
PeaTMOSS: A Dataset and Initial Analysis of
Pre-Trained Models in Open-Source Software

Wenxin Jiang
Purdue University

W Lafayette, IN, USA
jiang784@purdue.edu

Jerin Yasmin
Queen’s University
Kingston, ON, CA
19jy2@queensu.ca

Jason Jones
Purdue University

W Lafayette, IN, USA
jone2078@purdue.edu

Nicholas Synovic
Loyola University Chicago

Chicago, IL, USA
nsynovic@luc.edu

Jiashen Kuo
Purdue University

W Lafayette, IN, USA
kuo90@purdue.edu

Nathaniel Bielanski
Purdue University

W Lafayette, IN, USA
nbielans@purdue.edu

Yuan Tian
Queen’s University
Kingston, ON, CA
y.tian@queensu.ca

George K. Thiruvathukal
Loyola University Chicago

Chicago, IL, USA
gkt@cs.luc.edu

James C. Davis
Purdue University

W Lafayette, IN, USA
davisjam@purdue.edu

Abstract
The development and training of deep learningmodels have become
increasingly costly and complex. Consequently, software engineers
are adopting pre-trained models (PTMs) for their downstream ap-
plications. The dynamics of the PTM supply chain remain largely
unexplored, signaling a clear need for structured datasets that docu-
ment not only the metadata but also the subsequent applications of
these models. Without such data, the MSR community cannot com-
prehensively understand the impact of PTM adoption and reuse.

This paper presents the PeaTMOSS dataset, which comprises
metadata for 281,638 PTMs and detailed snapshots for all PTMs
with over 50 monthly downloads (14,296 PTMs), along with 28,575
open-source software repositories from GitHub that utilize these
models. Additionally, the dataset includes 44,337 mappings from
15,129 downstream GitHub repositories to the 2,530 PTMs they
use. To enhance the dataset’s comprehensiveness, we developed
prompts for a large language model to automatically extract model
metadata, including the model’s training datasets, parameters, and
evaluation metrics. Our analysis of this dataset provides the first
summary statistics for the PTM supply chain, showing the trend
of PTM development and common shortcomings of PTM package
documentation. Our example application reveals inconsistencies
in software licenses across PTMs and their dependent projects.
PeaTMOSS lays the foundation for future research, offering rich
opportunities to investigate the PTM supply chain. We outline
mining opportunities on PTMs, their downstream usage, and cross-
cutting questions.

MSR 2024, April 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0587-8/24/04. . . $15.00
https://doi.org/10.1145/3643991.3644907

Our artifact is available at https://github.com/PurdueDualityLab/
PeaTMOSS-Artifact. Our dataset is available at https://transfer.rcac.
purdue.edu/file-manager?origin_id=ff978999-16c2-4b50-ac7a-947ffdc3eb1d&
origin_path=%2F.

CCS Concepts
• Computing methodologies→ Artificial intelligence; Infor-
mation extraction; • Information systems→ Database design
and models; • Software and its engineering → Software li-
braries and repositories.

Keywords
Datasets, Machine learning, Deep neural networks, Model zoos,
Package registries, Open-source, Empirical software engineering
ACM Reference Format:
Wenxin Jiang, Jerin Yasmin, Jason Jones, Nicholas Synovic, Jiashen Kuo,
Nathaniel Bielanski, Yuan Tian, George K. Thiruvathukal, and James C.
Davis. 2024. PeaTMOSS: A Dataset and Initial Analysis of Pre-Trained
Models in Open-Source Software. In Proceedings of the 21st International
Conference on Mining Software Repositories (MSR ’24), April, 2024, Lisbon, Por-
tugal. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3643991.
3644907

1 Introduction
Deep Neural Networks (DNNs) have become a common component
in software systems over the past decade. Developing and training
DNN models is costly, requiring specialized hardware and large
datasets [36, 76]. While some software engineers develop DNNs
from scratch, others integrate DNNs into software following a typi-
cal reuse pattern [26, 57, 70]: (1) pre-trained DNN models (PTMs)
are published to registries such as Hugging Face (analogous to tra-
ditional package registries such as NPM); and (2) other software
depends on these PTMs, accessed by library or web API.

Despite the widespread adoption of PTMs [59, 88], our under-
standing of the software engineering practices and challenges sur-
rounding PTM reuse remains limited [54]. This understanding is
critical for developing more sophisticated tools, mitigating risks,

This work licensed under Creative Commons Attribution International 4.0 License.

431

2024 IEEE/ACM 21st International Conference on Mining Software Repositories (MSR)

Authorized licensed use limited to: Purdue University. Downloaded on June 21,2024 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

MSR 2024, April 2024, Lisbon, Portugal Wenxin Jiang et al.

Downstream GitHub

Dependency

Code
Commits
PRs
Issues

Dependencies
...

PTM

Framework
Architecture
Dataset

Discussion
Configuration

...

PTM
Package

Figure 1: This paper presents the PeaTMOSS dataset: Pre-Trained
Models inOpen- Source Software.PeaTMOSS includes data on 281,638
pre-trained models, 28,575 GitHub repositories that use pre-trained
models, and 44,337 links between them.

and guiding best practices [9]. Mining Software Repositories tech-
niques could help, but unfortunately current datasets on PTMs
lack crucial details, which leaves a gap in knowledge [8, 55]. For
instance, they frequently omit comprehensive evaluation metrics,
model training conditions, parameters, and standardization in re-
porting results. This absence of information impedes our ability to
perform robust analyses, compare performances meaningfully, or
derive a coherent picture of PTMs’ impact and usage in software
engineering. Recent work highlights the need for a more complete
spectrum of metadata is required [54, 55], which should include—
but not be limited to—details on model training datasets, versioning,
licensing, and the computational requirements for PTM reuse.

To address this gap, the primary contribution of this work is
the creation of the PeaTMOSS dataset: Pre-Trained Models in Open-
Source Software. PeaTMOSS enables mining of PTMs, the software
projects that use them, and the interactions between PTMs and
downstream use. As illustrated in Figure 1, PeaTMOSS contains
a snapshot of: (1) 281,638 PTMs, (2) 28,575 open-source software
repositories that use PTMs, providing real-world context for how
these models are applied, and (3) 44,337 mappings between PTMs
and downstream GitHub repositories. Our secondary contribution
involves the practical application of large language models (LLMs)
to extract PTM metadata, thereby enhancing our dataset (§5). We
apply this tool to systematically extract key metadata, including
datasets, hyper-parameters, and performance metrics, from un-
structured model cards. Li et al. called for comprehensive metadata
to construct a queryable model zoo, enabling efficient search and
comparison of models [67]. By addressing the challenges of un-
structured data, we ensure that our model zoo encompasses a wide
range of critical information, facilitating more informed and precise
queries.

We conduct two demonstrations of the value of this dataset. In §6
we analyze the data distribution in PeaTMOSS, show the trends in
the growth of PTM development and identify the common short-
comings in PTM package documentation. In §7 we use the mapping
created for PTM and GitHub projects to analyze the consistency
of software licenses. As future work, the PeaTMOSS dataset offers
many opportunities to study and inform our understanding of the
PTM supply chain. We propose three distinct directions for analyz-
ing PeaTMOSS: (1) analyses focusing on the GitHub data subset, (2)
explorations centered on the PTM aspect, and (3) comprehensive

studies integrating insights from both GitHub and PTM compo-
nents. We suggest researchers take advantage of the PeaTMOSS
dataset and conduct a larger-scale measurement on characterizing
the properties of the PTM supply chain. Our contributions are:
• We share a dataset named PeaTMOSS which includes 281,638
PTM packages, and 28,575 downstream GitHub repositories.

• We tackled the issue of unstructured attributes by developing a
LLM-based tool for metadata extraction, which enhances our
dataset by adding structured data in JSON format.

• We provide the first summary statistics of this PTM supply
chain, encompassing distributions of PTMs and their down-
stream repositories across various problem domains. Our anal-
ysis also includes trends in model size and the quantity of PTM
packages, along with an overview of the proportion of available
metadata. We show the proportion of missing data in each PTM
metadata category.

• We applied our dataset to assess the compatibility of PTMs
with downstream GitHub repositories. Our findings reveal that
0.24% of these licenses are inconsistent, potentially causing
community confusion and hindering collaboration.

