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ABSTRACT

Today, deep learning optimization is primarily driven by research

focused on achieving high inference accuracy and reducing latency.

However, the energy eociency aspect is often overlooked, pos-

sibly due to a lack of sustainability mindset in the oeld and the

absence of a holistic energy dataset. In this paper, we conduct a

threefold study, including energy measurement, prediction, and

eociency scoring, with an objective to foster transparency in power

and energy consumption within deep learning across various edge

devices. Firstly, we present a detailed, orst-of-its-kind measure-

ment study that uncovers the energy consumption characteristics

of on-device deep learning. This study results in the creation of

three extensive energy datasets for edge devices, covering a wide

range of kernels, state-of-the-art DNN models, and popular AI

applications. Secondly, we design and implement the orst kernel-

level energy predictors for edge devices based on our kernel-level

energy dataset. Evaluation results demonstrate the ability of our

predictors to provide consistent and accurate energy estimations

on unseen DNN models. Lastly, we introduce two scoring metrics,

PCS and IECS, developed to convert complex power and energy

consumption data of an edge device into an easily understandable

manner for edge device end-users. We hope our work can help

shift the mindset of both end-users and the research community

towards sustainability in edge computing, a principle that drives

our research. Find data, code, and more up-to-date information at

https://amai-gsu.github.io/DeepEn2023.

CCS CONCEPTS

• Computer systems organization → Embedded and cyber-

physical systems; • Computing methodologies → Machine

learning.

KEYWORDS

Edge AI, Deep Neural Network, Energy Consumption

ACM Reference Format:

Xiaolong Tu1 Anik Mallik2 Dawei Chen3 Kyungtae Han3 Onur Altintas3

Haoxin Wang1 Jiang Xie2. 2023. Unveiling Energy Eociency in Deep Learn-

ing: Measurement, Prediction, and Scoring across Edge Devices. In The

Eighth ACM/IEEE Symposium on Edge Computing (SEC ’23), December 6–9,

2023, Wilmington, DE, USA. ACM, New York, NY, USA, 14 pages. https:

//doi.org/10.1145/3583740.3628442

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proot or commercial advantage and that copies bear this notice and the full citation
on the orst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SEC ’23, December 6–9, 2023, Wilmington, DE, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0123-8/23/12.
https://doi.org/10.1145/3583740.3628442

1 INTRODUCTION

Recently, there has been heavy investment in implementing var-

ious AI applications on mobile and edge devices, for instance, (1)

vision-based AI applications, such as image classiocation [1–3],

face recognition [4, 5], object detection and tracking [6–8], im-

age super-resolution [9–11], segmentation [12], pose estimation

[13], and gesture recognition [14]; (2) natural language processing

(NLP) based applications, such as smart reply [15], question an-

swering [16], language translation [17, 18], and sentiment analysis

[19, 20]; and (3) voice-based applications, such as virtual-assistant

[21], speech recognition [22], and sound classiocation [23].

Despite the remarkable advances in edge device capabilities such

as functionality, computation power, and storage capacity, the lim-

ited energy capacity has been the major bottleneck in promoting

advanced edge AI applications. On one hand, edge AI applications,

particularly those that involve intensive computing resources such

as deep learning algorithms, tend to consume a signiocant amount

of energy [24, 25]. On the other hand, mobile and edge devices are

typically powered solely by embedded batteries, so their energy

capacity is signiocantly constrained by form factor requirements,

safety considerations, manufacturing costs, and concerns on the

environmental impact of the battery technology used. As a result,

heavy battery usage of an application often results in low ratings or

subpar user experience. A survey [26] onds that about 55% of users

surveyed would give a negative review to a mobile application that

consumes a lot of battery, indicating that energy consumption is

a crucial aspect of the user experience that cannot be overlooked.

These observations raise intuitive questions: How can we identify

the energy bottlenecks and optimize the energy eociency of on-device

deep learning for diverse edge devices? What are the primary factors

that have a large impact on the energy consumption of deep neu-

ral network (DNN) executions, the core of on-device deep learning?

Where is the energy spent inside a DNN execution? Answering these

questions, however, is challenging, due to the lack of holistic un-

derstanding of the intricacies of power and energy consumption

in DNN executions on edge devices. First and foremost, we cannot

optimize what cannot be measured. The energy eociency of an edge

device is more than its AI hardware capability in isolation. Instead,

it is coupled with the on-device deep learning software stack, whose

net performance is shrouded beneath the DNN models and end-to-

end processing pipeline of diverse edge AI applications. Second,

we cannot optimize what is under-appreciated or neglected in the

design.Most existing research and development in deep learning

primarily aim to reduce inference latency and enhance accuracy,

often neglecting to consider the impact on energy eociency. As a

result, it becomes crucial to strike a balance between improving

energy eociency and enhancing performance in on-device deep

learning for modern edge devices.
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In this paper, we study the problem of accurate energy measure-

ment, prediction, and understandable scoring of on-device deep

learning, and make three concrete contributions towards enabling

transparency of power and energy consumption inside on-device deep

learning across diverse edge devices.

First, we conduct the orst detailed measurement study to accu-

rately quantify the energy consumed by on-device deep learning

across diverse modern edge devices. Our measurement study covers

three dimensions, including the power and energy consumption of

kernels, state-of-the-art (SOTA) DNNmodels, and widely-used edge

AI applications. Our measurements reveal multiple key observa-

tions, which remain consistent across eight diferent measured edge

devices. Overall, we measure and collect one-grained power traces

and accurate energy consumption data for (1) 16 types of kernels

with 1, 847 unique conogurations, (2) nine SOTA DNN models with

50 variants each, and (3) six widely-used edge AI applications on

eight commercial edge devices executed with mobile CPU and GPU.

These measurements result in creation of three large-scale power

and energy datasets, including kernel-, model-, and application-

level datasets for on-device deep learning on edge devices.

Second, based on our kernel-level energy dataset and the obser-

vations gained in the measurement study, we design and implement

kernel-level energy predictors on both mobile CPU and GPU. To

the best of our knowledge, this is the orst energy predictor for

on-device deep learning on commercial edge devices (e.g., modern

smartphones), which can provide consistently accurate energy esti-

mation on unseen DNN models. This ofers an efective approach

to extend our measurements and observations derived from a lim-

ited DNN model space to new DNN models, which enhances the

extensibility of our measurement study.

Lastly, beyond valuing research that aims at improving the en-

ergy eociency of on-device deep learning, it is crucial that our

measurement study are accessible to a wide audience, such as end-

users with non-technical backgrounds. For instance, presenting

an energy eociency score, ranging from 0 to 100, should be more

straightforward and easier to understand than telling end-users

that their device will consume 120.090 mJ per inference to run Mo-

bileNetv1 with CPUs. To this end, we develop two scoring metrics:

power consumption score (PCS) and inference energy consumption

score (IECS). These two scoring metrics help to distill the power

and energy eociency of an edge device in an intuitive and under-

standable way. We present a complete scoring results for eight edge

devices benchmarked by leveraging our application-level dataset.

