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ABSTRACT

Graph transformers (GTs) have emerged as a promising architecture that is the-
oretically more expressive than message-passing graph neural networks (GNNs).
However, typical GT models have at least quadratic complexity and thus can-
not scale to large graphs. While there are several linear GTs recently proposed,
they still lag behind GNN counterparts on several popular graph datasets, which
poses a critical concern on their practical expressivity. To balance the trade-off be-
tween expressivity and scalability of GTs, we propose Polynormer, a polynomial-
expressive GT model with linear complexity. Polynormer is built upon a novel
base model that learns a high-degree polynomial on input features. To enable
the base model permutation equivariant, we integrate it with graph topology and
node features separately, resulting in local and global equivariant attention mod-
els. Consequently, Polynormer adopts a linear local-to-global attention scheme to
learn high-degree equivariant polynomials whose coefficients are controlled by at-
tention scores. Polynormer has been evaluated on 13 homophilic and heterophilic
datasets, including large graphs with millions of nodes. Our extensive experiment
results show that Polynormer outperforms state-of-the-art GNN and GT baselines
on most datasets, even without the use of nonlinear activation functions. Source
code of Polynormer is freely available at: github.com/cornell-zhang/Polynormer.

1 INTRODUCTION

As conventional graph neural networks (GNNs) are built upon the message passing scheme by ex-
changing information between adjacent nodes, they are known to suffer from over-smoothing and
over-squashing issues (Oono & Suzuki, 2020; Alon & Yahav, 2021; Di Giovanni et al., 2023), re-
sulting in their limited expressive power to (approximately) represent complex functions (Xu et al.,
2018; Oono & Suzuki, 2020). Inspired by the advancements of Transformer-based models in lan-
guage and vision domains (Vaswani et al., 2017; Dosovitskiy et al., 2021), graph transformers (GTs)
have become increasingly popular in recent years, which allow nodes to attend to all other nodes in a
graph and inherently overcome the aforementioned limitations of GNNs. In particular, Kreuzer et al.
(2021) have theoretically shown that GTs with unbounded layers are universal equivariant function
approximators on graphs. However, it is still unclear how to unlock the expressivity potential of GTs
in practice since the number of GT layers is typically restricted to a small constant.

In literature, several prior studies have attempted to enhance GT expressivity by properly involv-
ing inductive bias through positional encoding (PE) and structural encoding (SE). Specifically, Ying
et al. (2021); Chen et al. (2022a); Zhao et al. (2023); Ma et al. (2023) integrate several SE methods
with GT to incorporate critical structural information such as node centrality, shortest path dis-
tance, and graph substructures. Moreover, Kreuzer et al. (2021); Dwivedi et al. (2022); Rampasek
et al. (2022); Bo et al. (2023) introduce various PE approaches based upon Laplacian eigenpairs.
Nonetheless, these methods generally involve nontrivial overheads to compute PE/SE, and mostly
adopt the self-attention module in the vanilla Transformer model that has quadratic complexity with
respect to the number of nodes in a graph, prohibiting their applications in large-scale node classi-
fication tasks. To address the scalability challenge, many linear GTs have been recently proposed.
Concretely, Choromanski et al. (2021); Zhang et al. (2022); Shirzad et al. (2023); Kong et al. (2023)
aim to sparsify the self-attention matrix via leveraging node sampling or expander graphs, while
Wu et al. (2022; 2023) focus on kernel-based approximations on the self-attention matrix. Unfor-
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tunately, both prior work (Platonov et al., 2023) and our empirical results indicate that those linear
GT models still underperform state-of-the-art GNN counterparts on several popular datasets, which
poses a serious concern regarding the practical advantages of linear GTs over GNNs.

In this work, we provide an orthogonal way to ease the tension between expressivity and scalabil-
ity of GTs. Specifically, we propose Polynormer, a linear GT model that is polynomial-expressive:
an L-layer Polynormer can expressively represent a polynomial of degree 2L, which maps input
node features to output node representations and is equivariant to node permutations. Note that the
polynomial expressivity is well motivated by the Weierstrass theorem which guarantees any smooth
function can be approximated by a polynomial (Stone, 1948). To this end, we first introduce a base
attention model that explicitly learns a polynomial function whose coefficients are determined by
the attention scores among nodes. By imposing the permutation equivariance constraint on polyno-
mial coefficients based on graph topology and node features separately, we derive local and global
attention models respectively from the base model. Subsequently, Polynormer adopts a linear local-
to-global attention paradigm for learning node representations, which is a common practice for
efficient transformers in language and vision domains yet less explored on graphs. To demonstrate
the efficacy of Polynormer, we conduct extensive experiments by comparing Polynormer against
22 competitive GNNs and GTs on 13 node classification datasets that include homophilic and het-
erophilic graphs with up to millions of nodes. We believe this is possibly one of the most extensive
comparisons in literature. Our main technical contributions are summarized as follows:

• To the best of our knowledge, we are the first to propose a polynomial-expressive graph trans-
former, which is achieved by introducing a novel attention model that explicitly learns a high-degree
polynomial function with its coefficients controlled by attention scores.

• By integrating graph topology and node features into polynomial coefficients separately, we derive
local and global equivariant attention modules. As a result, Polynormer harnesses the local-to-global
attention mechanism to learn polynomials that are equivariant to node permutations.

• Owing to the high polynomial expressivity, Polynormer without any activation function is able to
surpass state-of-the-art GNN and GT baselines on multiple datasets. When further combined with
ReLU activation, Polynormer improves accuracy over those baselines by a margin of up to 4.06%
across 11 out of 13 node classification datasets, including both homophilic and heterophilic graphs.

• Through circumventing the computation of dense attention matrices and the expensive PE/SE
methods used by prior arts, our local-to-global attention scheme has linear complexity in regard to
the graph size. This renders Polynormer scalable to large graphs with millions of nodes.

2 BACKGROUND

There is an active body of research on GTs and polynomial networks, from which we draw inspi-
ration to build a polynomial-expressive GT with linear complexity. In the following, we present
preliminaries for both areas and provide an overview of their related work.

Graph transformers exploit the Transformer architecture (Vaswani et al., 2017) on graphs. Specif-
ically, given an n-node graph G and its node feature matrix X ∈ R

n×d, where d represents
the node feature dimension, a GT layer first projects X into query, key, and value matrices, i.e.,
Q = XWQ,K = XWK ,V = XWV , where WQ,WK ,WV ∈ R

d×d are three trainable weight
matrices. Subsequently, the output X ′ with self-attention is calculated as:

S =
QKT

√
d

,X ′ = softmax(S)V (1)

where S ∈ R
n×n is the self-attention matrix. For simplicity of illustration, we assume query, key,

and value have the same dimension and only consider the single-head self-attention without bias
terms. The extension to the multi-head attention is standard and straightforward.

As Equation 1 completely ignores the graph topology, various PE/SE methods have been proposed
to incorporate the critical graph structural information into GTs. Concretely, Kreuzer et al. (2021);
Dwivedi et al. (2022); Rampasek et al. (2022); Bo et al. (2023) use the top-k Laplacian eigenpairs
as node PEs, while requiring nontrivial computational costs to learn the sign ambiguity of Laplacian
eigenvectors. Similarly, SE methods also suffer from high complexity for computing the distance
of all node pairs or sampling graph substructures (Ying et al., 2021; Chen et al., 2022a; Zhao et al.,
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2023; Ma et al., 2023). Apart from the expensive PE/SE computation, most of these approaches
follow Equation 1 to compute the dense attention matrix S, resulting their quadratic complexity
with regard to the number of nodes. While there are scalable GTs recently proposed by linearizing
the attention matrix and not involving PE/SE, they lack a thorough analysis of their expressivity in
practice and may perform worse than state-of-the-art GNNs (Choromanski et al., 2021; Zhang et al.,
2022; Shirzad et al., 2023; Kong et al., 2023; Wu et al., 2022; 2023). In this work, we provide a
novel way to balance the expressivity and scalability of GTs, via introducing a linear GT model that
can expressively represent a high-degree polynomial.