Significance: PeaTMOSS is a comprehensive dataset for PTM in
open-source software. It offers an extensive mapping between
PTM packages and downstream GitHub repositories, and many
queryable metadata. Using PeaTMOSS, researchers can study the
PTM supply chain and the reuse modes of PTM packages. Engineer-
ing tools can be developed for PTM reuse, e.g., for model search
and comparison.
Paper outline: This paper is organized as follows: §2 and §3 provide
background and relatedwork. In §4, we describe the original version
of the PeaTMOSS dataset, and §5 details the augmented dataset
enriched with our metadata extraction pipeline. Data analysis of
PeaTMOSS is presented in §6. §7 illustrates a practical application.
The paper concludes with an examination of potential threats to
validity in §8, followed by a discussion of future work in §9.

2 Background
This section covers PTMs (§2.1) and their reuse (§2.2).

2.1 Pre-Trained Deep Learning Models (PTMs)
The advent of deep learning has precipitated a fundamental shift in
computational methodologies, transitioning from the deterministic
algorithms characteristic of traditional software to increasingly
probabilistic and data-driven paradigms [58]. Deep learning typ-
ically operates through neural networks capable of assimilating
datasets, thereby enabling them to make predictions or perform
complex tasks [62]. A PTM embodies a DNN architecture that has
undergone prior training with a specific dataset, incorporating
a defined data pipeline, training regime, and learned parameters
(“weights”). This pre-training equips the PTM to perform inference
or to be adapted for downstream applications [26].

Existing research has explored various methods for reusing deep
learning models, such as feature extraction, transfer learning, data
generation, and model compression [46, 56]. For instance, DNNs
can be pre-trained using large-scale unlabeled molecular databases
and then fine-tuned over specific chemical downstream tasks like
molecular property prediction [103]. Additionally, models can be

432

Authorized licensed use limited to: Purdue University. Downloaded on June 21,2024 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

PeaTMOSS: A Dataset and Initial Analysis of
Pre-Trained Models in Open-Source Software MSR 2024, April 2024, Lisbon, Portugal

PTM
package

Engineer Model
registries

Downstream
Applications

Metadata Weights

PTM-App

Registry
APIs

Downstream
PTM

PTM-PTM

Figure 2: The PTM supply chain. Engineers publish PTM packages
to model registries. PTMs are used by applications and other PTMs.

employed to annotate data or to synthesize new datasets through
generative approaches [10, 29]. Transfer learning enables models
trained on generic datasets to refine their understanding of more
detailed, downstream tasks, often resulting in enhanced perfor-
mance on specialized datasets [112]. Furthermore, models can be
optimized for size and efficiency to run on edge devices, a process
known as model compression [27].

Thanks to this range of reuse modes, in recent years PTMs have
become increasingly popular [22, 59]. The total number of open-
source PTM packages has seen a consistent increase on a monthly
basis [22]. Table 1 provides a quantitative demonstration of the
extensive adoption and rising popularity of PTMs. Previous re-
search indicates that the popularity and adoption rate of Hugging
Face’s models are comparable to those of other established software
package registries, including npm and PyPI [54].

Table 1: Comparison of package counts and download figures for the
top 10% of PTMs on Hugging Face. Data for August 2022 is sourced
from the PTMTorrent dataset [55]. The August 2023 data is obtained
from our dataset. This comparison highlights the growth of PTM
usage over a one-year period (i.e., doubling).

Hugging Face Statistics Aug. 2022 Aug. 2023

packages of all PTMs 124 K 282 K
downloads of top 10% PTMs 269 billion 587 billion

2.2 Components of the PTM Supply Chain
Jiang et al.. introduced the PTM supply chain concept, encompass-
ing PTM packages, the model registries, the authors of PTMs, and
the users [56]. Figure 2 extends their model to include the down-
stream applications, thus providing a holistic view of the PTM
ecosystem. PeaTMOSS contains the major elements of this supply
chain. This section describes each element in turn.
2.2.1 PTM Packages. PTMs are often shared in PTM packages. Per
Jiang et al. [54], a PTM package is analogous to traditional software
packages on platforms like NPM or PyPI [3, 4]. A PTM package
has standard elements such as a license, documentation, and usage
examples. Analogous to source code, a PTM package describes the
model architecture and pre-trained weights. Its metadata indicates
the training regime, which includes the dataset(s) involved, how
the model’s parameters were initialized, and the necessary data pre-

and post-processing (“data pipeline”). A PTM package may indicate
the model’s performance on evaluation metrics.
2.2.2 Model Registries. PTM packages are commonly disseminated
via deep learning model registries (also known as model hubs/zoos).
Jiang et al. define a deep learning model registry as a collaborative
hub where teams share deep learning models [54]. Prior work shows
that there are three kinds of model registries categorized by their
contribution types [56]: open (e.g., Hugging Face [33]), gated (e.g.,
PyTorch Hub [78]), and commercial (e.g., NVIDIA NGC catalog [6]).
These platforms enable engineers to directly adopt PTMs or adapt
them through fine-tuning for specialized downstream tasks.
2.2.3 Package Dependencies. The various methodologies for PTM
reuse establish two distinct types of dependencies within the PTM
supply chain. Firstly, there are PTM-PTM dependencies, where, for
instance, one model might be fine-tuned from another [56]. Sec-
ondly, there are PTM-Application dependencies, where software
projects rely on PTMs for their functionality [59]. These depen-
dencies underscore the interconnected nature of PTM reuse and
highlight an aspect of PTM package usage that necessitates further
exploration, particularly in how these dependencies impact the
broader software engineering landscape.

3 Related Work
This section covers related work on software engineering in PTM
reuse (§3.1), importance of queryable PTM metadata (§3.2), and
open-source PTM datasets (§3.3).

3.1 Software Engineering in PTM Reuse
Prior work has comprehensively studied the development of deep
learning systems from software engineering perspectives [9, 81].
These works more focused on creating and training newDNNs from
scratch, which usually requires extensive resources and expertise.
However, the reuse process of PTM focused on adapting existing
PTMs which is a different process compared to developing a new
model [54]. The literature of understanding the reuse of PTMs still
presents a notable gap.

Davis et al. introduced three paradigms for reusing DNNs: con-
ceptual reuse, adaptation reuse, and deployment reuse [26]. Prior
work has characterized conceptual reuse in the form of DNN model
reengineering and proposed the challenges in this reuse tpye, in-
cluding performance debugging, and portability of deep learning
operations [52]. In the context of adapting PTMs in the applica-
tion, there are two main challenges faced by software engineers: (1)
technical adoption challenges, and (2) decision-making challenges
such as model selection and evaluation [26]. For deployment reuse,
Jajal et al. characterized failures of deep learning model converters
which could compromise model quality [49]

Recent empirical research highlights the popularity of PTM reg-
istries among engineers. They appreciate these registries for their
well-organized problem domains and user-friendly APIs, which are
vital for downstream applications [54, 56, 93]. Studies by Jiang et al.
and others have identified distinct differences between traditional
software package reuse and PTM package reuse. These differences
include varied decision-making processes, unique attributes that
facilitate reuse, and specific risk factors relevant in PTM contexts.
The impact of PTMs on software engineering practices has been
a focal point of recent studies [22, 59]. Gong et al. have explored

433

Authorized licensed use limited to: Purdue University. Downloaded on June 21,2024 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

MSR 2024, April 2024, Lisbon, Portugal Wenxin Jiang et al.

the usage contexts of PTM packages via an exploratory study from
model hubs, but there is still a substantial gap in understanding the
detailed reuse of these models [42]. Our dataset complements these
findings by providing a detailed mapping between PTM packages
and downstream GitHub repositories. This enables further, more
insightful analysis of PTM reuse and adoption trends.

3.2 Importance of Queryable PTM Metadata
PTM metadata has been applied for several tasks. In the realm of
AI model management, the effective utilization of metadata plays
a crucial role, such as helping with model auditing for assessing
risks and ensuring responsible AI deployment [82]. Studies have
shown that engineers often rely on various metadata types, such
as evaluation metrics and hyperparameters, for informed model
selection, underscoring their significance in the process. Existing
techniques effectively extract key metadata, supported by research
papers, including model names, datasets, and frameworks [95, 96].
However, these methods do not support extraction from model
cards, and not work for a comprehensive list of metadata (e.g.,
hyperparameters, model size, hardware specification) [21, 71]. The
acquisition of extensive, queryable metadata types is crucial for
enhancing model search, reuse, comparison, and composition [67].

