over Θ(k4t2max) instantiations of z, z′ ∼ N (0, I), then the condition holds by a standard Chernoff
bound.

Condition (vi) holds by the fact that the algorithm uses Ut only in the case that q̂t ≤ 1/(k2tmax). By
condition (v), in that case we have that Prz,z′∼N (0,I)[|⟨M⊥

t z,M
⊥
t z

′⟩| > ∥M⊥
t z∥2∥M⊥

t z
′∥2/k2] ≥

0.9/(k2tmax). Thus, by a union bound, with high constant probability, for every iteration t, all pairs
of rows of Ut will have angle with cosine in [−1/k2, 1/k2].
Regarding Condition (vii): By Fact B.10 with η = 1/p = 1/ log(d) and δ = 1/tmax (so that we
can do a union bound over all iterations of the algorithm), we have that if p′ ≫ log2(dtmax) then
u⊤t B

⊥
t ut ≥ (1− 1/p)∥B⊥

t ∥op with high constant probability throughout the algorithm.

C.2 Case 1

This section contains the details missing from Section 3.1. We restate and prove the following:
Claim C.3 (Claim 3.2 restated). Assuming that Condition C.1 is satisfied, for every iteration t that
the condition of Line 12 is satisfied, ϕt+1 ≤ 0.99ϕt. Moreover, EX∼G[wt(X)] ≥ 1 − ϵ/ log(1/ϵ)
and B⊥

t ⪰ 0 throughout the algorithm’s execution.

The reminder of the subsection is dedicated to the proof of the claim. In particular, we focus on the
claim ϕt+1 ≤ 0.99ϕt, since the invariant EX∼G[wt(X)] ≥ 1− ϵ/ log(1/ϵ) follows by the guarantee
of the filter (Lemma 2.5) rather directly: First, we note that by Lemma B.26, the deterministic

26

conditions (vi) and (iv) from Condition C.1 imply that the goodness condition (2.c) is applicable
to the polynomial ∥Ut(x − µ)∥22 where Ut is the matrix used in Line 15; thus, Lemma 2.5 is
applicable. Second, by that lemma, we have that every time that wt(x) changes to wt+1(x) it holds
that EX∼G[wt(X)− wt+1(X)] < (ϵ/ log(1/ϵ))EX∼B [wt(X)− wt+1(X)]. If t∗ denotes the final
iteration, this means that EX∼G[w0(X) − wt∗(X)] < (ϵ/ log(1/ϵ))EX∼B [w0(X) − wt∗(X)] ≤
ϵ/ log(1/ϵ), thus EX∼G[wt(X)] ≥ 1− ϵ/ log(1/ϵ) throughout the execution.

We also note, that EX∼G[wt(X)] ≥ 1 − ϵ/ log(1/ϵ) implies that Bt ⪰ 0, and B⊥
t ⪰ 0. This is

because, by condition (2.b) of the goodness condition, it holds Σt ⪰ (1 − O(ϵ))I. Also, we have
already shown that EX∼G[wt(X)] ≥ 1 − ϵ/ log(1/ϵ). Thus Bt := (EX∼G[wt(X)])2Σt − (1 −
C1ϵ)I ⪰ (1−O(ϵ))2(1−O(ϵ))I− (1− C1ϵ)I ⪰ 0, if C1 is large enough.

Regarding the potential function ϕt, we will establish the following series of inequalities, for c being
some constant of the form c = O(1/C), where C is the constant used in Algorithm 1 (we can assume
c < 0.0001 by selecting C appropriately large in the algorithm):

ϕt+1 = tr((M⊥
t+1)

2) = ∥M⊥
t+1∥

2p
2p

≤
(
d

1
2p(2p+1) ∥M⊥

t+1∥2p+1

)2p
(by Fact B.2)

= d
1

2p+1

(
∥M⊥

t+1∥
2p+1
2p+1

) 2p
2p+1

= d
1

2p+1
(
tr((B⊥

t+1)
2p+1)

) 2p
2p+1

≤ d
1
2p
(
tr(M⊥

t B
⊥
t+1M

⊥
t)
) 2p

2p+1 (by Fact B.6)

≤ d
1

2p+1 (c∥B⊥
t ∥op∥B⊥

t ∥
2p
2p)

2p
2p+1 (by Lemma C.4 below)

≤ d
1
2p c

2p
2p+1 (∥B⊥

t ∥2p∥B⊥
t ∥

2p
2p)

2p
2p+1 (by Fact B.2)

≤ 0.99∥B⊥
t ∥

2p
2p = 0.99ϕt . (since p≫ log(d) and c < 0.0001)

Where the application of Fact B.6 uses that Bt+1 ⪯ Bt: this is by definition of the covariance matrix
as 1

2(EX∼P [wt(X)])2 EX,Y∼P [wt(X)wt(Y)(X − Y)(X − Y)⊤] which shows that downweighting
points can only make Bt the matrix smaller in PSD order (note that Bt has the covariance matrix
multiplied by (EX∼P [wt(X)])2).

It remains to establish the main inequality that we used above:
Lemma C.4 (Filtering Implication (Lemma C.4 restated)). In the context of Algorithm 1, and
assuming that Condition C.1 holds, for every round t ∈ [tmax] that the algorithm enters Line 13,
it holds tr(M⊥

t B
⊥
t+1M

⊥
t) ≤ c′∥B⊥

t ∥op∥M⊥
t ∥2F for some c′ < O(1/C) (where C is the constant

appearing in the algorithm’s pseudocode).

Proof. First, we note that

Σ⊥
t+1 = E

X∼Pt+1

[
(ProjV⊥

t+1
(X)− µ⊥

t+1)(ProjV⊥
t+1

(X)− µ⊥
t+1)

⊤
]

⪯ E
X∼Pt+1

[
(ProjV⊥

t+1
(X)− µ⊥

t)(ProjV⊥
t+1

(X)− µ⊥
t)

⊤
]

=
1

EX∼P [wt+1(X)]
E

X∼P
[wt+1(X)(ProjV⊥

t+1
(X)− µ⊥

t)(ProjV⊥
t+1

(X)− µ⊥
t)

⊤] . (17)

To avoid the repetitive notation of ProjV⊥
t+1

(X) in the remainder of the proof, we introduce the
shorthand notationX⊥ to denote the projection of the random variableX to V⊥

t+1. To avoid confusion
for later on, we also note that since we are in the case that the algorithm enters Line 13, V⊥

t+1 = V⊥
t ,

i.e., no change is done to the subspace and in this subsection it does not matter which of the two
subspaces we use in our notation.

