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ABSTRACT

While graph neural networks (GNNs) have gained popularity for

learning circuit representations in various electronic design automa-

tion (EDA) tasks, they face challenges in scalability when applied

to large graphs and exhibit limited generalizability to new designs.

These limitations make them less practical for addressing large-

scale, complex circuit problems. In this work we propose HOGA,

a novel attention-based model for learning circuit representations

in a scalable and generalizable manner. HOGA �rst computes hop-

wise features per node prior to model training. Subsequently, the

hop-wise features are solely used to produce node representations

through a gated self-attention module, which adaptively learns

important features among di�erent hops without involving the

graph topology. As a result, HOGA is adaptive to various structures

across di�erent circuits and can be e�ciently trained in a distributed

manner. To demonstrate the e�cacy of HOGA, we consider two

representative EDA tasks: quality of results (QoR) prediction and

functional reasoning. Our experimental results indicate that (1)

HOGA reduces estimation error over conventional GNNs by 46.76%

for predicting QoR after logic synthesis; (2) HOGA improves 10.0%

reasoning accuracy over GNNs for identifying functional blocks

on unseen gate-level netlists after complex technology mapping;

(3) The training time for HOGA almost linearly decreases with an

increase in computing resources. Source code of HOGA is freely

available at: github.com/cornell-zhang/HOGA.

1 INTRODUCTION

Recent years have seen a surge of interest in machine learning

(ML) for electronic design automation (EDA), which holds great

potential in achieving faster design closure andminimizing the need

for extensive human supervision [9]. In particular, graph neural

networks (GNNs) have become increasingly popular in the EDA

community due to their ability to encode graph-structured data

such as gate-level netlists into compact representations, which can

be used for a multitude of downstream EDA applications, including

quality of results (QoR) prediction and functional reasoning [13, 18].

However, scaling GNN training to large graphs is a notoriously

challenging problem, which poses a serious concern on the prac-

tical bene�t of GNNs on large-scale EDA problems. On the one
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Figure 1: Comparison of HOGA and prior GNNs — (a) An

example graph for illustration; (b) GNN computation graph;

(c) Computation graph of our proposed approach, HOGA.

hand, unlike common datasets on social networks and molecular

graphs, which consist of either a few large graphs or a large num-

ber of small graphs, the circuit datasets may contain numerous

large graphs. For instance, the OpenABC-D benchmark provides

870k gate-level netlists, where each netlist consists of up to 240k

logic gates [5]. Thus, training GNNs on such a large-scale circuit

dataset is even more challenging than other graph-based applica-

tions. On the other hand, modern GNN models are built upon a

message-passing paradigm, which learns representations through

a recursive node-wise aggregation scheme shown in Figure 1(b).

As a consequence, it is nontrivial to perform e�cient distributed

GNN training due to the node dependencies in a graph structure.

Apart from the scalability challenge, it is also underexplored

how to make GNNs generalizable across di�erent circuit designs.

Although there are many customized GNNs previously proposed

for various EDA applications, their model backbones mainly follow

classic GNNs such as GCN [10] and GraphSAGE [8], which are

not necessarily suitable for circuit problems. Consider a task of

identifying functional blocks within circuits [18]. As distinct func-

tional blocks may have di�erent depths, the number of hops to be

considered varies across nodes, which cannot be easily captured by

common GNNs. Moreover, the high-order structures of functional

blocks are also important yet ignored by the aforementioned GNN

models. As a result, existing GNNs for EDA tasks often struggle

to learn the intrinsic and critical information from complex circuit

graphs, resulting in limited generalizability to unseen designs.

In literature, improving the scalability and enhancing the gener-

alizability of GNNs on circuits are largely viewed as two orthogonal

directions and seldomly explored together. Previous GNNs either

incur massive communication overhead among GPUs, or rely on

heuristic graph sampling algorithms that may lose critical structural

information [14], which in turn degrades the model generalizability.

