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ABSTRACT

Today, deep learning optimization is primarily driven by research
focused on achieving high inference accuracy and reducing latency.
However, the energy efficiency aspect is often overlooked, pos-
sibly due to a lack of sustainability mindset in the field and the
absence of a holistic energy dataset. In this paper, we conduct a
threefold study, including energy measurement, prediction, and
efficiency scoring, with an objective to foster transparency in power
and energy consumption within deep learning across various edge
devices. Firstly, we present a detailed, first-of-its-kind measure-
ment study that uncovers the energy consumption characteristics
of on-device deep learning. This study results in the creation of
three extensive energy datasets for edge devices, covering a wide
range of kernels, state-of-the-art DNN models, and popular AI
applications. Secondly, we design and implement the first kernel-
level energy predictors for edge devices based on our kernel-level
energy dataset. Evaluation results demonstrate the ability of our
predictors to provide consistent and accurate energy estimations
on unseen DNN models. Lastly, we introduce two scoring metrics,
PCS and IECS, developed to convert complex power and energy
consumption data of an edge device into an easily understandable
manner for edge device end-users. We hope our work can help
shift the mindset of both end-users and the research community
towards sustainability in edge computing, a principle that drives
our research. Find data, code, and more up-to-date information at
https://amai-gsu.github.io/DeepEn2023.
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1 INTRODUCTION

Recently, there has been heavy investment in implementing var-
ious Al applications on mobile and edge devices, for instance, (1)
vision-based Al applications, such as image classification [1-3],
face recognition [4, 5], object detection and tracking [6—-8], im-
age super-resolution [9-11], segmentation [12], pose estimation
[13], and gesture recognition [14]; (2) natural language processing
(NLP) based applications, such as smart reply [15], question an-
swering [16], language translation [17, 18], and sentiment analysis
[19, 20]; and (3) voice-based applications, such as virtual-assistant
[21], speech recognition [22], and sound classification [23].

Despite the remarkable advances in edge device capabilities such
as functionality, computation power, and storage capacity, the lim-
ited energy capacity has been the major bottleneck in promoting
advanced edge Al applications. On one hand, edge Al applications,
particularly those that involve intensive computing resources such
as deep learning algorithms, tend to consume a significant amount
of energy [24, 25]. On the other hand, mobile and edge devices are
typically powered solely by embedded batteries, so their energy
capacity is significantly constrained by form factor requirements,
safety considerations, manufacturing costs, and concerns on the
environmental impact of the battery technology used. As a result,
heavy battery usage of an application often results in low ratings or
subpar user experience. A survey [26] finds that about 55% of users
surveyed would give a negative review to a mobile application that
consumes a lot of battery, indicating that energy consumption is
a crucial aspect of the user experience that cannot be overlooked.
These observations raise intuitive questions: How can we identify
the energy bottlenecks and optimize the energy efficiency of on-device
deep learning for diverse edge devices? What are the primary factors
that have a large impact on the energy consumption of deep neu-
ral network (DNN) executions, the core of on-device deep learning?
Where is the energy spent inside a DNN execution? Answering these
questions, however, is challenging, due to the lack of holistic un-
derstanding of the intricacies of power and energy consumption
in DNN executions on edge devices. First and foremost, we cannot
optimize what cannot be measured. The energy efficiency of an edge
device is more than its Al hardware capability in isolation. Instead,
it is coupled with the on-device deep learning software stack, whose
net performance is shrouded beneath the DNN models and end-to-
end processing pipeline of diverse edge Al applications. Second,
we cannot optimize what is under-appreciated or neglected in the
design. Most existing research and development in deep learning
primarily aim to reduce inference latency and enhance accuracy,
often neglecting to consider the impact on energy efficiency. As a
result, it becomes crucial to strike a balance between improving
energy efficiency and enhancing performance in on-device deep
learning for modern edge devices.
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In this paper, we study the problem of accurate energy measure-
ment, prediction, and understandable scoring of on-device deep
learning, and make three concrete contributions towards enabling
transparency of power and energy consumption inside on-device deep
learning across diverse edge devices.

First, we conduct the first detailed measurement study to accu-
rately quantify the energy consumed by on-device deep learning
across diverse modern edge devices. Our measurement study covers
three dimensions, including the power and energy consumption of
kernels, state-of-the-art (SOTA) DNN models, and widely-used edge
AT applications. Our measurements reveal multiple key observa-
tions, which remain consistent across eight different measured edge
devices. Overall, we measure and collect fine-grained power traces
and accurate energy consumption data for (1) 16 types of kernels
with 1, 847 unique configurations, (2) nine SOTA DNN models with
50 variants each, and (3) six widely-used edge Al applications on
eight commercial edge devices executed with mobile CPU and GPU.
These measurements result in creation of three large-scale power
and energy datasets, including kernel-, model-, and application-
level datasets for on-device deep learning on edge devices.

Second, based on our kernel-level energy dataset and the obser-
vations gained in the measurement study, we design and implement
kernel-level energy predictors on both mobile CPU and GPU. To
the best of our knowledge, this is the first energy predictor for
on-device deep learning on commercial edge devices (e.g., modern
smartphones), which can provide consistently accurate energy esti-
mation on unseen DNN models. This offers an effective approach
to extend our measurements and observations derived from a lim-
ited DNN model space to new DNN models, which enhances the
extensibility of our measurement study.

Lastly, beyond valuing research that aims at improving the en-
ergy efficiency of on-device deep learning, it is crucial that our
measurement study are accessible to a wide audience, such as end-
users with non-technical backgrounds. For instance, presenting
an energy efficiency score, ranging from 0 to 100, should be more
straightforward and easier to understand than telling end-users
that their device will consume 120.090 m] per inference to run Mo-
bileNetv1 with CPUs. To this end, we develop two scoring metrics:
power consumption score (PCS) and inference energy consumption
score (IECS). These two scoring metrics help to distill the power
and energy efficiency of an edge device in an intuitive and under-
standable way. We present a complete scoring results for eight edge
devices benchmarked by leveraging our application-level dataset.

2 BACKGROUND AND CHALLENGES
2.1 Background

DNN models are the core of on-device deep learning and consume
a major portion of both computational and energy resources on
mobile and edge devices. A DNN model consists of a sequence
of primitive operations, such as convolution2D (conv), depthwise
convolution2D (dwconv), activations, pooling, and fully-connected
(fc), which are organized into layers, allowing the network to learn
complex patterns from input data. To enhance the computational
efficiency of the DNN inference (i.e., to reduce inference latency
and avoid redundant memory access), kernel fusion (or operator
fusion) is a key optimization and has been incorporated in SOTA
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Table 1: MobileNetv1 energy consumption.