Polynomial networks aim to learn a function approximator where each element of the output is
expressed as a polynomial of the input features. Formally, we denote the mode-m vector product of
a tensor T ∈ R

I1×I2×···×IM with a vector u ∈ R
Im by T×mu. Given the input feature x ∈ R

n and
the output y ∈ R

o, polynomial networks learn a polynomial P : Rn → R
o with degree R ∈ N:

yj = P(x)j = bj +w
[1]
j

T

x+ xTW
[2]
j x+ W

[3]
j ×1 x×2 x×3 x+ · · ·+ W

[R]
j

R∏

r=1

×rx (2)

where bj ∈ R and {W
[r]
j ∈ R

n× n× · · · × n
︸ ︷︷ ︸

r times }Rr=1 are learnable parameters for the j-th element
of output y. Note that Equation 2 can be naturally extended to a more general case where both the
input and output of the polynomial P are matrices or higher-order tensors. Moreover, suppose x and
y have the same dimension (e.g., x,y ∈ R

n), we say a polynomial P is permutation equivariant if
for any permutation α of the indices {1, 2, · · · , n}, the following property holds:

P(α · x) = α · P(x) = α · y (3)

Note that when x ∈ R
n represents node features for an n-node graph (i.e., each node feature has

a scalar value), the aforementioned equivariance property essentially indicates the polynomial P
is equivariant to node permutations. It is worth mentioning that the polynomial networks are fun-
damentally distinct from the polynomial graph filtering methods widely explored in spectral-based
GNNs, which purely focus on the polynomials of graph shift operators rather than node features.

In the literature, the notion of learnable polynomial functions can be traced back to the group method
of data handling (GMDH), which learns partial descriptors that capture quadratic correlations be-
tween specific pairs of input features (Ivakhnenko, 1971). Later, the pi-sigma network (Shin &
Ghosh, 1991) and its extensions (Voutriaridis et al., 2003; Li, 2003) have been proposed to cap-
ture higher-order feature interactions, while they struggle with scaling to high-dimensional input
features. Recently, Chrysos et al. (2020) introduce P-nets that utilize a special kind of skip con-
nections to efficiently implement the polynomial expansion with high-dimensional features. In
addition, Chrysos et al. (2022) express as polynomials a collection of popular neural networks,
such as AlexNet (Krizhevsky et al., 2012), ResNet (He et al., 2016), and SENet (Hu et al., 2018),
and improve their polynomial expressivity accordingly. While these approaches have demonstrated
promising results on image and audio classification tasks, they are not directly applicable to graphs.

To learn polynomials on graph-structured data, Maron et al. (2018) first introduce the basis of con-
stant and linear functions on graphs that are equivariant to node permutations. Subsequently, a series
of expressive graph models have been developed by leveraging polynomial functions (Maron et al.,
2019; Chen et al., 2019; Azizian & Lelarge, 2020; Hua et al., 2022). More recently, Puny et al.
(2023) demonstrate that the polynomial expressivity is a finer-grained measure than the traditional
Weisfeiler-Lehman (WL) hierarchy for assessing the expressive power of graph learning models.
Besides, they devise a graph polynomial model that achieves strictly better than 3-WL expressive
power with quadratic complexity. However, these prior studies either only consider polynomials on
local structures or cannot scale to large graphs due to their high complexity. In contrast, our work
learns a high-degree polynomial on node features while integrating graph topology into polynomial
coefficients. As a result, the learned polynomial function captures both local and global structural
information with linear complexity, rendering it applicable to large-scale graphs.

3 METHODOLOGY

In this work, we follow the common setting that there are a graph G = (V, E) and its node fea-
ture matrix X ∈ R

n×d, where n and d denote the number of nodes and node feature dimension,
respectively. Our goal is to design a polynomial-expressive GT model F that produces node repre-
sentations Y = F(G,X) = PG(X), where PG is a high-degree polynomial on X whose learnable
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Figure 1: A toy example on a 3-node graph with scalar node features.

coefficients encode the information of G. To this end, we first introduce a base attention model
in Section 3.1 that explicitly learns high-degree polynomials. To enable the learned polynomial
equivariant to node permutations, we extend the base model to equivariant local and global (linear)
attention models in Section 3.2, via incorporating graph topology and node features respectively.
Finally, Section 3.3 presents the proposed Polynormer architecture that employs a local-to-global
attention scheme based on the equivariant attention models. As a result, Polynormer preserves high
polynomial expressivity while simultaneously benefiting from linear complexity.

3.1 A POLYNOMIAL-EXPRESSIVE BASE MODEL WITH ATTENTION

By following the concept of polynomial networks in Hua et al. (2022); Chrysos et al. (2020; 2022),
we provide Definition 3.1 of the polynomial expressivity, which measures the capability of learning
high-degree polynomial functions that map input node features into output node representations.
Appendix M provides a detailed discussion on our definition and comparison to prior work.

Definition 3.1. Given an n-node graph with node features X ∈ R
n×d, a model P : Rn×d → R

n×d

is r-polynomial-expressive if for any node i and degree-(r-1) monomial Mr−1 formed by rows in X ,
P can be parameterized such that P(X)i = Xi ⊙Mr−1, where ⊙ denotes the Hadamard product.

Polynomial expressivity of prior graph models. For typical message-passing GNN models, we
can unify their convolution layer as: P(X)i =

∑

j ci,jXj , where ci,j is the edge weight between

nodes i and j. As each output is a linear combination of input node features, these models are at most
1-polynomial-expressive. Hence, they mainly rely on the activation function to capture nonlinearity,
instead of explicitly learning high-degree polynomials. In regard to GTs and high-order GNNs (e.g.,
gating-based GNNs), they only capture a subset of all possible monomials with a certain degree,
resulting in their limited polynomial expressivity, as discussed in Appendix C

A motivating example. Before constructing a polynomial-expressive model, let us first examine a
simplified scenario where node features x ∈ R

n, i.e., each node feature is a scalar. In this context,
we consider a model P that outputs y = P(x) = (Wx)⊙ (x+ b), where W ∈ R

n×n and b ∈ R
n

are weight matrices. Figure 1 shows that this model P is able to represent degree-2 polynomials,
which consist of all possible monomials of degree up to 2 (except the constant term). Besides, as
W controls the coefficients of quadratic monomials (i.e., x1x2, x1x3, and x2x3), we can interpret
W as a general attention matrix, where Wi,j represents the importance of node j to node i.

Motivated by the above example, we proceed to establish a base model using the following defini-
tion; we then theoretically analyze its polynomial expressivity.

Definition 3.2. Given the input node features X(0) ∈ R
n×d and trainable weight matrices W ∈

R
n×n,B ∈ R

n×d, a model P is defined as the base model if its l-th layer is computed as:

X(l) = (W (l)X(l−1))⊙ (X(l−1) +B(l)) (4)

Theorem 3.3. An L-layer base model P is 2L-polynomial-expressive.

The complete proof for Theorem 3.3 is available in Appendix A. Theorem 3.3 shows that the polyno-
mial expressivity of the base model increases exponentially with the number of layers. Additionally,
Appendices A and B reveal that W and B control the learned polynomial coefficients, which can
be viewed as attention scores for measuring the importance of different node feature interactions.

Limitations of the base model. As the matrices W and B fail to exploit any graph inductive bias,
the base model learns polynomials that are not equivariant to node permutations. Besides, the model
has quadratic complexity due to the n2 size of W and thus cannot scale to large graphs. To address
both limitations, we derive two equivariant models with linear attention in Section 3.2.
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3.2 EQUIVARIANT ATTENTION MODELS WITH POLYNOMIAL EXPRESSIVITY

For clarity, we omit the layer index (l) in the ensuing discussion unless it is explicitly referenced.
Instead of learning the non-equivariant matrix B ∈ R

n×d in Equation 4, we replace it with learnable
weights β ∈ R

d sharing across nodes, i.e., B = 1βT , where 1 ∈ R
n denotes the all-ones vector. In

addition, we apply linear projections on X to allow interactions among feature channels. This leads
to Equation 5, where V = XWV and H = XWH with trainable matrices WV ,WH ∈ R

d×d.

X = (WV )⊙ (H + 1βT ) (5)

Subsequently, it is straightforward to show that we only need to achieve permutation equivariance on
the term WV in Equation 5 to build an equivariant model. To this end, we introduce the following
two equivariant attention models, by leveraging graph topology and node features respectively.