The evolving landscape of model repositories presents new chal-
lenges for metadata extraction [54, 67]. The main problem is the
greater number of kinds of artifacts in this context, and linking
them together with corresponding GitHub repositories is academic
papers are hard. Traditional methodologies have focused on model
repositories on platforms like GitHub and academic papers [95, 96].
Some platforms have tried to link papers to the relevant code repos-
itories and models together, such as PapersWithCode [7]. However,
PTMs on model registries do not always link to GitHub projects
and original research papers [54]. To address this gap in extracting
metadata from model registries, we augment PeaTMOSS by lever-
aging state-of-the-art LLMs for metadata extraction. Capitalizing
on the advanced capabilities of LLMs, we employ them to interpret
and analyze model cards, effectively extracting pertinent metadata.

3.3 Open-Source PTM Datasets and Other
Large-Scale Software Datasets

There are two existing PTM datasets: PTMTorrent [55] and HF-
Community [8]. Both provide data included in the Hugging Face
model registry, offering insights into PTMs. However, both lack
queryable PTM metadata and do not cover downstream applica-
tions. These limitations reduce the range of mining questions that
can be posed. PeaTMOSS addresses both limitations by including
additional content, e.g., extracted metadata from model cards and
links to downstream GitHub repositories.

There are also many large-scale open-source software datasets,
such as GHTorrent [43], SOTorrent [12], and TravisTorrent [15].
These datasets offer long-term data availability and help researchers
avoid API rate limits [43]. These datasets have been instrumental in
improving our understanding of software engineering, e.g., of prac-
tices in continuous integration [14], static analysis [108], software
development [13, 24], and testing [32, 51].

To advance our understanding of software engineering practices
in deep learning systems, a large-scale, open-source dataset sim-
ilar to those in previous studies is essential [56]. Such a dataset

should encompass extensive software and its associated, queryable
metadata for research purposes [12, 43]. Additionally, it should
include dependency information to effectively characterize the
software supply chain and keep the data updated. PeaTMOSS has
a broader scope by including downstream GitHub applications,
updated metadata, and recent models. Notably, our dataset incor-
porates a substantial number of large language models (LLMs) like
Llama 2, which were absent in prior datasets.

4 The PeatMOSS Dataset
This section summarizes and details the PeaTMOSS creation process.

4.1 Overview
We created the PeaTMOSS dataset to enable study aboutPre-Trained
Models in Open- Source Software. As illustrated by Figure 1, PeaT-
MOSS comprises snapshots of PTMs and open-source repositories
utilizing PTMs, as well as a mapping of PTMs to projects. For both
PTMs and GitHub projects, PeaTMOSS contains metadata (com-
mits, issues, pull requests) and data (e.g., model architecture and
weights; git repositories), primarily collected in July-August 2023.
Figure 3 presents a uniform schema for retrieving PTM and project
metadata is provided to facilitate analysis of PTMs and their use in
open-source software projects. Most information is indexed; some
is stored as blobs.

PeaTMOSS contains themetadata of 281,638 PTMpackages (281,276
from Hugging Face and 362 from PyTorch Hub), 28,575 GitHub
projects that use PTMs as dependencies, and 44,337 links from
these GitHub repositories to the PTMs they depend on.

The dataset can be accessed in two formats. The “metadata”
version of PeaTMOSS is a 7.12 GB SQLite database. It contains the
metadata of PTM packages and GitHub projects, and Globus links
to their snapshots. The 48.2 TB “full” version has these snapshots:
(1) the PTM package contents in each published version, and (2)
git history of the main branches of the GitHub projects.

4.2 Dataset Creation Methodology
Here we outline the methodology employed to compile PeaTMOSS,
detailing PTM collection in §4.2.1, and the approach for associating
PTMs with downstream GitHub repositories in §4.2.2.
4.2.1 Collecting PTMs. First, we must identify the model registries
whose PTMs we will collect. As discussed in §2.2, there are three
types of model registries. Of these, only the open and gated types
are open-source. For mining, we need registries that have APIs
with recognizable signatures, allowing us to trace PTM-App depen-
dencies (details in §4.2.2). Considering these criteria, we selected
the most popular example from each open-source category that
utilizes APIs. Thus, we included PTMs from Hugging Face (an open
registry) and PyTorch Hub (a gated registry). Hugging Face con-
tains far more PTMs than PyTorch Hub, which influenced several
decisions we made in creating PeaTMOSS.

Our PTM data collection includes three parts: (1)We saved 14,296
PTM snapshots. This included the most popular PTM packages (i.e.,
with over 50 downloads) on Hugging Face, and all PTMs on PyTorch
Hub. This part of the data can provide a comprehensive view of PTM
packages. (2) Among these “full” metadata, 44,337 links from the
PTMs to the downstream GitHub repositories have been identified.
This part of the data can be connected to downstream GitHub data

434

Authorized licensed use limited to: Purdue University. Downloaded on June 21,2024 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

PeaTMOSS: A Dataset and Initial Analysis of
Pre-Trained Models in Open-Source Software MSR 2024, April 2024, Lisbon, Portugal