CPU GPU
Energy Error  Energy Error
Built-in 132.420m] 10.3% 19.254m]  30.64%
Ground-truth ~ 120.090m]J - 27.760m]J -

DNN execution frameworks, such as TVM [27], TFLite [28], and
MNN [29]. For instance, three individual operations, conv, batch
normalization (bn), and rectified linear unit (relu) can be fused into
one composite operation, conv4bn4relul, to achieve inference
acceleration on edge devices. This means the entire sequence can
be processed as a single step, which reduces memory access (since
intermediate results don’t need to be written to and read from
memory) and kernel launch overhead. Hence, given its crucial role
in runtime optimization, a kernel is typically considered as the
fundamental unit for scheduling and execution in deep learning
frameworks, particularly on edge devices [30].

2.2 Challenges

C1: Accuracy. In order to optimize the energy efficiency of DNN
executions on resource-constrained edge devices, it is crucial to
gain a deep understanding of the energy consumption character-
istics associated with various DNN models across different edge
hardware platforms, such as mobile CPUs and GPUs. Consequently,
the importance of conducting accurate measurement studies on real
devices is becoming increasingly paramount. However, measuring
accurate energy consumption on a real edge device is non-trivial.
The challenges arise from two main observations: (1) existing en-
ergy profiling methods for edge devices, which rely on built-in
current sensors, cannot capture power consumption at high time
granularity (i.e., less than 100 ms); and (2) the growing level of inte-
gration in the electronic circuits of edge devices presents challenges
when attempting to connect them with an external power monitor.

First, most SOTA DNN models can achieve inference latencies
of 10 to 200 ms when executed on mobile CPUs. These latencies
can be significantly reduced to a range of 1 to 50 ms when executed
on mobile GPUs [30]. On the other hand, a DNN model usually
consists of tens or hundreds of kernels that run sequentially on
the edge device [30-32], each potentially having an execution time
of less than a millisecond. Therefore, to accurately capture the
instantaneous power variations within a DNN inference, which
includes the precise power consumption of individual kernels, an
ideal power sampling rate should be less than 1 ms. However, we
have observed that existing edge devices, such as smartphones,
typically have built-in current sensors (e.g., fuel gauge) with a time-
granularity of approximately 100 ms to 1 second. This restricts
the sampling rate at which the sensors can measure the power
drawn by the device to 1 — 10 times per second. This indicates
that the existing built-in current sensors cannot fully capture the
fine-grained, kernel-level power variations within a DNN inference
on the edge device, resulting in inaccurate measurements.

We have conducted a measurement study on a real device, Huawei
P40 Lite, to investigate the extent of this discrepancy compared to

!In this paper, + represents kernel fusion.
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Figure 1: Comparison of time-granularity between the device’s built-in current sensor and external power monitor.

Table 2: MobileNetv1 individual kernel energy consumption.

Kernels S
Built-in (mJ)  Ground-truth (mJ)  Error
conv-relu 3.914 3.984 1.76%
dwconv+relu 5.578 4.814 -
conv+relu 8.020 7.739 3.62%
dwconv+relu 8.682 8.193 5.96%
conv+relu 2.649 2.422 9.36%
dwconv+relu 5.211 4.428
conv+relu 1.225 0.930
dwconv+relu 1.541 1.285
conv+relu 2.030 1.643
dwconvrelu 7.824 6.549
conv+relu 3.450 2.933
dwconv+relu 0.174 0.149
conv+relu 1.179 0.972
dwconv+relu 2.879 2.448
conv+relu 12.394 11.324 9.45%
dwconvrelu 0.524 0.466 -
conv+relu 14.112 12.976 8.76%
dwconvrelu 0.906 0.771 175%
conv+relu 12.065 11.095 8.74%
dwconv+relu 1.108 0.944 -
conv+relu 14.446 13.327 8.39%
dwconvrelu 0.409 0.367 -
conv+relu 12.240 11.357 7.77%
dwconv+relu 0.299 0.267 -
conv+relu 4.349 4.019 8.20%
dwconvrelu 0.110 0.093
conv+relu 4.353 3.902
global-pool 0.071 0.062
fully connected 0.664 0.636 4.42%

5% < error < 10%
m error > 20%

error < 5%
m 10% < error < 20%

the ground-truth power and energy consumption®. As shown in
Tables 1 and 2, measurements dependent on the device’s built-in
current sensor produce large errors in both the overall DNN model
(10.3% — 30.64%) and individual kernel (1.76% — 31.8%) energy con-
sumption®. Moreover, as we show in Section 4, using the energy

In this paper, the ground-truth power and energy consumption is measured by
connecting the real device to the Monsoon power monitor [33].

3Energy consumption is calculated by multiplying the measured power consumption
by the model/kernel inference latency. To ensure the energy consumption errors are pri-
marily caused by the power measurement inaccuracy, we use the ground-truth latency
for calculating the energy consumption in built-in current sensor measurements.
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(a) Samsung Galaxy S5 with a snap-type (b) Samsung Galaxy S20 with an FPC bat-

battery connector (2014) tery connector (2020)

Figure 2: Comparison between an older snap-type battery
connector and a modern FPC connector.

dataset created by a built-in current sensor to train an energy pre-
dictor results in consistently poor estimation accuracy. In addition,
Fig. 1 demonstrates the built-in sensor fails to capture the character-
istics of power variations among kernels within a DNN inference.
For instance, there is usually a sudden power rise at the start of
conv executions, and a sudden power drop in most dwconvs.

Consequently, these observations indicate that existing energy pro-
filing solutions for edge devices that heavily rely on the built-in current
sensor may fail to offer accurate power measurements for DNN ex-
ecutions (e.g., power profiler [34], reading virtual file current_now
from /sys/class/power_supply/battery/ [35], and reading bat-
tery level drops from ACTION_BATTERY_CHANGED [36, 37]).

Second, one of the common methods to measure accurate and
fine-grained power consumption for mobile and edge devices in
the research community is to connect the device to an external
power monitor with a high sampling rate [38—43]. However, we
find that connecting newer commercial devices, especially smart-
phones released after 2017, to an external power monitor requires
significant effort due to the increasing level of integration of their
electronic circuits. Fig. 2 compares the battery connector in an older
Samsung smartphone, the Galaxy S5, released in 2014, with that
of a newer Samsung model, the Galaxy S20, released in 2020. The
battery connector in a smartphone is used to connect a battery
to its integrated circuit board. Older smartphones, including the
Galaxy S5, use a specific type of battery connector known as a
"snap-type connector". Featuring four metal prongs, as shown in
Fig. 2(a), the snap-type connector allows for easy identification of
the positive and negative terminals and enables connection to an
external power monitor. However, advanced smartphones such as
the Galaxy S20 use a proprietary, tiny, and delicate Flexible Printed
Circuit (FPC) battery connector, as shown in Fig. 2(b). The FPC con-
nector’s small size and delicate construction make it challenging to
work with, requiring specialized tools and expertise to connect it to
an external power monitor that offers higher accuracy. This might

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 20,2024 at 19:42:50 UTC from IEEE Xplore. Restrictions apply.



be one of the main reasons that recent research papers typically
rely on the built-in current sensor for measuring coarse-grained
power consumption on mobile and edge devices [35, 36, 44].