Equivariant local attention. We incorporate graph topology information by setting W = A, where
A is a (general) sparse attention matrix such that the nonzero elements in A represent attention
scores of adjacent nodes. While A can be implemented by adopting any sparse attention methods
previously proposed, we choose the GAT attention scheme (Veličković et al., 2017) due to its effi-
cient implementation. We leave the exploration of other sparse attention approaches to future work.
Consequently, the term AV holds the equivariance property, i.e., (PAP T )(PV ) = P (AV ) for
any node permutation matrix P . It is noteworthy that replacing W with A essentially imposes a
sparsity constraint on the learned polynomial of the base model, such that polynomial coefficients
are nonzero if and only if the corresponding monomial terms are formed by features of nearby nodes.

Equivariant global attention. By setting W = softmax(S), where S denotes the global self-
attention matrix defined in Equation 1, the term WV in Equation 5 becomes softmax(S)V that is
permutation equivariant (Yun et al., 2019). According to our discussion in Appendix A, an L-layer
model based on the updated Equation 5 learns an equivariant polynomial of degree 2L with the coef-
ficients determined by attention scores in S. More importantly, the learned polynomial contains all
monomial basis elements that capture global and high-order feature interactions. Nonetheless, the
dense attention matrix S still has quadratic complexity in regard to the number of nodes, rendering
the approach not scalable to large graphs. To tackle this issue, we linearize the global attention by
introducing a simple kernel trick in Equation 6, where Q = XWQ,K = XWK with weight ma-
trices WQ,WK , and σ denotes the sigmoid function to guarantee the attention scores are positive.
The denominator term in Equation 6 ensures that the sum of attention scores is normalized to 1 per
node. In this way, we preserve two key properties of the softmax function: non-negativity and nor-
malization. As we can first compute σ(KT )V whose output is then multiplied by σ(Q), Equation
6 avoids computing the dense attention matrix, resulting in the linear global attention. In Appendix
D, we further demonstrate the advantages of our approach over prior kernel-based linear attention
methods in terms of hyperparameter tuning and training stability on large graphs.

WV =
σ(Q)σ(KT )

σ(Q)
∑

i σ(K
T
i,:)

V =
σ(Q)(σ(KT )V )

σ(Q)
∑

i σ(K
T
i,:)

(6)

Complexity analysis. Given a graph with n nodes and m edges, suppose the hidden dimension is
d ≪ n, then the local attention model has the complexity of O(md + nd2). Since we exploit the
kernel trick to linearize the computation of global attention in Equation 6, the complexity of global
attention model is reduced from O(n2d) to O(nd2). Hence, both proposed equivariant attention
models have linear complexity with respect to the number of nodes/edges.

Discussion. It is noteworthy that the introduced local and global attention models are intended to
enable the base model to learn high-degree equivariant polynomials, which is fundamentally distinct
from the purpose of prior attention models in literature. This allows our proposed Polynormer model
to outperform those attention-based baselines, even without nonlinear activation functions.

3.3 THE POLYNORMER ARCHITECTURE

Guided by the aforementioned equivariant models with linear attention, Figure 2(b) shows the Poly-
normer architecture that adopts a local-to-global attention scheme based on the following modules:

Local attention module. We employ the local attention approach via replacing W in Equation 5
with the sparse attention matrix A as discussed in Section 3.2, which explicitly learns an equivariant
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experiments. Besides, we also evaluate 6 GTs that have shown promising results on the node clas-
sification task. We report the performance results of baselines from their original papers or official
leaderboards whenever possible, as those results are obtained by well-tuned models. For baselines
whose results are not publicly available on given datasets, we tune their hyperparameters to achieve
the highest possible accuracy. Detailed hyperparameter settings of baselines and Polynormer are
available in Appendix H. Our hardware information is provided in Appendix F.

4.1 PERFORMANCE ON HOMOPHILIC AND HETEROPHILIC GRAPHS

Table 1: Averaged node classification accuracy (%) ± std over 10 runs on homophilic datasets. —
Polynormer-r denotes Polynormer with ReLU activation. We highlight the top first, second, and
third results per dataset.

Computer Photo CS Physics WikiCS

GCN 89.65± 0.52 92.70± 0.20 92.92± 0.12 96.18± 0.07 77.47± 0.85
GraphSAGE 91.20± 0.29 94.59± 0.14 93.91± 0.13 96.49± 0.06 74.77± 0.95
GAT 90.78± 0.13 93.87± 0.11 93.61± 0.14 96.17± 0.08 76.91± 0.82
GCNII 91.04± 0.41 94.30± 0.20 92.22± 0.14 95.97± 0.11 78.68± 0.55
GPRGNN 89.32± 0.29 94.49± 0.14 95.13± 0.09 96.85± 0.08 78.12± 0.23
APPNP 90.18± 0.17 94.32± 0.14 94.49± 0.07 96.54± 0.07 78.87± 0.11
PPRGo 88.69± 0.21 93.61± 0.12 92.52± 0.15 95.51± 0.08 77.89± 0.42
GGCN 91.81± 0.20 94.50± 0.11 95.25± 0.05 97.07± 0.05 78.44± 0.53
OrderedGNN 92.03± 0.13 95.10± 0.20 95.00± 0.10 97.00± 0.08 79.01± 0.68
tGNN 83.40± 1.33 89.92± 0.72 92.85± 0.48 96.24± 0.24 71.49± 1.05

GraphGPS 91.19± 0.54 95.06± 0.13 93.93± 0.12 97.12± 0.19 78.66± 0.49
NAGphormer 91.22± 0.14 95.49± 0.11 95.75± 0.09 97.34± 0.03 77.16± 0.72
Exphormer 91.47± 0.17 95.35± 0.22 94.93± 0.01 96.89± 0.09 78.54± 0.49
NodeFormer 86.98± 0.62 93.46± 0.35 95.64± 0.22 96.45± 0.28 74.73± 0.94
DIFFormer 91.99± 0.76 95.10± 0.47 94.78± 0.20 96.60± 0.18 73.46± 0.56
GOAT 90.96± 0.90 92.96± 1.48 94.21± 0.38 96.24± 0.24 77.00± 0.77

Polynormer 93.18± 0.18 96.11± 0.23 95.51± 0.29 97.22± 0.06 79.53± 0.83
Polynormer-r 93.68± 0.21 96.46± 0.26 95.53± 0.16 97.27± 0.08 80.10± 0.67

Performance on homophilic graphs. We first compare Polynormer with 16 popular baselines that
include SOTA GNNs or GTs on 5 common homophilic datasets. As shown in Table 1, Polynormer
is able to outperform all baselines on 3 out of 5 datasets, which clearly demonstrate the efficacy of
the proposed polynomial-expressive model. Moreover, incorporating the ReLU function can lead
to further improvements in the accuracy of Polynormer. This is because the nonlinearity imposed
by ReLU introduces additional higher-order monomials, which in turn enhance the quality of node
representations. It is noteworthy that the accuracy gain of Polynormer over SOTA baselines is 1.65%
on Computer, which is a nontrivial improvement given that those baselines have been finely tuned
on these well-established homophilic datasets.

Performance on heterophilic graphs. Table 2 reports the average results over 10 runs on het-
erophilic graphs. Notably, the GT baselines underperform SOTA GNNs on all 5 datasets, which
raises concerns about whether those prior GT models properly utilize the expressivity brought by
the self-attention module. Moreover, there is no baseline model that consistently ranks among
the top 3 models across 5 datasets. In contrast, by integrating the attention mechanism into the
polynomial-expressive model, Polynormer surpasses all baselines on 4 out of 5 datasets. Further-
more, Polynormer-r consistently outperforms baselines across all datasets with the accuracy im-
provement by a margin up to 3.55% (i.e., 97.46% vs. 93.91% on minesweeper).

