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Abstract
The development and training of deep learningmodels have become
increasingly costly and complex. Consequently, software engineers
are adopting pre-trained models (PTMs) for their downstream ap-
plications. The dynamics of the PTM supply chain remain largely
unexplored, signaling a clear need for structured datasets that docu-
ment not only the metadata but also the subsequent applications of
these models. Without such data, the MSR community cannot com-
prehensively understand the impact of PTM adoption and reuse.

This paper presents the PeaTMOSS dataset, which comprises
metadata for 281,638 PTMs and detailed snapshots for all PTMs
with over 50 monthly downloads (14,296 PTMs), along with 28,575
open-source software repositories from GitHub that utilize these
models. Additionally, the dataset includes 44,337 mappings from
15,129 downstream GitHub repositories to the 2,530 PTMs they
use. To enhance the dataset’s comprehensiveness, we developed
prompts for a large language model to automatically extract model
metadata, including the model’s training datasets, parameters, and
evaluation metrics. Our analysis of this dataset provides the first
summary statistics for the PTM supply chain, showing the trend
of PTM development and common shortcomings of PTM package
documentation. Our example application reveals inconsistencies
in software licenses across PTMs and their dependent projects.
PeaTMOSS lays the foundation for future research, offering rich
opportunities to investigate the PTM supply chain. We outline
mining opportunities on PTMs, their downstream usage, and cross-
cutting questions.
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1 Introduction
Deep Neural Networks (DNNs) have become a common component
in software systems over the past decade. Developing and training
DNN models is costly, requiring specialized hardware and large
datasets [36, 76]. While some software engineers develop DNNs
from scratch, others integrate DNNs into software following a typi-
cal reuse pattern [26, 57, 70]: (1) pre-trained DNN models (PTMs)
are published to registries such as Hugging Face (analogous to tra-
ditional package registries such as NPM); and (2) other software
depends on these PTMs, accessed by library or web API.

Despite the widespread adoption of PTMs [59, 88], our under-
standing of the software engineering practices and challenges sur-
rounding PTM reuse remains limited [54]. This understanding is
critical for developing more sophisticated tools, mitigating risks,
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Figure 1: This paper presents the PeaTMOSS dataset: Pre-Trained
Models inOpen- Source Software.PeaTMOSS includes data on 281,638
pre-trained models, 28,575 GitHub repositories that use pre-trained
models, and 44,337 links between them.

and guiding best practices [9]. Mining Software Repositories tech-
niques could help, but unfortunately current datasets on PTMs
lack crucial details, which leaves a gap in knowledge [8, 55]. For
instance, they frequently omit comprehensive evaluation metrics,
model training conditions, parameters, and standardization in re-
porting results. This absence of information impedes our ability to
perform robust analyses, compare performances meaningfully, or
derive a coherent picture of PTMs’ impact and usage in software
engineering. Recent work highlights the need for a more complete
spectrum of metadata is required [54, 55], which should include—
but not be limited to—details on model training datasets, versioning,
licensing, and the computational requirements for PTM reuse.

To address this gap, the primary contribution of this work is
the creation of the PeaTMOSS dataset: Pre-Trained Models in Open-
Source Software. PeaTMOSS enables mining of PTMs, the software
projects that use them, and the interactions between PTMs and
downstream use. As illustrated in Figure 1, PeaTMOSS contains
a snapshot of: (1) 281,638 PTMs, (2) 28,575 open-source software
repositories that use PTMs, providing real-world context for how
these models are applied, and (3) 44,337 mappings between PTMs
and downstream GitHub repositories. Our secondary contribution
involves the practical application of large language models (LLMs)
to extract PTM metadata, thereby enhancing our dataset (§5). We
apply this tool to systematically extract key metadata, including
datasets, hyper-parameters, and performance metrics, from un-
structured model cards. Li et al. called for comprehensive metadata
to construct a queryable model zoo, enabling efficient search and
comparison of models [67]. By addressing the challenges of un-
structured data, we ensure that our model zoo encompasses a wide
range of critical information, facilitating more informed and precise
queries.

We conduct two demonstrations of the value of this dataset. In §6
we analyze the data distribution in PeaTMOSS, show the trends in
the growth of PTM development and identify the common short-
comings in PTM package documentation. In §7 we use the mapping
created for PTM and GitHub projects to analyze the consistency
of software licenses. As future work, the PeaTMOSS dataset offers
many opportunities to study and inform our understanding of the
PTM supply chain. We propose three distinct directions for analyz-
ing PeaTMOSS: (1) analyses focusing on the GitHub data subset, (2)
explorations centered on the PTM aspect, and (3) comprehensive

studies integrating insights from both GitHub and PTM compo-
nents. We suggest researchers take advantage of the PeaTMOSS
dataset and conduct a larger-scale measurement on characterizing
the properties of the PTM supply chain. Our contributions are:
• We share a dataset named PeaTMOSS which includes 281,638
PTM packages, and 28,575 downstream GitHub repositories.

• We tackled the issue of unstructured attributes by developing a
LLM-based tool for metadata extraction, which enhances our
dataset by adding structured data in JSON format.

• We provide the first summary statistics of this PTM supply
chain, encompassing distributions of PTMs and their down-
stream repositories across various problem domains. Our anal-
ysis also includes trends in model size and the quantity of PTM
packages, along with an overview of the proportion of available
metadata. We show the proportion of missing data in each PTM
metadata category.

• We applied our dataset to assess the compatibility of PTMs
with downstream GitHub repositories. Our findings reveal that
0.24% of these licenses are inconsistent, potentially causing
community confusion and hindering collaboration.