In the context of learning generalizable GNNs for circuit problems,
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Wang et al. [17] leveraged graph contrastive learning to pretrain

GNNs and adopted multiple neighbor aggregation functions to

learn the functionalities of logic gates, which comes with additional

computational costs and thus worsens the model scalability.

Motivated by the limitations of conventional GNNs on circuit

designs, we propose a novel hop-wise attention approach, named

HOGA, to improve both the scalability and generalizability of cir-

cuit representation learning. As shown in Figure 1(c), HOGA adopts

a hop-wise aggregation scheme, which precomputes the hop-wise

features and only uses those features to learn node representations

through a gated self-attention module. Since the �nal representa-

tion per node depends solely on its own hop-wise features, there are

no dependencies between di�erent nodes during training, making

it easy to scale HOGA training in a distributed manner. Moreover,

the gated self-attention module enables HOGA to adaptively cap-

ture critical high-order structures from di�erent hops per node,

rendering it generalizable across di�erent circuit designs.

Notably, HOGA is a �exible approach for learning circuit rep-

resentations, which can be integrated with other customization

techniques previously proposed for various downstream EDA tasks.

To demonstrate the viability and �exibility of HOGA, we consider

two representative circuit problems: (1) QoR prediction – We fo-

cus on predicting the optimized gate count after logic synthesis

on the OpenABC-D benchmark, which is generated from various

circuit designs as well as synthesis recipes, and is one of the largest

open-sourced circuit datasets; (2) Functional reasoning – We follow

the most challenging setting in Gamora [18] by identifying func-

tional blocks on gate-level netlists after technology mapping. Our

experiments show that HOGA not only outperforms prior GNNs

on unseen designs, but is also e�cient for distributed training. We

summarize our main technical contributions as follows:

• To the best of our knowledge, we are the �rst to introduce a

scalable and generalizable model for circuit representation learning,

which is achieved by a novel hop-wise graph attention scheme.

• By precomputing hop-wise features, HOGA avoids recursive

neighbor aggregation, which enables HOGA to learn each node

representation independently and facilitates massive parallelization

for distributed training. As a result, the training time of HOGA

almost linearly decreases with an increase in computing resources.

•Owing to the proposed gated self-attention module, HOGA is able

to adaptively learn critical and high-order circuit structures, leading

to 46.76% error drop and 10.0% accuracy improvement for QoR

prediction and functional reasoning on new designs, respectively.

2 PRELIMINARY AND MOTIVATION

2.1 Graph Neural Networks at Scale

GNNs have emerged as a promising technique that encodes circuit

graphs into compact representations, which can then be utilized for

addressing a wide spectrum of EDA problems. Speci�cally, given

a circuit graph G = (V, E), GNNs update initial node features

{G
(0)
8 | 8 ∈ V} based on a node-wise aggregation scheme as follows:

<
(; )
8 = 5 (; ) ({G

(;−1)
9 | 9 ∈ N (8)}), G

(; )
8 = 6 (; ) (<

(; )
8 , G

(;−1)
8 ) (1)

where G
(; )
8 denotes the node feature vector at the ;-th layer, N(8)

represents the set of neighbors of node 8 , 5 can be any permutation-

invariant function (e.g., mean-pooling), and the goal of function 6

is to update node representations based on the aggregated features

from neighbors. After stacking ! GNN layers, the output features

{G
(!)
8 | 8 ∈ V} serve as the �nal node representations. However,

let 3 be the average node degree, there are $ (3!) nodes required

to obtain G
(!)
8 , which increases exponentially with the number of

layers and is known as the “neighbor explosion” issue. Besides,

the graph dependencies also incur signi�cant communication over-

head and work imbalance, hindering e�cient distributed GNN

training. To tackle both challenges, numerous e�orts have been

devoted to improve GNN training e�ciency by adopting di�erent

sampling strategies [3, 8, 20]. While these methods demonstrate

promising results on social networks, we argue that they are un-

suitable for circuits as the sampling algorithms may entirely break

the design functionality and lead to poor accuracy. This is empiri-

cally con�rmed in Section 4.3. In contrast, we introduce a hop-wise

aggregation scheme that independently learns each node represen-

tation based on its own hop-wise features, which renders our model

embarrassingly parallel and greatly facilitates distributed training.