PTM Metadata

Enhanced PTM Metadata

Metadata
Joining
Table

GitHub Project Metadata

reuse_file

PK id

path

FK1 model_id

FK2 reuse_repository_id

github_user

PK id

login

email

github_comment

PK id

author_id

author_association

body

created_at

includes_created_ed

is_minimized

minimized_reason

issue_id

pull_request_id

github_commit

PK id

authored_date

committed_date

message_body

message_headline

oid

pull_request_id

github_reaction_group

PK id

content

total_count

issue_id

pull_request_id

github_comment_id

review_id

github_merge_commit

PK id

commit_id

github_review

PK id

author_id

author_association

body

submitted_at

includes_created_

state

pull_request_id

github_pull_request_file

PK id

path

additions

deletions

pull_request_id

github_issue

PK id

author_id

body

closed

closed_at

created_at

comment_id

milestone_id

number

project_cards

state

title

updated_at

url

github_pull_request

PK id

additions

author_id

base_ref_name

body

changed_files

closed

closed_at

created_at

deletions

head_ref_name

head_repository_id

head_repository_owner_id

is_cross_repository

is_draft

maintainer_can_modify

merge_commit_id

merge_state_status

mergeable

merged_at

merged_by_id

milestone_id

number

potential_merge_commit_id

project_cards

review_decision

state

title

updated_at

url

github_label

PK id

name

description

color

issue_id

pull_request_id

github_repository

PK id

name

url

github_status_check_rollup

PK id

name

status

conclusion

started_at

completed_at

details_url

pull_request_id

model

PK id

context_id

FK1 model_hub_id

sha

repo_url

downloads

likes

has_snapshot

FK2 ptm_issues_id

FK3 ptm_pull_requests_

reuse_repository

PK id

name

url
model_to_reuse_repository

PK,FK1 model_id

PK,FK2 reuse_repository_id

model_to_architecture

PK,FK1 model_id

PK,FK2 architecture_id

name

model_to_framework

PK,FK1 model_id

PK,FK2 framework_id

name

model_to_language

PK,FK1 model_id

PK,FK2 language_id

name

model_to_tag

PK,FK1 model_id

PK,FK2 tag_id

name

github_milestone

PK id

number

title

description

due_on

pull_request_to_assignee

PK,FK1 pull_request_id

PK,FK2 assignee_id

pull_request_to_review_request

PK,FK1 pull_request_id

PK,FK2 review_request_id

issue_to_assignee

PK,FK1 issue_id

PK,FK2 assignee_id

commit_to_author

PK,FK1 commit_id

PK,FK2 author_id

discussion

PK id

title

status

num

repo_id

repo_type

is_pull_request

created_at

endpoint

target_branch

merge_commit_id

diff

model_id

discussion_event

PK id

event_id

type

created_at

author

content

edited

hidden

new_status

summary

oid

oid_title

new_title

discussion_id
file_path

PK id

path

FK discussion_id

model_to_author

PK,FK1 model_id

PK,FK2 author_id

name

ptm_issues

PK id

repo_url

ptm_pull_requests

PK id

repo_url

model_hub

PK id

name

url

ptm_pull_request_to_pull_request
PK,FK1 ptm_pull_request_id

PK,FK2 github_pull_request_id

ptm_issue_to_issue

PK,FK1 ptm_issue_id

PK,FK2 github_issue_id

reuse_repo_to_pull_request

PK,FK1 reuse_repository_id

PK,FK2 github_pull_request_

hf_commit

PK id

commit_id

created_at

title

message

FK model_id

hf_git_ref

PK id

FK model_id

reuse_repo_to_issue

PK,FK1 reuse_repository_id

PK,FK2 github_issue_id

hf_commit_to_author

PK,FK1 hf_commit_id

PK,FK2 author_id

discussion_to_author

PK,FK1 discussion_id

PK,FK2 author_id

model_github_repo

PK id

owner

name

url

FK model_id

model_to_domain

PK,FK1 model_id

PK,FK2 domain_id

name

model_to_model_task

PK,FK1 model_id

PK,FK2 model_task_id

name

evaluation_link

PK id

url

FK model_id

evaluation_metric

PK id

test

dataset_id

result

FK model_id

demo

PK id

demo

FK model_id

model_to_grant

PK,FK1 model_id

PK,FK2 grant_id

name

input_format

PK id

format

FK model_id

output_format

PK id

format

FK model_id

parameter_count

PK id

count

FK model_id

model_to_base_model

PK,FK1 model_id

PK,FK2 base_model_id

base_model_name

base_model_url

model_to_hardware

PK,FK1 model_id

PK,FK2 hardware_id

name

hours_used

cloud_provider

compute_region

carbon_emitted

PK id

value

FK model_id

hyper_parameters

PK id

value

FK model_id

limitation_and_bias

PK id

value

FK model_id

reuse_repository_to_license

PK,FK1 reuse_repository_id

PK,FK2 license_id

model_to_license

PK,FK1 model_id

PK,FK2 license_id

name

model_to_library

PK,FK1 model_id

PK,FK2 library_id

name

model_to_paper

PK,FK1 model_id

PK,FK2 paper_id

title

url

model_to_dataset

PK,FK1 model_id

PK,FK2 dataset_id

name

url

hf_git_ref_to_branch

PK,FK1 hf_git_ref_id

PK,FK2 hf_git_ref_info_

name

ref

target_commit

Figure 3: PeaTMOSS data schema. There are four regions: tables for PTMs (basic §4 and enhanced §5), tables for GitHub projects, and a table of
PTM-Application dependency relations. Tables link to PTM and GitHub snapshots in a Globus share. Our artifact has a navigable version (§11).

and allows miners to analyze the relationship between them. (3) For
all PTMs hosted on Hugging Face and PyTorch Hub, we retrieved
their metadata, resulting in a total number of 281,638 PTM package
metadata being included in PeaTMOSS.
Soundness and Completeness: PeaTMOSS is comprehensive in
terms of popular PTM packages, as it includes snapshots of those
with over 10,000 downloads on Hugging Face. This provides a full
view of widely-used PTMs and their connections to downstream
GitHub projects, facilitating in-depth analysis. Additionally, the
dataset includes metadata from all other PTMs on Hugging Face,
which can be used for metadata-based analyses. PeaTMOSS en-
hances the diversity of PTM data by incorporating PTM packages
from PyTorch Hub, including all available model repositories and
their associated pull requests and issues.
Implementation: Metadata is collected using an Extract-Transform-
Load (ETL) pipeline for each model hub. We first Extract metadata
from each model hub’s API. Then we Transform, using this meta-
data to collect additional information (e.g., following links to get

packages backed by GitHub repositories). Data that fits the shared
schema is placed in an intermediate representation, while other
data is preserved as a blob. Results are Loaded into our database.

4.2.2 Collecting Downstream GitHub Repositories To enable re-
search on PTM-PTM and PTM-App dependencies in open-source
software projects, PeaTMOSS includes GitHub repositories that use
at least one PTM from the two registries we captured. We obtained
the 28,575 pertinent GitHub repositories that existed as of July 10,
2023. These repositories have an average of 201 stars.

For each of these 28,575 GitHub repositories, PeaTMOSS contains:
(1) a full git clone; (2) all issues and associated metadata (as obtained
through the GitHub CLI); and (3) all pull requests and associated
metadata (via GitHub CLI). We link them to the PTMs they use that
were collected in §4.2.1, to the extent possible with static analysis.

The main challenge for this part of the dataset is identifying the
GitHub repositories that use PTMs. This task is non-trivial given
the lack of standardized documentation or explicit labeling of PTM
usage in repositories. We devised an approach to automatically

435

Authorized licensed use limited to: Purdue University. Downloaded on June 21,2024 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

MSR 2024, April 2024, Lisbon, Portugal Wenxin Jiang et al.

Figure 4: Example use of twoHuggingFace PTMs. The code initializes
a tokenizer (AutoTokenizer) and a model (AutoModelForMaskedLM)
from the transformers library for a multilingual BERT model.

identify downstream GitHub repositories that depend on PTMs.
There are four steps to our approach:
(Step 1) Signatures of PTM Use: The primary way to use PTMs
from model hubs is through hub APIs. There are many model hub
libraries that access these APIs to retrieve PTMs by name. Figure 4
gives an example of accessing PTMs from Hugging Face via its
Transformers library.

We therefore define the signature of PTM usage in an application
as the combination of (1) library import and (2) calls into that li-
brary to load a PTM. We specifically focus on signatures associated
with Python libraries, as Python is the dominant language for PTM
applications and almost all supported PTM loading libraries are
written in Python [83, 92]. We manually identified libraries and
signatures in the documentation for the two target model hubs,
Hugging Face [34] and PyTorch [78]. In total, we found 474 signa-
tures from 27 Python libraries that access these hubs.
(Step 2) Preliminary repository collection: Wedeveloped search
patterns for each signature, and matched them against the content
of files within GitHub repositories. We searched for signatures in
public, non-fork, non-archived repositories. For this search, we
used the src CLI tool from Sourcegraph, a popular code search
engine that indexes GitHub repositories with ≥ 5 stars [91]. For ex-
ample, a query for one of the signatures from the Diffusers library
is: “src select:file visibility:public count:all lang:Python

content:‘from diffusers’ AND from_pretrained(”.
(Step 3) Static Analysis: As Sourcegraph’s search feature relies
on text-based patterns, it is possible that some of the search results
are false positives (e.g., signatures that occur in commented-out
code). To mitigate this concern, we performed static analysis on the
GitHub repositories from Step 2. This required some customization
for each library. Given the number of signatures (474 signatures
over 27 libraries), we focused on the most popular libraries. For
PyTorch Hub, there are four libraries — torchvision, torchaudio,
torchtext, and direct uses of torch — and we handle all associated
signatures. For Hugging Face, there are 23 libraries. Figure 5 shows
the distribution of usage: we used signatures for the top five libraries
(Transformers, SpaCy, Sentence-Transformers, Diffusers, and Timm).
These accounted for 96% of all downstream repositories that contain
Hugging Face signatures according to our Sourcegraph search.

We performed static analysis using the Scalpel framework [64].
For each relevant source code file associated with a specific function
signature, we construct an abstract syntax tree and extract the
function calls contained within the file. Subsequently, we cross-
reference the extracted functions with our predefined signatures
which gives us a total of 28,575 repositories.
(Step 4) Mapping PTM-App relationship: Finally, we want
to map which GitHub repositories depend on which PTMs. For

tra
nsf

orm
ers
spa

cy
tim

m

sen
ten

ce

dif
fus

ers

hu
gg

ing
fac

e
sta

nzape
ft
op

enfla
ir

alle
nn

lp

pa
dd

len
lp

spe
ech

bra
in

py
an

no
te

fai
rse

q
ne

mo

esp
ne

t2

ast
ero

id

be
rto

pic

ten
sor

flo
w

hu
gg

ing
fac

e_s
b3spa

n
py

tha
e

Library Name

100

101

102

103

104

105

of

 P
ro

je
ct

s

13
.6

K
5.

5K
1.

9K
1.

2K
85

9
54

1
44

0
42

1
27

6
26

7
19

2
12

5
93 62 58 58 33 29 26 18

8
3 3

Figure 5: Number of projects that access PTMs from each Hugging
Face library, as captured via Sourcegraph search. Note: Log scale.

the function calls from each signature that load PTMs (identified
in step 1), we extracted the function arguments (one of which is
the PTM name), enabling us to extract specific PTMs being used
in downstream GitHub repositories. We identify repositories that
statically call the collected PTMs — 15,129 GitHub repositories do
so, loading 2,530 distinct PTMs. Note that a PTM may be used by
multiple repositories, and a repository can use multiple PTMs.