Significance: PeaTMOSS is a comprehensive dataset for PTM in
open-source software. It offers an extensive mapping between
PTM packages and downstream GitHub repositories, and many
queryable metadata. Using PeaTMOSS, researchers can study the
PTM supply chain and the reuse modes of PTM packages. Engineer-
ing tools can be developed for PTM reuse, e.g., for model search
and comparison.
Paper outline: This paper is organized as follows: §2 and §3 provide
background and relatedwork. In §4, we describe the original version
of the PeaTMOSS dataset, and §5 details the augmented dataset
enriched with our metadata extraction pipeline. Data analysis of
PeaTMOSS is presented in §6. §7 illustrates a practical application.
The paper concludes with an examination of potential threats to
validity in §8, followed by a discussion of future work in §9.

2 Background
This section covers PTMs (§2.1) and their reuse (§2.2).

2.1 Pre-Trained Deep Learning Models (PTMs)
The advent of deep learning has precipitated a fundamental shift in
computational methodologies, transitioning from the deterministic
algorithms characteristic of traditional software to increasingly
probabilistic and data-driven paradigms [58]. Deep learning typ-
ically operates through neural networks capable of assimilating
datasets, thereby enabling them to make predictions or perform
complex tasks [62]. A PTM embodies a DNN architecture that has
undergone prior training with a specific dataset, incorporating
a defined data pipeline, training regime, and learned parameters
(“weights”). This pre-training equips the PTM to perform inference
or to be adapted for downstream applications [26].

Existing research has explored various methods for reusing deep
learning models, such as feature extraction, transfer learning, data
generation, and model compression [46, 56]. For instance, DNNs
can be pre-trained using large-scale unlabeled molecular databases
and then fine-tuned over specific chemical downstream tasks like
molecular property prediction [103]. Additionally, models can be
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Figure 2: The PTM supply chain. Engineers publish PTM packages
to model registries. PTMs are used by applications and other PTMs.

employed to annotate data or to synthesize new datasets through
generative approaches [10, 29]. Transfer learning enables models
trained on generic datasets to refine their understanding of more
detailed, downstream tasks, often resulting in enhanced perfor-
mance on specialized datasets [112]. Furthermore, models can be
optimized for size and efficiency to run on edge devices, a process
known as model compression [27].

Thanks to this range of reuse modes, in recent years PTMs have
become increasingly popular [22, 59]. The total number of open-
source PTM packages has seen a consistent increase on a monthly
basis [22]. Table 1 provides a quantitative demonstration of the
extensive adoption and rising popularity of PTMs. Previous re-
search indicates that the popularity and adoption rate of Hugging
Face’s models are comparable to those of other established software
package registries, including npm and PyPI [54].

Table 1: Comparison of package counts and download figures for the
top 10% of PTMs on Hugging Face. Data for August 2022 is sourced
from the PTMTorrent dataset [55]. The August 2023 data is obtained
from our dataset. This comparison highlights the growth of PTM
usage over a one-year period (i.e., doubling).

Hugging Face Statistics Aug. 2022 Aug. 2023

# packages of all PTMs 124 K 282 K
# downloads of top 10% PTMs 269 billion 587 billion

2.2 Components of the PTM Supply Chain
Jiang et al.. introduced the PTM supply chain concept, encompass-
ing PTM packages, the model registries, the authors of PTMs, and
the users [56]. Figure 2 extends their model to include the down-
stream applications, thus providing a holistic view of the PTM
ecosystem. PeaTMOSS contains the major elements of this supply
chain. This section describes each element in turn.
2.2.1 PTM Packages. PTMs are often shared in PTM packages. Per
Jiang et al. [54], a PTM package is analogous to traditional software
packages on platforms like NPM or PyPI [3, 4]. A PTM package
has standard elements such as a license, documentation, and usage
examples. Analogous to source code, a PTM package describes the
model architecture and pre-trained weights. Its metadata indicates
the training regime, which includes the dataset(s) involved, how
the model’s parameters were initialized, and the necessary data pre-

and post-processing (“data pipeline”). A PTM package may indicate
the model’s performance on evaluation metrics.
2.2.2 Model Registries. PTM packages are commonly disseminated
via deep learning model registries (also known as model hubs/zoos).
Jiang et al. define a deep learning model registry as a collaborative
hub where teams share deep learning models [54]. Prior work shows
that there are three kinds of model registries categorized by their
contribution types [56]: open (e.g., Hugging Face [33]), gated (e.g.,
PyTorch Hub [78]), and commercial (e.g., NVIDIA NGC catalog [6]).
These platforms enable engineers to directly adopt PTMs or adapt
them through fine-tuning for specialized downstream tasks.
2.2.3 Package Dependencies. The various methodologies for PTM
reuse establish two distinct types of dependencies within the PTM
supply chain. Firstly, there are PTM-PTM dependencies, where, for
instance, one model might be fine-tuned from another [56]. Sec-
ondly, there are PTM-Application dependencies, where software
projects rely on PTMs for their functionality [59]. These depen-
dencies underscore the interconnected nature of PTM reuse and
highlight an aspect of PTM package usage that necessitates further
exploration, particularly in how these dependencies impact the
broader software engineering landscape.

3 Related Work
This section covers related work on software engineering in PTM
reuse (§3.1), importance of queryable PTM metadata (§3.2), and
open-source PTM datasets (§3.3).

3.1 Software Engineering in PTM Reuse
Prior work has comprehensively studied the development of deep
learning systems from software engineering perspectives [9, 81].
These works more focused on creating and training newDNNs from
scratch, which usually requires extensive resources and expertise.
However, the reuse process of PTM focused on adapting existing
PTMs which is a different process compared to developing a new
model [54]. The literature of understanding the reuse of PTMs still
presents a notable gap.