We decompose tr(M⊥
t B

⊥
t+1M

⊥
t) into the contribution from inliers and outliers: Using the definition

of B⊥
t+1 = EX∼P [wt+1(X)]2Σ⊥

t+1 − (1− C1ϵ)ΠV⊥
t

and Equation (17), we have that

27

tr(M⊥
t B

⊥
t+1M

⊥
t) (18)

≤ E
X∼P

[wt+1(X)] E
X∼P

[wt+1(X)∥M⊥
t (X

⊥ − µ⊥
t)∥22]− (1− C1ϵ)tr(M

⊥
t ΠV⊥

t
M⊥

t) (19)

≤ (1− ϵ) E
X∼G

[wt+1(X)∥M⊥
t (X

⊥ − µ⊥
t)∥22] + ϵ E

X∼B
[wt+1(X)∥M⊥

t (X
⊥ − µ⊥

t)∥22] (20)

− (1− C1ϵ)tr((M
⊥
t)

2)

≤ E
X∼G

[wt+1(X)∥Ut(X
⊥ − µ⊥

t)∥22] +
1.25ϵ

k
E

X∼B
[wt+1(X)∥Ut(X

⊥ − µ⊥
t)∥22] (21)

− (1− C1ϵ)∥M⊥
t ∥2F , (22)

where the first inequality uses the definition of Bt, Fact B.5 and Equation (17), for the last term
in Equation (19) we used that ΠV⊥

t
M⊥

t = M⊥
t which can be shown as follows: recall that using

our definitions M⊥
t = (B⊥

t)
p =

(
ΠV⊥

t
BtΠV⊥

t

)p
, then since ΠV⊥

t
is idempotent, multiplying

that expression from any side does not change it. For Equation (21) we used 1 − ϵ < 1 and the
Johnson-Lindenstrauss sketch guarantee (condition (iii) of Condition C.1).

We start by upper bounding the combined contribution of the first and last term. We will need our
assumption that G (the uniform distribution on inlier samples) satisfies conditions (2.b) and (2.a)
from Definition 2.1 with α = ϵ/ log(1/ϵ), in order to apply Lemma B.24 with U = M⊥

t and b = µ⊥
t :

11

E
X∼G

[wt+1(X)∥M⊥
t (X

⊥ − µ⊥
t)∥22]− (1− C1ϵ)∥M⊥

t ∥2F (23)

≤ (1 +O(ϵ))∥M⊥
t ∥2F + ∥M⊥

t (µ
⊥ − µ⊥

t)∥22 +O(ϵ)∥M⊥
t ∥2F∥µ⊥ − µ⊥

t ∥2 − (1− C1ϵ)∥M⊥
t ∥2F

(24)

≤ (1 +O(ϵ))∥Mt∥2F + ∥Mt∥2FO(∥B⊥
t ∥opϵ) +O(ϵ)∥Mt∥2FO

(√
∥B⊥

t ∥opϵ
)
− (1− C1ϵ)∥M⊥

t ∥2F
(25)

≤ O(1/C)∥B⊥
t ∥op∥Mt∥2F , (26)

where Equation (24) uses Lemma B.24, Equation (25) uses ∥Mt(x
⊥ − µ⊥

t)∥22 = tr(M⊤
t Mt(x

⊥ −
µ⊥
t)(x− µ⊥

t)
⊤) and then the fact tr(AB) ≤ tr(A)∥B∥op for A = M⊤

t Mt,B = (x⊥ − µ⊥
t)(x−

µ⊥
t)

⊤ as well as the certificate lemma (Lemma 2.4) which gives a bound where it can be checked

that the dominant term is O(
√
ϵ∥B⊥

t ∥op), and Equation (26) uses that ϵ < O(1/C)∥B⊥
t ∥op due to

Line 9 of Algorithm 1 and condition (i) of Condition C.1.

We now focus on upper bounding the middle term of Equation (21), where we will use the guarantee
of filtering, in particular the second part of Lemma 2.5. By Lemma B.26, the deterministic conditions
(vi) (pairwise angles close to 90 degrees) and (iv) from Condition C.1 imply that the goodness
condition (2.c) is applicable to the polynomial ∥Ut(x− µ)∥22 where Ut is the matrix used in Line 15.
In other words, the requirement of Lemma 2.5 is satisfied and the lemma is applicable to our case.
We thus obtain that

ϵ

k
E

X∼B
[wt+1(X)∥Ut(X

⊥ − µ⊥)∥22] ≲
ϵ

k
∥Ut∥2F ≲ ϵ∥Mt∥2F ≲

1

C
∥B⊥

t ∥op∥Mt∥2F ,

where the second inequality uses the Johnson-Lindenstrauss guarantee (condition (iii) of Condi-
tion C.1) and the last inequality uses that ϵ < O(1/C)∥B⊥

t ∥op, which is due to Line 9 of Algorithm 1
and Condition (i) of Condition C.1.

C.3 Case 2

This section contains the details missing from Section 3.2. We begin by proving the formal version of
Claim 3.4 below:

11Since we are working with the projection of the data to V⊥
t , this lemma requires that the goodness conditions

hold for the projected data, which as we have noted before holds (see Remark B.19).

28

Claim C.5 (Formal version of Claim 3.4). If Prz,z′∼N (0,I)

[
|⟨M⊥

t z,M
⊥
t z

′⟩|
∥M⊥

t z∥2∥M⊥
t z

′∥2
> γ

]
≥ α, then

∥M⊥
t ∥2

op

tr((M⊥
t)2)

≳ γ2α5.

Proof. For some parameter δ > 0, define the following events for random variables z, z′: E1 = {z :
∥M⊥

t z∥22 > tr((M⊥
t)

2)δ}, and E2 = {z : ∥M⊥
t z

′∥22 > tr((M⊥
t)

2)δ}. We have the following series
of inequalities:

α ≤ Pr
z,z′∼N (0,I)

[∣∣∣∣ ⟨M⊥
t z,M

⊥
t z

′⟩
∥M⊥

t z∥2∥M⊥
t z

′∥2

∣∣∣∣ > γ

]
≤ Pr
z,z′∼N (0,I)

[∣∣∣∣ ⟨M⊥
t z,M

⊥
t z

′⟩
∥M⊥

t z∥2∥M⊥
t z

′∥2

∣∣∣∣ > γ ∧ E1 ∧ E2
]
+Pr[E1 ∨ E2]

≤ Pr
z,z′∼N (0,I)

[∣∣∣∣ ⟨M⊥
t z,M

⊥
t z

′⟩
tr((M⊥

t)
2)δ

∣∣∣∣ > γ ∧ E1 ∧ E2
]
+ 2
√
eδ (27)

≤ Pr
z,z′∼N (0,I)

[∣∣∣∣ ⟨M⊥
t z,M

⊥
t z

′⟩
tr((M⊥

t)
2)δ

∣∣∣∣ > γ

]
+ 2
√
eδ

≤ 1

γ2
Ez,z′∼N (0,I)[⟨M⊥

t z,M
⊥
t z

′⟩2]
tr((M⊥

t)
2)2δ2

+ 2
√
eδ (28)

≤ 1

γ2
∥(M⊥

t)
2∥2F

tr((M⊥
t)

2)2δ2
+ 2
√
eδ , (29)

where Equation (27) is obtained by a union bound along with the second part of Fact B.15, Equa-
tion (28) is obtained by squaring and using Markov’s inequality, and Equation (29) follows by using
the first part of Fact B.15.