4.2 PERFORMANCE ON LARGE GRAPHS

We conduct experiments on large graphs by comparing Polynormer against GTs as well as some
representative GNN models. Since the graphs in ogbn-products and pokec are too large to be loaded
into the GPU memory for full-batch training, we leverage the random partitioning method adopted
by prior GT models Wu et al. (2022; 2023) to perform mini-batch training. As shown in Table 3,
Polynormer-r outperforms all baselines on these large graphs with the accuracy gain of up to 4.06%.
Besides, we can observe that the accuracy of Polynormer drops 1.64% when removing ReLU acti-
vation on ogbn-arxiv. Thus, we believe the nonlinearity associated with ReLU is more critical on
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Table 2: Averaged node classification results over 10 runs on heterophilic datasets — Accuracy is
reported for roman-empire and amazon-ratings, and ROC AUC is reported for minesweeper, tolok-
ers, and questions. Polynormer-r denotes Polynormer with ReLU activation. We highlight the top
first, second, and third results per dataset.

roman-empire amazon-ratings minesweeper tolokers questions

GCN 73.69± 0.74 48.70± 0.63 89.75± 0.52 83.64± 0.67 76.09± 1.27
GraphSAGE 85.74± 0.67 53.63± 0.39 93.51± 0.57 82.43± 0.44 76.44± 0.62
GAT-sep 88.75± 0.41 52.70± 0.62 93.91± 0.35 83.78± 0.43 76.79± 0.71
H2GCN 60.11± 0.52 36.47± 0.23 89.71± 0.31 73.35± 1.01 63.59± 1.46
GPRGNN 64.85± 0.27 44.88± 0.34 86.24± 0.61 72.94± 0.97 55.48± 0.91
FSGNN 79.92± 0.56 52.74± 0.83 90.08± 0.70 82.76± 0.61 78.86± 0.92
GloGNN 59.63± 0.69 36.89± 0.14 51.08± 1.23 73.39± 1.17 65.74± 1.19
GGCN 74.46± 0.54 43.00± 0.32 87.54± 1.22 77.31± 1.14 71.10± 1.57
OrderedGNN 77.68± 0.39 47.29± 0.65 80.58± 1.08 75.60± 1.36 75.09± 1.00
G2-GNN 82.16± 0.78 47.93± 0.58 91.83± 0.56 82.51± 0.80 74.82± 0.92
DIR-GNN 91.23± 0.32 47.89± 0.39 87.05± 0.69 81.19± 1.05 76.13± 1.24
tGNN 79.95± 0.75 48.21± 0.53 91.93± 0.77 70.84± 1.75 76.38± 1.79

GraphGPS 82.00± 0.61 53.10± 0.42 90.63± 0.67 83.71± 0.48 71.73± 1.47
NAGphormer 74.34± 0.77 51.26± 0.72 84.19± 0.66 78.32± 0.95 68.17± 1.53
Exphormer 89.03± 0.37 53.51± 0.46 90.74± 0.53 83.77± 0.78 73.94± 1.06
NodeFormer 64.49± 0.73 43.86± 0.35 86.71± 0.88 78.10± 1.03 74.27± 1.46
DIFFormer 79.10± 0.32 47.84± 0.65 90.89± 0.58 83.57± 0.68 72.15± 1.31
GOAT 71.59± 1.25 44.61± 0.50 81.09± 1.02 83.11± 1.04 75.76± 1.66

Polynormer 92.13± 0.50 54.46± 0.40 96.96± 0.52 84.83± 0.72 77.95± 1.06
Polynormer-r 92.55± 0.37 54.81± 0.49 97.46± 0.36 85.91± 0.74 78.92± 0.89

Table 3: Averaged node classification accuracy (%) ± std on large-scale datasets — Polynormer-r
denotes Polynormer with ReLU activation. We highlight the top first, second, and third results per
dataset. OOM means out of memory.

ogbn-arxiv ogbn-products pokec

GCN 71.74± 0.29 75.64± 0.21 75.45± 0.17
GAT 72.01± 0.20 79.45± 0.59 72.23± 0.18
GPRGNN 71.10± 0.12 79.76± 0.59 78.83± 0.05
LINKX 66.18± 0.33 71.59± 0.71 82.04± 0.07

GraphGPS 70.97± 0.41 OOM OOM
NAGphormer 70.13± 0.55 73.55± 0.21 76.59± 0.25
Exphormer 72.44± 0.28 OOM OOM
NodeFormer 67.19± 0.83 72.93± 0.13 71.00± 1.30
DIFFormer 69.86± 0.25 74.16± 0.31 73.89± 0.35
GOAT 72.41± 0.40 82.00± 0.43 66.37± 0.94

Polynormer 71.82± 0.23 82.97± 0.28 85.95± 0.07
Polynormer-r 73.46± 0.16 83.82± 0.11 86.10± 0.05

ogbn-arxiv, which is known to be a challenging dataset (Shirzad et al., 2023). In addition, Appendix
J provides the training time and memory usage of Polynormer and GT baselines. Moreover, we fur-
ther evaluate Polynormer on an industrial-level graph benchmark named TpuGraphs (Phothilimthana
et al., 2024), whose results are provided in Appendix L.

4.3 ABLATION ANALYSIS ON POLYNORMER ATTENTION SCHEMES

Figure 3 shows the comparison of the SOTA baseline (red bar), Polynormer without global attention
(orange bar), a variant of Polynormer where the local and global attention modules are applied
simultaneously to update node features per layer (blue bar), and Polynormer (green bar). We provide
the detailed architecture of the Polynormer variant in Appendix G. Besides, we omit the results of
Polynormer without local attention, as it completely ignores the graph structural information and
thus performs poorly on the graph datasets.

By comparing the orange and green bars in Figure 3, we can observe that the local attention model
achieves comparable results to Polynormer on homophilic graphs (Computer and Photo), while it
lags behind Polynormer on heterophilic graphs (roman-empire and minesweeper). This observation
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A PROOF FOR THEOREM 3.3

Proof. For the convenience of our proof, we denote the initial feature matrix by X ∈ R
n×d,

the number of layers by L, the number of nodes by n, and [n] = {1, 2, ..., n}. Besides, we set

B(l) = 0, ∀l ∈ [L]. The role of B(l) is analyzed in Appendix B. By defining I to be an ordered
set that consists of node indices (e.g., I = (i1, i2, i3, i4)), we define the following function cL on
coefficients:

cL(I;W ) = W
(L)
i1,i2

︸ ︷︷ ︸

20 times

W
(L−1)
i2,i3

W
(L−1)
i3,i4

︸ ︷︷ ︸

21 times

· · ·W (1)
i
2L−1 ,i2L−1+1

· · ·W (1)
i
2L−1

,i
2L

︸ ︷︷ ︸

2L−1 times

(9)

where W
(j)
ia,ib

represents the (ia, ib)-th block in W at the j-th layer. Based on Equation 9, we

further define the following monomial fL of degree 2L, where each Xi denotes a d-dimensional
feature vector of node i:

fL(I;W ,X) = cL(I;W ) Xi1 ⊙Xi2 · · · ⊙Xi
2L

(10)

Next, we prove by induction that the L-layer base model produces the following node representation

X
(L)
i for any node i ∈ [n]:

X
(L)
i =

∑

I∈Si

2L

fL(I;W ,X) (11)

where Si
2L is a set that represents all the combinations of choosing 2L elements from [n] (with

replacement), with the first element fixed to be i, i.e., Si
2L := {y ∈ [n]2

L | y1 = i}.

Base case. When L = 1, we have:

X
(1)
i = (

n∑

j=1

W
(1)
i,j Xj)⊙Xi

=

n∑

j=1

W
(1)
i,j Xi ⊙Xj

=
∑

I∈Si

21

W
(1)
i1,i2

Xi1 ⊙Xi2

=
∑

I∈Si

21

f1(I;W ,X) (12)

Induction step. When L = l, suppose we have X
(l)
i =

∑

I∈Si

2l

fl(I;W ,X). Then, for L = l + 1,

we have:

X
(l+1)
i = (

n∑

j=1

W
(l+1)
i,j X

(l)
j )⊙X

(l)
i

= (

n∑

j=1

W
(l+1)
i,j

∑

J∈S
j

2l

fl(J ;W ,X))⊙ (
∑

I∈Si

2l

fl(I;W ,X))

= (

n∑

j=1

W
(l+1)
i,j

∑

J∈S
j

2l

cl(J ;W ) Xj1 ⊙Xj2 · · · ⊙Xj
2l
)

⊙ (
∑

I∈Si

2l

cl(I;W ) Xi1 ⊙Xi2 · · · ⊙Xi
2l
)

=
∑

I∈Si

2l

n∑

j=1

∑

J∈S
j

2l

cl(I;W ) W
(l+1)
i,j cl(J ;W ) Xi1 ⊙Xi2 · · · ⊙Xi

2l
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⊙Xj1 ⊙Xj2 · · · ⊙Xj
2l

=
∑

I∈Si

2l+1

cl+1(I;W ) Xi1 ⊙Xi2 · · · ⊙Xi
2l
⊙Xi

2l+1
· · · ⊙Xi

2l+1

=
∑

I∈Si

2l+1

fl+1(I;W ,X) (13)

The first 3 equations and the last equation above are straightforward. For the fourth equation, we
essentially expand the product in LHS to the sum in RHS. For the second last euqation, we merge

the weight matrix W (l+1) into the coefficient function cl(J ;W ), and then replace the index set J =
{j1, j2, ..., j2l} with I ′ = {i2l+1, i2l+2, ..., i2l+1}, which is combined with the set {i1, i2, ..., i2l} to

obtain the new index set I = {i1, i2, ..., i2l , i2l+1, ..., i2l+1} ∈ Si
2l+1 . This complements our proof

for Equation 11.