Davis et al. introduced three paradigms for reusing DNNs: con-
ceptual reuse, adaptation reuse, and deployment reuse [26]. Prior
work has characterized conceptual reuse in the form of DNN model
reengineering and proposed the challenges in this reuse tpye, in-
cluding performance debugging, and portability of deep learning
operations [52]. In the context of adapting PTMs in the applica-
tion, there are two main challenges faced by software engineers: (1)
technical adoption challenges, and (2) decision-making challenges
such as model selection and evaluation [26]. For deployment reuse,
Jajal et al. characterized failures of deep learning model converters
which could compromise model quality [49]

Recent empirical research highlights the popularity of PTM reg-
istries among engineers. They appreciate these registries for their
well-organized problem domains and user-friendly APIs, which are
vital for downstream applications [54, 56, 93]. Studies by Jiang et al.
and others have identified distinct differences between traditional
software package reuse and PTM package reuse. These differences
include varied decision-making processes, unique attributes that
facilitate reuse, and specific risk factors relevant in PTM contexts.
The impact of PTMs on software engineering practices has been
a focal point of recent studies [22, 59]. Gong et al. have explored

433

Authorized licensed use limited to: Purdue University. Downloaded on June 21,2024 at 14:47:06 UTC from IEEE Xplore.  Restrictions apply. 



MSR 2024, April 2024, Lisbon, Portugal Wenxin Jiang et al.

the usage contexts of PTM packages via an exploratory study from
model hubs, but there is still a substantial gap in understanding the
detailed reuse of these models [42]. Our dataset complements these
findings by providing a detailed mapping between PTM packages
and downstream GitHub repositories. This enables further, more
insightful analysis of PTM reuse and adoption trends.

3.2 Importance of Queryable PTM Metadata
PTM metadata has been applied for several tasks. In the realm of
AI model management, the effective utilization of metadata plays
a crucial role, such as helping with model auditing for assessing
risks and ensuring responsible AI deployment [82]. Studies have
shown that engineers often rely on various metadata types, such
as evaluation metrics and hyperparameters, for informed model
selection, underscoring their significance in the process. Existing
techniques effectively extract key metadata, supported by research
papers, including model names, datasets, and frameworks [95, 96].
However, these methods do not support extraction from model
cards, and not work for a comprehensive list of metadata (e.g.,
hyperparameters, model size, hardware specification) [21, 71]. The
acquisition of extensive, queryable metadata types is crucial for
enhancing model search, reuse, comparison, and composition [67].

The evolving landscape of model repositories presents new chal-
lenges for metadata extraction [54, 67]. The main problem is the
greater number of kinds of artifacts in this context, and linking
them together with corresponding GitHub repositories is academic
papers are hard. Traditional methodologies have focused on model
repositories on platforms like GitHub and academic papers [95, 96].
Some platforms have tried to link papers to the relevant code repos-
itories and models together, such as PapersWithCode [7]. However,
PTMs on model registries do not always link to GitHub projects
and original research papers [54]. To address this gap in extracting
metadata from model registries, we augment PeaTMOSS by lever-
aging state-of-the-art LLMs for metadata extraction. Capitalizing
on the advanced capabilities of LLMs, we employ them to interpret
and analyze model cards, effectively extracting pertinent metadata.

3.3 Open-Source PTM Datasets and Other
Large-Scale Software Datasets

There are two existing PTM datasets: PTMTorrent [55] and HF-
Community [8]. Both provide data included in the Hugging Face
model registry, offering insights into PTMs. However, both lack
queryable PTM metadata and do not cover downstream applica-
tions. These limitations reduce the range of mining questions that
can be posed. PeaTMOSS addresses both limitations by including
additional content, e.g., extracted metadata from model cards and
links to downstream GitHub repositories.

There are also many large-scale open-source software datasets,
such as GHTorrent [43], SOTorrent [12], and TravisTorrent [15].
These datasets offer long-term data availability and help researchers
avoid API rate limits [43]. These datasets have been instrumental in
improving our understanding of software engineering, e.g., of prac-
tices in continuous integration [14], static analysis [108], software
development [13, 24], and testing [32, 51].

To advance our understanding of software engineering practices
in deep learning systems, a large-scale, open-source dataset sim-
ilar to those in previous studies is essential [56]. Such a dataset

should encompass extensive software and its associated, queryable
metadata for research purposes [12, 43]. Additionally, it should
include dependency information to effectively characterize the
software supply chain and keep the data updated. PeaTMOSS has
a broader scope by including downstream GitHub applications,
updated metadata, and recent models. Notably, our dataset incor-
porates a substantial number of large language models (LLMs) like
Llama 2, which were absent in prior datasets.

4 The PeatMOSS Dataset
This section summarizes and details the PeaTMOSS creation process.

4.1 Overview
We created the PeaTMOSS dataset to enable study aboutPre-Trained
Models in Open- Source Software. As illustrated by Figure 1, PeaT-
MOSS comprises snapshots of PTMs and open-source repositories
utilizing PTMs, as well as a mapping of PTMs to projects. For both
PTMs and GitHub projects, PeaTMOSS contains metadata (com-
mits, issues, pull requests) and data (e.g., model architecture and
weights; git repositories), primarily collected in July-August 2023.
Figure 3 presents a uniform schema for retrieving PTM and project
metadata is provided to facilitate analysis of PTMs and their use in
open-source software projects. Most information is indexed; some
is stored as blobs.

PeaTMOSS contains themetadata of 281,638 PTMpackages (281,276
from Hugging Face and 362 from PyTorch Hub), 28,575 GitHub
projects that use PTMs as dependencies, and 44,337 links from
these GitHub repositories to the PTMs they depend on.