Picking the value δ = α2/1000 and reorganizing Equation (29) implies the lower bound
∥(M⊥

t)
2∥F/tr((M⊥

t)
2) ≳ α5γ2. Combining that with the upper bound ∥A∥2F ≤ tr(A)∥A∥op

for any PSD matrix A (Fact B.8), we obtain:

α5γ2 ≲
∥(M⊥

t)
2∥F

tr((M⊥
t)

2)
≤

√
∥(M⊥

t)
2∥op

tr((M⊥
t)

2)
. (30)

We now turn to the second claim, using the same notation as in the pseudocode. The requirement that
Bt is positive semi-definite (PSD) has already been established. As shown in Claim C.3, whenever
the weights are changed, we have proven that Bt remains PSD.

Claim C.6 (Claim 3.5 restated). Assume that Bt is PSD. Let Vt+1 = Vt ∪ {ut} for some unit vector
ut ∈ V ⊥

t , then ϕt+1 ≤ ϕt − u⊤t (M⊥
t)

2ut.

Proof. We first examine the effect that projecting everything to the space perpendicular to ut has on
the matrix B⊥

t .

Claim C.7. Define ∆t := I− utu⊤t . We have the following:

(i) Π⊥
t+1 = ∆tΠ

⊥
t ∆t.

(ii) Σ⊥
t+1 = ∆tΣ

⊥
t ∆t.

(iii) B⊥
t+1 = ∆tB

⊥
t ∆t.

Proof. We prove each of these separately.

29

Proof of (i) We first recall the definition of the orthogonal projection matrix: Given any basis
vt,1, . . . , vt,r ∈ Rd of the subspace V⊥

t (r is the dimension of the subspace), if At is the d × r
matrix that has the vt,i’s as its columns, then the matrix that performs the orthogonal projection
to V⊥

t is Π⊥
t := At(A

⊤
t At)

−1A⊤
t . Consider the basis that is orthonormal and starts with vt,1 =

ut (the vector mentioned in the claim’s statement; such a basis exists since ut ∈ V⊥
t). Then,

Π⊥
t = AtA

⊤
t = utu

⊤
t +

∑r
i=2 vt,iv

⊤
t,i. Now, let Π⊥

t+1 be the matrix that projects to the subspace
V⊥
t+1 := {x ∈ V⊥

t : x ⊥ ut}. Since ut itself belongs to V⊥
t , an orthonormal basis of V⊥

t+1 is
vt,2, . . . , vt,r, and thus if we define At+1 := [vt,2, . . . , vt,r] then the orthogonal projection matrix for
V⊥
t+1 is Π⊥

t+1 = At+1A
⊤
t+1 =

∑r
i=2 vt,iv

⊤
t,i. We claim that this is the same as ∆tΠ

⊥
t ∆t: Indeed,

∆tΠ
⊥
t ∆t = (∆tAt)(∆tAt)

⊤, and ∆tAt = (I − utu⊤t)At is the matrix with zeroes in the first
column and vt,2, . . . , vt,r in the rest of them, thus (∆tAt)(∆tAt)

⊤ =
∑r
i=2 vt,iv

⊤
t,i.

Proof of (ii) Let At be exactly as in the previous paragraph. For the specific orthonormal basis
vt,1, . . . , vt,r ∈ Rd of V⊥

t (where r is the dimension of that subspace) where the first vector has been
chosen to be vt,1 = ut, we define the d × r matrix At = [vt,1, vt,2, . . . , vt,r] = [ut, vt,2, . . . , vt,r].
Also, let µt be the mean of Pt. Then,

∆tΣ
⊥
t ∆t = E

X∼Pt

[
∆t(ProjV⊥

t
(X − µt))(ProjV⊥

t
(X − µt))⊤∆t

]
= E
X∼Pt

[
∆tΠ

⊥
t (X − µt)(X − µt)⊤Π⊥

t ∆t

]
= E
X∼Pt

[
∆tAtA

⊤
t (X − µt)(X − µt)⊤AtA

⊤
t ∆t

]
(31)

= E
X∼Pt

[
At+1A

⊤
t+1(X − µt)(X − µt)⊤At+1A

⊤
t+1

]
= E
X∼Pt

[
(ProjV⊥

t+1
(X − µt))(ProjV⊥

t+1
(X − µt))⊤

]
(32)

for the last line we used the expressions for At,At+1 that we gave in the previous paragraph to
conclude that At+1A

⊤
t+1 = ΠV⊥

t+1
.

Proof of (iii) The proof follows by the definition of B⊥
t+1 = (EX∼P [wt(X)])

2
Σ⊥
t+1 − (1 −

C1ϵ)ΠV⊥
t+1

, the previous two claims, and linearity.

We now show how to complete the proof given Claim C.7.

ϕt+1 := tr
(
(B⊥

t+1)
2p
)

= tr
(
(∆tB

⊥
t ∆t)

2p
)

(by Claim C.7)

= tr
(
(B⊥

t ∆t)
2p
)

(by properties of ∆t and trace; see below)

≤ tr
(
(B⊥

t)
2p∆2p

t

)
(by Lieb-Thirring inequality (Fact B.7)

= tr
(
(B⊥

t)
2p∆t

)
(∆t := I− utu⊤t is idempotent)

= tr
(
(B⊥

t)
2p
(
I− utu⊤t

))
(by definition of ∆t)

= tr
(
(B⊥

t)
2p
)
− tr

(
(B⊥

t)
2putu

⊤
t

)
= tr

(
(B⊥

t)
2p
)
− u⊤t (B⊥

t)
2put , (by cyclic property of trace)

where for the third step one can expand out (∆tB
⊥
t ∆t)

2p = ∆tB
⊥
t ∆

2
tB

⊥
t ∆

2
t · · ·∆2

tB
⊥
t ∆t and

observe that: (i) ∆2
t = ∆t since ∆t := I− utu⊤t , and (ii) using the cyclic property of trace, after

applying trace to both sides we can move the first ∆t to the end.

30

Finally, we show how the above two claims imply that ϕt+1 ≤ (1 − polylog(ϵ/d))ϕt, for every
iteration t that Line 19 of the algorithm is executed:

ϕt+1 − ϕt ≥ u⊤t (B⊥
t)

2put (by Claim C.6)

≥ (u⊤t B
⊥
t ut)

2p (by Fact B.1)

=

((
1− 1

p

)
∥B⊥

t ∥op
)2p

(by condition (vii) of Condition C.1)

≳ ∥B⊥
t ∥2pop = ∥M⊥

t ∥2op

≳
tr((M⊥

t)
2)

polylog(d/ϵ)
=

ϕt
polylog(d/ϵ)

. (by Claim 3.4 with α, γ = polylog(d/ϵ))

C.4 Combining Everything Together

We now describe in more detail the algorithm that achieves Theorem 1.3 and put together the previous
parts to derive the guarantee and runtime of the main theorem.