Consequently, although external power monitors with high sam-
pling rates show promising accuracy in measurement, the challenges
associated with connecting newer commercial devices to such external
monitors can be a significant barrier.

C2: Extensibility. In recent years, we have witnessed a signifi-
cant surge in the development of DNNs, particularly those specif-
ically designed to address the increasing demand for mobile and
edge devices. This has led to the invention of several milestone Con-
volutional Neural Network (CNN) models, including, but not limited
to, AlexNet, DenseNet, GoogleNet, and MobileNet. Moreover, the
advent of Neural Architecture Search (NAS) has accelerated ad-
vancements in the design and optimization of novel CNN models
by automating the design process and facilitating customization.
While measuring the energy consumption of DNN inferences on
real devices is highly desirable for various tasks, such as serving
as a ground-truth dataset for training energy predictors for on-
device deep learning, it is practically infeasible and excessively
time-consuming to measure all DNN models individually. For ex-
ample, we spend approximately 2.1 days to measure 200 models
on a single device, while ProxylessNAS [31] explores nearly 0.3
million models in a single round of search. This predicament leads
to a critical challenge: how can we ensure the observations and
measurements derived from a limited DNN model space can be
extensible to new (unseen) DNN models?

Consequently, the huge and expansive model-design space signifi-
cantly challenges the extensibility of energy measurements on real
mobile and edge devices.

C3: Understandability. In addition to valuing research aimed at
reducing the energy consumption of DNN executions, it is essential
that our measurement study is accessible to a wide audience, such
as end-users with non-technical backgrounds. As we presented in
Section 1, end-users consider the energy efficiency of their devices
as one of the most critical factors. Results that are easy to under-
stand can help end-users make informed purchasing decisions. For
instance, presenting an energy efficiency score, ranging from 0 to
100, could be more straightforward and easier to understand than
simply telling the end-user that the device will consume 120.090
mJ per inference to run MobileNetvl with CPUs. Consequently,
end-users can compare different devices and choose the one that
best suits their needs. On the other hand, for the research commu-
nity, an easily adoptable measurement method or energy dataset
can accelerate progress in developing energy-efficient DNN models,
designing energy predictors, or searching for DNN models with
energy/power constraints within a vast model-design space. Cur-
rently, due to a lack of sustainability mindset, the optimization of
DNNs is primarily driven by research focused on achieving high
inference accuracy and minimizing latency.

We hope our work can help shift the mindset of both end-users and
the research community towards sustainability, a principle that drives
our research.

3 ENERGY MEASUREMENT AND DATASET

We conduct a measurement study and create three energy datasets:
kernel-, model-, and application-level datasets. Overall, we collect

fine-grained power traces and accurate energy consumption data
for (1) 16 types of kernels with 1, 847 unique configurations, (2) nine
SOTA DNN models with 50 variants each, and (3) six widely-used
edge Al applications on eight commercial edge devices.

3.1 Energy Measurement

We develop a reproducible energy measurement methodology, which
facilitates the collection of accurate and fine-grained power con-
sumption of kernels, DNN models, and end-to-end edge Al applica-
tions on modern edge devices.

Proposed solution for C1: accuracy. As discussed in Section 2,
although external power monitors demonstrate promising accuracy
and time granularity for tracing power variations within a DNN
execution, establishing a physical connection between a modern
edge device with an FPC battery connector and such a monitor
is nontrivial. To address this challenge, we first use a mechanic
mobile device DC power cable [45] that is designed to fit multiple
device models, including those with FPC connectors, to connect the
tested devices to an external power monitor. This method requires
little effort on the part of the benchmarking researchers. How-
ever, we find that the tested devices cannot boot due to the lack of
proprietary battery management system (BMS) chips. BMS is an
electronic system that manages and monitors the performance and
safety of a device battery, and is typically attached to the battery
in modern edge devices. The device OS must communicate with
the proprietary BMS to check the status and safety of the battery
before allowing the phone to power on. Hence, the device cannot
boot if its battery is disconnected or an unauthorized battery is
connected. We have studied multiple alternatives to address this
issue, and we find that the most effective method is to segregate
the BMS chip from the device battery without tearing it down,
and use it as a bridge to connect the device to the external power
monitor. This method strikes a good balance between the effort
required and reproducibility. We have validated this method on
eight different modern smartphones, as illustrated in Fig. 3. All of
the tested devices are able to power on with full functionality using
this method.

We develope a detailed documentation to provide step-by-step in-
structions on how to implement this method on other modern edge
devices, which will help the community to reproduce measurements
and apply this technique to their own research.

Rules for measurement. Since the power consumption of mo-
bile and edge devices can be easily influenced by the environment,
such as heat dissipation and background activities, it is crucial to
create specific rules for measurement. These rules can bolster the
consistency and reliability of power measurements across diverse
devices and testing conditions. By controlling and accounting for
environmental factors, we can mitigate their influence on our power
data collection, and thus gain a more accurate understanding of the
inherent power and energy consumption characteristics of DNN
executions. To this end, we establish a set of rules for power mea-
surements. Through our observation, these rules effectively ensure
consistency and reproducibility*.

4 Although understanding how the power consumption of DNN executions may vary
with noisy background activities is important (since it is close to practical use cases),
it is equally crucial to isolate and understand the intrinsic power characteristics of

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 20,2024 at 19:42:50 UTC from IEEE Xplore. Restrictions apply.