The dataset can be accessed in two formats. The “metadata”
version of PeaTMOSS is a 7.12 GB SQLite database. It contains the
metadata of PTM packages and GitHub projects, and Globus links
to their snapshots. The 48.2 TB “full” version has these snapshots:
(1) the PTM package contents in each published version, and (2)
git history of the main branches of the GitHub projects.

4.2 Dataset Creation Methodology
Here we outline the methodology employed to compile PeaTMOSS,
detailing PTM collection in §4.2.1, and the approach for associating
PTMs with downstream GitHub repositories in §4.2.2.
4.2.1 Collecting PTMs. First, we must identify the model registries
whose PTMs we will collect. As discussed in §2.2, there are three
types of model registries. Of these, only the open and gated types
are open-source. For mining, we need registries that have APIs
with recognizable signatures, allowing us to trace PTM-App depen-
dencies (details in §4.2.2). Considering these criteria, we selected
the most popular example from each open-source category that
utilizes APIs. Thus, we included PTMs from Hugging Face (an open
registry) and PyTorch Hub (a gated registry). Hugging Face con-
tains far more PTMs than PyTorch Hub, which influenced several
decisions we made in creating PeaTMOSS.

Our PTM data collection includes three parts: (1)We saved 14,296
PTM snapshots. This included the most popular PTM packages (i.e.,
with over 50 downloads) on Hugging Face, and all PTMs on PyTorch
Hub. This part of the data can provide a comprehensive view of PTM
packages. (2) Among these “full” metadata, 44,337 links from the
PTMs to the downstream GitHub repositories have been identified.
This part of the data can be connected to downstream GitHub data
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Figure 3: PeaTMOSS data schema. There are four regions: tables for PTMs (basic §4 and enhanced §5), tables for GitHub projects, and a table of
PTM-Application dependency relations. Tables link to PTM and GitHub snapshots in a Globus share. Our artifact has a navigable version (§11).

and allows miners to analyze the relationship between them. (3) For
all PTMs hosted on Hugging Face and PyTorch Hub, we retrieved
their metadata, resulting in a total number of 281,638 PTM package
metadata being included in PeaTMOSS.
Soundness and Completeness: PeaTMOSS is comprehensive in
terms of popular PTM packages, as it includes snapshots of those
with over 10,000 downloads on Hugging Face. This provides a full
view of widely-used PTMs and their connections to downstream
GitHub projects, facilitating in-depth analysis. Additionally, the
dataset includes metadata from all other PTMs on Hugging Face,
which can be used for metadata-based analyses. PeaTMOSS en-
hances the diversity of PTM data by incorporating PTM packages
from PyTorch Hub, including all available model repositories and
their associated pull requests and issues.
Implementation: Metadata is collected using an Extract-Transform-
Load (ETL) pipeline for each model hub. We first Extract metadata
from each model hub’s API. Then we Transform, using this meta-
data to collect additional information (e.g., following links to get

packages backed by GitHub repositories). Data that fits the shared
schema is placed in an intermediate representation, while other
data is preserved as a blob. Results are Loaded into our database.

4.2.2 Collecting Downstream GitHub Repositories To enable re-
search on PTM-PTM and PTM-App dependencies in open-source
software projects, PeaTMOSS includes GitHub repositories that use
at least one PTM from the two registries we captured. We obtained
the 28,575 pertinent GitHub repositories that existed as of July 10,
2023. These repositories have an average of 201 stars.

For each of these 28,575 GitHub repositories, PeaTMOSS contains:
(1) a full git clone; (2) all issues and associated metadata (as obtained
through the GitHub CLI); and (3) all pull requests and associated
metadata (via GitHub CLI). We link them to the PTMs they use that
were collected in §4.2.1, to the extent possible with static analysis.

The main challenge for this part of the dataset is identifying the
GitHub repositories that use PTMs. This task is non-trivial given
the lack of standardized documentation or explicit labeling of PTM
usage in repositories. We devised an approach to automatically

435

Authorized licensed use limited to: Purdue University. Downloaded on June 21,2024 at 14:47:06 UTC from IEEE Xplore.  Restrictions apply. 



MSR 2024, April 2024, Lisbon, Portugal Wenxin Jiang et al.

Figure 4: Example use of twoHuggingFace PTMs. The code initializes
a tokenizer (AutoTokenizer) and a model (AutoModelForMaskedLM)
from the transformers library for a multilingual BERT model.

identify downstream GitHub repositories that depend on PTMs.
There are four steps to our approach:
(Step 1) Signatures of PTM Use: The primary way to use PTMs
from model hubs is through hub APIs. There are many model hub
libraries that access these APIs to retrieve PTMs by name. Figure 4
gives an example of accessing PTMs from Hugging Face via its
Transformers library.

We therefore define the signature of PTM usage in an application
as the combination of (1) library import and (2) calls into that li-
brary to load a PTM. We specifically focus on signatures associated
with Python libraries, as Python is the dominant language for PTM
applications and almost all supported PTM loading libraries are
written in Python [83, 92]. We manually identified libraries and
signatures in the documentation for the two target model hubs,
Hugging Face [34] and PyTorch [78]. In total, we found 474 signa-
tures from 27 Python libraries that access these hubs.
(Step 2) Preliminary repository collection: Wedeveloped search
patterns for each signature, and matched them against the content
of files within GitHub repositories. We searched for signatures in
public, non-fork, non-archived repositories. For this search, we
used the src CLI tool from Sourcegraph, a popular code search
engine that indexes GitHub repositories with ≥ 5 stars [91]. For ex-
ample, a query for one of the signatures from the Diffusers library
is: “src select:file visibility:public count:all lang:Python