2.2 Generalizable Graph Learning in EDA

Since realistic circuit designs may originate from distinct domains,

generalization capability is crucial for deploying graph learning

models on circuits. To this end, Ustun et al. proposed a customized

GNN model by distinguishing predecessors and successors in a

graph, which demonstrates promising generalizability on learning

operation mapping patterns [15]. Later, Zhang et al. [21] and Guo

et al. [7] introduced customized GNNs tailored for power inference

and timing prediction tasks respectively, via sequentially updating

node representations. More recently, Wu et al. presented a multi-

task graph learning framework for functional reasoning. While

these methods showcase promising results on the respective tasks,

their GNN backbones are built upon the conventional message-

passing paradigm, which cannot capture critical high-order struc-

tures formed by multiple nodes. Notably, many functional blocks

(e.g., full adders) are essentially high-order structures, which are

crucial for many circuit problems such as functional reasoning [18].

Therefore, the aforementioned methods still cannot capture the in-

trinsic circuit information, leading to either restrictions to speci�c

tasks or limited generalizability to complex circuit designs.

Although Wang et al. attempted to improve GNN generalizabil-

ity by adopting the notion of graph contrastive learning [17], it

involves nontrivial computational costs and thus worsens the GNN

scalability. In this work, we aim to devise a graph learning model

that is both scalable and generalizable for circuit designs by using

a gated self-attention module on hop-wise features per node.

3 THE PROPOSED APPROACH

Problem formulation. Given a graph adjacency matrix � and a

node feature matrix - , our goal is to build a model M for learning

high-quality node representations . = M(�,- ), which can be

utilized for a broad spectrum of circuit problems.

Figure 2(a) gives an overview of HOGA that consists of two

major phases. During the �rst phase, HOGA computes hop-wise

features by iteratively multiplying the adjacency matrix with the

node feature matrix, as described in Section 3.1. Note that this step

can be �nished in advance, allowing HOGA training with complex-

ity independent of the graph structure. The second phase trains
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Figure 2: (a) An overview of the two major phases of HOGA; (b) Our introduced gated self-attention module.

a gated self-attention module to capture high-order interactions

among hop-wise features, as illustrated in Section 3.2. Consequently,

HOGA is generalizable to di�erent circuit designs while simultane-

ously bene�ting from high parallelism for distributed training.

3.1 Hop-Wise Feature Generation

As depicted in Figure 1(b), traditional message-passing GNNs recur-

sively aggregate features from neighbors, which leads to their poor

scalability on large graphs. In contrast, we adopt a coarse-grained

message-passing scheme based on hop-wise feature aggregation.

To this ends, our �rst step is to generate hop-wise features.

Given the adjacency matrix � ∈ R=×= and node feature matrix

- ∈ R=×3 , where = and 3 represent the number of nodes and the

feature dimension respectively, we �rst normalize the adjacency

matrix: �̂ = �− 1
2��− 1

2 , where � is the node degree matrix. Next,

we generate hop-wise features by iteratively computing Equation

(2), where - (0)
= - and  denotes the number of hops.

- (: )
= �̂- (:−1) , : = 1, 2, ...,  (2)

After obtaining hop-wise features - (0) , - (1) , ..., - ( ) , we stack

them to construct a third-order tensor X ∈ R=×( +1)×3 such that:

X8 = [-
(0)
8 , -

(1)
8 , ..., -

( )
8 ]) , 8 = 1, 2, ..., = (3)

Consequently, for each 8 ∈ {1, 2, ..., =}, X8 comprises up to  -hop

features of node 8 , which are then independently used to learn the

corresponding node representation .8 . Hence, there are no depen-

dencies between di�erent nodes, making it easy to scale HOGA

through distributed training. It is noteworthy that the time required

for generating hop-wise features is generally negligible compared

to the overall training time, as empirically con�rmed in Section 4.2.