2 BACKGROUND AND CHALLENGES

2.1 Background

DNN models are the core of on-device deep learning and consume

a major portion of both computational and energy resources on

mobile and edge devices. A DNN model consists of a sequence

of primitive operations, such as convolution2D (conv), depthwise

convolution2D (dwconv), activations, pooling, and fully-connected

(fc), which are organized into layers, allowing the network to learn

complex patterns from input data. To enhance the computational

eociency of the DNN inference (i.e., to reduce inference latency

and avoid redundant memory access), kernel fusion (or operator

fusion) is a key optimization and has been incorporated in SOTA

Table 1: MobileNetv1 energy consumption.

CPU GPU

Energy Error Energy Error

Built-in 132.420mJ 10.3% 19.254mJ 30.64%

Ground-truth 120.090mJ - 27.760mJ -

DNN execution frameworks, such as TVM [27], TFLite [28], and

MNN [29]. For instance, three individual operations, conv, batch

normalization (bn), and rectioed linear unit (relu) can be fused into

one composite operation, conv++bn++relu1, to achieve inference

acceleration on edge devices. This means the entire sequence can

be processed as a single step, which reduces memory access (since

intermediate results don’t need to be written to and read from

memory) and kernel launch overhead. Hence, given its crucial role

in runtime optimization, a kernel is typically considered as the

fundamental unit for scheduling and execution in deep learning

frameworks, particularly on edge devices [30].

2.2 Challenges

C1: Accuracy. In order to optimize the energy eociency of DNN

executions on resource-constrained edge devices, it is crucial to

gain a deep understanding of the energy consumption character-

istics associated with various DNN models across diferent edge

hardware platforms, such as mobile CPUs and GPUs. Consequently,

the importance of conducting accurate measurement studies on real

devices is becoming increasingly paramount. However, measuring

accurate energy consumption on a real edge device is non-trivial.

The challenges arise from two main observations: (1) existing en-

ergy prooling methods for edge devices, which rely on built-in

current sensors, cannot capture power consumption at high time

granularity (i.e., less than 100 ms); and (2) the growing level of inte-

gration in the electronic circuits of edge devices presents challenges

when attempting to connect them with an external power monitor.

First, most SOTA DNN models can achieve inference latencies

of 10 to 200 ms when executed on mobile CPUs. These latencies

can be signiocantly reduced to a range of 1 to 50 ms when executed

on mobile GPUs [30]. On the other hand, a DNN model usually

consists of tens or hundreds of kernels that run sequentially on

the edge device [30–32], each potentially having an execution time

of less than a millisecond. Therefore, to accurately capture the

instantaneous power variations within a DNN inference, which

includes the precise power consumption of individual kernels, an

ideal power sampling rate should be less than 1 ms. However, we

have observed that existing edge devices, such as smartphones,

typically have built-in current sensors (e.g., fuel gauge) with a time-

granularity of approximately 100 ms to 1 second. This restricts

the sampling rate at which the sensors can measure the power

drawn by the device to 1 − 10 times per second. This indicates

that the existing built-in current sensors cannot fully capture the

one-grained, kernel-level power variations within a DNN inference

on the edge device, resulting in inaccurate measurements.

We have conducted ameasurement study on a real device, Huawei

P40 Lite, to investigate the extent of this discrepancy compared to

1In this paper, ++ represents kernel fusion.
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Figure 1: Comparison of time-granularity between the device’s built-in current sensor and external power monitor.

Table 2: MobileNetv1 individual kernel energy consumption.

Kernels
CPU

Built-in (mJ) Ground-truth (mJ) Error

conv++relu 3.914 3.984 1.76%

dwconv++relu 5.578 4.814 15.8%

conv++relu 8.020 7.739 3.62%

dwconv++relu 8.682 8.193 5.96%

conv++relu 2.649 2.422 9.36%

dwconv++relu 5.211 4.428 17.6%

conv++relu 1.225 0.930 31.8%

dwconv++relu 1.541 1.285 20.0%

conv++relu 2.030 1.643 23.5%

dwconv++relu 7.824 6.549 19.5%

conv++relu 3.450 2.933 17.6%

dwconv++relu 0.174 0.149 16.8%

conv++relu 1.179 0.972 21.3%

dwconv++relu 2.879 2.448 17.6%

conv++relu 12.394 11.324 9.45%

dwconv++relu 0.524 0.466 12.4%

conv++relu 14.112 12.976 8.76%

dwconv++relu 0.906 0.771 17.5%

conv++relu 12.065 11.095 8.74%

dwconv++relu 1.108 0.944 17.3%

conv++relu 14.446 13.327 8.39%

dwconv++relu 0.409 0.367 11.5%

conv++relu 12.240 11.357 7.77%

dwconv++relu 0.299 0.267 11.7%

conv++relu 4.349 4.019 8.20%

dwconv++relu 0.110 0.093 17.6%

conv++relu 4.353 3.902 11.6%

global-pool 0.071 0.062 14.4%

fully connected 0.664 0.636 4.42%

� error ≤ 5% � 5% < error ≤ 10%

� 10% < error ≤ 20% � error > 20%

the ground-truth power and energy consumption2. As shown in

Tables 1 and 2, measurements dependent on the device’s built-in

current sensor produce large errors in both the overall DNN model

(10.3% − 30.64%) and individual kernel (1.76% − 31.8%) energy con-

sumption3. Moreover, as we show in Section 4, using the energy

2In this paper, the ground-truth power and energy consumption is measured by
connecting the real device to the Monsoon power monitor [33].
3Energy consumption is calculated by multiplying the measured power consumption
by themodel/kernel inference latency. To ensure the energy consumption errors are pri-
marily caused by the power measurement inaccuracy, we use the ground-truth latency
for calculating the energy consumption in built-in current sensor measurements.
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(a) Samsung Galaxy S5 with a snap-type
battery connector (2014)
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(b) Samsung Galaxy S20 with an FPC bat-
tery connector (2020)

Figure 2: Comparison between an older snap-type battery

connector and a modern FPC connector.

dataset created by a built-in current sensor to train an energy pre-

dictor results in consistently poor estimation accuracy. In addition,

Fig. 1 demonstrates the built-in sensor fails to capture the character-

istics of power variations among kernels within a DNN inference.

For instance, there is usually a sudden power rise at the start of

conv executions, and a sudden power drop in most dwconvs.

Consequently, these observations indicate that existing energy pro-

oling solutions for edge devices that heavily rely on the built-in current

sensor may fail to ofer accurate power measurements for DNN ex-

ecutions (e.g., power prooler [34], reading virtual ole current_now

from /sys/class/power_supply/battery/ [35], and reading bat-

tery level drops from ACTION_BATTERY_CHANGED [36, 37]).