content:‘from diffusers’ AND from_pretrained(”.
(Step 3) Static Analysis: As Sourcegraph’s search feature relies
on text-based patterns, it is possible that some of the search results
are false positives (e.g., signatures that occur in commented-out
code). To mitigate this concern, we performed static analysis on the
GitHub repositories from Step 2. This required some customization
for each library. Given the number of signatures (474 signatures
over 27 libraries), we focused on the most popular libraries. For
PyTorch Hub, there are four libraries — torchvision, torchaudio,
torchtext, and direct uses of torch — and we handle all associated
signatures. For Hugging Face, there are 23 libraries. Figure 5 shows
the distribution of usage: we used signatures for the top five libraries
(Transformers, SpaCy, Sentence-Transformers, Diffusers, and Timm).
These accounted for 96% of all downstream repositories that contain
Hugging Face signatures according to our Sourcegraph search.

We performed static analysis using the Scalpel framework [64].
For each relevant source code file associated with a specific function
signature, we construct an abstract syntax tree and extract the
function calls contained within the file. Subsequently, we cross-
reference the extracted functions with our predefined signatures
which gives us a total of 28,575 repositories.
(Step 4) Mapping PTM-App relationship: Finally, we want
to map which GitHub repositories depend on which PTMs. For
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Figure 5: Number of projects that access PTMs from each Hugging
Face library, as captured via Sourcegraph search. Note: Log scale.

the function calls from each signature that load PTMs (identified
in step 1), we extracted the function arguments (one of which is
the PTM name), enabling us to extract specific PTMs being used
in downstream GitHub repositories. We identify repositories that
statically call the collected PTMs — 15,129 GitHub repositories do
so, loading 2,530 distinct PTMs. Note that a PTM may be used by
multiple repositories, and a repository can use multiple PTMs.

5 Enhanced PeaTMOSS via Metadata Extraction

This section enhances PeaTMOSS by extracting indexed metadata
from the unstructured metadata available in raw PTM packages.
As discussed in §3.2, PTM metadata enables research and supports
engineers’ reuse process. Past work observed that PTM metadata is
often available in model cards, but unstructured, hampering ecosys-
tem analysis [54, 77, 95]. Our focus was on extracting metadata
from Hugging Face PTM packages due to several reasons: (1) a
larger quantity of PTM packages, (2) a larger quantity of mine-able
documentation (model cards), and (3) the centralized accessibility
of their model cards for collection purposes.

We propose to use Large Language Models (LLMs) to extract
metadata from model cards. Recent studies have demonstrated
the versatility of LLMs in various tasks, including information re-
trieval [19, 39]. LLMs are effective in the task of metadata extraction
from scientific documents [30]. In this work, we use ChatGPT, a
leading commercial LLM [1].

We identified desirable metadata through reviewing the litera-
ture and assessing available data in recent model cards, as shown
in Table 2. Prior works on metadata extraction indicate metadata
of interest. We supplemented those lists with metadata inspired
by IBM’s AI FactSheet [11], as well as observations from 50 re-
cent model cards. These additional metadata include carbon emis-
sions, model size, base model, limitation and biases, demonstration,
grant/sponsorship information, and language.
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Table 2: A list of PTM metadata mapped to the first paper that men-
tioned it. PeaTMOSS includes these fields plus more (last row of
table). Our artifact shows the mapping of these fields to our schema.

Paper Newly Introduced Metadata of Interest

Schelter et al., 2017 [86] Model name, model version, framework, tags,
dataset name, dataset version, dataset statis-
tic, data transform, input/output format, eval-
uation, training time, environment, hyperpa-
rameters, prediction metadata

Tsay et al., 2020 [95] Reference, domain, has README, uses
Python, popularity

Li et al., 2022 [67] Model architecture, task, hardware
Tsay et al., 2022 [96] Description, code, training job, training out-

put, provenance

PeaTMOSS Carbon emitted, model size, license, base
model, limitation and biases, demonstration,
grant/sponsorship, language (NLP)

5.1 Prompt Design
Prompting provides the instructions to the LLM. We followed the
prompt design flow proposed by Zamfirescu et al. [107], and out-
lined a structured approach for extracting and filling out a detailed
metadata schema for models from Hugging Face. To enhance our
pipeline’s performance, we use iterative prompting to test random
sampled models [50]. For metadata extracted with lower accuracy,
we identified incorrect patterns, such as erroneous output formats
and misleading results, to subsequently refine the corresponding
prompts. Moreover, we meticulously recorded instances where the
model erroneously inferred metadata, known as hallucinations [89],
in the absence of relevant information. We also tracked cases where
the model failed to extract information that was indeed present.
Analyzing these outcomes enables us to pinpoint the metadata
types that pose greater extraction challenges, thereby informing
and refining our strategies in prompt engineering. The prompts for
two pipelines are all available in §11.

The input prompt to our pipeline includes multiple components,
as illustrated in Figure 6. The prefix prompt provides the domain and
model background, setting extraction rules and schema adherence,
with empty properties for absent document elements. The metadata
prompt defines all the extraction requirements and formats for each
metadata. The data schema is a formatted json file that used to store
the extracted metadata. If domain and tasks are not pre-processed
from model tags, we include domain and task prompts, specifying
domains (e.g., multimodal) and tasks (e.g., text-to-image). For NLP
models, language prompt is added to detail supported languages
and extraction expectations (e.g., Arabic, Chinese, Python).