The final algorithm is outlined in Algorithm 5.

Algorithm 5 Full Algorithm
1: Input: ϵ ∈ (0, 1/2), sets S1, S2 ⊂ Rd datasets, where for each i = 1, 2 the uniform distribution

on Si is of the form (1 − ϵ)Gi + ϵBi for some Gi satisfying Definition 2.1 with appropriate
parameters.

2: Output: A vector in Rd.

3: Run the algorithm from Lemma B.18 on S1 and let w(x) for x ∈ S1 be the weights that it outputs.
Let P be the distribution assigning mass w(x)/

∑
x∈S1

w(x) to every x ∈ S1.
4: Run Algorithm 1 on input P . Let V1 and µ1 be the subspace and the vector that it outputs.
5: Project all points from S2 to V1, i.e., S2 ← {ProjV1

(x) : x ∈ S2}.
6: Run Algorithm 4 on S2. Let µ2 be the vector that it outputs.
7: return µ1 + µ2.

Proof of Theorem 1.3. The set S1 is comprised of i.i.d. points from the ϵ-corrupted version ofN (µ, I)
and its size is chosen to be a large enough multiple of ϵ−2(d + log(1/δ))polylog(d/ϵ), so that by
Lemma B.20 the uniform distribution on S1 is (ϵ, α, k)-good with α = ϵ/ log(1/ϵ) and k =
polylog(d/ϵ). The preprocessing step of Line 3 ensures that the eigenvalues of the covariance matrix
are at most 1 + ϵpolylog(1/ϵ), which is part of Setting 2.3 and utilized in the analysis of the next
steps. The preprocessing step of Line 3 runs in nearly-linear time O(ndpolylog(d/ϵ)).

The step of Line 4 has been analyzed in Section 3 and Appendix C using the potential argument. We
have demonstrated that in each iteration of the algorithm, the potential function ϕt := tr((M⊥

t)
2)

undergoes multiplicative reduction: ϕt+1 ≤ (1− polylog(ϵ/d))ϕt. Initially, the potential is naïvely
bounded by ϕ0 = poly(d/ϵ)log d. With just polylog(d/ϵ) iterations, the potential decreases to
ϕt ≤ ϵlog d, resulting in ∥B⊥

t ∥op = O(ϵ) and leading to the termination of Algorithm 1 with
∥ProjV⊥

1
(µ1 − µ)∥2 = O(ϵ).

Each step of the algorithm can be implemented in O(ndpolylog(d/ϵ)) time, for example, computing
(B⊥)log dz by iteratively multiplying z by B⊥. Utilizing the special form of covariance matrices
enables each multiplication to be calculated efficiently in O(nd) time.

Since Algorithm 1 only adds one direction per iteration to the subspace V1, the dimension of V1
will be d′ = O(polylog(d/ϵ)). We now use a smaller sized second dataset S2 that consists of
ϵ−2(d′ + log(1/δ))polylog(d/ϵ) samples and run Algorithm 4 on S2. The runtime of that algorithm
is given in Lemma 2.6, and since we are using d′ = O(polylog(d/ϵ)) for the dimension, the runtime
of that algorithm is O(ϵ−2−rpolylog(d/ϵ)). Finally, since the output µ2 approximates µ in the
subspace V1 within error O(ϵ), combining µ1 and µ2 yields an estimate with ∥(µ1 + µ2)− µ∥2 ≤
∥ProjV⊥

1
(µ1 − µ)∥2 + ∥ProjV1

(µ2 − µ)∥2 = O(ϵ).

31

D Omitted Proofs from Section 4

In this section, we provide the details omitted from Section 4. Appendix D.1 proves the properties
of the conditional distribution of the covariates conditioned on the responses being in an interval.
Appendix D.2 then uses these properties to show that the samples from this distribution satisfy the
goodness condition. Finally, we provide the details missing from the proof sketch in the main body in
Appendix D.3.

D.1 Conditional Distribution of Covariates

We first begin by proving Claim 4.1.

Claim 4.1 (Conditional Distribution). Let (X, y) ∈ Rd+1 follow Definition 1.2. Given a ∈ R,
denote by Ga the distribution of X given y = a. Similarly, given an interval I ⊂ R, let GI
represent the conditional distribution of X given y ∈ I . Define σ2

y := σ2 + ∥β∥22. Then, Ga =

N
(
a
σ2
y
β, Id− 1

σ2
y
ββ⊤) andGI = 1

Pr[y∈I]
∫
I
ϕ(a′; 0, σ2

y)N
(
a′

σ2
y
β, Id− 1

σ2
y
ββ⊤)da′, where ϕ(z; 0, ν2)

denotes the pdf of the N (0, ν2) at z ∈ R.

Proof. Using Fact D.1 with y1 = X, y2 = y, µ1 = µ2 = 0,Σ11 = Id,Σ12 = β,Σ21 = β⊤,Σ22 =
σ2
y = σ2 + ∥β∥22.

Fact D.1. If
[
y1
y2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
, then y1|y2 ∼ N (µ̄, Σ̄), with µ̄ = µ1 +

Σ12Σ
−1
22 (y2 − µ2) and Σ11 −Σ12Σ

−1
22 Σ21.

For the distribution GI , the claim follows by definition of conditional probability and law of total
probability

pX|y∈I(x) =

∫
a′∈I pX|y=a′(x)py(a

′)da′

Pr[y ∈ I]
,

and then use the expression for the pdf of Ga′ that we showed earlier.

D.1.1 Properties of Conditional Distribution

In Section 3, we mainly focused on the case where the underlying distribution is N (µ, Id). For the
purposes of our robust regression algorithm, we show in this section that the goodness conditions are
satisfied by the distribution GI and get as a corollary a robust mean estimator for µGI

.

Lemma D.2 (Properties of GI). Let I = [a, b] be an interval of length ℓ. Further suppose that
max(|a|, |b|) ≤ 2σy . Let X ∼ GI and let µ and Σ be the mean and covariance of X . Then:

1.
∥∥µ− aβ/σ2

y

∥∥
2
≤ ℓ∥β∥2/σ2

y and ∥µ∥2 ≤ 4∥β∥2/σy

2. ∥Σ− I∥op ≤ 9∥β∥22/σ2
y .

3. ∥X − µ∥ψ2
≲ 1 + ∥β∥2/σy .

Proof. For any z ∈ I , we know that the mean of Gz is equal to zβ/σ2
y by Claim 4.1. Since GI is a

convex combination of Gz for z ∈ I , it follows that µ is a convex combination of aβ/σ2
y and bβ/σ2

y .
Therefore, the mean µ satisfies ∥µ− aβ/σ2

y∥ ≤ |b− a|∥β∥2/σ2
y .