Table 3: Specifications of Measured Edge Devices and Chipsets

Model OnePlus Xiaomi Huawei Huawei Huawei Huawei Xiaomi Motorola
8 Pro Redmi Note8 Mate40 Pro P40 Pro P40 Lite P40 Lite E  Redmi K30 Ultra  One Macro
SoC SD 865 SD 665 Kirin 9000 Kirin 990 5G  Kirin 810  Kirin 710F  Dimensity1000+  Helio P70
Vendor Qualcomm Qualcomm HiSilicon HiSilicon HiSilicon  HiSilicon MediaTek MediaTek
M A77+A55 A73+A53 A77+A55 A76+A55 A76+A55 A73+A53 A77+A55 A73+A53
CPU C1 4+4 4+4 4+4 4+4 2+6 4+4 4+4 4+4
F1 2.84 GHz 2.0 GHz 3.13 GHz 2.86 GHz 2.27 GHz 2.2 GHz 2.6 GHz 2.1 GHz
GPU Adreno 650 Adreno 610 Mali G78 Mali G76 Mali G52 Mali G51 Mali G77 Mali G72
Dedicated Hexagon698  Hexagon686  Ascend Lite+Tiny  Lite+Tiny D100Lite MediaTek3.0 MediaTek
Al DSP DSP NPU NPU NPU None APU APU
accelerator Da Vinci 2.0 Da Vinci Da Vinci
0S (Android) 10 10 10 10 10 10 10 9
NNAPT Yes Yes Yes Yes Yes Yes Yes Yes
support
Batter C2 4510 mAh 4500 mAh 4400 mAh 4200 mAh 4200 mAh 4000 mAh 4500 mAh 4000 mAh
atery R No No No No No No No No
Class Flag Mid-range Flag Flag Mid-range Mid-range Flag Mid-range

" SD: Snapdragon, M: Microarchitecture, C1: CPU Cores, F1: Maximum Frequency, S: Display Size, C2: Battery Capacity, and R: If battery is removable.

(a) OnePlus 8 Pro  (b) Redmi Note8 (c) Mate40 Pro (d) P40 Pro

e Disable adaptive brightness and set the display to the lowest
brightness level.

e Turn off WiFi, Bluetooth, cellular network, and Near-Field

Communication (NFC) interfaces to minimize the interfer-

ence on the accuracy of power measurements.

Shut down and disable any background applications and

services to minimize the interference on the accuracy of

measurements.

Conduct measurements with a room-temperature between

20 and 25°C.

Maintain an air gap with proper ventilation to regulate the

temperature of the smartphone and prevent run-time ther-

mal throttling.

e Configure the screen refresh rate to 60 Hz.

e Configure the camera sample rate to 15 frames per second,

if the executed edge Al applications require the use of the

device camera.

Set up a 2-minute cooldown interval between individual tests

to allow the device to cooldown.

Devices and tools. We select eight modern edge devices with
distinct mobile SoCs that include at least one high-end and one
mid-range SoC from leading chipset vendors, such as Qualcomm,
HiSilicon, and MediaTek. Their specifications are presented in Table

the DNNs, independent of these variations. This is one of the primary goals of our
measurement study in this paper.
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(h) One Macro

(e) P40 Lite
Figure 3: Measured devices with segregated BMS chips.

(f) P40 Lite E (g) K30 Ultra

3. The selected mobile SoCs can serve as representative examples of
advanced and widely used mobile Al silicons in the past two years.
Unless stated, all power consumption data are measured by the
Monsoon power monitor with a 5000 Hz sampling rate. The latency
of DNN inferences, including both model-level and kernel-level
latencies, is measured by the TFLite benchmark tool [46].

3.2 Energy Dataset

Kernel-level. As we introduced in Section 2, kernels constitute the
fundamental units of execution in deep learning frameworks, with
their types and configuration parameters significantly influencing
the energy consumption during DNN executions. Table 4 illustrates
that conv4bnrelu kernels typically consume more energy than
other kernel types. Furthermore, the configuration for each kernel
type varies. For conv+#bn+4relu and dwconv+#bn+4relu kernels, the
primary configurations includes input height and width (HW)?,
input channel number (C;y), output channel number (Cpy/), kernel
size (KS), and stride (S). Table 5 presents a comparison of the energy
consumption between two conv4bn+relu kernels with different
configurations, both run on a mobile CPU. One kernel configuration
consumes a considerable 125.232m]J of energy, whereas the other
expends a mere 0.064mJ. As a result, examining the impact of kernel
configurations on energy consumption lays the foundation for a

In CNN models, input height usually is equal to input width.
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Table 4: Measured kernels per device in our kernel-level dataset.

Energy Consumption (mJ)

# Measured kernels

Kernels _ CPU . GPU CPU GPU Avg.(;[I;OPs Configurations
min - max min - max
conv4bn4relu 0.002 - 1200.083  0.002 - 120.152 1032 1032 250.137 (HW, Cin, Cous, KS, S)
dwconv4bn+relu 0.022 - 222.609 0.016 - 0.658 349 349 28.364 (HW,Cin,KS, S)
bn4#relu 0.002 - 161.334 0.001 - 14.594 100 100 4.710 (HW, Cipn)
relu 0.001 - 141.029 0.003 - 6.86 46 46 7.983 (HW, Cipn)
avgpool 0.066 - 7.711 0.034 - 1.142 28 28 0.670 (HW,Cin,KS, S)
maxpool 0.054 - 7.779 0.032 - 1.214 28 28 0.521 (HW,Cin,KS, S)
fc 0.038 - 94.639 - 24 - 14.744 (Cins Cout)
concat 0.001 - 42.826 0.066 - 3.428 142 142 0 (HW, Cin1, Cinz, Cin3, Cina)
others 0.001 - 132.861 0.003 - 10.163 98 72 - (HW, Cin)

Table 5: Energy consumption of conv+bn+relu kernels with
different configurations on mobile CPU.

(HW; Cin) Cuut, KS, S)
(112, 64, 128,3,1) (28, 22,22,1,1)
125.232 0.064

Energy (m))

comprehensive understanding of energy consumption during DNN
executions on edge devices.

To this end, we present our kernel-level energy dataset collected
from real edge devices. To build the dataset, as presented in Table
4, we initially generate a large number of kernels with a variety of
types (16 types for CPU and 10 types for GPU) featuring a range of
configurations in the tf1lite format (e.g., 1032 conv#bn+relu and
349 dwconv+bn4relu kernels). The number of sampled configura-
tions for each kernel type hinges on two main factors: its configu-
ration dimension and its impact on the overall energy consumption
during DNN executions (e.g., we observe that the conv4bn+4relu
kernel accounts for more than 70% of the total energy consumption
in most SOTA CNN models on edge devices). These kernel config-
urations are randomly sampled in accordance with the sampling
strategy proposed in [30]. Then, we measure the average power
consumption and inference latency for each generated kernel run-
ning on individual edge devices. Each power and latency value is
the average of at least 100 inference runs. We conduct these mea-
surements independently on both CPUs and GPUs. As shown in
Table 4, our kernel-level energy dataset spans a broad spectrum
with different levels of energy consumption.