5 Enhanced PeaTMOSS via Metadata Extraction

This section enhances PeaTMOSS by extracting indexed metadata
from the unstructured metadata available in raw PTM packages.
As discussed in §3.2, PTM metadata enables research and supports
engineers’ reuse process. Past work observed that PTM metadata is
often available in model cards, but unstructured, hampering ecosys-
tem analysis [54, 77, 95]. Our focus was on extracting metadata
from Hugging Face PTM packages due to several reasons: (1) a
larger quantity of PTM packages, (2) a larger quantity of mine-able
documentation (model cards), and (3) the centralized accessibility
of their model cards for collection purposes.

We propose to use Large Language Models (LLMs) to extract
metadata from model cards. Recent studies have demonstrated
the versatility of LLMs in various tasks, including information re-
trieval [19, 39]. LLMs are effective in the task of metadata extraction
from scientific documents [30]. In this work, we use ChatGPT, a
leading commercial LLM [1].

We identified desirable metadata through reviewing the litera-
ture and assessing available data in recent model cards, as shown
in Table 2. Prior works on metadata extraction indicate metadata
of interest. We supplemented those lists with metadata inspired
by IBM’s AI FactSheet [11], as well as observations from 50 re-
cent model cards. These additional metadata include carbon emis-
sions, model size, base model, limitation and biases, demonstration,
grant/sponsorship information, and language.

436

Authorized licensed use limited to: Purdue University. Downloaded on June 21,2024 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

PeaTMOSS: A Dataset and Initial Analysis of
Pre-Trained Models in Open-Source Software MSR 2024, April 2024, Lisbon, Portugal

Table 2: A list of PTM metadata mapped to the first paper that men-
tioned it. PeaTMOSS includes these fields plus more (last row of
table). Our artifact shows the mapping of these fields to our schema.

Paper Newly Introduced Metadata of Interest

Schelter et al., 2017 [86] Model name, model version, framework, tags,
dataset name, dataset version, dataset statis-
tic, data transform, input/output format, eval-
uation, training time, environment, hyperpa-
rameters, prediction metadata

Tsay et al., 2020 [95] Reference, domain, has README, uses
Python, popularity

Li et al., 2022 [67] Model architecture, task, hardware
Tsay et al., 2022 [96] Description, code, training job, training out-

put, provenance

PeaTMOSS Carbon emitted, model size, license, base
model, limitation and biases, demonstration,
grant/sponsorship, language (NLP)

5.1 Prompt Design
Prompting provides the instructions to the LLM. We followed the
prompt design flow proposed by Zamfirescu et al. [107], and out-
lined a structured approach for extracting and filling out a detailed
metadata schema for models from Hugging Face. To enhance our
pipeline’s performance, we use iterative prompting to test random
sampled models [50]. For metadata extracted with lower accuracy,
we identified incorrect patterns, such as erroneous output formats
and misleading results, to subsequently refine the corresponding
prompts. Moreover, we meticulously recorded instances where the
model erroneously inferred metadata, known as hallucinations [89],
in the absence of relevant information. We also tracked cases where
the model failed to extract information that was indeed present.
Analyzing these outcomes enables us to pinpoint the metadata
types that pose greater extraction challenges, thereby informing
and refining our strategies in prompt engineering. The prompts for
two pipelines are all available in §11.

The input prompt to our pipeline includes multiple components,
as illustrated in Figure 6. The prefix prompt provides the domain and
model background, setting extraction rules and schema adherence,
with empty properties for absent document elements. The metadata
prompt defines all the extraction requirements and formats for each
metadata. The data schema is a formatted json file that used to store
the extracted metadata. If domain and tasks are not pre-processed
from model tags, we include domain and task prompts, specifying
domains (e.g., multimodal) and tasks (e.g., text-to-image). For NLP
models, language prompt is added to detail supported languages
and extraction expectations (e.g., Arabic, Chinese, Python).

5.2 LLM Pipeline Design
We designed two LLM pipelines, one optimizing monetary cost and
the other accuracy. Figure 6 summarizes these pipelines.
Cheap Pipeline: By employing the Retrieval-Augmented Genera-
tion (RAG) strategy [63] to mitigate the token usage for each model
card and using the more cost-effective GPT-3.5-turbo, we have de-
veloped an efficient “cheap” pipeline. The GPT-3.5-turbo’s token
limit of 4,096 tokens per request necessitates a method to extract
complete metadata in segmented operations. The RAG strategy

helps the LLM incorporate relevant information from a knowl-
edge base, providing contextual support and reducing the risk of
generating inaccurate or speculative content. The RAG strategy
reduces token usage, thus enhancing efficiency and reducing both
computational and financial costs.
Accurate Pipeline: The accurate pipeline, utilizing GPT-4-turbo,
has a substantial improvement on addressing the token limit is-
sue, along with enhanced performance in data extraction [19]. An
analysis of the token count across all model cards revealed that
their lengths fell within the new token limit of GPT-4-turbo (128,000
tokens). Leveraging the advanced capabilities of GPT-4 [75], we
streamlined our pipeline by removing the RAG component. This
modification allowed for a more holistic understanding of each
model card, thereby improving metadata extraction efficiency.

5.3 Evaluation

Sampling: Our initial evaluation required the selection of ground
truth models, for which we analyzed the distribution of model tasks
in the PeaTMOSS database. To achieve a representative sample,
we employed stratified random sampling and sampled 50 models
for evaluation. The models from different domains use different
evaluation metrics so we want to cover most cases in our evaluation.
In this approach, each model task functioned as a separate stratum.
The sample size for each task was aligned with its proportional
representation in the database. We focused on models that ranked
among the top 100 in terms of downloads for each task, ensuring
they were included in our database. We then carefully examined
the information of these models by checking their model cards and
manually created the ground truth metadata for them.
Accuracy: We selected accuracy as our primary metric for evaluat-
ing model performance, considering the context of manual assess-
ment. This metric provides a straightforward and reliable method
to evaluate the extraction. To calculate the overall accuracy, we
tracked the frequency of successful metadata extractions matching
our manual answer against the total number of extractions.
Results: Comparing our results with manually labeled data, the
GPT-3.5-turbo based pipeline achieved an accuracy rate of 67.46%.
This evaluation was conducted on a random sample of 50 model
cards from the PeaTMOSS dataset. Notably, the average cost for
the cheap pipeline was $0.01/model. In a subsequent re-evaluation
using the identical dataset, the accurate pipeline exhibited a signifi-
cant improvement in accuracy, reaching 94.39%. The average cost
for the GPT-4-turbo pipeline was slightly higher, at $0.03/model.
We have not evaluated the specific factors that enhanced GPT-4’s
performance in this context. However, its excellent performance
led us to conclude the evaluation at this stage.

5.4 PeaTMOSS Enhancement

We enhanced the PeaTMOSS dataset by incorporating metadata
obtained from the “accurate” LLM pipeline, focusing on models that
have over 50 downloads — consistent with the model set for which
we have collected snapshots. The enhancement not only add the
metadata to our dataset, but also successfully identifies 8,829 PTM-
PTM dependencies within the supply chain, pinpointing upstream
base models linked to each model as specified in their model cards.

437

Authorized licensed use limited to: Purdue University. Downloaded on June 21,2024 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

MSR 2024, April 2024, Lisbon, Portugal Wenxin Jiang et al.

Figure 6: The “cheap” and “accurate” pipelines for metadata extraction. First the prompts are refined by the type of model. Then these prompts
are applied to the model card. The cost-optimized “cheap” pipeline differs primarily by incorporating the Retrieval-Augmented Generation
(RAG) framework [63] to reduce token count.

Running the “accurate” pipeline to extract these enhanced metadata
took ~$400 and ~40 hours.

After metadata extraction, Figure 7 shows the percentage of
available metadata types for PTM packages. Most models have
metadata specifying libraries, domains, and model tasks, with 98.9%
for libraries and slightly less for domains and tasks. Metadata on
frameworks, licenses, datasets, base models, demonstration, and
evaluation are also prevalent, although to a lesser extent. On the
other hand, less than half of the models include metadata on prove-
nance (i.e., github_repo and papers). The data shows a significant ab-
sence of metadata concerning hyper-parameters, parameter count
(i.e., model size), hardware information, limitations, biases, and
input/output formats, with these categories falling well below 40%.
Less than 10% model cards indicate the grant/sponsorship informa-
tion and carbon emission.