Similarly, for any z ∈ I , EW∼Gz [WW⊤] = Id − 1
σ2
y
ββ⊤ + z2

σ4
y
ββ⊤ by Claim 4.1. Thus the second

moment of X ∼ GI is equal to EX∼GI
[XX⊤] = Id − 1

σ2
y
ββ⊤ + αa2+(1−α)b2

σ4
y

ββ⊤ for α ∈ [0, 1].
Thus, we have that

∥Σ− Id∥op =

∥∥∥∥ E
X∼GI

[XX⊤]− µµ⊤ − Id

∥∥∥∥
op

32

≤ ∥µ∥22 +
1

σ2
y

∥β∥22 +max(a2, b2)∥β∥22/σ4
y

≤ 2max(a2, b2)∥β∥22/σ4
y +
∥β∥22
σ2
y

≤ 9∥β∥22/σ2
y.

The proof of the last claim is based on the fact that each component of the mixture GI is Gaussian
(and thus sub-Gaussian). For a single one-dimensional Gaussian Y ∼ N (0, σ2), the sub-Gaussian
norm is constant, in particular ∥Y ∥ψ2

=
√

2/π.

E
X∼GI

[
|v⊤(x− µGI

)|p
]1/p

=

(
E
a∼I

E
X∼Ga

[
|v⊤(x− µGI

)|p
])1/p

= max
a∈I

E
X∼Ga

[
|v⊤(x− µGI

)|p
]1/p

≤ max
a∈I

E
X∼Ga

[
|v⊤(x− µGa

)|p
]1/p

+ ∥µGa
− µGI

∥2

≤
√
2p/π + ℓ ∥β∥2 /σ

2
y .

Hence,
∥∥v⊤(X − µGI

)
∥∥
ψ2
≤
√
2/π + ℓ ∥β∥2 /σ2

y for every direction v ∈ Sd−1.

D.2 Robustness of Goodness Conditions to Spectral Noise

We now show that a large set of i.i.d. samples from the conditional distribution GI satisfies the
goodness condition provided that the interval is close to the origin and the norm of β is small.
Lemma D.3. Let I = [a, b] be an interval of length ℓ. Let ϵ0 be a small enough constant. Let
ϵ ∈ (0, ϵ0). Further suppose that max(|a|, |b|) ≤ 2σy , ∥β∥2 ≲ σϵ log(1/ϵ), and α ≥ ϵ2.

Let S be a set of n i.i.d. points from the distribution GI . If n ≫ k3(d log(k/ϵ)+log(1/τ))
min(α2,ϵ2/ log2(1/ϵ))

then with
probability 1− τ , the uniform distribution on S satisfies (ϵ, α, k)-goodness condition (Definition 2.1)
with respect to µGI

.

Proof. We show this for each one of the conditions separately.

Condition (1) We first calculate the true probability of v⊤(X − µGI
) being larger than γ. The

distribution of v⊤(X −µGa
) isN (0, σ̃v) where σ̃v := 1− (v⊤β)2/σ2

y . Using Taylor approximation
for the cdf of the projected points,

Pr
X∼Ga

[v⊤(X − µGa
) > σ̃vt] ≤

1

2
− t√

2π
+

t3

2
√
2π

.

Thus,

max
v∈Sd−1

Pr
X∼GI

[v⊤(X − µGI
) > tσ̃v +max

a∈I
∥µGa − µGI

∥2]

≤ max
a∈I

Pr
X∼Ga

[v⊤(X − µGI
) > tσ̃ +max

a∈I
∥µGa

− µGI
∥2]

≤ max
a∈I

Pr
X∼Ga

[v⊤(X − µGa
) > tσ̃]

≤ 1

2
− t√

2π
+

t3

2
√
2π

.

Applying VC inequality as in Lemma B.20, we obtain that the empirical probability over a set of size
n ≳ (d+ log(1/τ))/ϵ2 samples will satisfy that with probability 1− τ ,

max
v∈Sd−1

Pr
X∼S

[v⊤(X − µGI
) > t max

v∈Sd−1
σ̃v +max

a∈I
∥µGa

− µGI
∥] ≤ 1

2
− t√

2π
+

t3

2
√
2π

+ ϵ .

The expression on the right is less than 1/2 for t ≳ ϵ. Thus, we obtain that Condition (1) is satisfied
with γ1 ≲ ϵ+maxa∈I ∥µGa

− µGI
∥2 ≲ ϵ+ ℓβ/σ2

y .

33

Conditions (2.a) and (2.b) The proof of these two conditions for the Gaussian case only uses its
sub-Gaussian concentration. From Lemma D.2, we have that ∥X − µGI

∥ψ2
≤
√

2/π + ℓ ∥β∥2 /σ2
y

which is less than a constant when ℓ ≲ σ and ∥β∥2 ≲ σ.

Hence, identically to Lemma B.21, we have that if n ≫ (d + log(1/τ))/α2, for any set S′ ⊂ S
with |S′| ≥ (1 − α)|S|, the sample mean µS′ and the sample second moment ΣS′ satisfy that
∥µS′ − µGI

∥2 ≲ α
√
log(1/α) and ∥ΣS′ −ΣGI

∥op ≲ α log(1/α).

Using the triangle inequality, we have that ∥ΣS′ − I∥op ≤ ∥ΣS′ − I∥op + ∥ΣS′ − ΣGI
∥op ≲

α log(1/α) + ϵ2 log2(1/ϵ) ≲ α log(1/α), where we used Lemma D.2 and the assumptions on ∥β∥2
and α. Thus, Conditions (2.a) and (2.b) are satisfied.

Condition (2.c) We will follow the same notation as in Lemma B.20 and claim 4.1. Observe that
the proof of Lemma B.20 relied on Equation (4). Our goal will be to show that a similar right tail
concentration inequality is satisfied for the distribution GI . Since GI is a convex combination of Gz
for z ∈ [a, b], it suffices to show that each Gz satisfies Equation (4) after small changes.

Let X ∼ Gz . Then x = Σ
1/2
z y + µz for y ∼ N (0, I) and µz = zβ/σ2

y and Σz = I − ββ⊤/σ2
y .

We will show that the polynomial pU(x) = ∥U(x− µI)∥22 satisfies similar right tail concentration
inequality as ∥Uy∥22 in Lemma B.20. Applying triangle inequality,

pU(x) = ∥U(x− µI)∥22 ≤ 2∥UΣ1/2
z y∥22 + 2∥U(µz − µI)∥22

≤ 2∥UΣ1/2
z y∥22 + 2∥U∥2op∥µz − µI∥22 .