While there are a few prior arts (e.g. SIGN [6]) augmenting node

features by adopting a similar approach to Equation (2), they simply

train a multi-layer perceptron (MLP) model on augmented features.

In contrast, we consider learning node representations through a

hop-wise feature aggregation scheme, which is built upon a novel

gated self-attention module introduced in the following section.

3.2 Hop-Wise Gated Attention

Since HOGA takes X8 ∈ R( +1)×3 as input and produces a rep-

resentation .8 ∈ R
3 for every node 8 independently, we omit the

node index (8) in the ensuing discussion, by simply denoting X8 as

� and .8 as ~ for clarity. A straightforward way of producing ~ is

to accumulate hop-wise features in � , i.e., ~ =
∑ 
:=0

�: . However,

this approach has two �aws: (1) it fails to capture high-order fea-

ture interactions among di�erent hop neighbors, resulting in its

limited expressivity of learning high-order circuit structures. (2) it

uniformly combines features from di�erent hops and thus cannot

identify and focus on important hop-wise features per node. To

address those limitations, let us �rst consider a simple gated layer:

* = �,* ,+ = �,+ , �̂ = * ⊙ + (4)

where,* ,,+ ∈ R3×3 are trainable weight matrices, and ⊙ de-

notes the element-wise product. We can derive from Equation (4)

that �̂: captures the second-order interaction (�:,* ) ⊙ (�:,+ )

for every hop : ∈ {0, 1, ...,  }. However, this also means Equation

(4) fails to capture interactions among di�erent hop-wise features,

i.e., (�:,* )⊙(� 9,+ ) with: ≠ 9 . To tackle this issue, we introduce

a gated self-attention layer in the following:

( = B> 5 C<0G (& ) ), �̂ = * ⊙ ((+ ) (5)

where & = �,& ,  = �, ,,& ,, ∈ R3×3 are trainable weight

matrices, and ( is the self-attention matrix widely used in Trans-

former [16]. Based on Equations (4) and (5), we can derive that

�̂: = (�:,* ) ⊙ (
∑ 
9=0 (:,9� 9,+ ) =

∑ 
9=0 (:,9 (�:,* ) ⊙ (� 9,+ ),

which captures second-order interactions on di�erent hop-wise fea-

tures. By stacking more layers, the output �̂ naturally captures

higher-order feature interactions from di�erent hops, which corre-

spond to higher-order structures on the input circuit graph.

Implementation details. To improve the training stability of

HOGA, we add LayerNorm and ReLU to Equation (5) in our imple-

mentation, i.e., �̂ = ReLU(LayerNorm(* ⊙ ((+ ))). After obtaining

�̂ = [�̂0, �̂1, ..., �̂ ]
) ∈ R( +1)×3 , we adopt an attentive readout

scheme to produce the �nal node representation ~:

2: =
4G? (U) (�̂0 | |�̂: ))∑ 
9=1 4G? (U

) (�̂0 | |�̂ 9 ))
, ~ = �̂0 +

 ∑

:=1

2:�̂: (6)

where U ∈ R23 is a trainable vector, | | denotes the concatenation

operator, and 2: represents an attention score to measure the im-

portance of the :-hop feature �̂: to the �nal node representation ~.

In this way, HOGA can identify and adaptively aggregate critical

features from di�erent hops to produce high-quality node repre-

sentations, which are then used for downstream circuit tasks.
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Figure 3: (a) An example of And-Inverter Graph, where each node represents a primary input/output (PI/PO) or an AND gate.

The dashed arrows denote inverted edges; (b) An overview of QoR prediction in OpenABC-D; (c) An overview of functional

reasoning in Gamora — We solely replace GNNs with HOGA for learning circuit representations in both tasks.

3.3 Complexity analysis of HOGA

Suppose we consider ℎ feature dimensions and  hops. The com-

plexity of hop-wise feature generation is $ ( ℎ |E |). Besides, the

gated self-attentionmodule has a complexity of$ ( ℎ2 |V|+ 2ℎ |V|)

for linear projections and computing Equation (5). Therefore, the to-

tal complexity of HOGA is$ ( ℎ |E | + ℎ2 |V| + 2ℎ |V|) = $ ( |E | +

|V|), which is linear with respect to the number of nodes/edges.