Second, one of the common methods to measure accurate and

one-grained power consumption for mobile and edge devices in

the research community is to connect the device to an external

power monitor with a high sampling rate [38–43]. However, we

ond that connecting newer commercial devices, especially smart-

phones released after 2017, to an external power monitor requires

signiocant efort due to the increasing level of integration of their

electronic circuits. Fig. 2 compares the battery connector in an older

Samsung smartphone, the Galaxy S5, released in 2014, with that

of a newer Samsung model, the Galaxy S20, released in 2020. The

battery connector in a smartphone is used to connect a battery

to its integrated circuit board. Older smartphones, including the

Galaxy S5, use a specioc type of battery connector known as a

"snap-type connector". Featuring four metal prongs, as shown in

Fig. 2(a), the snap-type connector allows for easy identiocation of

the positive and negative terminals and enables connection to an

external power monitor. However, advanced smartphones such as

the Galaxy S20 use a proprietary, tiny, and delicate Flexible Printed

Circuit (FPC) battery connector, as shown in Fig. 2(b). The FPC con-

nector’s small size and delicate construction make it challenging to

work with, requiring specialized tools and expertise to connect it to

an external power monitor that ofers higher accuracy. This might
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be one of the main reasons that recent research papers typically

rely on the built-in current sensor for measuring coarse-grained

power consumption on mobile and edge devices [35, 36, 44].

Consequently, although external power monitors with high sam-

pling rates show promising accuracy in measurement, the challenges

associated with connecting newer commercial devices to such external

monitors can be a signiocant barrier.

C2: Extensibility. In recent years, we have witnessed a signio-

cant surge in the development of DNNs, particularly those specif-

ically designed to address the increasing demand for mobile and

edge devices. This has led to the invention of several milestone Con-

volutional Neural Network (CNN)models, including, but not limited

to, AlexNet, DenseNet, GoogleNet, and MobileNet. Moreover, the

advent of Neural Architecture Search (NAS) has accelerated ad-

vancements in the design and optimization of novel CNN models

by automating the design process and facilitating customization.

While measuring the energy consumption of DNN inferences on

real devices is highly desirable for various tasks, such as serving

as a ground-truth dataset for training energy predictors for on-

device deep learning, it is practically infeasible and excessively

time-consuming to measure all DNN models individually. For ex-

ample, we spend approximately 2.1 days to measure 200 models

on a single device, while ProxylessNAS [31] explores nearly 0.3

million models in a single round of search. This predicament leads

to a critical challenge: how can we ensure the observations and

measurements derived from a limited DNN model space can be

extensible to new (unseen) DNN models?

Consequently, the huge and expansive model-design space signio-

cantly challenges the extensibility of energy measurements on real

mobile and edge devices.

C3: Understandability. In addition to valuing research aimed at

reducing the energy consumption of DNN executions, it is essential

that our measurement study is accessible to a wide audience, such

as end-users with non-technical backgrounds. As we presented in

Section 1, end-users consider the energy eociency of their devices

as one of the most critical factors. Results that are easy to under-

stand can help end-users make informed purchasing decisions. For

instance, presenting an energy eociency score, ranging from 0 to

100, could be more straightforward and easier to understand than

simply telling the end-user that the device will consume 120.090

mJ per inference to run MobileNetv1 with CPUs. Consequently,

end-users can compare diferent devices and choose the one that

best suits their needs. On the other hand, for the research commu-

nity, an easily adoptable measurement method or energy dataset

can accelerate progress in developing energy-eocient DNNmodels,

designing energy predictors, or searching for DNN models with

energy/power constraints within a vast model-design space. Cur-

rently, due to a lack of sustainability mindset, the optimization of

DNNs is primarily driven by research focused on achieving high

inference accuracy and minimizing latency.

We hope our work can help shift the mindset of both end-users and

the research community towards sustainability, a principle that drives

our research.

3 ENERGY MEASUREMENT AND DATASET

We conduct a measurement study and create three energy datasets:

kernel-, model-, and application-level datasets. Overall, we collect

one-grained power traces and accurate energy consumption data

for (1) 16 types of kernels with 1, 847 unique conogurations, (2) nine

SOTA DNN models with 50 variants each, and (3) six widely-used

edge AI applications on eight commercial edge devices.

3.1 Energy Measurement

Wedevelop a reproducible energymeasurementmethodology, which

facilitates the collection of accurate and one-grained power con-

sumption of kernels, DNN models, and end-to-end edge AI applica-

tions on modern edge devices.

Proposed solution for C1: accuracy. As discussed in Section 2,

although external power monitors demonstrate promising accuracy

and time granularity for tracing power variations within a DNN

execution, establishing a physical connection between a modern

edge device with an FPC battery connector and such a monitor

is nontrivial. To address this challenge, we orst use a mechanic

mobile device DC power cable [45] that is designed to ot multiple

device models, including those with FPC connectors, to connect the

tested devices to an external power monitor. This method requires

little efort on the part of the benchmarking researchers. How-

ever, we ond that the tested devices cannot boot due to the lack of

proprietary battery management system (BMS) chips. BMS is an

electronic system that manages and monitors the performance and

safety of a device battery, and is typically attached to the battery

in modern edge devices. The device OS must communicate with

the proprietary BMS to check the status and safety of the battery

before allowing the phone to power on. Hence, the device cannot

boot if its battery is disconnected or an unauthorized battery is

connected. We have studied multiple alternatives to address this

issue, and we ond that the most efective method is to segregate

the BMS chip from the device battery without tearing it down,

and use it as a bridge to connect the device to the external power

monitor. This method strikes a good balance between the efort

required and reproducibility. We have validated this method on

eight diferent modern smartphones, as illustrated in Fig. 3. All of

the tested devices are able to power on with full functionality using

this method.

We develope a detailed documentation to provide step-by-step in-

structions on how to implement this method on other modern edge

devices, which will help the community to reproduce measurements

and apply this technique to their own research.

Rules for measurement. Since the power consumption of mo-

bile and edge devices can be easily innuenced by the environment,

such as heat dissipation and background activities, it is crucial to

create specioc rules for measurement. These rules can bolster the

consistency and reliability of power measurements across diverse

devices and testing conditions. By controlling and accounting for

environmental factors, we canmitigate their innuence on our power

data collection, and thus gain a more accurate understanding of the

inherent power and energy consumption characteristics of DNN

executions. To this end, we establish a set of rules for power mea-

surements. Through our observation, these rules efectively ensure

consistency and reproducibility4.