As for any node i, the first index of I ∈ Si
2L is always i, we can rewrite Equation 11 as:

X
(L)
i =

∑

I∈Si

2L

fL(I;W ,X)

=
∑

I∈Si

2L

cL(I;W ) Xi1 ⊙Xi2 · · · ⊙Xi
2L

= Xi1 ⊙
∑

I∈Si

2L

cL(I;W ) Xi2 · · · ⊙Xi
2L

= Xi ⊙
∑

I′∈S
2L−1

W
(L)
i,i′

1

W
(L−1)
i′
1
,i′

2

· · ·W (1)
i′
2L−2

,i′
2L−1

Xi′
1
· · · ⊙Xi′

2L−1

(14)

where S2L−1 is a set that represents all the combinations of choosing 2L−1 elements from [n] (with

replacement), i.e., S2L−1 := {y ∈ [n]2
L
−1}.

As a result, for any degree-(2L-1) monomial M2L−1 formed by rows in X , we can denote it by
Xj1⊙Xj2 · · ·⊙Xj

2L−1
, which corresponds to a specific oredered index set I ′ ∈ S2L−1 in Equation

14. Therefore, we can always parameterize weight matrices W (l), l ∈ [L] such that only the ele-
ments with indices I ′ that determine the given monomial are 1 in Equation 14, and all other elements

in W (l) are set to 0. Consequently, Equation 14 with parameterized W (l) becomes Xi ⊙M2L−1,
which complements our proof for Theorem 3.3.

Discussion. Notably, Equation 9 reveals that the weight matrix W controls the coefficients of the
monomial terms of degree 2L in the learned polynomial. Thus, if we replace W with any attention
matrix S (e.g., the global self-attention matrix described in Section 3.2), then the attention scores
in S naturally control all the monomial coefficients, which essentially capture the importance of
different (global) node feature interactions with order 2L. In Appendix B, we are going to provide
the analysis to demonstrate that the matrix B in Equation 4 controls the coefficients of lower-degree
monomials in practice.

B ANALYSIS ON B IN EQUATION 4

By ignoring the weight matrix B in Equation 4, we have demonstrated in Appendix A that the base
model learns a polynomial that encompasses all possible monomials of degree 2L. However, our
proof in Appendix A also reveals that the learned polynomial is unable to represent any monomials
with degrees smaller than 2L. This raises concerns since these lower-degree monomial terms are
often crucial for the model predictions (Hua et al., 2022). Fortunately, we are going to show that
incorporating B into Equation 4 enables the L-layer base model to capture all monomial terms with
degrees up to 2L (except the constant term).

Specifically, we can consider each monomial term of the learned polynomial as generated in the

following way: for each layer l of the base model, we select two monomials, denoted as M
(l)
1 and
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M
(l)
2 , from the terms (W (l)X(l−1)) and (X(l−1)+B(l)) in Equation 4, respectively. Consequently,

the generated monomial after layer l is obtained by the Hadamard product, i.e., M (l) = M
(l)
1 ⊙M

(l)
2 .

We continue this process recursively until we obtain M (L) at the L-th layer.

Regarding the selection of a monomial M
(l)
2 from (X(l−1) +B(l)), two scenarios arise: (i) If M

(l)
2

is a monomial term from the polynomial X(l−1), it increases the degree of the generated monomial

M (l) by up to the degree of X(l−1) (i.e., 2l−1, as analyzed in Appendix A). (ii) If M
(l)
2 = B(l), it

does not increase the degree.

If we never choose M
(l)
2 = B(l) for all l ∈ [L], then the generated monomial at layer L has a degree

of 2L, as proven in Appendix A. Hence, each time we select M
(l)
2 = B(l) at layer l, we reduce the

degree of a monomial at the L-th layer (whose original degree is 2L) by 2l−1. In other words, the

more we opt for M
(l)
2 = B(l), the smaller the degree of the monomial at the L-th layer, and vice

versa. In the extreme scenario where we choose M
(l)
2 = B(l) for all l ∈ [L], we obtain a monomial

of degree 2L − 2L−1 − · · · − 21 − 20 = 1. Consequently, the weight matrices B(l), l ∈ [L], enable
the base model to capture all possible monomials with degrees ranging from 1 up to 2L.

Discussion. The above analysis demonstrates the importance of B in Equation 4, i.e., controlling
the coefficients of lower-degree monomials, which is another key distinction of our approach to
previous gating-based GNNs that ignore B in their gating units (Yan et al., 2022; Rusch et al., 2022;
Song et al., 2023).

C POLYNOMIAL EXPRESSIVITY OF PRIOR GRAPH MODELS

Polynomial expressivity of GTs. For the sake of simplicity, we omit the softmax operator in GTs
and assume each node feature contains a scalar value, i.e., x ∈ R

n for an n-node graph. Besides,
we denote the weights for query, key, and value by wq , wk, and wv respectively. Consequently, for

any node i, a GT layer produces x′
i = wqwkwv

∑

j xixjxj = wqwkwvxi

∑

j x
2
j , which consists

of degree-3 monomials. However, there are still many degree-3 monomials that GTs fail to capture.
For instance, any monomial in the set {x2

ixj | i ̸= j} cannot be captured by x′
i, resulting in the

limited polynomial expressivity of prior GT models.

Polynomial expressivity of high-order GNNs. We initially focus on a closely related model known
as tGNN, which is recently proposed by Hua et al. (2022). In tGNN, the polynomial for each target
node i is computed as [x1, 1]W ⊙ · · · ⊙ [xk, 1]W , where [xi, 1] represents the concatenation of
the feature vector of node i with a constant 1. As asserted by Hua et al. (2022), tGNN learns a
multilinear polynomial in which no variables appear with a power of 2 or higher. Consequently,
tGNN cannot represent any monomials where a specific variable has a power of at least 2, limiting
its polynomial expressivity.

Furthermore, there exist multiple GNN models based on gating mechanisms that implicitly capture
high-order interactions among node features (e.g., GGCN (Yan et al., 2022), G2-GNN (Rusch et al.,
2022), and OrderedGNN (Song et al., 2023)). However, these models primarily consider local
structures and, therefore, are unable to learn high-order monomials formed by features of distant
nodes. Additionally, few gating-based GNNs considers leveraging the weight matrix B in Equation
4 to learn lower-degree monomial terms, as discussed in Appendix B.

Conclusion. Due to the limitations of polynomial expressivity analyzed above, previous GTs and
high-order GNNs still necessitate nonlinear activation functions to attain reasonable accuracy. In
contrast, our method achieves higher accuracy than these models even without activation functions,
thanks to its high polynomial expressivity.

D COMPARISON TO KERNEL-BASED LINEAR ATTENTION MODELS

D.1 HYPERPARAMETER TUNING

In literature, several linear GTs employ kernel-based methods to approximate the dense self-
attention matrix within the vanilla Transformer architecture. Concretely, both GraphGPS (with
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Performer-based attention) (Rampasek et al., 2022) and NodeFormer (Wu et al., 2022) utilize a
kernel function based on positive random features (PRFs). However, PRFs introduce a critical
hyperparameter, denoted as m, which determines the dimension of the transformed features. In
addition to this, NodeFormer introduces another crucial hyperparameter, τ , controlling the tempera-
ture in Gumbel-Softmax, which is integrated into the kernel function. Furthermore, the DiFFormer
model (Wu et al., 2023) offers a choice between two types of kernel functions in practice.

Consequently, these kernel-based GTs require extensive tuning of these critical hyperparameters,
which can be time-consuming, particularly when dealing with large graphs. In contrast, our pro-
posed linear global attention, as defined in Equation 6, eliminates the need for any hyperparameters
in model tuning.