5.2 LLM Pipeline Design
We designed two LLM pipelines, one optimizing monetary cost and
the other accuracy. Figure 6 summarizes these pipelines.
Cheap Pipeline: By employing the Retrieval-Augmented Genera-
tion (RAG) strategy [63] to mitigate the token usage for each model
card and using the more cost-effective GPT-3.5-turbo, we have de-
veloped an efficient “cheap” pipeline. The GPT-3.5-turbo’s token
limit of 4,096 tokens per request necessitates a method to extract
complete metadata in segmented operations. The RAG strategy

helps the LLM incorporate relevant information from a knowl-
edge base, providing contextual support and reducing the risk of
generating inaccurate or speculative content. The RAG strategy
reduces token usage, thus enhancing efficiency and reducing both
computational and financial costs.
Accurate Pipeline: The accurate pipeline, utilizing GPT-4-turbo,
has a substantial improvement on addressing the token limit is-
sue, along with enhanced performance in data extraction [19]. An
analysis of the token count across all model cards revealed that
their lengths fell within the new token limit of GPT-4-turbo (128,000
tokens). Leveraging the advanced capabilities of GPT-4 [75], we
streamlined our pipeline by removing the RAG component. This
modification allowed for a more holistic understanding of each
model card, thereby improving metadata extraction efficiency.

5.3 Evaluation

Sampling: Our initial evaluation required the selection of ground
truth models, for which we analyzed the distribution of model tasks
in the PeaTMOSS database. To achieve a representative sample,
we employed stratified random sampling and sampled 50 models
for evaluation. The models from different domains use different
evaluation metrics so we want to cover most cases in our evaluation.
In this approach, each model task functioned as a separate stratum.
The sample size for each task was aligned with its proportional
representation in the database. We focused on models that ranked
among the top 100 in terms of downloads for each task, ensuring
they were included in our database. We then carefully examined
the information of these models by checking their model cards and
manually created the ground truth metadata for them.
Accuracy: We selected accuracy as our primary metric for evaluat-
ing model performance, considering the context of manual assess-
ment. This metric provides a straightforward and reliable method
to evaluate the extraction. To calculate the overall accuracy, we
tracked the frequency of successful metadata extractions matching
our manual answer against the total number of extractions.
Results: Comparing our results with manually labeled data, the
GPT-3.5-turbo based pipeline achieved an accuracy rate of 67.46%.
This evaluation was conducted on a random sample of 50 model
cards from the PeaTMOSS dataset. Notably, the average cost for
the cheap pipeline was $0.01/model. In a subsequent re-evaluation
using the identical dataset, the accurate pipeline exhibited a signifi-
cant improvement in accuracy, reaching 94.39%. The average cost
for the GPT-4-turbo pipeline was slightly higher, at $0.03/model.
We have not evaluated the specific factors that enhanced GPT-4’s
performance in this context. However, its excellent performance
led us to conclude the evaluation at this stage.

5.4 PeaTMOSS Enhancement

We enhanced the PeaTMOSS dataset by incorporating metadata
obtained from the “accurate” LLM pipeline, focusing on models that
have over 50 downloads — consistent with the model set for which
we have collected snapshots. The enhancement not only add the
metadata to our dataset, but also successfully identifies 8,829 PTM-
PTM dependencies within the supply chain, pinpointing upstream
base models linked to each model as specified in their model cards.
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Figure 6: The “cheap” and “accurate” pipelines for metadata extraction. First the prompts are refined by the type of model. Then these prompts
are applied to the model card. The cost-optimized “cheap” pipeline differs primarily by incorporating the Retrieval-Augmented Generation
(RAG) framework [63] to reduce token count.

Running the “accurate” pipeline to extract these enhanced metadata
took ~$400 and ~40 hours.

After metadata extraction, Figure 7 shows the percentage of
available metadata types for PTM packages. Most models have
metadata specifying libraries, domains, and model tasks, with 98.9%
for libraries and slightly less for domains and tasks. Metadata on
frameworks, licenses, datasets, base models, demonstration, and
evaluation are also prevalent, although to a lesser extent. On the
other hand, less than half of the models include metadata on prove-
nance (i.e., github_repo and papers). The data shows a significant ab-
sence of metadata concerning hyper-parameters, parameter count
(i.e., model size), hardware information, limitations, biases, and
input/output formats, with these categories falling well below 40%.
Less than 10% model cards indicate the grant/sponsorship informa-
tion and carbon emission.

6 PeaTMOSS Initial Data Analysis

We conduct some initial analysis of PeaTMOSS to illustrate its con-
tents and measure the PTM supply chain. We report on the task
domains of the PTMs (in aggregate and over time), PTM domains
used by downstream GitHub repositories, and trends in model size.

Figure 8 presents the distribution of models across various prob-
lem domains in both Hugging Face and PyTorch Hub. It reveals that
NLP models are predominant on Hugging Face (60.3%), whereas
PyTorch Hub features a higher frequency of CV (56.1%) and Audio
(27.6%) models.

Figure 9 displays the frequency of downstream GitHub repos-
itories reusing PTM packages. It shows that NLP models are the
most commonly reused on Hugging Face (75.4%), followed by Mul-
timodal (17.4%) and CV (6.3%) models. Conversely, PyTorch Hub
users predominantly utilize CV (96.0%), and only 2.23% of them use
NLP models.

Figure 10 displays the creation frequency of Hugging Face PTM
packages across various problem domains over time. The data indi-
cates a predominance of Natural Language Processing (NLP)models,
likely reflecting Hugging Face’s initial focus on NLP PTMs. How-
ever, from August 2022 onward, packages for other domains have
become more common. The jumps of NLP models in 2020 might
relate to the rise of transformer family models during that time [74].
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Figure 7: The proportion of available metadata for each category
from Hugging Face model cards. Data is reported for the 11,975
models available at measurement time (Nov. 2023). About 17% of the
sample (2,321models) became unavailable between project initiation
and this measurement.