4Although understanding how the power consumption of DNN executions may vary
with noisy background activities is important (since it is close to practical use cases),
it is equally crucial to isolate and understand the intrinsic power characteristics of
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Table 3: Speciocations of Measured Edge Devices and Chipsets

Model
OnePlus Xiaomi Huawei Huawei Huawei Huawei Xiaomi Motorola

8 Pro Redmi Note8 Mate40 Pro P40 Pro P40 Lite P40 Lite E Redmi K30 Ultra One Macro

SoC SD 865 SD 665 Kirin 9000 Kirin 990 5G Kirin 810 Kirin 710F Dimensity1000+ Helio P70

Vendor Qualcomm Qualcomm HiSilicon HiSilicon HiSilicon HiSilicon MediaTek MediaTek

CPU

M A77+A55 A73+A53 A77+A55 A76+A55 A76+A55 A73+A53 A77+A55 A73+A53

C1 4+4 4+4 4+4 4+4 2+6 4+4 4+4 4+4

F1 2.84 GHz 2.0 GHz 3.13 GHz 2.86 GHz 2.27 GHz 2.2 GHz 2.6 GHz 2.1 GHz

GPU Adreno 650 Adreno 610 Mali G78 Mali G76 Mali G52 Mali G51 Mali G77 Mali G72

Dedicated Hexagon698 Hexagon686 Ascend Lite+Tiny Lite+Tiny D100Lite MediaTek3.0 MediaTek

AI DSP DSP NPU NPU NPU None APU APU

accelerator Da Vinci 2.0 Da Vinci Da Vinci

OS (Android) 10 10 10 10 10 10 10 9

NNAPI
Yes Yes Yes Yes Yes Yes Yes Yes

support

Battery
C2 4510 mAh 4500 mAh 4400 mAh 4200 mAh 4200 mAh 4000 mAh 4500 mAh 4000 mAh

R No No No No No No No No

Class Flag Mid-range Flag Flag Mid-range Mid-range Flag Mid-range

* SD: Snapdragon, M: Microarchitecture, C1: CPU Cores, F1: Maximum Frequency, S: Display Size, C2: Battery Capacity, and R: If battery is removable.

(a) OnePlus 8 Pro (b) Redmi Note8 (c) Mate40 Pro (d) P40 Pro (e) P40 Lite (f) P40 Lite E (g) K30 Ultra (h) One Macro

Figure 3: Measured devices with segregated BMS chips.

• Disable adaptive brightness and set the display to the lowest

brightness level.

• Turn of WiFi, Bluetooth, cellular network, and Near-Field

Communication (NFC) interfaces to minimize the interfer-

ence on the accuracy of power measurements.

• Shut down and disable any background applications and

services to minimize the interference on the accuracy of

measurements.

• Conduct measurements with a room-temperature between

20 and 25◦C.

• Maintain an air gap with proper ventilation to regulate the

temperature of the smartphone and prevent run-time ther-

mal throttling.

• Conogure the screen refresh rate to 60 Hz.

• Conogure the camera sample rate to 15 frames per second,

if the executed edge AI applications require the use of the

device camera.

• Set up a 2-minute cooldown interval between individual tests

to allow the device to cooldown.

Devices and tools.We select eight modern edge devices with

distinct mobile SoCs that include at least one high-end and one

mid-range SoC from leading chipset vendors, such as Qualcomm,

HiSilicon, andMediaTek. Their speciocations are presented in Table

the DNNs, independent of these variations. This is one of the primary goals of our
measurement study in this paper.

3. The selected mobile SoCs can serve as representative examples of

advanced and widely used mobile AI silicons in the past two years.

Unless stated, all power consumption data are measured by the

Monsoon power monitor with a 5000 Hz sampling rate. The latency

of DNN inferences, including both model-level and kernel-level

latencies, is measured by the TFLite benchmark tool [46].

3.2 Energy Dataset

Kernel-level. As we introduced in Section 2, kernels constitute the

fundamental units of execution in deep learning frameworks, with

their types and conoguration parameters signiocantly innuencing

the energy consumption during DNN executions. Table 4 illustrates

that conv++bn++relu kernels typically consume more energy than

other kernel types. Furthermore, the conoguration for each kernel

type varies. For conv++bn++relu and dwconv++bn++relu kernels, the

primary conogurations includes input height and width (ÿÿ )5,

input channel number (ÿÿÿ), output channel number (ÿýÿý ), kernel

size (ÿÿ), and stride (ÿ). Table 5 presents a comparison of the energy

consumption between two conv++bn++relu kernels with diferent

conogurations, both run on amobile CPU. One kernel conoguration

consumes a considerable 125.232mJ of energy, whereas the other

expends a mere 0.064mJ. As a result, examining the impact of kernel

conogurations on energy consumption lays the foundation for a

5In CNN models, input height usually is equal to input width.
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Table 4: Measured kernels per device in our kernel-level dataset.

Kernels
Energy Consumption (mJ) # Measured kernels

Avg. FLOPs
ConogurationsCPU GPU

CPU GPU (M)
min - max min - max

conv++bn++relu 0.002 - 1200.083 0.002 - 120.152 1032 1032 250.137 (ÿÿ ,ÿÿÿ,ÿýÿý , ÿÿ, ÿ)
dwconv++bn++relu 0.022 - 222.609 0.016 - 0.658 349 349 28.364 (ÿÿ ,ÿÿÿ, ÿÿ, ÿ)

bn++relu 0.002 - 161.334 0.001 - 14.594 100 100 4.710 (ÿÿ ,ÿÿÿ )
relu 0.001 - 141.029 0.003 - 6.86 46 46 7.983 (ÿÿ ,ÿÿÿ )

avgpool 0.066 - 7.711 0.034 - 1.142 28 28 0.670 (ÿÿ ,ÿÿÿ, ÿÿ, ÿ)
maxpool 0.054 - 7.779 0.032 - 1.214 28 28 0.521 (ÿÿ ,ÿÿÿ, ÿÿ, ÿ)

fc 0.038 - 94.639 - 24 - 14.744 (ÿÿÿ,ÿýÿý )
concat 0.001 - 42.826 0.066 - 3.428 142 142 0 (ÿÿ ,ÿÿÿ1,ÿÿÿ2,ÿÿÿ3,ÿÿÿ4)
others 0.001 - 132.861 0.003 - 10.163 98 72 - (ÿÿ ,ÿÿÿ )

Table 5: Energy consumption of conv++bn++relu kernels with

diferent conogurations on mobile CPU.

(ÿÿ ,ÿÿÿ,ÿýÿý , ÿÿ, ÿ)

(112, 64, 128, 3, 1) (28, 22, 22, 1, 1)

Energy (mJ) 125.232 0.064

comprehensive understanding of energy consumption during DNN

executions on edge devices.

To this end, we present our kernel-level energy dataset collected

from real edge devices. To build the dataset, as presented in Table

4, we initially generate a large number of kernels with a variety of

types (16 types for CPU and 10 types for GPU) featuring a range of

conogurations in the tflite format (e.g., 1032 conv++bn++relu and

349 dwconv++bn++relu kernels). The number of sampled conogura-

tions for each kernel type hinges on two main factors: its conogu-

ration dimension and its impact on the overall energy consumption

during DNN executions (e.g., we observe that the conv++bn++relu

kernel accounts for more than 70% of the total energy consumption

in most SOTA CNN models on edge devices). These kernel conog-

urations are randomly sampled in accordance with the sampling

strategy proposed in [30]. Then, we measure the average power

consumption and inference latency for each generated kernel run-

ning on individual edge devices. Each power and latency value is

the average of at least 100 inference runs. We conduct these mea-

surements independently on both CPUs and GPUs. As shown in

Table 4, our kernel-level energy dataset spans a broad spectrum

with diferent levels of energy consumption.