D.2 TRAINING STABILITY

To the best of our knowledge, the work most similar to Equation 6 is cosFormer (Qin et al., 2022),
which primarily focuses on text data rather than graphs. The key distinction between cosFormer and
our proposed linear global attention lies in their choice of kernel function. CosFormer utilizes the
ReLU function instead of the Sigmoid function σ in Equation 6. While ReLU performs well on
text data containing up to 16K tokens per sequence, we observe that it leads to training instability
when applied to large graphs with millions of nodes.

Specifically, if we substitute ReLU into Equation 6, the denominator term
∑

i σ(K
T
i,:) becomes

∑

i ReLU(KT
i,:). This modification results in a training loss of NaN during our experiments on

both the ogbn-products and pokec datasets. The issue arises because ReLU only sets negative
values in Ki,: to zero while preserving positive values. As a consequence, the term

∑

i ReLU(KT
i,:)

accumulates potentially large positive values across millions of nodes. This leads to the denominator
in Equation 6 exceeding the representational capacity of a 32-bit floating-point format and results in
a NaN loss during model training.

In contrast, our approach employs the Sigmoid function, which maps all elements in Ki,: to the

range (0, 1). As a result,
∑

i σ(K
T
i,:) does not produce excessively large values, avoiding the issue

of NaN loss.

E DATASET DETAILS

Table 4: Statistics of datasets used in our experiments.

Dataset Type Homophily Score Nodes Edges Classes Features

Computer Homophily 0.700 13, 752 245, 861 10 767
Photo Homophily 0.772 7, 650 119, 081 8 745
CS Homophily 0.755 18, 333 81, 894 15 6, 805
Physics Homophily 0.847 34, 493 247, 962 5 8, 415
WikiCS Homophily 0.568 11, 701 216, 123 10 300

roman-empire Heterophily 0.023 22, 662 32, 927 18 300
amazon-ratings Heterophily 0.127 24, 492 93, 050 5 300
minesweeper Heterophily 0.009 10, 000 39, 402 2 7
tolokers Heterophily 0.187 11, 758 519, 000 2 10
questions Heterophily 0.072 48, 921 153, 540 2 301

ogbn-arxiv Homophily 0.416 169, 343 1, 166, 243 40 128
ogbn-products Homophily 0.459 2, 449, 029 61, 859, 140 47 100
pokec Heterophily 0.000 1, 632, 803 30, 622, 564 2 65

Table 4 shows the statistics of all 13 datasets used in our experiments. The homophily score per
dataset is computed based on the metric proposed by Lim et al. (2021) (higher score means more
homophilic).

Train/Valid/Test splits. For Computer, Photo, CS, and Physics datasets, we adhere to the widely
accepted practice of randomly dividing nodes into training (60%), validation (20%), and test (20%)
sets (Chen et al., 2022b; Shirzad et al., 2023). As for the remaining datasets in our experiments, we
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use the official splits provided in their respective papers (Mernyei & Cangea, 2020; Hu et al., 2020;
Lim et al., 2021; Platonov et al., 2023).

F HARDWARE INFORMATION

We conduct all experiments on a Linux machine equipped with an Intel Xeon Gold 5218 CPU
(featuring 8 cores @ 2.30 GHz) and 4 RTX A6000 GPUs (each with 48 GB of memory). It is worth
noting that Polynormer only requires 1 GPU for training, while the remaining GPUs are used to run
baseline experiments in parallel.

G A VARIANT OF POLYNORMER

In the following, we provide the detailed architecture of the variant of Polynormer mentioned in
Section 4.3, which is built upon the local-and-global attention scheme, i.e., the local and global
attention layers of Polynormer are employed in parallel to update node features.

X = (AV +
σ(Q)(σ(KT )V )

σ(Q)
∑

i σ(K
T
i,:)

)⊙ (H + σ(1βT )) (15)

where matrices Q, K, V , H are obtained by linearly projecting the node feature matrix X from
the previous layer. It is worth pointing out that this type of attention has been widely used by
prior GT models (Rampasek et al., 2022; Wu et al., 2022; 2023; Kong et al., 2023). However, our
ablation study in Section 4.3 indicates that the local-and-global attention performs worse than the
local-to-global attention adopted by Polynormer.

H HYPERPARAMETERS SETTINGS

H.1 BASELINE MODELS

For the homophilic datasets listed in Table 1, we present the results of GCN (Kipf & Welling, 2016),
GAT (Veličković et al., 2017), APPNP (Gasteiger et al., 2018), GPRGNN (Chien et al., 2020),
PPRGo (Bojchevski et al., 2020), NAGphormer (Chen et al., 2022b), and Exphormer (Shirzad et al.,
2023), as reported in Chen et al. (2022b); Shirzad et al. (2023).

For the heterophilic datasets in Table 2, we provide the results of GCN, GraphSAGE (Hamilton
et al., 2017), GAT-sep, H2GCN (Zhu et al., 2020), GPRGNN, FSGNN (Maurya et al., 2022), and
GloGNN (Li et al., 2022), as reported in Platonov et al. (2023).

In the case of large-scale datasets listed in Table 3, we include the results of GCN, GAT, GPRGNN,
LINKX (Lim et al., 2021), and GOAT (Kong et al., 2023), as reported in Hu et al. (2020); Lim et al.
(2021); Zhang et al. (2022); Kong et al. (2023).

For baseline models without publicly available results on given datasets, we obtain their highest
achievable accuracy through tuning critical hyperparameters as follows:

GCNII (Chen et al., 2020). We set the hidden dimension to 512, the learning rate to 0.001, and
the number of epochs to 2000. We perform hyperparameter tuning on the number of layers from
{5, 10}, the dropout rate from {0.3, 0.5, 0.7}, α from {0.3, 0.5, 0.7}, and θ from {0.5, 1.0}.

GGCN (Yan et al., 2022). We set the hidden dimension to 512, the learning rate to 0.001, and
the number of epochs to 2000. We perform hyperparameter tuning on the number of layers from
{5, 10}, the dropout rate from {0.3, 0.5, 0.7}, the decay rate η from {0.5, 1.0, 1.5}, and the exponent
from {2, 3}.

OrderedGNN (Song et al., 2023). We set the hidden dimension to 512, the learning rate to 0.001,
and the number of epochs to 2000. We perform hyperparameter tuning on the number of layers from
{5, 10}, the dropout rate from {0.3, 0.5, 0.7}, and the chunk size from {4, 16, 64}.

tGCN (Hua et al., 2022). We set the hidden dimension to 512, the learning rate to 0.001, and the
number of epochs to 2000. We perform hyperparameter tuning on the number of layers from {2, 3},
the dropout rate from {0.3, 0.5, 0.7}, and the rank from {256, 512}.
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G2-GNN (Rusch et al., 2022). We set the hidden dimension to 512, the learning rate to 0.001, and
the number of epochs to 2000. We perform hyperparameter tuning on the number of layers from
{5, 10}, the dropout rate from {0.3, 0.5, 0.7}, and the exponent p from {2, 3, 4}.

DIR-GNN (Rossi et al., 2023). We set the hidden dimension to 512, the learning rate to 0.001, the
number of epochs to 2000, and α to 0.5. Besides, we choose GATConv with the type of jumping
knowledge as “max”. We perform hyperparameter tuning on the number of layers from {3, 5}, the
dropout rate from {0.3, 0.5, 0.7}.

GraphGPS (Rampasek et al., 2022). We choose GAT as the MPNN layer type and Performer as
the global attention layer type. We set the number of layers to 2, the number of heads to 8, the
hidden dimension to 64, and the number of epochs to 2000. We perform hyperparameter tuning on
the learning rate from {1e−4, 5e−4, 1e−3}, and the dropout rate from {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.

NAGphormer (Chen et al., 2022b). We set the hidden dimension to 512, the learning rate to 0.001,
the batch size to 2000, and the number of epochs to 500. We perform hyperparameter tuning on
the number of layers from {1, 2, 3}, the number of heads from {1, 8}, the number of hops from
{3, 7, 10}, and the dropout rate from {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.

Exphormer (Shirzad et al., 2023). We choose GAT as the local model and Exphormer as the
global model. We set the number of epochs to 2000 and the number of heads to 8. We perform
hyperparameter tuning on the learning rate from {1e− 4, 1e− 3}, the number of layers from {2, 4},
the hidden dimension form {64, 80, 96}, and the dropout rate from {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.