6 PeaTMOSS Initial Data Analysis

We conduct some initial analysis of PeaTMOSS to illustrate its con-
tents and measure the PTM supply chain. We report on the task
domains of the PTMs (in aggregate and over time), PTM domains
used by downstream GitHub repositories, and trends in model size.

Figure 8 presents the distribution of models across various prob-
lem domains in both Hugging Face and PyTorch Hub. It reveals that
NLP models are predominant on Hugging Face (60.3%), whereas
PyTorch Hub features a higher frequency of CV (56.1%) and Audio
(27.6%) models.

Figure 9 displays the frequency of downstream GitHub repos-
itories reusing PTM packages. It shows that NLP models are the
most commonly reused on Hugging Face (75.4%), followed by Mul-
timodal (17.4%) and CV (6.3%) models. Conversely, PyTorch Hub
users predominantly utilize CV (96.0%), and only 2.23% of them use
NLP models.

Figure 10 displays the creation frequency of Hugging Face PTM
packages across various problem domains over time. The data indi-
cates a predominance of Natural Language Processing (NLP)models,
likely reflecting Hugging Face’s initial focus on NLP PTMs. How-
ever, from August 2022 onward, packages for other domains have
become more common. The jumps of NLP models in 2020 might
relate to the rise of transformer family models during that time [74].

librar
ies

dom
ain

model_
tas

k

fra
mew

ork
s

lice
nse

data
set

s

base
_m

odel
dem

o

github_re
po

eva
luatio

n

lan
guage

paper

hyper_
para

mete
rs

para
mete

r_c
ount

hard
ware

input_fo
rm

at

lim
itat

ion
_an

d_bias

output_fo
rm

at
gran

t

car
bon_em

itte
d

Metadata Tags

0

20

40

60

80

100

Pr
op

or
tio

n
of

 A
va

ila
bi

le
 D

at
a

(%
)

11
.6

K
11

.5
K

11
.5

K
9.

8K
9.

1K
8.

7K
8.

6K
8.

3K
6.

9K
6.

9K
6.

2K
5.

6K
3.

9K
3.

5K
3.

4K
2.

7K
2.

1K
2.

1K
91

3
56

1

Figure 7: The proportion of available metadata for each category
from Hugging Face model cards. Data is reported for the 11,975
models available at measurement time (Nov. 2023). About 17% of the
sample (2,321models) became unavailable between project initiation
and this measurement.

Figure 11 tracks the median model size (i.e., parameter count) by
different domain. There is a marked increase in the median size of
NLP and multimodal PTMs, especially noticeable after March 2023.
Meanwhile, the median parameter count for Audio and CV models
has remained relatively stable.

7 Mining PTM-App License Compatibility
This section illustrates the use of PeaTMOSS through a simple min-
ing study on software licensing. Software license information is
important metadata for machine learning software [16, 60] and
may promote responsible AI practices [23]. When using a PTM,
an engineer should comply with its license. We ask: (1) How do
software licenses vary between PTMs and their downstream GitHub

438

Authorized licensed use limited to: Purdue University. Downloaded on June 21,2024 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

PeaTMOSS: A Dataset and Initial Analysis of
Pre-Trained Models in Open-Source Software MSR 2024, April 2024, Lisbon, Portugal

NLP

Computer Vision Audio
Multimodal

Other

Domain

0

20

40

60

80

100

Fr
eq

ue
nc

y
(%

)

94
.3

K
59

7.
2K

20
3

13
.9

K
10

0

14
.5

K
0

26
.3

K
0

Hugging Face Hub
PyTorch Hub

Figure 8: The distribution and frequency of domains across PTMs in
the two hubs. For PyTorch Hub, we categorize labels such as research
models, CUDA, and quantized models as “Other” for simplicity.

NLP

Computer Vision Audio
Multimodal

Other

Domain

0
10
20
30
40
50
60
70
80
90

100

Fr
eq

ue
nc

y
(%

) 6.
3K

16
2 52

9
7.

0K

80 85

1.
5K

42 0 0

Hugging Face Hub
PyTorch Hub

Figure 9: Distribution and frequency of downstream GitHub repos-
itories by model task. Hugging Face contains far more PTMs than
PyTorch Hub, but they see comparable use in GitHub repositories.

repositories? and (2) How common are PTM-Application license in-
compatibilities?

7.1 Background on Software Package Licensing
Licenses dictate the terms and conditions governing the reuse, mod-
ification, and redistribution of that software [61]. Licenses vary by
the restrictions they place [40], e.g., requiring derivative works to
use a similar license (copyleft) or making the code freely available
(public). Integrating software with different licenses is complex [5]
and may result in legal issues [84, 90]. Studies of license incompati-
bility have been conducted in the Fedora Linux distribution [38],
Android applications [97], and Java applications [37, 41]), as well

2018-11
2019-08

2020-05
2021-02

2021-11
2022-08

2023-05

Year

0

10000

20000

30000

40000

50000

Fr
eq

ue
nc

y

 G
PT

-3

La
M

DA
Co

de
X

Pa
LM

Bl
oo

m

GP
T-

3.
5

LL
aM

A
GP

T-
4Multimodal

Computer Vision
NLP
Audio
Other

Figure 10: The frequency of Hugging Face PTMs for different prob-
lem domains, tracked over time. Vertical lines indicate events that
may have caused the increase in parameters for NLP models.

2021-05
2021-11

2022-05
2022-11

2023-05
2023-11

2020-05
2020-11

2018-11
2019-05

2019-11

Year

0

2

4

6

8

10

12

M
ed

ia
n

Pa
ra

m
et

er
 C

ou
nt

 (B
illi

on
)

GP
T-

3.
5

LL
aM

ANLP (median)
Multimodal (median)
Audio (median)
Computer Vision (median)

Figure 11: Number of parameters (median) over time. Vertical lines
indicate landmarks of LLM models.

as in multiple package ecosystems (e.g., npm [80], RubyGems [69],
and PyPI [104]). We ask similar questions in the PTM ecosystem.

We treat licensing definitions in PTMs comparable to other soft-
ware packages [38], with reuse (importing the PTM), modification
(e.g., fine-tuning a PTM), and redistribution (shipping the PTM in
an application). Following prior work, we treat mismatches as cases
when there are different levels of license restrictiveness [102].

7.2 License Measurement on PeaTMOSS
7.2.1 Method. In this analysis, we focus on the PTMs and GitHub
projects in PeaTMOSS that are governed by a single license (7794,
54.5%). This model is simplistic [2] but aligns with GitHub’s license
API [40]. For PTMs, we use the license information from PeaTMOSS
which was originally extracted using Hugging Face API from the
model tags. For downstream GitHub repositories, PeaTMOSS also
includes license information that we extracted using the codescan

tool in imitation of GitHub’s licensee tool (e.g., referencing files
such as LICENSE.txt). For PTM-Application dependencies, we use

439

Authorized licensed use limited to: Purdue University. Downloaded on June 21,2024 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

MSR 2024, April 2024, Lisbon, Portugal Wenxin Jiang et al.

the mapping given by PeaTMOSS. We manually measured license
compatibility based on the Linux Foundation’s OSS license compat-
ibility table [94]. In license pairings where no legal compatibility
analysis was available, e.g., in the case of “no license” (43.42% of
the downstream GitHub repositories), we omit an assessment.
7.2.2 Results. Figure 12 answers our questions in a Sankey diagram,
on the part of PeaTMOSS for which we have PTM-Application
dependencies — 2,530 PTMs used across 15,129 GitHub projects.

For license variation, we compare the left and right sides of Fig-
ure 12. The top-3 PTM licenses are Apache-2.0, MIT, and BSD-3-
clause, while the top-3 GitHub repository licenses are MIT, Apache-
2.0, andGPL-3.0-only.Many downstreamGitHub repositories (43.42%)
choose not to define a license (“no license” in the figure), instead op-
erating under the default posture of Hugging Face (full reuse [48])
and GitHub (much stricter — copyright reserved to author [40]). In
25.61% of cases, the PTM-Application licenses are identical.

For license compatibility, Figure 12 indicates compatible licenses
with blue flows, otherwise red. In 0.24% of PTM-Application de-
pendencies, the licenses are incompatible. In PeaTMOSS, this is
the result of copyleft provisions in the PTM’s license that are not
honored by the Application.