Figure 11 tracks the median model size (i.e., parameter count) by
different domain. There is a marked increase in the median size of
NLP and multimodal PTMs, especially noticeable after March 2023.
Meanwhile, the median parameter count for Audio and CV models
has remained relatively stable.

7 Mining PTM-App License Compatibility
This section illustrates the use of PeaTMOSS through a simple min-
ing study on software licensing. Software license information is
important metadata for machine learning software [16, 60] and
may promote responsible AI practices [23]. When using a PTM,
an engineer should comply with its license. We ask: (1) How do
software licenses vary between PTMs and their downstream GitHub
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repositories? and (2) How common are PTM-Application license in-
compatibilities?

7.1 Background on Software Package Licensing
Licenses dictate the terms and conditions governing the reuse, mod-
ification, and redistribution of that software [61]. Licenses vary by
the restrictions they place [40], e.g., requiring derivative works to
use a similar license (copyleft) or making the code freely available
(public). Integrating software with different licenses is complex [5]
and may result in legal issues [84, 90]. Studies of license incompati-
bility have been conducted in the Fedora Linux distribution [38],
Android applications [97], and Java applications [37, 41]), as well
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as in multiple package ecosystems (e.g., npm [80], RubyGems [69],
and PyPI [104]). We ask similar questions in the PTM ecosystem.

We treat licensing definitions in PTMs comparable to other soft-
ware packages [38], with reuse (importing the PTM), modification
(e.g., fine-tuning a PTM), and redistribution (shipping the PTM in
an application). Following prior work, we treat mismatches as cases
when there are different levels of license restrictiveness [102].

7.2 License Measurement on PeaTMOSS
7.2.1 Method. In this analysis, we focus on the PTMs and GitHub
projects in PeaTMOSS that are governed by a single license (7794,
54.5%). This model is simplistic [2] but aligns with GitHub’s license
API [40]. For PTMs, we use the license information from PeaTMOSS
which was originally extracted using Hugging Face API from the
model tags. For downstream GitHub repositories, PeaTMOSS also
includes license information that we extracted using the codescan

tool in imitation of GitHub’s licensee tool (e.g., referencing files
such as LICENSE.txt). For PTM-Application dependencies, we use
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the mapping given by PeaTMOSS. We manually measured license
compatibility based on the Linux Foundation’s OSS license compat-
ibility table [94]. In license pairings where no legal compatibility
analysis was available, e.g., in the case of “no license” (43.42% of
the downstream GitHub repositories), we omit an assessment.
7.2.2 Results. Figure 12 answers our questions in a Sankey diagram,
on the part of PeaTMOSS for which we have PTM-Application
dependencies — 2,530 PTMs used across 15,129 GitHub projects.

For license variation, we compare the left and right sides of Fig-
ure 12. The top-3 PTM licenses are Apache-2.0, MIT, and BSD-3-
clause, while the top-3 GitHub repository licenses are MIT, Apache-
2.0, andGPL-3.0-only.Many downstreamGitHub repositories (43.42%)
choose not to define a license (“no license” in the figure), instead op-
erating under the default posture of Hugging Face (full reuse [48])
and GitHub (much stricter — copyright reserved to author [40]). In
25.61% of cases, the PTM-Application licenses are identical.

For license compatibility, Figure 12 indicates compatible licenses
with blue flows, otherwise red. In 0.24% of PTM-Application de-
pendencies, the licenses are incompatible. In PeaTMOSS, this is
the result of copyleft provisions in the PTM’s license that are not
honored by the Application.

Figure 12: Sankey Diagram for license compatibility. Flows represent
the licenses of PTMs and the downstream GitHub repositories that
use them. Blue flows are compatible, red are not. Grey flows (47.33%
of pairs) represent license pairs that have not been analyzed by the
Linux Foundation — this is primarily caused by GitHub repositories
lacking an explicit license.

8 Threats to Validity
Users of PeaTMOSS will inherit three types of threats to validity.
Construct Validity. In the PeaTMOSS dataset, a key construct
threat is the exclusion of conceptual reuse of PTMs [26], which
may limit our understanding of PTM usage. In our license analysis
(§7), we assume that each project has one license, which aligns with
GitHub’s model (License API) but is imperfect. Additionally, our
metadata extraction method is supported by LLMs, which can pose
threats on the reliability of our dataset. To mitigate this, we con-
ducted an evaluation using stratified random sampling, observing
accuracy of 94% (§5.3).
Internal Validity. Internal validity threats in our study stem
from the possibility of selection bias in curating PTMs and GitHub
projects, as well as the changeable nature of repository contents

over time. Specifically, our LLM pipeline evaluation might be bi-
ased since it is based on a sample of only 50 models from Hugging
Face. To mitigate this, we employed a stratified sampling technique.
Additionally, when identifying the mapping from PTM to down-
stream GitHub repositories, our reliance on keyword searches on
GitHub could miss other reuse signatures, potentially limiting the
comprehensiveness of our findings. To mitigate this, we employ
distinct methodologies to manually gather the relevant signatures
from Hugging Face and PyTorch Hub.