In Fig. 4, we seek to investigate how the five configurations
(i.e., HW, Cip, Cour, KS, and S) impact the energy consumption of
conv4bn+relu. In each evaluation, we vary a single configuration
(e.g., HW) while maintaining the other four constants. The results
reveal that the relationship between the energy consumption and
the configurations is non-linear. As illustrated in Fig. 4(a), the en-
ergy consumption demonstrates a progressive increase with the
growth of HW. For instance, when running on the mobile CPU,
the energy consumption of conv+#bn+relu increases by approxi-
mately 1.85X (0.077m]J to 0.22m]), 3.2X (0.22m] to 0.93mJ), 4.37x
(from 0.93m]J to 5.0mJ), 3.36X (5.0m]J to 21.81m]), as HW doubles
from 14 to 28, 28 to 56, 56 to 112, and 112 to 224, respectively.
While operating on the mobile GPU, the energy consumption of the

conv+bn-+relu exhibits a similar trend but at a different rate. In this
case, its energy consumption increases by roughly 1.21x (0.013mJ
to 0.029m]), 1.89x (0.029mJ to 0.083mJ), 3.79% (0.083m] to 0.399my]),
3.98% (0.399m]J to 1.988m]J) when HW doubles from 14 to 28, 28 to
56, 56 to 112, and 112 to 224, respectively. Moreover, we find that
KS has the most significant impact on the energy consumption of
conv+bn+relu. This is because the majority of energy consump-
tion of kernel conv4bn+relu is attributed to convolutional layer.
Within the convolutional layer, KS has the most significant impact
due to its quadratic relationship with computational cost, while
other parameters have a linear relationship. Specifically, when dou-
bling each of the configuration, KS (from 3 to 5), HW (from 14 to 28),
Cin (from 128 to 256), and Cyy; (from 128 to 256), the corresponding
increases in energy consumption are approximately 2.08%, 1.85X,
1.05%, and 1.18x% respectively. This finding demonstrates the dis-
proportionate influence of KS on energy consumption relative to
the other parameters.

Insights: the above observations underscore the importance of adap-
tive configuration selection in enhancing the energy efficiency of DNNs
on edge devices. Given that our kernel-level dataset covers a wide range
of configurations, each associated with an energy consumption label,
it can serve as a valuable resource for guiding the selection of optimal
configurations, searching for energy-efficient kernel configurations
that meet specific energy constraints, and training kernel-level energy
predictors (present in Section 4).

Fig. 5 presents a comparison of the energy consumption between
running conv4bn4relu with identical configurations on an edge
device’s CPU and GPU. Interestingly, we find that using the mobile
GPU for executing the conv#bn+relukernel does not always result
in energy savings when compared to running the same kernel on a
mobile CPU, especially when the HW and KS parameters are on
the lower side. For instance, when testing on the Huawei P40 Pro
with the kernel configurations of HW = 1, KS = 1, Cj, = 480, and
Cour = 20, we find that the energy consumed by the GPU exceeds
that of the CPU by more than a factor of 6.6. While the magnitude
of this difference may vary across different edge devices, the overall
pattern of increased energy consumption on the GPU under these
conditions appears to be consistent.

Insights: This observation is crucial for designing effective kernel
execution scheduling strategies on edge devices. Rather than only
considering the type of kernel, the specific configuration of the kernel
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Figure 6: Measured fine-grained power slices for

conv4bn+relu with HW = 112,Ci,, = 20,Coyr = 120,S = 1.
The intra-kernel power variation exhibits a “high-initial,
flat-later" pattern.

should also be taken into account when deciding where to execute it
(e.g., on the mobile CPU or GPU).

(96, 4)
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(Cin: Cout)
Figure 5: Comparison of energy consumption of conv+bn+relu with identical configurations on mobile CPU and GPU (HW =
1,KS = 1,5 = 1, measured device: Huwei P40 Pro). Using the mobile GPU to execute the kernel does not always save the device’s
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In addition, our kernel-level dataset includes fine-grained power
traces for each individual kernel, referred to as power slices in this
paper. These collected power slices provide valuable insights for
analyzing intra-kernel power variations. One of the primary ob-
servations in power slices is that the intra-kernel power variation
exhibits a “high-initial, flat-later" pattern, illustrated in Fig. 6, when
the kernel is executed on a mobile CPU and the execution time
exceeds a certain threshold. Fig. 6(a) reveals an initial power surge
at the beginning of kernel execution on Huawei P40 Pro, equipped
with a Kirin 990 5G chipset. This ramp-up phase continues for
approximately 10.5ms. Following the initial ramp-up, the power
consumption settles into a more consistent, flatter profile that per-
sists until the end of the kernel’s execution. We conduct validations
across varying kernel configurations, with varying execution time,
as well as on various edge devices to ascertain the consistency of
this observation. We find the same pattern on the measured devices,
as demonstrated in Figs. 6(b) and 6(c). Interestingly, devices pow-
ered by chipsets from the same vendor (e.g., Kirin 990 5G and Kirin
810) exhibit a nearly identical ramp-up time (10.5ms and 10.2ms),
while the Snapdragon 855’s (this device is not listed in Table 3)
ramp-up time is around 6.2ms. The “high-initial, flat-later" pattern
primarily arises due to power management techniques implemented
in modern processors on edge devices. For instance, the Dynamic
Voltage and Frequency Scaling (DVFS) technique can dynamically
adjust a processor’s voltage and frequency during runtime, based
on computational demands. At the beginning of a computationally
intensive kernel execution, DVFS may increase the frequency to en-
sure the task’s timely completion. It then lowers the frequency once
the task becomes more manageable, resulting in a relatively flat
power consumption profile. The variation in ramp-up times among
different chipsets and vendors can be attributed to the unique DVFS
strategies they employ.

Insights: The ramp-up time can negatively impact power and en-
ergy efficiency on edge devices, particularly when executing kernels
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with relatively small configurations (where their execution time are
less than the ramp-up time). As illustrated in Fig. 6(b), the ramp-up
phase causes the conv+bn+relu kernel with HW = 112, Ci, = 20,
Cour = 120, S = 1 to consume 25.3% and 19.6% more power than
kernels with larger KSs, specifically 3 and 5. Nevertheless, kernels
with smaller configurations are often preferred for implementation
on edge devices to save computational resources. This highlights the
critical importance of optimizing the ramp-up phase for edge devices.
For instance, if the aforementioned kernel with KS = 1 can be exe-
cuted directly in the flat phase, it can result in a reduction of energy
consumption by 23.1%.

Model-level. We introduce our model-level energy dataset,
which collects nine SOTA DNN models. These models represent
a mix of both manually-designed and NAS-derived models, each
with distinct kernel types and configurations. For each model, we
generate 50 variants for conducting power and energy measure-
ments by re-sampling the Coy,; and KS for each layer. Specifically,
we randomly sample the new output channel number from a range
of 20% to 180% of the original Cyy¢, while the KS is sampled from
the set of values: {1,3,5,7,9}. Table 6 presents the details of the
measured DNN models. In general, running these models on mobile
GPUs results in an energy consumption reduction of approximately
49% to 79%, compared to the execution on mobile CPUs.