Figure 12: Sankey Diagram for license compatibility. Flows represent
the licenses of PTMs and the downstream GitHub repositories that
use them. Blue flows are compatible, red are not. Grey flows (47.33%
of pairs) represent license pairs that have not been analyzed by the
Linux Foundation — this is primarily caused by GitHub repositories
lacking an explicit license.

8 Threats to Validity
Users of PeaTMOSS will inherit three types of threats to validity.
Construct Validity. In the PeaTMOSS dataset, a key construct
threat is the exclusion of conceptual reuse of PTMs [26], which
may limit our understanding of PTM usage. In our license analysis
(§7), we assume that each project has one license, which aligns with
GitHub’s model (License API) but is imperfect. Additionally, our
metadata extraction method is supported by LLMs, which can pose
threats on the reliability of our dataset. To mitigate this, we con-
ducted an evaluation using stratified random sampling, observing
accuracy of 94% (§5.3).
Internal Validity. Internal validity threats in our study stem
from the possibility of selection bias in curating PTMs and GitHub
projects, as well as the changeable nature of repository contents

over time. Specifically, our LLM pipeline evaluation might be bi-
ased since it is based on a sample of only 50 models from Hugging
Face. To mitigate this, we employed a stratified sampling technique.
Additionally, when identifying the mapping from PTM to down-
stream GitHub repositories, our reliance on keyword searches on
GitHub could miss other reuse signatures, potentially limiting the
comprehensiveness of our findings. To mitigate this, we employ
distinct methodologies to manually gather the relevant signatures
from Hugging Face and PyTorch Hub.

Another internal threat exists in our work due to the potential
inaccuracies in the metadata extraction process from unstructured
model cards. To mitigate this threat, we evaluated our extraction
pipeline against a set of 50 manually-labeled model cards and found
high accuracy. Moreover, we implemented a confidence threshold
mechanism within our LLM extraction process. If the confidence
level is below the set threshold, the data is earmarked for manual
review, thereby improving the reliability of our dataset.
External Validity. External validity threats are present due to the
dataset primarily sourcing from Hugging Face and PyTorch Hub,
which might not represent all PTM usage scenarios. To mitigate
this threat, our dataset was designed to be expandable. We built
our database in a flexible, modular way and provided clear, detailed
documentation. This makes it straightforward to add new informa-
tion to the database as needed. Another threat is present due to the
selection of five libraries for the Hugging Face PTM downstream
application collection. To mitigate the threat we check that 96% of
the primarily collected applications for Hugging Face PTMs belong
to those five libraries. This fulfills the representativeness of our
dataset. Additionally, we acknowledge that there is another exter-
nal threat on the dynamic nature of PTM data. The dataset will
need to be updated — we evaluated our data collection programs
on multiple sites with comprehensive documentation provided for
ongoing and future research.

9 Future Work
Every dataset can be improved. We highlight two enhancements
for PeaTMOSS. First, the current PTM-App mapping relies solely on
static analysis; a valuable extension would be to identify dynamic
PTM usage. Second, a deeper dive into the PTM supply chain would
categorize the patterns of reuse in GitHub downstream repositories,
such as direct loading versus fine-tuning or extending a model.
Adding these patterns would enrich the dataset.

PeaTMOSS enables many lines of research. We highlight three
lines in Table 3. The first line of research studies the Pre-Trained
Model portion (PTM). The second line of research studies the GitHub
portion of the dataset (GH). The third line integrates both parts (I).

10 Conclusion
Pre-Trained Models (PTMs) offer state-of-the-art performance in
various domains, and are being incorporated into many comput-
ing systems. PTMs represent a new frontier for mining software
repositories, but the community lacks a comprehensive dataset. To
enable PTM mining, this paper presents the PeaTMOSS dataset, a
collection of PTM metadata, PTM snapshots, downstream GitHub
repositories that use PTMs, and mappings between PTMs and the
repositories that use them. To augment the data available from PTM
registries and GitHub APIs, we developed an automated process

440

Authorized licensed use limited to: Purdue University. Downloaded on June 21,2024 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

PeaTMOSS: A Dataset and Initial Analysis of
Pre-Trained Models in Open-Source Software MSR 2024, April 2024, Lisbon, Portugal

Table 3: Example lines of research for researchers to investigate, phrased as research questions. These questions are divided into three groups.
The first group uses the Pre-Trained Model portion of the dataset (PTM). The second group of questions makes use of the GitHub portion of
the dataset (GH). The third group asks questions that require Integrating both parts of the dataset (I).

Research question Related work

PTM-1:What factors predict the popularity of a PTM? Intuition suggests that performance aspects such as accuracy
and latency may dominate; what is the role played by factors such as software engineering quality?

[17, 54, 68]

PTM-2: What naming conventions do PTMs follow? Are they consistent enough (within an architecture family? across
families?) to support engineers looking for similar models?

[44, 53]

PTM-3: PTM authors may reuse each others’ work, e.g., building off of model checkpoints or incorporating architectural
building blocks. Is this forking, or a new form of software exchange? What is the phylogeny of the families of PTMs?

[56]

PTM-4: There are many concerns about DNNs with unexpected or malicious behavior. How common are such DNNs? [45, 54, 100, 101]
PTM-5: How to improve safety and security of model infrastructure, such as serialization formats and interoperability? [25, 49]

GH-1:What kinds of defects are opened related to PTM use in the GitHub projects? How do these defects differ from
defects opened on other aspects of the GitHub projects?

[72]

GH-2:What do developers on GitHub discuss related to PTM use, e.g., in the body text of issues and pull requests? What
are developers’ sentiments regarding PTM use? Do the people issuing pull requests for PTMs have the right expertise?

[85, 106]

GH-3: How often do developers change the PTM used to implement a feature? What factors influence this? [28]
GH-4: PTMs can underpin, enhance, or replace features implemented with traditional code. How common are these
three modes of PTM adoption? How do PTMs subsequently affect the feature’s failure modes?

[66, 73, 79, 111]

I-1: It can be difficult to interpret model popularity numbers by download rates. To what extent does a PTM’s download
rates correlate with the number of GitHub projects that rely on it, or the popularity of the GitHub projects?

[35]

I-2: What are code smells for PTMs in the downstream GitHub repositories, and how do they affect these projects? [20, 98, 110]
I-3: What are application engineers’ testing practices for their PTM-enabled features? Do these vary based on the
project’s purpose, or the task delegated to the PTM? How do testing practices acknowledge and address PTM stochasticity
(e.g., “flakiness”)?

[18, 31, 65, 73]

I-4: How often do PTM application engineers update their PTM dependencies, e.g., due to (1) PTM deprecation, (2) PTM
improvement, or (3) PTM antiquation (newer, better model)? What is the typical technical lag for such updates?

[47, 99, 109]

I-5: What are the characteristics of issue reports on PTM packages, e.g., in terms of the kinds of questions asked,
responsiveness of maintainers, issue density, and issue staleness? How do these attributes differ from issue reports in
GitHub repositories?

[52, 105]

I-6:What are the software signing requirements for PTMs?What are effective signatures for PTMs and training regimes? [87]

to extract and standardize PTM metadata, enhancing the dataset’s
utility. To demonstrate applications of PeaTMOSS, we present the
first detailed statistics of the PTM supply chain, and examine soft-
ware license inconsistencies between PTMs and their dependent
projects. For future work, we propose thirteen distinct research
questions along three lines of research: studies of PTMs, studies
of downstream use on GitHub, and studies that integrate data on
PTMs and their dependents.

11 Data Availability
The source code associated with this research is available at https:
//github.com/PurdueDualityLab/PeaTMOSS-Artifact, along with a
demo version of the dataset. The full PeaTMOSS dataset is stored
on our organization’s archival-grade storage system and accessible
through Globus at https://transfer.rcac.purdue.edu/file-manager?
origin_id=ff978999-16c2-4b50-ac7a-947ffdc3eb1d&jorigin_path=%2F.

Acknowledgments
This work was supported by gifts from Google and Cisco; NSF
awards #2107230, #2229703, #2107020, and #2104319; and by the

Faculty Research Participation Program at Argonne National Labo-
ratory. We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC), RGPIN-2019-
05071. This research used resources of the Argonne Leadership
Computing Facility, a U.S. Department of Energy (DOE) Office of
Science user facility at Argonne National Laboratory and is based
on research supported by the U.S. DOE Office of Science-Advanced
Scientific Computing Research Program, under Contract No. DE-
AC02-06CH11357. We thank Purdue’s Rosen Center for Advanced
Computing (RCAC) for ongoing support in hosting the dataset. We
thank A. Raghav, A. Qi, and Y. Mehta for their assistance, and mem-
bers of the Purdue Duality Lab for their feedback on the manuscript.