4 EXPERIMENT

4.1 Experimental Setup

We evaluate HOGA on two tasks: (1) QoR prediction.We focus on

the OpenABC-D benchmark for predicting the optimized gate count

in And-Inverter-Graphs (AIGs) after logic synthesis optimization

through ABC [2]. Notably, OpenABC-D consists of 870, 000 AIGs

that are generated by running various synthesis recipes on IPs from

MIT LL labs CEP [4], OpenCores [12], and IWLS [1]. To demonstrate

the generalizability of our approach, we train HOGA on the top

20 designs in Table 1 and evaluate it on the rest of the designs; (2)

Functional reasoning.We follow Gamora [18] to identify adder

blocks by predicting the sum and carry-out nodes in AIGs of carry-

save array (CSA) and Radix-4 Booth multipliers. As technology

mapping can largely increase functional reasoning complexity [11,

19], we consider the most challenging scenario in Gamora, where

AIGs are generated by ABC with complex ASAP 7nm technology

mapping, and we only train HOGA on an 8-bit multiplier design

and perform inference on multipliers with bitwidth up to 768.

Note that the authors of OpenABC-D and Gamora have proposed

their own GNN-based models for the aforementioned tasks. To

ensure a fair comparison, we only replace their GNN blocks with

HOGA and keep other model components the same as shown in

Figures 3(b) and 3(c). In regard to HOGA hyperparameter settings,

we adopt Adam optimizer with a learning rate of 0.0001, a hidden

dimension of 256, and �x the number of gated self-attention layer

to 1. Besides, we set the number of hops  as 5 for experiments on

OpenABC-D and 8 onGamora, which captures the information from

the same number of hops as the baseline GNNs in both tasks. We

leverage DistributedDataParallel in PyTorch for distributed training

on HOGA. All experiments are conducted on a Linux machine with

an Intel Xeon Gold 5218 CPU and 4 RTX A6000 GPUs.

Table 1: Statistics of OpenABC-D benchmark — The top and

bottom designs are used for training and test, respectively.

IP Design Nodes Edges Category

spi 4219 8676 Communication

i2c 1169 2466 Communication

ss_pcm 462 896 Communication

usb_phy 487 1064 Communication

sasc 613 1351 Communication

wb_dma 4587 9876 Communication

simple_spi 930 1992 Communication

pci 19547 42251 Communication

dynamic_node 18094 38763 Control

ac97_ctrl 11464 25065 Control

mem_ctrl 16307 37146 Control

des3_area 4971 10006 Crypto

aes 28925 58379 Crypto

sha256 15816 32674 Crypto

�r 4558 9467 DSP

iir 6978 14397 DSP

idft 241552 520523 DSP

dft 245046 527509 DSP

tv80 11328 23017 Processor

fpu 29623 59655 Processor

wb_conmax 47840 97755 Communication

ethernet 67164 144750 Communication

bp_be 82514 173441 Control

vga_lcd 105334 227731 Control

aes_xcrypt 45840 93485 Crypto

aes_secworks 40778 84160 Crypto

jpeg 114771 234331 DSP

tiny_rocket 52315 108811 Processor

picosoc 82945 176687 Processor

4.2 Evaluation on QoR Prediction

Our baseline is a 5-layer GCN, as previously used for the OpenABC-

D benchmark [5]. Besides, we choose mean absolute percentage

error (MAPE) as the evaluation metric, which is de�ned as MAPE =

1
6

∑6
8=1 |

~8−~̂8
~8

| × 100%, where ~8 and ~̂8 denote the ground truth

and model prediction on the 8-th sample (graph), respectively. Ta-

ble 2 indicates that both HOGA models signi�cantly outperform

GCN across all test designs. In particular, HOGA-5 improves the

estimation error over GCN on vga_lcd by a margin of 46.76%. The
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