Fig. 7 presents the energy consumption breakdown of individ-
ual models by kernel types. The four kernel types that consume
the most energy are conv+#bn4relu, dwconv+bn+relu, fc, and
concat. They account for 79.27%, 14.79%, 2.03%, and 1.5% of the
total model energy consumption on mobile CPUs, respectively.
On mobile GPUs, these kernels represent 78.17%, 10.91%, 4.01%,
and 4.28% of the total model energy consumption. Furthermore,
in most models, conv4bn4#relu and dwconv#bn+relu account
for the main energy percentages. On average, conv4#bn4relu and
dwconv4bn+relu take 93.97% and 87.74% of the total model energy
consumption on the mobile CPU and GPU, respectively.

In addition, our model-level dataset collects fine-grained power
slices for all the measured DNN models. For instance, Fig. 8 illus-
trates the measured power slices of two AlexNets with distinct
kernel configurations, whose specific configurations are detailed
in Table 7. These model-level power slices offer (1) a holistic view
of the precise power variations associated with each kernel within
the DNN model, (2) the temporal and sequential aspects of kernel
executions, and (3) a visual approach to easily identify the power
and energy bottlenecks within a specific DNN model.

Applications-level. While the kernel- and model-level datasets
can be beneficial for researchers and developers in understanding,
modelling, and optimizing power and energy efficiency of DNN
executions, end-users generally have a greater interest in the en-
ergy consumption of those frequently used Al applications on their
devices. This is because the application’s energy efficiency directly
affects device’s battery life, which is critical to the user experience.
To this end, we create an application-level dataset, which uncov-
ers the end-to-end energy consumption of six popular edge AI
applications, covering three main categories: vision-based (object
detection, image classification, super resolution, and image seg-
mentation), NLP-based (natural language question answering), and
voice-based applications (speech recognition). As shown in Table 8,
we measure the power and energy consumption of each application
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Table 6: Measured DNN models in our model-level dataset.

Energy consumption (m])

Models CPU GPU Avg. FLOPs
min - max min - max (M)
AlexNets 36.97 - 355.58 7.69 - 91.80 815
DenseNets 231.93 - 488.87  66.21 - 133.58 1760
GoogleNets 145.03 - 262.45 52.66 - 90.04 1535
MobileNetvis 53.59 - 136.79 17.36 - 42.44 519
MobileNetv2s 30.85 - 175.07 8.81 - 48.35 419
ProxylessNASs 58.34 - 162.11 17.70 - 49.29 526
ResNet18s 251.52 - 1432.67 64.19 - 391.97 3888
ShuffleNetv2s 25.26 - 81.41 - 319
SqueezeNets 92.55 - 388.16 34.55 - 134.65 1486

Table 7: Kernel configurations of two AlexNets.

Configurations
Kernels AlexNet 1 AlexNet 2
(Fig. 8(a)) (Fig 8(b))
conv4relu 1 (224, 3, 89, 5, 4) (224,3,70,7,4)
maxpool 1 (224, 89, 3, 2) (55, 70, 3, 2)
conv4relu 2 (28,89,153,7,1) (28,70, 115,7, 1)
maxpool 2 (28, 153, 3, 2) (28, 115, 3, 2)

conv4relu 3
conv+relu 4
conv+relu 5

(13, 153, 460, 5, 1)
(13, 460, 230, 1, 1)
(13, 230, 204, 7, 1)

(13, 115, 345, 5, 1)
(13, 345, 128, 5, 1)
(13, 128, 307, 3, 1)

maxpool 3 (13, 204, 3, 2) (13, 307, 3, 2)
global-pool 1 (1, 204) (1, 307)

fc 1 (204, 3686) (307, 3686)

fc 2 (3686, 6144) (3686, 6963)

fc 3 (3686, 1000) (3686, 1000)
Total energy (mJ) 242.888 151.414

with multiple reference DNN models that operate under four dis-
tinct computational settings, including CPU with a single thread,
CPU with four threads, GPU delegate, and the NNAPI delegate. The
dataset can serve as a resource for exploring the energy consump-
tion distribution throughout the end-to-end processing pipeline
of an edge Al application. For example, we can use the dataset to
examine the energy consumed in generating image frames, convert-
ing these frames from YUV to RGB, and conducting DNN inference
within an object detection application. Fig. 9 depicts the energy
consumption breakdown based on the processing phases in the
object detection. It demonstrates that our application-level dataset
can provide interpretable observations for comprehending who is
the primary energy consumer in the end-to-end edge Al application.
Additionally, the application-level dataset offers essential inputs for
our edge device scoring system (Section 5). Due to the page limit,
we will not present additional measurement results in this paper.

Time cost. Finally, in Table 9, we report the time cost associated
with performing measurements and creating our datasets. On a sin-
gle edge device, we spend 23.1, 4.7, and 1.5 days, respectively, on (1)
measuring the power and energy consumption of all the generated
kernels, DNN models, and edge Al applications, and (2) creating the
corresponding power and energy datasets. We will open-source our
datasets and code for other researchers and developers. Collectively,
we anticipate that the community will collaborate to create a larger
scale energy dataset for a variety of edge devices.
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Figure 9: End-to-end energy consumption breakdown for object detection and classification (application-level dataset).

4 ENERGY PREDICTION

In this section, we present our proposed solution to address C2:
extensibility. To extend the applicability of our measurement
study to a wider variety of DNN models, including those not present
in our dataset, we design and implement a kernel-level energy
predictor which can accurately predict the energy consumption of

new DNN models on edge devices. The predictors are trained using
our kernel-level dataset and evaluated by our model-level dataset.

4.1 Design and Implementation

Our designed kernel-level energy prediction method is inspired
by nn-meter [30] which proposed a kernel-based latency predic-
tor for DNN models. However, nn-meter does not support energy
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Table 8: Measured edge AI applications per device in our application-level dataset.

Category Application No. Reference DNN models CPUT Cpgzlegét;U NNAPI Mo(il\ji;xze
DNN1 MobileNetv2, FP32, 300 x 300 pixels Vv Vv v 24.2
Image detection DNN2 MobileNetv2, INT8, 300 x 300 pixels v v Vv 6.9
DNN3 MobileNetv2, FP32, 640 x 640 pixels v Vv v 12.3
DNN4 MobileNetv2, INT8, 640 x 640 pixels v4 v / 4.5
Vision-based DNN5 EfficientNet, FP32, 224 x 224 pixels v4 / V \// 18.6
Image classification DNN6 EfficientNet, INT8, 224 x 224 pixels v v v 5.4
DNN7 MobileNetv1, FP32, 224 x 224 pixels v V4 v v 4.3
DNN8 MobileNetv1, INTS, 224 x 224 pixels ~ / v Vv 16.9
Super resolution DNN9 ESRGAN [47], FP32, 50 x 50 pixels v v4 5
Image segmentation DNN10 DeepLabv3 [12], FP32, 257 x 257 pixels / 2.8
NLP-based  Natural language question answering DNN11 MobileBERT [48], FP32 v v Vv 100.7
Voice-based Speech recognition DNN12 Conv-Actions-Frozen [49], FP32 v v v 3.8

Table 9: Time cost of measurements per edge device.