By Lemma D.2, ∥µz − µI∥22, is at most ℓ2∥β∥22/σ4
y ≤ 1 under the assumptions. Thus, we obtain the

following deterministic expression:

pU(x) ≤ 2∥UΣ1/2
z y∥22 + 2tr(U⊤U). (33)

The expectation of ∥UΣ
1/2
z y∥22 is tr(Σ1/2

z U⊤UΣ
1/2
z) = tr(U⊤UΣz), which is less than tr(U⊤U)

since Σ ⪯ I. Combining this with Equation (33), we obtain

P(pU(x) ≥ 100tr(U⊤U)) ≤ P(∥UΣ1/2
z y∥22 −E[∥UΣ1/2

z y∥22] ≥ 48tr(U⊤U)) . (34)

Finally, the right tail of ∥UΣ
1/2
z y∥22 − E[∥UΣ

1/2
z y∥22] depends on ∥Σ1/2

z U⊤UΣ
1/2
z ∥F and

∥Σ1/2
z U⊤UΣ

1/2
z ∥op by the Hanson Wright inequality. Both of these expressions are again bounded

by ∥U⊤U∥F and ∥U⊤U ∥op, respectively as follows:

∥Σ1/2
z U⊤UΣ1/2

z ∥F ≤ ∥Σ1/2
z ∥op∥U⊤U∥F∥Σ1/2

z ∥op ≤ ∥U⊤U∥F
and

∥Σ1/2
z U⊤UΣ1/2

z ∥op ≤ ∥Σ1/2
z ∥op∥U⊤U∥op∥Σ1/2

z ∥op ≤ ∥U⊤U∥op ,

where we use ∥Σz∥op ≤ 1 and Fact B.9. Hence, applying Hanson-Wright inequality to ∥UΣ
1/2
z y∥22

along with the above relations, Equation (34) implies that pU(x) satisfies Equation (4) with (ϵ/k)5 in
the right hand side. The rest of the proof goes through similar to Lemma B.20.

Thus, Theorem 3.1 is applicable and we obtain the following algorithm.
Corollary D.4. Let ϵ0 be a small enough constant. Let ϵ ∈ (0, ϵ0), c ∈ (0, 1), δ ∈ (0, 1). Let S ∈ Rd

be an ϵ-corrupted set of n≫ d+log(1/τ)
ϵ2 polylog(d/ϵ) points from the distribution GI of Claim 4.1

with ℓ ≤ σ/ log(1/ϵ) and ∥β∥2 ≤ σϵ log(1/ϵ). Then, the Algorithm 5 produces an estimate µ̂ such
that ∥µ̂− µGI

∥2 ≤ ϵ with probability at least 1− τ in time (nd+ 1/ϵ2+c)polylog(n, d, 1/ϵ, 1/τ).

D.3 Proof of Theorem 1.4

We now provide the details missing from Section 4. The proof sketch there relied heavily on the
events defined in Equation (1), restated below:

(i) |σ̂2
y − σ2

y| ≲ σ2
yϵ log(1/ϵ) (ii) |a| > 0.0001σ̂y (iii) ∥β̂I − µGI

∥2 ≲ ϵ/c. (35)

34

The details missing from the proof sketch in Section 4 are: (i) the events in Equation (35) hold, the
events in Equation (35) suffice for the algorithm’s output to be correct, and the proof of Lemma 4.2.
We already explained why (i) and (ii) hold. The third holds by Corollary D.4.

We begin by formally showing that if the events in Equation (1) hold, then the algorithm’s output is
correct.
Claim D.5. Consider the setting and notation of Theorem 1.4 and Section 4. Let c ∈ (0, 1). Assuming
that the following three events hold

(i) |σ̂2
y − σ2

y| ≲ σ2
yϵ log(1/ϵ).

(ii) |a| > 0.0001σ̂y .

(iii) ∥β̂I − µGI
∥2 ≲ ϵ/c.

Then, ∥β̂ − β∥2 ≲ σϵ/c.

Proof. We want to show that given Items (i) to (iii), we have that ∥β̂ − β∥2 ≲ σϵ/c, where
β̂ := (σ̂2

y/a)β̂I is the algorithm’s output vector. Using the triangle inequality,∥∥∥β̂ − β∥∥∥
2
=

∥∥∥∥∥ σ̂2
y

a
β̂I − β

∥∥∥∥∥
2

≤

∥∥∥∥∥ σ̂2
y

a
β̂I −

σ̂2
y

a
µGI

∥∥∥∥∥
2

+

∥∥∥∥∥ σ̂2
y

a
µGI
− β

∥∥∥∥∥
2

. (36)

We upper bound each term by O(σϵ/c) separately. For the first term we have that∥∥∥∥∥ σ̂2
y

a
β̂I −

σ̂2
y

a
µGI

∥∥∥∥∥
2

=
σ̂2
y

|a|

∥∥∥β̂I − µGI

∥∥∥
2

≲ σ̂y

∥∥∥β̂I − µGI

∥∥∥
2

(by Item (ii) above)

≲ σ̂yϵ/c (by Item (iii))
≲ σyϵ/c (by Item (i) and ϵ < 1/2)

≤ (σ + ∥β∥2) ϵ/c (σ2
y := σ2 + ∥β∥22)

≲ (σ + σϵ log(1/ϵ)) ϵ/c (by assumption ∥β∥2 ≲ σϵ log(1/ϵ))
≲ σϵ/c . (ϵ < 1/2)

For the second term of Equation (36), the triangle inequality implies that∥∥∥∥∥ σ̂2
y

a
µGI
− β

∥∥∥∥∥
2

≤

∥∥∥∥∥σ2
y

a
µGI
− β

∥∥∥∥∥
2

+
|σ̂2
y − σ2

y|
|a|

∥µGI
∥2 .

We bound the first term above as follows:∥∥∥∥∥σ2
y

a
µGI
− β

∥∥∥∥∥
2

=
σ2
y

|a|

∥∥∥∥µGI
− a

σ2
y

β

∥∥∥∥
2

≲ σy

∥∥∥∥µGI
− a

σ2
y

β

∥∥∥∥
2

(by Item (i))

≤ σy
ℓ∥β∥2
σ2
y

(by Lemma D.2)

≤ ℓ∥β∥2
σ

≲ σϵ .

(by definition of ℓ, Item (i), and assumption ∥β∥2 ≲ σϵ log(1/ϵ))

The second term can be controlled as follows:

|σ̂2
y − σ2

y|
|a|

∥µGI
∥2 ≲ σyϵ log(1/ϵ)∥µGI

∥2 (Items (i) and (ii))

≲ σyϵ log(1/ϵ)
(a+ ℓ)∥β∥2

σ2
y

(by Lemma D.2)

35

≲
σyϵ log(1/ϵ)σ̂y∥β∥2

σ2
y

(a+ ℓ ≲ σ̂y by definition of a, ℓ)

≲ ϵ log(1/ϵ)∥β∥2 (by Item (i))
≲ σϵ . (by assumption ∥β∥2 ≲ σϵ log(1/ϵ))

Finally, we provide the proof of Lemma 4.2 below.
Lemma 4.2. Consider the context of Theorem 1.4 and Algorithm 2. First, for every possible choice of
I that can be made in Line 3, Pr(X,y)∼G[y ∈ I] ≳ ℓ/σy . Second, EI

[
Pr(X,y)∼B [y ∈ I|I]

]
≲ ℓ/σy ,

where the outer expectation is taken with respect to the random choice of the center of I .

Proof. We start with the first claim.