In Fig. 4, we seek to investigate how the ove conogurations

(i.e., ÿÿ , ÿÿÿ , ÿýÿý , ÿÿ , and ÿ) impact the energy consumption of

conv++bn++relu. In each evaluation, we vary a single conoguration

(e.g., ÿÿ ) while maintaining the other four constants. The results

reveal that the relationship between the energy consumption and

the conogurations is non-linear. As illustrated in Fig. 4(a), the en-

ergy consumption demonstrates a progressive increase with the

growth of ÿÿ . For instance, when running on the mobile CPU,

the energy consumption of conv++bn++relu increases by approxi-

mately 1.85× (0.077mJ to 0.22mJ), 3.2× (0.22mJ to 0.93mJ), 4.37×

(from 0.93mJ to 5.0mJ), 3.36× (5.0mJ to 21.81mJ), as ÿÿ doubles

from 14 to 28, 28 to 56, 56 to 112, and 112 to 224, respectively.

While operating on the mobile GPU, the energy consumption of the

conv++bn++relu exhibits a similar trend but at a diferent rate. In this

case, its energy consumption increases by roughly 1.21× (0.013mJ

to 0.029mJ), 1.89× (0.029mJ to 0.083mJ), 3.79× (0.083mJ to 0.399mJ),

3.98× (0.399mJ to 1.988mJ) when ÿÿ doubles from 14 to 28, 28 to

56, 56 to 112, and 112 to 224, respectively. Moreover, we ond that

ÿÿ has the most signiocant impact on the energy consumption of

conv++bn++relu. This is because the majority of energy consump-

tion of kernel conv++bn++relu is attributed to convolutional layer.

Within the convolutional layer, ÿÿ has the most signiocant impact

due to its quadratic relationship with computational cost, while

other parameters have a linear relationship. Speciocally, when dou-

bling each of the conoguration,ÿÿ (from 3 to 5),ÿÿ (from 14 to 28),

ÿÿÿ (from 128 to 256), andÿýÿý (from 128 to 256), the corresponding

increases in energy consumption are approximately 2.08×, 1.85×,

1.05×, and 1.18× respectively. This onding demonstrates the dis-

proportionate innuence of ÿÿ on energy consumption relative to

the other parameters.

Insights: the above observations underscore the importance of adap-

tive conoguration selection in enhancing the energy eociency of DNNs

on edge devices. Given that our kernel-level dataset covers a wide range

of conogurations, each associated with an energy consumption label,

it can serve as a valuable resource for guiding the selection of optimal

conogurations, searching for energy-eocient kernel conogurations

that meet specioc energy constraints, and training kernel-level energy

predictors (present in Section 4).

Fig. 5 presents a comparison of the energy consumption between

running conv++bn++relu with identical conogurations on an edge

device’s CPU and GPU. Interestingly, we ond that using the mobile

GPU for executing the conv++bn++relu kernel does not always result

in energy savings when compared to running the same kernel on a

mobile CPU, especially when the ÿÿ and ÿÿ parameters are on

the lower side. For instance, when testing on the Huawei P40 Pro

with the kernel conogurations of ÿÿ = 1, ÿÿ = 1, ÿÿÿ = 480, and

ÿýÿý = 20, we ond that the energy consumed by the GPU exceeds

that of the CPU by more than a factor of 6.6. While the magnitude

of this diference may vary across diferent edge devices, the overall

pattern of increased energy consumption on the GPU under these

conditions appears to be consistent.

Insights: This observation is crucial for designing efective kernel

execution scheduling strategies on edge devices. Rather than only

considering the type of kernel, the specioc conoguration of the kernel
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Figure 4: Energy consumption of conv++bn++relu vs. kernel conogurations.

Figure 5: Comparison of energy consumption of conv++bn++relu with identical conogurations on mobile CPU and GPU (ÿÿ =

1, ÿÿ = 1, ÿ = 1, measured device: Huwei P40 Pro). Using the mobile GPU to execute the kernel does not always save the device’s

energy compared to using the mobile CPU.
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(c) Qualcomm Snapdragon 855 (4 × CortexA76 + 4 × CortexA55 CPUs)

Figure 6: Measured one-grained power slices for

conv++bn++relu with ÿÿ = 112,ÿÿÿ = 20,ÿýÿý = 120, ÿ = 1.

The intra-kernel power variation exhibits a “high-initial,

nat-later" pattern.

should also be taken into account when deciding where to execute it

(e.g., on the mobile CPU or GPU).

In addition, our kernel-level dataset includes one-grained power

traces for each individual kernel, referred to as power slices in this

paper. These collected power slices provide valuable insights for

analyzing intra-kernel power variations. One of the primary ob-

servations in power slices is that the intra-kernel power variation

exhibits a “high-initial, nat-later" pattern, illustrated in Fig. 6, when

the kernel is executed on a mobile CPU and the execution time

exceeds a certain threshold. Fig. 6(a) reveals an initial power surge

at the beginning of kernel execution on Huawei P40 Pro, equipped

with a Kirin 990 5G chipset. This ramp-up phase continues for

approximately 10.5ms. Following the initial ramp-up, the power

consumption settles into a more consistent, natter proole that per-

sists until the end of the kernel’s execution. We conduct validations

across varying kernel conogurations, with varying execution time,

as well as on various edge devices to ascertain the consistency of

this observation. We ond the same pattern on the measured devices,

as demonstrated in Figs. 6(b) and 6(c). Interestingly, devices pow-

ered by chipsets from the same vendor (e.g., Kirin 990 5G and Kirin

810) exhibit a nearly identical ramp-up time (10.5ms and 10.2ms),

while the Snapdragon 855’s (this device is not listed in Table 3)

ramp-up time is around 6.2ms. The “high-initial, nat-later" pattern

primarily arises due to powermanagement techniques implemented

in modern processors on edge devices. For instance, the Dynamic

Voltage and Frequency Scaling (DVFS) technique can dynamically

adjust a processor’s voltage and frequency during runtime, based

on computational demands. At the beginning of a computationally

intensive kernel execution, DVFS may increase the frequency to en-

sure the task’s timely completion. It then lowers the frequency once

the task becomes more manageable, resulting in a relatively nat

power consumption proole. The variation in ramp-up times among

diferent chipsets and vendors can be attributed to the unique DVFS

strategies they employ.

Insights: The ramp-up time can negatively impact power and en-

ergy eociency on edge devices, particularly when executing kernels
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with relatively small conogurations (where their execution time are

less than the ramp-up time). As illustrated in Fig. 6(b), the ramp-up

phase causes the conv++bn++relu kernel with ÿÿ = 112, ÿÿÿ = 20,

ÿýÿý = 120, ÿ = 1 to consume 25.3% and 19.6% more power than

kernels with larger ÿÿs, speciocally 3 and 5. Nevertheless, kernels

with smaller conogurations are often preferred for implementation

on edge devices to save computational resources. This highlights the

critical importance of optimizing the ramp-up phase for edge devices.

For instance, if the aforementioned kernel with ÿÿ = 1 can be exe-

cuted directly in the nat phase, it can result in a reduction of energy

consumption by 23.1%.