Models
4.7 days

Kernels
23.1 days

Applications
1.5 days

Measure time per device

prediction. We propose using a rationale akin to that of nn-meter
for the design of our kernel-level energy predictor, especially given
that kernels run sequentially on current edge devices. The key
contributions of our proposed energy predictor include: (1) being
the first energy predictor for modern edge devices, achieving an
accuracy of 86.2% (making it the most accurate energy predictor for
edge devices to date) for unseen DNNss (i.e., those with unfamiliar
kernel configurations); and (2) being the first kernel-level energy
predictor for DNN executions on modern edge devices. Notably,
most existing research primarily uses FLOPs to estimate the energy
consumption of DNN executions, resulting in generally low predic-
tion accuracy for unseen DNN models. The core of our kernel-level
energy prediction method is that we build and train a predictor for
each type of kernel (e.g., conv#bn+relu) using the kernel-level en-
ergy dataset presented in Section 3. The total energy consumption
of a DNN model is then predicted by summing the estimated energy
consumption of all kernels within that DNN model. Our energy
predictors are implemented using the random forests regression,
a machine learning algorithm known for its robustness, handling
of high dimensional spaces, and its capability to model complex
non-linear relationships.

4.2 Performance Evaluation

Comparison baselines. We implement two baselines to compare
the energy prediction accuracy: (1) FLOPs-based predictor: recent
work has leveraged FLOPs to estimate the energy consumption
of DNN inference [50]. We train FLOPs predictors using linear
regression. Given the FLOPs of a DNN model, the predictor can
estimate its inference energy consumption. (2) BIC-based predictor:
to demonstrate the critical role that our fine-grained kernel-level
dataset plays in accurately predicting energy consumption, we also
train energy predictors using the power data sampled by the edge
device’s built-in current (BIC) sensor. To ensure a fair comparison
(i.e, to confirm that any prediction errors in energy consumption
are largely due to the inaccuracy of the built-in current sensor’s
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power measurement), we take three steps: (1) using the ground-
truth latency when calculating the energy consumption in the
BIC training dataset, and (2) training the predictor with the same
amount of data, covering the same number of kernels and identical
configurations, and using the random forests regression.

Metrics. The prediction performance is evaluated through the
root mean square error (RMSE), root mean square percentage error
(RMSPE), +£10%, and +15% accuracy. The latter two metrics repre-
sent the percentage of models whose predicted energy consumption
lies within the specified error bounds relative to actual measured
energy consumption. In this paper, £15% accuracy is the default
metric. Smaller RMSE/RMSPE and larger +10%/+15% indicate better
prediction performance.

Comparison results on unseen DNN models. For the com-
parison study, we select AlexNets, GoogleNets, MobileNetv1s, Mo-
bileNetv2s, and ShuffleNetv2s. As the FLOPs-based predictor re-
quires training with model-level data (i.e., the FLOPs of DNN mod-
els), we adopt a leave-one-out cross-validation approach. We set
aside one model (e.g., 50 models of GoogleNets) as the test set, and
use the remaining four models (e.g., 50 models each of AlexNets,
MobileNetv1s, MobileNetv2s, and ShuffleNetv2s) as the training set
to train the predictor. Our kernel-level predictor and the BIC-based
predictor do not require model-level data for training.

The comparison results are depicted in Fig. 10. Our kernel-level
energy predictor consistently outperforms the other two baselines,
delivering the highest prediction accuracy. Those baselines fail to
achieve comparable levels of prediction accuracy on unseen DNN
models. Specifically, our predictor achieves an average prediction
accuracy of 86.2%, significantly higher than FLOPs, 31.3%, and BIC,
12.7%. The poor prediction accuracy of BIC, particularly on mobile
GPU, demonstrates the indispensability of a fine-grained power
and energy dataset when training a reliable energy predictor for
edge devices. The significant drop in prediction performance of BIC
on the mobile GPU is due to the fact that DNNs typically achieve
much shorter execution time on the GPU compared to the CPU.
This shorter execution time on the GPU necessitates a higher power
sampling rate. Moreover, the performance gap between our kernel-
level predictor and the FLOPs-based predictor reflects the gain
derived through considering the runtime optimization of edge de-
vices, such as kernel fusion. Table 10 presents the prediction results
evaluated across all nine DNN models in our model-level dataset.
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Figure 10: Comparison of energy prediction performance. Our predictors trained by the kernel-level dataset achieves the

highest accuracy on unseen DNNs.

Table 10: Energy prediction results on mobile CPU and GPU.

Model Mobile CPU Mobile GPU
variants RMSE (m]) RMSPE (%) +10% (Acc.) £15% (Acc.) RMSE (mJ) RMSPE (%) £10% (Acc.) +15% (Acc.)
AlexNets 32.2 12.9 60.0% 65.0% 9.4 15.5 40.0% 70.0%
DenseNets 30.8 7.1 70.0% 100% 16.5 19.6 10.0% 35.0%
GoogleNets 25.1 11.9 20.0% 90.0% 3.8 5.5 95.0% 100%
MobileNetv1s 7.8 8.7 80.9% 95.2% 1.7 6.7 80.9% 100%
MobileNetv2s 7.8 8.3 76.2% 90.5% 3.1 11.5 47.6% 66.7%
ProxylessNASs 13.3 11.7 47.6% 71.4% 2.5 8.2 76.2% 95.2%
ResNet18s 44.6 6.1 95.2% 100% 30.5 13.1 38.1% 71.0%
ShuffleNetv2s 3.2 5.8 100% 100% - - - -
SqueezeNets 19.6 10.4 57.1% 90.5% 7.9 10.0 61.9% 85.7%

In addition, we calculate the kernel configuration overlaps between
the training (kernel-level dataset) and the evaluation (model-level
detaset) datasets. Results show that our energy predictors have
only seen 1.1% (CPU) and 1.8% (GPU) of the configurations in the
evaluation dataset, which further attests the effectiveness of our
kernel-level energy predictors on unseen models.