NodeFormer (Wu et al., 2022). We set the number of epochs to 2000. Additionally, we perform
hyperparameter tuning on the learning rate from {1e − 4, 1e − 3, 1e − 2}, the number of layers
from {1, 2, 3}, the hidden dimension from {32, 64, 128}, the number of heads from {1, 4}, M from
{30, 50}, K from {5, 10}, rb order from {1, 2}, the dropout rate from {0.0, 0.3}, and the temperature
τ from {0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50}.

DIFFormer (Wu et al., 2023). We use the “simple” kernel. Moreover, we perform hyperparameter
tuning on the learning rate from {1e− 4, 1e− 3, 1e− 2}, the number of epochs from {500, 2000},
the number of layers from {2, 3}, the hidden dimension form {64, 128}, the number of heads from
{1, 8}, α from {0.1, 0.2, 0.3}, and the dropout rate from {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.

GOAT (Kong et al., 2023). We set the “conv type” to “full”, the number of layers to 1 (fixed by
GOAT), the number of epochs to 200, the number of centroids to 4096, the hidden dimension to 256,
the dropout of feed forward layers to 0.5, and the batch size to 1024. We perform hyperparameter
tuning on the learning rate from {1e − 4, 1e − 3, 1e − 2}, the global dimension from {128, 256},
and the attention dropout rate from {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.

H.2 POLYNORMER

Table 5: Hyperparameters of Polynormer per dataset.

Warm-up Epochs Local-to-Global Epochs Local Layers Global Layers Dropout

Computer 200 1000 5 1 0.7
Photo 200 1000 7 2 0.7
CS 100 1500 5 2 0.3
Physics 100 1500 5 4 0.5
WikiCS 100 1000 7 2 0.5

roman-empire 100 2500 10 2 0.3
amazon-ratings 200 2500 10 1 0.3
minesweeper 100 2000 10 3 0.3
tolokers 100 800 7 2 0.5
questions 200 1500 5 3 0.2

ogbn-arxiv 2000 500 7 2 0.5
ogbn-products 1000 500 10 2 0.5
pokec 2000 500 7 2 0.2
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Like the baseline models, we set the hidden dimension to 512 and the learning rate to 0.001. Ad-
ditionally, we introduce a warm-up stage dedicated to training the local module. This step ensures
that the node representations generated by the local module capture meaningful graph structural
information before being passed to the global module. Moreover, we leverage 8 heads for our at-
tention modules. For the ogbn-products and pokec datasets, we use mini-batch training with a batch
size of 100, 000 and 550, 000 respectively, while for the other datasets, we employ full batch train-
ing. Besides, we disable the local attention module on ogbn-arxiv and pokec datasets by replacing
GAT (Veličković et al., 2017) with GCN (Kipf & Welling, 2016), which we empirically observe
perform better with lower memory usage. In Table 5, we provide the critical hyperparameters of
Polynormer used with each dataset.

Additional implementation details. We can rewrite Equation 7 as Equation 16:

X = H ⊙AV + σ(1βT )⊙AV (16)

To improve training stability, we adopt a LayerNorm on H ⊙ AV . Besides, we empirically find
that scaling LayerNorm(H ⊙AV ) by 1 − σ(1βT ) typically improves model accuracy. Thus, we
implement the local attention module as shown in Equation 17, and the global attention module
follows a similar way:

X = (1− σ(1βT ))⊙ LayerNorm(H ⊙AV ) + σ(1βT )⊙AV (17)

Appendix I provides the basic Polynormer implementation. We refer readers to our source code for
the detailed model implementation and hyperparameter settings.

I MODEL IMPLEMENTATION

# N: the number of nodes

# M: the number of edges

# D: the node feature dimension

# L1: the number of local attention layers

# L2: the number of global attention layers

# x: input node feature matrix with shape [N, D]

# edge_index: input graph structure with shape [2, M]

# local_convs: local attention layers (e.g., GATConv from PyG)

# local_betas: trainable weights with shape [L1, D]

# global_convs: global attention layers (implemented in Code 2)

# global_betas: trainable weights with shape [L2, D]

# equivariant local attention module

x_local = 0

for i, local_conv in enumerate(local_convs):

h = h_lins[i](x)

beta = F.sigmoid(local_betas[i]).unsqueeze(0)

x = local_conv(x, edge_index) * (h + beta)

x_local += x

# equivariant global attention module

x = x_local

for i, global_conv in enumerate(global_convs):

g = g_lins[i](x)

beta = F.sigmoid(global_betas[i]).unsqueeze(0)

x = global_conv(x) * (g + beta)

# output linear layer

out = pred_lin(x)

# negative log-likelihood loss calculation

y_pred = F.log_softmax(out, dim=1)

loss = criterion(y_pred[train_idx], y_true[train_idx])

Code 1: PyTorch-style Pseudocode for Polynormer
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time results, which linearly increase with graph size, as the CPU is less powerful than the GPU for
parallel computation.

J.2 PROFILING RESULTS ON LARGE REALISTIC GRAPHS

Table 6: Training time and GPU memory usage on large graphs — We underline the results obtained
via full batch training, and highlight the top first, second, and third results per dataset.

ogbn-arxiv ogbn-products pokec

Method Train/Epoch (s) Mem. (GB) Train/Epoch (s) Mem. (GB) Train/Epoch (s) Mem. (GB)

GAT 0.16 10.64 0.97 9.04 1.36 9.57

GraphGPS 1.32 38.91 OOM OOM OOM OOM
NAGphormer 4.26 5.15 9.64 7.91 38.32 6.12
Exphormer 0.74 34.04 OOM OOM OOM OOM
NodeFormer 1.20 16.30 3.37 31.55 6.15 17.21
DIFFormer 0.77 24.51 1.50 16.24 3.93 16.03
GOAT 12.32 6.98 20.11 9.64 51.93 8.73

Polynormer 0.31 16.09 3.13 12.93 2.64 21.54

Table 6 shows the profiling results of GAT, linear GTs, and Polynormer in terms of training time per
epoch and memory usage on large realistic graphs. Note that we perform full batch training for all
models whenever possible, since it avoids the nontrivial overhead associated with graph sampling in
mini-batch training.

The results demonstrate that Polynormer consistently ranks among the top 3 fastest models, with
relatively low memory usage. We attribute this efficiency advantage to the implementation of Poly-
normer that only involves common and highly-optimized built-in APIs from modern graph learning
frameworks (e.g., PyG). In contrast, the GT baselines incorporate less common or expensive com-
pute kernels (e.g., complicated kernel functions, Gumbel-Softmax, and nearest neighbor search),
making them more challenging for graph learning frameworks to accelerate. Thus, we believe Poly-
normer is reasonably efficient and scalable in practice.

K WL EXPRESSIVITY OF POLYNORMER

While we have shown that Polynormer is polynomial-expressive, it is also interesting to see its
expressivity under the Weisfeiler-Lehman (WL) hierarchy. To this end, we are going to firstly show
that Polynormer is at least as expressive as 1-WL GNNs, and then introduce a simple way that
renders Polynormer strictly more expressive than 1-WL GNNs.

For the sake of illustration, let us revisit Equation 4 in the following:

X = (WX)⊙ (X +B) (18)

where W ∈ R
n×n, B ∈ R

n×d are trainable weight matrices, and X ∈ R
n×d represents node

features. Suppose all nodes have identical features (followed by the original formulation of WL
algorithm), if we replace B = 1βT , the term X + 1βT is essentially a constant feature vector
shared across nodes. As a result, the term (WX) ⊙ (X + 1βT ) is reduced to WX . By properly
designing the weight matrix W (e.g. the adjacency matrix with self-loop), the term WX can be
reduced to 1-WL GNNs. Hence, Polynormer based on Equation 18 is at least as expressive as 1-WL
GNNs.