Model-level. We introduce our model-level energy dataset,

which collects nine SOTA DNN models. These models represent

a mix of both manually-designed and NAS-derived models, each

with distinct kernel types and conogurations. For each model, we

generate 50 variants for conducting power and energy measure-

ments by re-sampling the ÿýÿý and ÿÿ for each layer. Speciocally,

we randomly sample the new output channel number from a range

of 20% to 180% of the original ÿýÿý , while the ÿÿ is sampled from

the set of values: {1, 3, 5, 7, 9}. Table 6 presents the details of the

measured DNNmodels. In general, running these models on mobile

GPUs results in an energy consumption reduction of approximately

49% to 79%, compared to the execution on mobile CPUs.

Fig. 7 presents the energy consumption breakdown of individ-

ual models by kernel types. The four kernel types that consume

the most energy are conv++bn++relu, dwconv++bn++relu, fc, and

concat. They account for 79.27%, 14.79%, 2.03%, and 1.5% of the

total model energy consumption on mobile CPUs, respectively.

On mobile GPUs, these kernels represent 78.17%, 10.91%, 4.01%,

and 4.28% of the total model energy consumption. Furthermore,

in most models, conv++bn++relu and dwconv++bn++relu account

for the main energy percentages. On average, conv++bn++relu and

dwconv++bn++relu take 93.97% and 87.74% of the total model energy

consumption on the mobile CPU and GPU, respectively.

In addition, our model-level dataset collects one-grained power

slices for all the measured DNN models. For instance, Fig. 8 illus-

trates the measured power slices of two AlexNets with distinct

kernel conogurations, whose specioc conogurations are detailed

in Table 7. These model-level power slices ofer (1) a holistic view

of the precise power variations associated with each kernel within

the DNN model, (2) the temporal and sequential aspects of kernel

executions, and (3) a visual approach to easily identify the power

and energy bottlenecks within a specioc DNN model.

Applications-level.While the kernel- and model-level datasets

can be beneocial for researchers and developers in understanding,

modelling, and optimizing power and energy eociency of DNN

executions, end-users generally have a greater interest in the en-

ergy consumption of those frequently used AI applications on their

devices. This is because the application’s energy eociency directly

afects device’s battery life, which is critical to the user experience.

To this end, we create an application-level dataset, which uncov-

ers the end-to-end energy consumption of six popular edge AI

applications, covering three main categories: vision-based (object

detection, image classiocation, super resolution, and image seg-

mentation), NLP-based (natural language question answering), and

voice-based applications (speech recognition). As shown in Table 8,

we measure the power and energy consumption of each application

Table 6: Measured DNN models in our model-level dataset.

Models

Energy consumption (mJ)
Avg. FLOPs

CPU GPU

min - max min - max (M)

AlexNets 36.97 - 355.58 7.69 - 91.80 815

DenseNets 231.93 - 488.87 66.21 - 133.58 1760

GoogleNets 145.03 - 262.45 52.66 - 90.04 1535

MobileNetv1s 53.59 - 136.79 17.36 - 42.44 519

MobileNetv2s 30.85 - 175.07 8.81 - 48.35 419

ProxylessNASs 58.34 - 162.11 17.70 - 49.29 526

ResNet18s 251.52 - 1432.67 64.19 - 391.97 3888

ShuneNetv2s 25.26 - 81.41 - 319

SqueezeNets 92.55 - 388.16 34.55 - 134.65 1486

Table 7: Kernel conogurations of two AlexNets.

Kernels

Conogurations

AlexNet 1 AlexNet 2

(Fig. 8(a)) (Fig 8(b))

conv++relu 1 (224, 3, 89, 5, 4) (224, 3, 70, 7, 4)

maxpool 1 (224, 89, 3, 2) (55, 70, 3, 2)

conv++relu 2 (28, 89, 153, 7, 1) (28, 70, 115, 7, 1)

maxpool 2 (28, 153, 3, 2) (28, 115, 3, 2)

conv++relu 3 (13, 153, 460, 5, 1) (13, 115, 345, 5, 1)

conv++relu 4 (13, 460, 230, 1, 1) (13, 345, 128, 5, 1)

conv++relu 5 (13, 230, 204, 7, 1) (13, 128, 307, 3, 1)

maxpool 3 (13, 204, 3, 2) (13, 307, 3, 2)

global-pool 1 (1, 204) (1, 307)

fc 1 (204, 3686) (307, 3686)

fc 2 (3686, 6144) (3686, 6963)

fc 3 (3686, 1000) (3686, 1000)

Total energy (mJ) 242.888 151.414

with multiple reference DNN models that operate under four dis-

tinct computational settings, including CPU with a single thread,

CPU with four threads, GPU delegate, and the NNAPI delegate. The

dataset can serve as a resource for exploring the energy consump-

tion distribution throughout the end-to-end processing pipeline

of an edge AI application. For example, we can use the dataset to

examine the energy consumed in generating image frames, convert-

ing these frames from YUV to RGB, and conducting DNN inference

within an object detection application. Fig. 9 depicts the energy

consumption breakdown based on the processing phases in the

object detection. It demonstrates that our application-level dataset

can provide interpretable observations for comprehending who is

the primary energy consumer in the end-to-end edge AI application.

Additionally, the application-level dataset ofers essential inputs for

our edge device scoring system (Section 5). Due to the page limit,

we will not present additional measurement results in this paper.

Time cost. Finally, in Table 9, we report the time cost associated

with performing measurements and creating our datasets. On a sin-

gle edge device, we spend 23.1, 4.7, and 1.5 days, respectively, on (1)

measuring the power and energy consumption of all the generated

kernels, DNN models, and edge AI applications, and (2) creating the

corresponding power and energy datasets. We will open-source our

datasets and code for other researchers and developers. Collectively,

we anticipate that the community will collaborate to create a larger

scale energy dataset for a variety of edge devices.
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Figure 7: DNN model energy consumption percentage breakdown. The top four most energy-consuming kernel types are

conv++bn++relu (conv), dwconv++bn++relu (dwconv), fc, and concat.
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Figure 8: The model-level one-grained power slices provided by our dataset can ofer (1) a holistic view of the precise power

variations associated with each kernel within the DNN model, (2) the temporal and sequential aspects of kernel executions,

and (3) a visual approach to easily identify the power and energy bottlenecks within a specioc DNN model.
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(a) End-to-end processing pipeline for object detection and classiocation
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Figure 9: End-to-end energy consumption breakdown for object detection and classiocation (application-level dataset).

4 ENERGY PREDICTION

In this section, we present our proposed solution to address C2:

extensibility. To extend the applicability of our measurement

study to a wider variety of DNNmodels, including those not present

in our dataset, we design and implement a kernel-level energy

predictor which can accurately predict the energy consumption of

new DNN models on edge devices. The predictors are trained using

our kernel-level dataset and evaluated by our model-level dataset.

4.1 Design and Implementation

Our designed kernel-level energy prediction method is inspired

by nn-meter [30] which proposed a kernel-based latency predic-

tor for DNN models. However, nn-meter does not support energy
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Table 8: Measured edge AI applications per device in our application-level dataset.