Another internal threat exists in our work due to the potential
inaccuracies in the metadata extraction process from unstructured
model cards. To mitigate this threat, we evaluated our extraction
pipeline against a set of 50 manually-labeled model cards and found
high accuracy. Moreover, we implemented a confidence threshold
mechanism within our LLM extraction process. If the confidence
level is below the set threshold, the data is earmarked for manual
review, thereby improving the reliability of our dataset.
External Validity. External validity threats are present due to the
dataset primarily sourcing from Hugging Face and PyTorch Hub,
which might not represent all PTM usage scenarios. To mitigate
this threat, our dataset was designed to be expandable. We built
our database in a flexible, modular way and provided clear, detailed
documentation. This makes it straightforward to add new informa-
tion to the database as needed. Another threat is present due to the
selection of five libraries for the Hugging Face PTM downstream
application collection. To mitigate the threat we check that 96% of
the primarily collected applications for Hugging Face PTMs belong
to those five libraries. This fulfills the representativeness of our
dataset. Additionally, we acknowledge that there is another exter-
nal threat on the dynamic nature of PTM data. The dataset will
need to be updated — we evaluated our data collection programs
on multiple sites with comprehensive documentation provided for
ongoing and future research.

9 Future Work
Every dataset can be improved. We highlight two enhancements
for PeaTMOSS. First, the current PTM-App mapping relies solely on
static analysis; a valuable extension would be to identify dynamic
PTM usage. Second, a deeper dive into the PTM supply chain would
categorize the patterns of reuse in GitHub downstream repositories,
such as direct loading versus fine-tuning or extending a model.
Adding these patterns would enrich the dataset.

PeaTMOSS enables many lines of research. We highlight three
lines in Table 3. The first line of research studies the Pre-Trained
Model portion (PTM). The second line of research studies the GitHub
portion of the dataset (GH ). The third line integrates both parts (I ).

10 Conclusion
Pre-Trained Models (PTMs) offer state-of-the-art performance in
various domains, and are being incorporated into many comput-
ing systems. PTMs represent a new frontier for mining software
repositories, but the community lacks a comprehensive dataset. To
enable PTM mining, this paper presents the PeaTMOSS dataset, a
collection of PTM metadata, PTM snapshots, downstream GitHub
repositories that use PTMs, and mappings between PTMs and the
repositories that use them. To augment the data available from PTM
registries and GitHub APIs, we developed an automated process
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Table 3: Example lines of research for researchers to investigate, phrased as research questions. These questions are divided into three groups.
The first group uses the Pre-Trained Model portion of the dataset (PTM). The second group of questions makes use of the GitHub portion of
the dataset (GH ). The third group asks questions that require Integrating both parts of the dataset (I ).

Research question Related work

PTM-1:What factors predict the popularity of a PTM? Intuition suggests that performance aspects such as accuracy
and latency may dominate; what is the role played by factors such as software engineering quality?

[17, 54, 68]

PTM-2: What naming conventions do PTMs follow? Are they consistent enough (within an architecture family? across
families?) to support engineers looking for similar models?

[44, 53]

PTM-3: PTM authors may reuse each others’ work, e.g., building off of model checkpoints or incorporating architectural
building blocks. Is this forking, or a new form of software exchange? What is the phylogeny of the families of PTMs?

[56]

PTM-4: There are many concerns about DNNs with unexpected or malicious behavior. How common are such DNNs? [45, 54, 100, 101]
PTM-5: How to improve safety and security of model infrastructure, such as serialization formats and interoperability? [25, 49]

GH-1:What kinds of defects are opened related to PTM use in the GitHub projects? How do these defects differ from
defects opened on other aspects of the GitHub projects?

[72]

GH-2:What do developers on GitHub discuss related to PTM use, e.g., in the body text of issues and pull requests? What
are developers’ sentiments regarding PTM use? Do the people issuing pull requests for PTMs have the right expertise?

[85, 106]

GH-3: How often do developers change the PTM used to implement a feature? What factors influence this? [28]
GH-4: PTMs can underpin, enhance, or replace features implemented with traditional code. How common are these
three modes of PTM adoption? How do PTMs subsequently affect the feature’s failure modes?

[66, 73, 79, 111]

I-1: It can be difficult to interpret model popularity numbers by download rates. To what extent does a PTM’s download
rates correlate with the number of GitHub projects that rely on it, or the popularity of the GitHub projects?

[35]

I-2: What are code smells for PTMs in the downstream GitHub repositories, and how do they affect these projects? [20, 98, 110]
I-3: What are application engineers’ testing practices for their PTM-enabled features? Do these vary based on the
project’s purpose, or the task delegated to the PTM? How do testing practices acknowledge and address PTM stochasticity
(e.g., “flakiness”)?

[18, 31, 65, 73]

I-4: How often do PTM application engineers update their PTM dependencies, e.g., due to (1) PTM deprecation, (2) PTM
improvement, or (3) PTM antiquation (newer, better model)? What is the typical technical lag for such updates?

[47, 99, 109]

I-5: What are the characteristics of issue reports on PTM packages, e.g., in terms of the kinds of questions asked,
responsiveness of maintainers, issue density, and issue staleness? How do these attributes differ from issue reports in
GitHub repositories?

[52, 105]

I-6:What are the software signing requirements for PTMs?What are effective signatures for PTMs and training regimes? [87]

to extract and standardize PTM metadata, enhancing the dataset’s
utility. To demonstrate applications of PeaTMOSS, we present the
first detailed statistics of the PTM supply chain, and examine soft-
ware license inconsistencies between PTMs and their dependent
projects. For future work, we propose thirteen distinct research
questions along three lines of research: studies of PTMs, studies
of downstream use on GitHub, and studies that integrate data on
PTMs and their dependents.

11 Data Availability
The source code associated with this research is available at https:
//github.com/PurdueDualityLab/PeaTMOSS-Artifact, along with a
demo version of the dataset. The full PeaTMOSS dataset is stored
on our organization’s archival-grade storage system and accessible
through Globus at https://transfer.rcac.purdue.edu/file-manager?
origin_id=ff978999-16c2-4b50-ac7a-947ffdc3eb1d&jorigin_path=%2F.
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