To make Polynormer strictly more expressive than 1-WL GNNs, let us focus on how to properly de-
sign the weight matrix B. Previously, we set B = 1βT . Note that the constant vector 1 ∈ R

n here
is essentially the eigenvector v1 that corresponds to the smallest (normalized) graph Laplacian eigen-
value. This motivates us to design B = v2β

T , where v2 denotes the eigenvector corresponding to
the second smallest (i.e., first non-trivial) eigenvalue of the normalized Laplacian. Consequently,
Polynormer can be built upon the following Equation:

X = (WX)⊙ (X + v2β
T ) (19)
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Notably, the vector v2 essentially encodes the node positional information from graph spectrum into
polynomial coefficients B, which makes each output node feature unique in Equation 19 and thus
allows Polynormer to distinguish non-isomorphic graphs that 1-WL GNNs fail to distinguish, as
empirically confirmed in Figure 6. It is noteworthy that this approach is fundamentally different
from prior PE methods based on Laplacian eigenvectors. Specifically, prior PE methods primarily
focus on concatenating node positional encodings with node features. In contrast, we incorporate
the positional information into the polynomial coefficients learned by Polynormer.

To distinguish the aforementioned two options of designing the weight matrix B, we denote the
Polynormer of using the constant vector v1 and the second Laplacian vector v2 by Polynormer-v1
and Polynormer-v2, respectively. In the following, we empirically show that Polynormer-v2 is more
powerful than 1-WL GNNs on distinguishing non-isomorphic graphs.

Experimental setup. Without loss of generality, we focus on the local attention layer of Polynormer,
and set β as well as initial node features to be 1. As the attention scores between identical features
are not meaningful, we replace the sparse attention matrix introduced in Section 3.2 with the random

walk matrix Â = AD−1, where A and D denote the adjacency and degree matrices, respectively.

Experimental results. As shown in Figure 6, Polynormer-v2 is able to distinguish non-isomorphic
graphs such as circular skip link (CSL) graphs, which are known to be indistinguishable by the
1-WL test as well as 1-WL GNNs Sato (2020); Rampasek et al. (2022); Dwivedi et al. (2022).

Figure 6: Two example pairs of non-isomorphic graphs from Sato (2020) that cannot be distin-
guished by 1-WL test. Our Polynormer-v2 can distinguish them.

While Polynormer-v2 is strictly more powerful than the 1-WL algorithm, our empirically results
in Table 7 indicate that it does not clearly outperform Polynormer-v1 on realistic node classifica-
tion datasets. One possible reason is that each node possesses unique features in realistic datasets,
which diminishes the importance of incorporating additional node positional information into Poly-
normer. Hence, we implement Polynormer based on Polynormer-v1 in practice to avoid computing
the Laplacian eigenvector, and leave the improvement of Polynormer-v2 to our future work.
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Table 7: Comparison of Polynormer-v1 and Polynormer-v2.

Computer Photo WikiCS roman-empire amazon-ratings minesweeper

Polynormer-v1 93.18± 0.18 96.11± 0.23 79.53± 0.83 92.13± 0.50 54.46± 0.40 96.96± 0.52
Polynormer-v2 93.25± 0.22 96.09± 0.30 80.01± 0.55 91.33± 0.39 54.41± 0.35 96.48± 0.37

L CASE STUDY: AI MODEL RUNTIME PREDICTION ON TPU

Apart from comparing Polynormer against conventional GRL models on mainstream graph datasets,
we further evaluate it on TpuGraphs (Phothilimthana et al., 2024), a large-scale runtime prediction
dataset on tensor computation graphs: github.com/google-research-datasets/tpu graphs.

Dataset details. Unlike prior datasets for program runtime prediction that are relatively small (up
to 100 nodes), TpuGraphs is a runtime prediction dataset on full tensor programs, represented as
computation graphs. Each graph within the dataset represents the primary computation of an ML
program, typically encompassing one or more training steps or a single inference step. These graphs
are obtained from open-source ML programs and include well-known models such as ResNet, Ef-
ficientNet, Mask R-CNN, and various Transformer models designed for diverse tasks like vision,
natural language processing, speech, audio, recommender systems, and generative AI. Each data
sample in the dataset comprises a computational graph, a compilation configuration, and the corre-
sponding execution time when the graph is compiled with the specified configuration on a TPU v3,
an accelerator tailored for ML workloads. The compilation configuration governs how the XLA (Ac-
celerated Linear Algebra) compiler transforms the graph through specific optimization passes. The
TpuGraphs dataset is composed of two main categories based on the compiler optimization level:
(1) TpuGraphs-Layout (layout optimization) and (2) TpuGraphs-Tile (tiling optimization). Layout
configurations dictate how tensors are organized in physical memory, determining the dimension
order for each input and output of an operation node. Notably, TpuGraphs-Layout has 4 collections
based on ML model type and compiler configuration as follows:

• ML model type:

– NLP: computation graphs of BERT models,

– XLA: computation graphs of ML models from various domains such as vision, NLP, speech,
audio, and recommendation.

• Compiler configuration:

– Default: configurations picked by XLA compiler’s heuristic.

– Random: randomly picked configurations.

On the other hand, tile configurations control the tile size of each fused subgraph. The TpuGraphs-
Layout comprises 31 million pairs of graphs and configurations, with an average of over 7, 700 nodes
per graph. In contrast, the TpuGraphs-Tile includes 13 million pairs of kernels and configurations,
averaging 40 nodes per kernel subgraph.

L.1 RESULTS ON TPUGRAPHS-LAYOUT COLLECTIONS.

As shown in Table 8, we compare Polynormer against the GraphSAGE baseline provided by
Google Hamilton et al. (2017). To ensure a fair comparison, we only change the model architecture
while keeping all other configurations the same (i.e., no additional feature engineering). Experimen-
tal results show that Polynormer/Polynormer-local outperforms GraphSAGE on all collections. In
particular, Polynormer achieves 10.3% accuracy improvement over GraphSAGE and 6.3% accuracy
improvement over Polynormer-local on the XLA-Random collection, which is the most challeng-
ing collection since XLA consists of diverse graph structures from different domains and Random
contains various compiler configurations. This showcases that the global attention of Polynormer
effectively captures critical global structures in different graphs, owing to its high polynomial ex-
pressivity.

L.2 RESULTS ON TPUGRAPHS (LAYOUT + TILE).

We further evaluate Polynormer on the whole TpuGraphs dataset that contains Layout and Tile opti-
mizations. Table 9 shows that the local attention module alone in Polynormer is able to outperform
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Table 8: Ordered pair accuracy (%) on TpuGraphs-Layout collections — “Polynormer-Local” de-
notes the local attention module in Polynormer.

GraphSAGE Polynormer-Local Polynormer

NLP-Default 81.2 82.0 82.1
NLP-Random 93.0 94.1 93.6
XLA-Default 77.3 73.7 79.6
XLA-Random 76.3 81.3 87.6

Table 9: Averaged runtime prediction accuracy (%) on TpuGraphs — “Polynormer-Local” denotes
the local attention module in Polynormer.

GraphSAGE Polynormer-Local Polynormer

TpuGraphs (Layout+Tile) 30.1 49.8 61.9

the baseline model by 19.6%, indicating the efficacy of our polynomial-expressive architecture for
capturing critical local structures. Moreover, the accuracy of Polynormer gets further improved
when adding the global attention module, leading to a 31.8% accuracy improvement over the base-
line model. This confirms the effectiveness of the proposed local-to-global attention scheme.

M DISCUSSION ON THE DEFINITION OF POLYNOMIAL EXPRESSIVITY

As graph learning models primarily learn node representations by aggregating input features from
a set of nodes, they can be viewed as a multiset pooling problem with auxiliary information about
the graph topology (Baek et al., 2021; Hua et al., 2022). In the context of polynomial networks on
graphs, we follow a similar notion by focusing on polynomial functions that map input node features
into output node representations, with the graph topology encoded into polynomial coefficients.
Notably, such polynomials have been explored by prior studies Hua et al. (2022); Chrysos et al.
(2020; 2022); Wang et al. (2021), which inspire us to formally provide Definition 3.1. Moreover,
assessing the ability to learn high-degree polynomials is well motivated based on the Weierstrass
theorem, which guarantees any smooth function can be approximated by a polynomial Stone (1948).
Thus, models with higher polynomial expressivity are more capable of learning complex functions.

While Definition 3.1 does not explicitly mention graph topology, the utilization of graph topology
in different graph learning models affects the inclusion of distinct monomial terms in the learned
polynomial function, thereby impacting the polynomial expressivity. It is also worth noting that
Definition 3.1 can be viewed as a simplified version of the definition on polynomial expressivity in
Puny et al. (2023), since we consider graph structural information as polynomial coefficients rather
than indeterminates. This simplification allows us to decouple the analysis on node features from
graph topology, which renders us to develop a scalable model with high polynomial expressivity.
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