Delegate
Category Application No. Reference DNN models

CPU1 CPU4 GPU NNAPI

Model size

(MB)

DNN1 MobileNetv2, FP32, 300 × 300 pixels � � � 24.2

DNN2 MobileNetv2, INT8, 300 × 300 pixels � � � 6.9

DNN3 MobileNetv2, FP32, 640 × 640 pixels � � � 12.3
Image detection

DNN4 MobileNetv2, INT8, 640 × 640 pixels � � � 4.5

DNN5 EocientNet, FP32, 224 × 224 pixels � � � � 18.6

DNN6 EocientNet, INT8, 224 × 224 pixels � � � 5.4

DNN7 MobileNetv1, FP32, 224 × 224 pixels � � � � 4.3
Image classiocation

DNN8 MobileNetv1, INT8, 224 × 224 pixels � � � 16.9

Super resolution DNN9 ESRGAN [47], FP32, 50 × 50 pixels � � 5

Vision-based

Image segmentation DNN10 DeepLabv3 [12], FP32, 257 × 257 pixels � 2.8

NLP-based Natural language question answering DNN11 MobileBERT [48], FP32 � � � 100.7

Voice-based Speech recognition DNN12 Conv-Actions-Frozen [49], FP32 � � � 3.8

Table 9: Time cost of measurements per edge device.

Kernels Models Applications

Measure time per device 23.1 days 4.7 days 1.5 days

prediction. We propose using a rationale akin to that of nn-meter

for the design of our kernel-level energy predictor, especially given

that kernels run sequentially on current edge devices. The key

contributions of our proposed energy predictor include: (1) being

the orst energy predictor for modern edge devices, achieving an

accuracy of 86.2% (making it the most accurate energy predictor for

edge devices to date) for unseen DNNs (i.e., those with unfamiliar

kernel conogurations); and (2) being the orst kernel-level energy

predictor for DNN executions on modern edge devices. Notably,

most existing research primarily uses FLOPs to estimate the energy

consumption of DNN executions, resulting in generally low predic-

tion accuracy for unseen DNN models. The core of our kernel-level

energy prediction method is that we build and train a predictor for

each type of kernel (e.g., conv++bn++relu) using the kernel-level en-

ergy dataset presented in Section 3. The total energy consumption

of a DNNmodel is then predicted by summing the estimated energy

consumption of all kernels within that DNN model. Our energy

predictors are implemented using the random forests regression,

a machine learning algorithm known for its robustness, handling

of high dimensional spaces, and its capability to model complex

non-linear relationships.

4.2 Performance Evaluation

Comparison baselines. We implement two baselines to compare

the energy prediction accuracy: (1) FLOPs-based predictor: recent

work has leveraged FLOPs to estimate the energy consumption

of DNN inference [50]. We train FLOPs predictors using linear

regression. Given the FLOPs of a DNN model, the predictor can

estimate its inference energy consumption. (2) BIC-based predictor:

to demonstrate the critical role that our one-grained kernel-level

dataset plays in accurately predicting energy consumption, we also

train energy predictors using the power data sampled by the edge

device’s built-in current (BIC) sensor. To ensure a fair comparison

(i.e, to conorm that any prediction errors in energy consumption

are largely due to the inaccuracy of the built-in current sensor’s

power measurement), we take three steps: (1) using the ground-

truth latency when calculating the energy consumption in the

BIC training dataset, and (2) training the predictor with the same

amount of data, covering the same number of kernels and identical

conogurations, and using the random forests regression.

Metrics. The prediction performance is evaluated through the

root mean square error (RMSE), root mean square percentage error

(RMSPE), ±10%, and ±15% accuracy. The latter two metrics repre-

sent the percentage of models whose predicted energy consumption

lies within the specioed error bounds relative to actual measured

energy consumption. In this paper, ±15% accuracy is the default

metric. Smaller RMSE/RMSPE and larger±10%/±15% indicate better

prediction performance.

Comparison results on unseen DNN models. For the com-

parison study, we select AlexNets, GoogleNets, MobileNetv1s, Mo-

bileNetv2s, and ShuneNetv2s. As the FLOPs-based predictor re-

quires training with model-level data (i.e., the FLOPs of DNN mod-

els), we adopt a leave-one-out cross-validation approach. We set

aside one model (e.g., 50 models of GoogleNets) as the test set, and

use the remaining four models (e.g., 50 models each of AlexNets,

MobileNetv1s, MobileNetv2s, and ShuneNetv2s) as the training set

to train the predictor. Our kernel-level predictor and the BIC-based

predictor do not require model-level data for training.

The comparison results are depicted in Fig. 10. Our kernel-level

energy predictor consistently outperforms the other two baselines,

delivering the highest prediction accuracy. Those baselines fail to

achieve comparable levels of prediction accuracy on unseen DNN

models. Speciocally, our predictor achieves an average prediction

accuracy of 86.2%, signiocantly higher than FLOPs, 31.3%, and BIC,

12.7%. The poor prediction accuracy of BIC, particularly on mobile

GPU, demonstrates the indispensability of a one-grained power

and energy dataset when training a reliable energy predictor for

edge devices. The signiocant drop in prediction performance of BIC

on the mobile GPU is due to the fact that DNNs typically achieve

much shorter execution time on the GPU compared to the CPU.

This shorter execution time on the GPU necessitates a higher power

sampling rate. Moreover, the performance gap between our kernel-

level predictor and the FLOPs-based predictor renects the gain

derived through considering the runtime optimization of edge de-

vices, such as kernel fusion. Table 10 presents the prediction results

evaluated across all nine DNN models in our model-level dataset.
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Figure 10: Comparison of energy prediction performance. Our predictors trained by the kernel-level dataset achieves the

highest accuracy on unseen DNNs.

Table 10: Energy prediction results on mobile CPU and GPU.

Model Mobile CPU Mobile GPU

variants RMSE (mJ) RMSPE (%) ±10% (Acc.) ±15% (Acc.) RMSE (mJ) RMSPE (%) ±10% (Acc.) ±15% (Acc.)

AlexNets 32.2 12.9 60.0% 65.0% 9.4 15.5 40.0% 70.0%

DenseNets 30.8 7.1 70.0% 100% 16.5 19.6 10.0% 35.0%

GoogleNets 25.1 11.9 20.0% 90.0% 3.8 5.5 95.0% 100%

MobileNetv1s 7.8 8.7 80.9% 95.2% 1.7 6.7 80.9% 100%

MobileNetv2s 7.8 8.3 76.2% 90.5% 3.1 11.5 47.6% 66.7%

ProxylessNASs 13.3 11.7 47.6% 71.4% 2.5 8.2 76.2% 95.2%

ResNet18s 44.6 6.1 95.2% 100% 30.5 13.1 38.1% 71.0%

ShuneNetv2s 3.2 5.8 100% 100% - - - -

SqueezeNets 19.6 10.4 57.1% 90.5% 7.9 10.0 61.9% 85.7%

In addition, we calculate the kernel conoguration overlaps between

the training (kernel-level dataset) and the evaluation (model-level

detaset) datasets. Results show that our energy predictors have

only seen 1.1% (CPU) and 1.8% (GPU) of the conogurations in the

evaluation dataset, which further attests the efectiveness of our

kernel-level energy predictors on unseen models.