Pr
(X,y)∼G

[y ∈ I] = Pr
y∼N (0,σ2

y)
[y ∈ I]

=

∫
y∈R

1(y ∈ I)ϕ(y; 0, σ2
y)dy (ϕ(y; 0, σ2

y) denotes the pdf of N (0, σ2
y))

≥
∫
y∈[−1.1σy,1.1σy]

1(y ∈ I)ϕ(y; 0, σ2
y)dy

≥ (0.2/σy)

∫
y∈[−1.1σy,1.1σy]

1(y ∈ I)dy

≥ 0.2ℓ/σy ,

where we the second line uses that I ⊂ [−1.1σy, 1.1σy] because its center belongs in [−σ̂y, σ̂y] and
its length is ℓ = σ̂y/ log(1/ϵ), and σ̂y is very close to σy (Item (i)), and ϵ ≪ 1. In the third line
we used that the pdf of N (0, σ2

y) is pointwise bigger than a small multiple of 1/σy in the range
[−1.1σ2

y, 1.1σ
2
y].

We now prove the second claim. First,

Pr
(X,y)∼B

[y ∈ I] ≤ Pr
(X,y)∼B

[y ∈ I, y ∈ [−σ̂y − ℓ, σ̂y + ℓ]] + Pr
(X,y)∼B

[y ∈ I, y ̸∈ [−σ̂y − ℓ, σ̂y + ℓ]]

(37)
≤ Pr

(X,y)∼B
[y ∈ I, y ∈ [−σ̂y − ℓ, σ̂y + ℓ]] (38)

≤ Pr
(X,y)∼B

[y ∈ I | y ∈ [−σ̂y − ℓ, σ̂y + ℓ]] . (39)

Now let B′ be the conditional distribution B given y ∈ [−σ̂y − ℓ, σ̂y + ℓ] for saving space. Recall
that the interval I is itself a random interval. If we take expectation with respect to I of both sides of
Equation (39) we have that

Pr
I,(X,y)

[y ∈ I] ≤ E
I

[
E

(x,y)∼B′
[1(y ∈ I)]

]
= E

(x,y)∼B′

[
E
I
[1(y ∈ I)]

]
≤ E

(x,y)∼B′

[
ℓ

2.2σ̂y

]
≤ ℓ

2.2σ̂y
≲

ℓ

σy
.

where we changed the order of expectations, and used that given a fixed point y ∈ [−σ̂y − ℓ, σ̂y + ℓ],
the probability that this y is being hit by our random interval I is at most the length ℓ of I divided by
the the length of [−σ̂y − ℓ, σ̂y + ℓ] (which as we have shown before is subset of [−1.1σy, 1.1σy]. In
the last inequality we relate σ̂y and σy once more using Item (i).

E Adaptation of Algorithm 1 to the Streaming Setting

In this section, we give a brief sketch of how the robust mean estimation algorithm of Theorem 1.3
can be adapted to the streaming setting using the techniques of [DKPP22]. The adaptation follows
closely [DKPP22] and we thus omit the details.

We recall the data access model for the streaming setting:

36

Definition E.1 (Single-Pass Streaming Model). Let S be a fixed set. In the one-pass streaming model,
the elements of S are revealed one at a time to the algorithm, and the algorithm is allowed a single
pass over these points.

The samples that form the set S are still samples from an ϵ-contaminated version ofN (µ, I) as before.
The adaptation of our main result to that model is the following:

Theorem E.2 (Almost Linear-Time and Streaming Algorithm for Robust Mean Estimation). Let ϵ0
be a sufficiently small positive constant. There is an algorithm that, given parameters ϵ ∈ (0, ϵ0),
c ∈ (0, 1), δ ∈ (0, 1), reads a stream of poly(d/ϵ) points from an ϵ-corrupted version ofN (µ, Id) (cf.
Definition 1.1), computes an estimate µ̂ such that ∥µ̂− µ∥2 = O(ϵ/c) with probability at least 1− δ.
Moreover, the algorithm runs in time (nd + 1/ϵ2+c)polylog(d/ϵδ), and uses additional memory
Õ(d+ poly(1/ϵ)).

We also restrict our attention to Algorithm 1, which is the first stage of the overall algorithm. This is
because the second stage, Algorithm 4, is only utilized when the dimension has been reduced to just
a polylog(d/ϵ), thus one can simulate the offline algorithm in the streaming setting by storing the
whole dataset, which has size O(polylog(d/ϵ)/ϵ2) (by “size” we mean the number of scalar numbers
that the dataset consists of).

Main Differences from [DKPP22] For the streaming setting, we change our viewpoint and instead
of denoting by P = (1 − ϵ)G + ϵB the uniform distribution over a fixed dataset, we now denote
by P the underlying data distribution itself (in our case G = N (µ, I) or more generally any
distribution satisfying the goodness conditions of Definition 2.1). Consequently, the quantities
Σt,Bt,Mt,Σ

⊥
t ,B

⊥
t ,M

⊥
t , mentioned in the pseudocode and in our proofs, are all population-level

quantities. Instead of having direct access to them (as in Section 3), the algorithm is free to use the
stream of fresh i.i.d. samples from P and build estimators to approximate them. The estimators
needed for this are the same as in [DKPP22], for which we will give an overview later on. Apart
from this difference, the algorithm from Section 3 is easy to implement in the streaming setting
with low memory: The operation of multiplying a vector z by an empirical covariance matrix∑

x(x− µ)(x− µ)⊤ (which was used frequently in Section 3) can be implemented in the streaming
setting without storing the entire covariance matrix, if one calculates first the inner product (x−µ)⊤z
in the sum and then multiply that scalar result with (x− µ). Second, the weight function wt(x) that
the algorithm maintains for re-weighting points is now defined over the entire Rd (and not just over a
fixed dataset, since there is no such dataset anymore). The algorithm can store a representation of
wt by storing the matrices Ut and how many times Line 7 of the filter has been executed (having
these in memory then given any point x ∈ Rd the algorithm can calculate wt(x)). Since the number
of iterations tmax = O(polylog(d/ϵ)) and the size of each Ut is O(d polylog(d/ϵ)), the memory
needed to store the weights is O(d polylog(d/ϵ)) overall.

The proof of correctness of the resulting streaming algorithm follows the same arguments as before,
but needs to account extra errors for the approximations taking place. Instead of giving a complete
formal proof, we state the new deterministic conditions that are needed in Condition E.3. Then, we
discuss why each of them is needed and how it can be obtained.

Condition E.3 (Deterministic Conditions for Algorithm 6). Let Scover be the cover set of [DKPP22,
Lemma 4.9] For all t ∈ [tmax], the following hold:

(i) Scores: For every x ∈ Scover, it holds ∥M⊥
t (x− µt)∥22 ≳ ∥Ut(x− µt)∥22 − ∥M⊥

t ∥2F.

(ii) Let T := λ̂t∥Ut∥2F. For every w : Rd → [0, 1], the algorithm has access to an estimator
f(w) for the quantity EX∼P [w(X)τ̃t(X)], where τ̃t(X) = ∥Ut(x − µt)∥221(∥Ut(x −
µt)∥22 > 100tr(U⊤

t Ut)) such that f(w) > Tt/2 whenever EX∼P [w(X)τt(X)] > Tt.