Discussion. Our kernel-level energy predictor exhibits slightly
lower prediction accuracy compared to the latency predictor devel-
oped in nn-meter [30]. This might primarily be due to the fact that
(1) nn-meter manually sets CPU frequency of the measured device
to a fixed value (2.42GHz) when profiling the latency for building
the training dataset and evaluating the prediction accuracy. This
creates a more controlled environment for latency measurement
and prediction. However, to ensure practicality, our kernel-level
energy predictor does not establish a fixed CPU frequency during
energy measurement and prediction. This results in greater vari-
ability and potential uncertainty in the energy prediction, yet it
more accurately reflects real-world usage scenarios where the CPU
frequency is typically dynamic. (2) The scale of our energy training
dataset is less extensive than that of the latency training dataset
in nn-meter, as collecting fine-grained power data is significantly
more time-consuming than profiling latency data, particularly on
modern edge devices. Hence, we anticipate the community will
collectively collaborate to further enhance the scale of our datasets.
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5 SCORING SYSTEM

In this section, we introduce our method to tackle challenge C3:
understandability. We develop a scoring system for diverse edge
devices by leveraging our application-level dataset. To ensure that
the energy efficiency assessment result is accessible to a broad
audience, in particular, edge device end-users with non-technical
backgrounds, we develop two scoring metrics, namely power con-
sumption score (PCS) and inference energy consumption score (IECS).
These two scoring metrics help to distill the power and energy
efficiency of a device in an intuitive and understandable way.
PCS. The PCS is designed to capture the aggregated power effi-
ciency (PE) for running all six edge Al applications with 12 reference
DNN models using CPU, GPU, and NNAPI delegates. It is calcu-
lated as PCS = @
DNN models and PE = (1 — %) % 100. APC denotes the average
power consumption for inferences. Thermal design power (TDP),
measured in watts, represents the maximum power an edge device
is designed to consume under normal operating conditions. The

, where n is the total number of reference

ratio % provides an indication of how efficiently a device is using
its power budget, with a lower ratio indicating better PE.

IECS. The IECS is designed to assess edge device energy effi-
ciency, and calculated as the sum of inference energy consumption
(IEC) for all six edge Al applications under CPU, GPU, and NNAPI
delegates. IEC is defined as the number of inferences per unit of
energy, where it factors in the trade-off between PE and inference
latency. An edge device with a higher IECS is considered more
energy-efficient.
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Figure 11: Comparison of the proposed PCS and AI infer-
ence score [44]. It presents a tradeoff among Al performance,
power consumption, and the selling price. The larger the ball,
the higher the selling price of the device.

Results. Fig. 11 compares our proposed PCS with the Al infer-
ence score developed by AI Benchmark [44] across diverse edge
devices. Note that the Al inference score does not take into account
power and energy efficiency. The figure illustrates a tradeoff be-
tween Al performance, power consumption, and its selling price,
where a larger ball in the figure represents a higher selling price for
the device. An edge device that exhibits superior power efficiency
(higher PCS) and Al inference performance (higher Al performance
score) is positioned towards the top right corner of the figure.

We find that scoring metrics significantly influence benchmark-
ing results for edge devices. For instance, although the Huawei
Mate40 Pro achieves the highest Al performance score, it holds the
second worst PCS. Conversely, the Xiaomi Redmi Note8 attains
the highest PCS while having the second lowest Al performance
score. These observations highlight the need for the development of
IECS that balances power efficiency with Al inference performance.
In Fig. 11, the color of each ball indicates the IECS of each edge
device. The Huawei P40 Pro presents the best equilibrium between
Al performance and power efficiency, as indicated by its IECS and
its position in the figure. The complete IECS benchmark results can
be found on our project webpage.

6 DISCUSSION

Limitations. Our current measurements and datasets are on mod-
ern smartphones equipped with mobile CPUs and GPUs. While
they cover a broad spectrum of edge hardware, they might not be
comprehensive. To further increase the heterogeneity, we plan to
extend our energy datasets by including other modern edge devices,
such as Jetson Nano, Coral TPU, and Raspberry Pi 4.

The proposed kernel-level energy predictor is built offline and
will not be updated dynamically during DNN executions. Naturally,
the prediction accuracy could be further improved by factoring in
more environmental complexities, such as the available computing
and memory resources on an edge device. We will leave this as an
area for our future work.

Automated measurement. Table 9 illustrates that the major-
ity of the time cost comes from energy profiling. Developing an
automated measurement and profiling method can enhance the
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time efficiency for collecting a large-scale and more comprehensive
dataset that includes a variety of edge devices and kernel config-
urations. The kernel-level energy predictor could also benefit, as
prediction accuracy may improve with more training data. Further-
more, automated profiling could help minimize human influence,
leading to more accurate measurements.

Energy prediction for concurrent executions. Our energy
predictor is premised on the fact that kernels currently run se-
quentially on edge devices. In the future, DNN inference may run
concurrently on multi-core chipsets. Kernels processed in parallel
might consume less energy than when processed sequentially, but
more than individual kernels. The energy prediction performance
for concurrent execution might be lower than for sequential execu-
tion, as concurrent operations introduce greater uncertainties in
energy consumption. This aspect requires further experimentation.

7 RELATED WORK

Energy measurement for edge devices. A number of research
works have proposed different methodologies and developed frame-
works for measuring the energy consumption in mobile and edge
devices. The Green Miner proposed in [40] can physically measure
the energy consumption of mobile devices such as Android phones
and automate the testing of applications. The GfxDoctor devel-
oped in [51] can systematically diagnose energy inefficiencies in
app graphics at the app source-code level. However, none of these
works have studied fine-grained energy measurement of DNNs on
modern edge devices.

Edge Al benchmark. A few recent studies developed mobile
Al benchmarks that measure the performance of on-device training
and inference. For example, Al Benchmark [44, 52] is arguably the
first benchmark suite for mobile devices, which primarily focuses
on Android smartphones and measures only the latency. MLPerf
Mobile [53, 54] presents the first industry-standard open-source
benchmark for performance and accuracy evaluation of mobile Al
devices. Additionally, AloTBench [55] comprises a wider range of
model architectures and Al frameworks, with a focus on assessing
the inference capabilities of mobile and embedded devices. However,
none of these edge Al benchmarks focused on energy efficiency of
on-device learning and energy dataset creation for edge devices.

8 CONCLUSION

We conduct energy consumption measurement studies for on-device
deep learning. We have created extensive energy datasets at the
kernel-, model-, and application-level to facilitate research aimed at
improving the energy efficiency of deep learning on edge devices.
Building upon our energy datasets, we have developed kernel-level
predictors that can accurately estimate the energy consumption
of unseen DNN executions. Furthermore, we have implemented
two scoring metrics to enhance the understandability of our energy
measurement results. These contributions offer valuable resources
for advancing energy-efficient deep learning on edge devices.
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