Discussion. Our kernel-level energy predictor exhibits slightly

lower prediction accuracy compared to the latency predictor devel-

oped in nn-meter [30]. This might primarily be due to the fact that

(1) nn-meter manually sets CPU frequency of the measured device

to a oxed value (2.42GHz) when prooling the latency for building

the training dataset and evaluating the prediction accuracy. This

creates a more controlled environment for latency measurement

and prediction. However, to ensure practicality, our kernel-level

energy predictor does not establish a oxed CPU frequency during

energy measurement and prediction. This results in greater vari-

ability and potential uncertainty in the energy prediction, yet it

more accurately renects real-world usage scenarios where the CPU

frequency is typically dynamic. (2) The scale of our energy training

dataset is less extensive than that of the latency training dataset

in nn-meter, as collecting one-grained power data is signiocantly

more time-consuming than prooling latency data, particularly on

modern edge devices. Hence, we anticipate the community will

collectively collaborate to further enhance the scale of our datasets.

5 SCORING SYSTEM

In this section, we introduce our method to tackle challenge C3:

understandability. We develop a scoring system for diverse edge

devices by leveraging our application-level dataset. To ensure that

the energy eociency assessment result is accessible to a broad

audience, in particular, edge device end-users with non-technical

backgrounds, we develop two scoring metrics, namely power con-

sumption score (PCS) and inference energy consumption score (IECS).

These two scoring metrics help to distill the power and energy

eociency of a device in an intuitive and understandable way.

PCS. The PCS is designed to capture the aggregated power eo-

ciency (PE) for running all six edge AI applications with 12 reference

DNN models using CPU, GPU, and NNAPI delegates. It is calcu-

lated as ÿÿÿ =

∑
ÿ

ÿ=1 ÿýÿ
ÿ

, where ÿ is the total number of reference

DNN models and ÿý = (1 − ýÿÿ
ÿÿÿ

) × 100. APC denotes the average

power consumption for inferences. Thermal design power (TDP),

measured in watts, represents the maximum power an edge device

is designed to consume under normal operating conditions. The

ratio ýÿÿ
ÿÿÿ

provides an indication of how eociently a device is using

its power budget, with a lower ratio indicating better PE.

IECS. The IECS is designed to assess edge device energy eo-

ciency, and calculated as the sum of inference energy consumption

(IEC) for all six edge AI applications under CPU, GPU, and NNAPI

delegates. IEC is deoned as the number of inferences per unit of

energy, where it factors in the trade-of between PE and inference

latency. An edge device with a higher IECS is considered more

energy-eocient.
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Figure 11: Comparison of the proposed PCS and AI infer-

ence score [44]. It presents a tradeof among AI performance,

power consumption, and the selling price. The larger the ball,

the higher the selling price of the device.

Results. Fig. 11 compares our proposed PCS with the AI infer-

ence score developed by AI Benchmark [44] across diverse edge

devices. Note that the AI inference score does not take into account

power and energy eociency. The ogure illustrates a tradeof be-

tween AI performance, power consumption, and its selling price,

where a larger ball in the ogure represents a higher selling price for

the device. An edge device that exhibits superior power eociency

(higher PCS) and AI inference performance (higher AI performance

score) is positioned towards the top right corner of the ogure.

We ond that scoring metrics signiocantly innuence benchmark-

ing results for edge devices. For instance, although the Huawei

Mate40 Pro achieves the highest AI performance score, it holds the

second worst PCS. Conversely, the Xiaomi Redmi Note8 attains

the highest PCS while having the second lowest AI performance

score. These observations highlight the need for the development of

IECS that balances power eociency with AI inference performance.

In Fig. 11, the color of each ball indicates the IECS of each edge

device. The Huawei P40 Pro presents the best equilibrium between

AI performance and power eociency, as indicated by its IECS and

its position in the ogure. The complete IECS benchmark results can

be found on our project webpage.

6 DISCUSSION

Limitations. Our current measurements and datasets are on mod-

ern smartphones equipped with mobile CPUs and GPUs. While

they cover a broad spectrum of edge hardware, they might not be

comprehensive. To further increase the heterogeneity, we plan to

extend our energy datasets by including other modern edge devices,

such as Jetson Nano, Coral TPU, and Raspberry Pi 4.

The proposed kernel-level energy predictor is built onine and

will not be updated dynamically during DNN executions. Naturally,

the prediction accuracy could be further improved by factoring in

more environmental complexities, such as the available computing

and memory resources on an edge device. We will leave this as an

area for our future work.

Automated measurement. Table 9 illustrates that the major-

ity of the time cost comes from energy prooling. Developing an

automated measurement and prooling method can enhance the

time eociency for collecting a large-scale and more comprehensive

dataset that includes a variety of edge devices and kernel conog-

urations. The kernel-level energy predictor could also beneot, as

prediction accuracy may improve with more training data. Further-

more, automated prooling could help minimize human innuence,

leading to more accurate measurements.

Energy prediction for concurrent executions. Our energy

predictor is premised on the fact that kernels currently run se-

quentially on edge devices. In the future, DNN inference may run

concurrently on multi-core chipsets. Kernels processed in parallel

might consume less energy than when processed sequentially, but

more than individual kernels. The energy prediction performance

for concurrent execution might be lower than for sequential execu-

tion, as concurrent operations introduce greater uncertainties in

energy consumption. This aspect requires further experimentation.

7 RELATED WORK

Energy measurement for edge devices. A number of research

works have proposed diferent methodologies and developed frame-

works for measuring the energy consumption in mobile and edge

devices. The Green Miner proposed in [40] can physically measure

the energy consumption of mobile devices such as Android phones

and automate the testing of applications. The GfxDoctor devel-

oped in [51] can systematically diagnose energy ineociencies in

app graphics at the app source-code level. However, none of these

works have studied one-grained energy measurement of DNNs on

modern edge devices.

Edge AI benchmark. A few recent studies developed mobile

AI benchmarks that measure the performance of on-device training

and inference. For example, AI Benchmark [44, 52] is arguably the

orst benchmark suite for mobile devices, which primarily focuses

on Android smartphones and measures only the latency. MLPerf

Mobile [53, 54] presents the orst industry-standard open-source

benchmark for performance and accuracy evaluation of mobile AI

devices. Additionally, AIoTBench [55] comprises a wider range of

model architectures and AI frameworks, with a focus on assessing

the inference capabilities of mobile and embedded devices. However,

none of these edge AI benchmarks focused on energy eociency of

on-device learning and energy dataset creation for edge devices.

8 CONCLUSION

We conduct energy consumptionmeasurement studies for on-device

deep learning. We have created extensive energy datasets at the

kernel-, model-, and application-level to facilitate research aimed at

improving the energy eociency of deep learning on edge devices.

Building upon our energy datasets, we have developed kernel-level

predictors that can accurately estimate the energy consumption

of unseen DNN executions. Furthermore, we have implemented

two scoring metrics to enhance the understandability of our energy

measurement results. These contributions ofer valuable resources

for advancing energy-eocient deep learning on edge devices.
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