(iii) Spectral norm of B⊥
t : λ̂t ∈ [0.1∥B⊥

t ∥op, 10∥B⊥
t ∥op].

(iv) Frobenius norm ∥Ut∥2F ∈ [0.8k∥M⊥
t ∥2F, 1.2k∥M⊥

t ∥2F].

(v) Maximum norm: maxj∈[k] ∥vt,j∥22 ≤
log k
k tr(U⊤

t Ut).

(vi) Probability estimate: |q̂t − qt| ≤ 0.1/(k2tmax).

37

(vii) Ut almost orthogonal: For every pair ui, uj of distinct rows of Ut it holds |⟨ui, uj⟩| ≤
∥ui∥2∥uj∥2/k2.

(viii) Approximate eigenvector: The vector ut from Line 19 satisfies u⊤t B
⊥
t ut ≥ (1 −

1/p)∥B⊥
t ∥op.

Condition (i) This condition is used instead of Condition (iii) in Condition C.1 to go from Equa-
tion (20) to Equation (21). The issue with the old condition condition is that in the streaming
setting there is no fixed dataset for which we can require the approximation to hold. Instead,
we can use the technique from [DKPP22] and define an appropriate cover Scover for which
EX∼B [wt+1(X)∥M⊥

t (X
⊥ − µ⊥)] ≈ EX∼S [wt+1(X)∥M⊥

t (X
⊥ − µ⊥)] (see Section 4.2.1 of

[DKPP22] for more details on the cover argument). Finally, we remark that the additional term
∥M⊥

t ∥2F is due to the fact that the matrix Ut is calculated in Line 17 based on approximations of Mt

and not Mt itself (see [DKPP22, Lemma 4.15]). That error term can be tolerated in the steps of the
correctness proof that we provided in Appendix C.

Condition (ii) Since the stopping condition of the filtering procedure (Algorithm 3) depends on
population-level quantities, it needs to be estimated within sufficient accuracy. The estimator for that
and the correctness of the resulting filter has been analyzed in [DKPP22].

Condition (iii) An approximate top eigenvector for Condition (iii) is obtained by multiplying a
random Gaussian vector by log d fresh sample-based estimators of B⊥

t (i.e., multiply z ∼ N (0, I) by
M̂⊥

t , where M̂⊥
t as in Line 14). This estimator has been analyzed in [DKPP22, page 24].

Conditions (v) and (vi) These follow similarly to the corresponding conditions of Appendix C. For
Condition (vi), the estimator now will use fresh estimates M̂⊥

t of the form of Line 14, instead of the
population-level M⊥

t .

Condition (viii) This condition can be obtained by [DKPP23, Lemma 4.3] and [DKPP22, Lemma
4.15].

38

Algorithm 6 Robust Mean Estimation Under Huber Contamination In Streaming Model (Stage 1)
Input: Parameter ϵ ∈ (0, 1/2), stream of i.i.d. points from the distribution P = (1− ϵ)G+ ϵB,
where G satisfies Definition 2.1 with appropriate parameters.
Output: An approximation of the mean in a subspace V⊥ and the orthogonal subspace V .

1: Let C be a sufficiently large constant, k = C log2(n+ d), tmax = (log(d/ϵ))C .
2: Initialize V1 ← ∅ and w1(x) = 1 for all x ∈ Rd.
3: for t = 1, . . . , tmax do
4: Let Vt be the subspace spanned by the vectors in Vt, and V⊥

t be the perpendicular subspace.
5: Let Pt be the distribution P re-weighted by wt, i.e., Pt(x) = wt(x)P (x)/EX∼P [w(X)].
6: Let µ⊥

t ,Σ
⊥
t be the mean and covariance of ProjVt

(X) when X ∼ Pt
7: Define B⊥

t = (EX∼P [wt(X)])2Σ⊥
t − (1 − C1ϵ)ΠV⊥

t
, where ΠV⊥

t
is the orthogonal pro-

jection matrix for V⊥
t , and M⊥

t := (B⊥
t)

p for p = log(d).
8: Calculate λ̂t such that λ̂t/∥B⊥

t ∥op ∈ [0.1/10] using power iteration. ▷ cf. Appendix B
9: If λ̂t ≤ Cϵ then return µt and Vt.

10: Let qt := Prz,z′∼N (0,I)[|⟨M⊥
t z,M

⊥
t z

′⟩| > ∥M⊥
t z∥2∥M⊥

t z
′∥2/k2].

11: Calculate an estimate q̂t such that |q̂t − qt| ≤ 1
10(k2tmax)

.
12: if q̂t ≤ 1/(k2tmax) then ▷ Case 1 (cf. Section 3.1)
13: for j ∈ [k] do
14: Let B̂⊥

t,j,ℓ for ℓ ∈ [log d] sample-based versions of B⊥
t .

15: Let M̂⊥
t :=

∏log d
ℓ=1 B̂⊥

t,j,ℓ.

16: vt,j ← M̂⊥
t zt,j for zt,j ∼ N (0, I).

17: Ut ← [vt,1, . . . , vt,k]
⊤ i.e., the matrix with rows vt,j for j ∈ [k].

18: wt+1 ← MULTI-DIRECTIONALFILTER(P,w, ϵ,Ut) ▷ cf. [DKPP22, Algorithm 4]
19: else ▷ Case 2 (cf. Section 3.2)
20: Find a vector ut such that u⊤t B

⊥
t ut ≥ (1− 1/p)∥B⊥

t ∥op ▷ Power iteration
21: Vt+1 ← Vt ∪ {ut}.
22: Let µVt

= EX∼Pt
[ProjVt

(X)] be the mean of Pt after projection to Vt.
23: return µVt and Vt.

39

	Introduction
	Our Results
	Our Techniques
	Related Work

	Preliminaries
	Goodness Condition
	Polynomial Time Algorithm

	Almost-Linear Time Algorithm for Robust Mean Estimation
	Case 1: Many Large Eigenvalues
	Case 2: A Few Large Eigenvalues

	Robust Linear Regression: Optimal Error In Almost-Linear Time
	Proof Sketch of thm:regression

	Discussion
	Additional Related Work
	Additional Preliminaries
	Linear Algebraic Facts
	Concentration of Measure Facts
	Existing Robust Algorithms: Trimmed Mean and diakonikolas2022streaming
	Goodness Condition and Its Sample Complexity
	Filtering Procedure
	Algorithm from DKKLMS18-soda

	Omitted Proofs from sec:robustmean
	Deterministic Conditions for alg:robustmeanalgo
	Case 1
	Case 2
	Combining Everything Together

	Omitted Proofs from sec:regression
	Conditional Distribution of Covariates
	Robustness of Goodness Conditions to Spectral Noise
	Proof of thm:regression

	Adaptation of alg:robustmeanalgo to the Streaming Setting