441

Authorized licensed use limited to: Purdue University. Downloaded on June 21,2024 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

MSR 2024, April 2024, Lisbon, Portugal Wenxin Jiang et al.

References
[1] [n. d.]. ChatGPT. https://chat.openai.com
[2] [n. d.]. CodeScan: Code Quality and Security for Salesforce. https://www.

codescan.io.
[3] [n. d.]. npm: Build Amazing Things. https://www.npmjs.com/.
[4] [n. d.]. PyPI: The Python Package Index. https://pypi.org/.
[5] 2022. License compatibility. https://en.wikipedia.org/wiki/License_

compatibility
[6] 2023. NGC Catalog - GPU-optimized AI, Machine Learning, & HPC Software.

https://catalog.ngc.nvidia.com.
[7] Meta AI. 2024. Papers With Code. https://paperswithcode.com/about
[8] Adem Ait, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2023. HFCommunity:

A Tool to Analyze the Hugging Face Hub Community. In SANER’23. IEEE.
[9] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, and Harald Gall.

2019. Software Engineering forMachine Learning: A Case Study. In International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).

[10] Antreas Antoniou, Amos Storkey, and Harrison Edwards. 2017. Data augmenta-
tion generative adversarial networks. arXiv:1711.04340 (2017).

[11] Matthew Arnold, Rachel KE Bellamy, Michael Hind, Stephanie Houde, Sameep
Mehta, Aleksandra Mojsilović, Ravi Nair, K Natesan Ramamurthy, Alexandra
Olteanu, David Piorkowski, et al. 2019. FactSheets: Increasing trust in AI
services through supplier’s declarations of conformity. IBM Journal of Research
and Development 63, 4/5 (2019), 6–1.

[12] Sebastian Baltes. 2018. SOTorrent: Reconstructing and Analyzing the Evolution
of Stack Overflow Posts. In Internat’l. Conf. on Mining Software Repos. (MSR).

[13] Sebastian Baltes and Stephan Diehl. 2019. Usage and attribution of Stack Over-
flow code snippets in GitHub projects. EMSE (2019).

[14] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, My Tests Broke
the Build: An Explorative Analysis of Travis CI with GitHub. In International
Conference on Mining Software Repositories (MSR).

[15] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent:
Synthesizing Travis CI and GitHub for Full-Stack Research on Continuous
Integration. In International Conference on Mining Software Repositories (MSR).

[16] Aaditya Bhatia, Ellis E. Eghan, Manel Grichi, William G. Cavanagh, Zhen Ming
Jiang, and Bram Adams. 2023. Towards a change taxonomy for machine learn-
ing pipelines: Empirical study of ML pipelines and forks related to academic
publications. EMSE 28 (2023). https://doi.org/10.1007/s10664-022-10282-8

[17] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding
the factors that impact the popularity of GitHub repositories. In Internat’l. Conf.
on Software Maintenance and Evolution (ICSME). IEEE.

[18] Houssem Ben Braiek and Foutse Khomh. 2020. On testing machine learning
programs. Journal of Systems and Software (JSS) 164 (2020), 110542.

[19] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha
Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang. 2023. Sparks of
Artificial General Intelligence: Early experiments with GPT-4. arXiv:2303.12712

[20] Nicolás Cardozo, Ivana Dusparic, and Christian Cabrera. 2023. Prevalence of
Code Smells in Reinforcement Learning Projects. arXiv:2303.10236 (2023).

[21] Joel Castaño, Silverio Martínez-Fernández, Xavier Franch, and Justus Bogner.
2023. Analyzing the Evolution and Maintenance of ML Models on Hugging
Face. arXiv (2023). https://arxiv.org/abs/2311.13380

[22] Joel Castaño, Silverio Martínez-Fernández, Xavier Franch, and Justus Bogner.
2023. Exploring the Carbon Footprint of Hugging Face’s ML Models: A Reposi-
tory Mining Study. arXiv (2023). https://arxiv.org/pdf/2305.11164.pdf

[23] Danish Contractor, Daniel McDuff, Julia Katherine Haines, Jenny Lee, Christo-
pher Hines, Brent Hecht, Nicholas Vincent, and Hanlin Li. 2022. Behavioral
use licensing for responsible AI. In Proceedings of the 2022 ACM Conference on
Fairness, Accountability, and Transparency. 778–788.

[24] Valerio Cosentino, Javier L Cánovas Izquierdo, and Jordi Cabot. 2017. A sys-
tematic mapping study of software development with GitHub. IEEE Access
(2017).

[25] Yaniv David, Neophytos Christou, Andreas D. Kellas, Vasileios P. Kemerlis, and
Junfeng Yang. 2024. QUACK: Hindering Deserialization Attacks via Static Duck
Typing. In the Network and Distributed System Security Symposium (NDSS).

[26] James C. Davis, Purvish Jajal, Wenxin Jiang, Taylor R. Schorlemmer, Nicholas
Synovic, and George K. Thiruvathukal. 2023. Reusing Deep Learning Models:
Challenges and Directions in Software Engineering. In Proceedings of the IEEE
John Vincent Atanasoff Symposium on Modern Computing (JVA’23).

[27] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. 2020. Model Com-
pression and Hardware Acceleration for Neural Networks: A Comprehensive
Survey. Proc. IEEE 108, 4 (April 2020), 485–532.

[28] Malinda Dilhara, Ameya Ketkar, and Danny Dig. 2021. Understanding Software-
2.0: A Study of Machine Learning library usage and evolution. ACM Transactions
on Software Engineering and Methodology (TOSEM) 30, 4 (2021), 1–42.

[29] Parijat Dube, Bishwaranjan Bhattacharjee, Siyu Huo, Patrick Watson, and Brian
Belgodere. 2019. Automatic Labeling of Data for Transfer Learning. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.

[30] Alexander Dunn, John Dagdelen, Nicholas Walker, Sanghoon Lee, Andrew S
Rosen, Gerbrand Ceder, Kristin Persson, and Anubhav Jain. 2022. Structured in-
formation extraction from complex scientific text with fine-tuned large language
models. arXiv preprint arXiv:2212.05238 (2022).

[31] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli. 2019. Understanding flaky
tests: The developer’s perspective. In ACM Join Meeting on European Software
Eng. Conf. and Sympos. on the Found. of Software Eng.(ESEC/FSE).

[32] D. Elsner, F. Hauer, A. Pretschner, and S. Reimer. 2021. Empirically evaluating
readily available information for regression test optimization in continuous
integration. In International Symposium on Software Testing and Analysis (ISSTA).

[33] Hugging Face. 2021. Hugging Face – The AI community building the future.
https://huggingface.co/

[34] Hugging Face. 2023. Hugging Face Hub Library Documentation. https://github.
com/HuggingFace/hub-docs/blob/main/js/src/lib//interfaces/Libraries.ts

[35] Yuanrui Fan, Xin Xia, David Lo, Ahmed E Hassan, and Shanping Li. 2021. What
makes a popular academic AI repository? EMSE 26 (2021), 1–35.

[36] Jonas Geiping and Tom Goldstein. 2023. Cramming: Training a Language Model
on a single GPU in one day. In International Conf. on Machine Learning (ICML).

[37] Daniel German and Massimiliano Di Penta. 2012. A method for open source
license compliance of java applications. IEEE software 29, 3 (2012), 58–63.

[38] Daniel M German, Massimiliano Di Penta, and Julius Davies. 2010. Understand-
ing and auditing the licensing of open source software distributions. In 2010
IEEE 18th International Conference on Program Comprehension. IEEE, 84–93.

[39] Fabrizio Gilardi, MeysamAlizadeh, andMaël Kubli. 2023. ChatGPT Outperforms
Crowd-Workers for Text-Annotation Tasks. Proceedings of the National Academy
of Sciences 30 (July 2023), e2305016120. http://arxiv.org/abs/2303.15056

[40] GitHub. 2022. GitHub REST API Documentation on Licenses. https://docs.
github.com/en/rest/licenses/licenses. API version: 2022-11-28.

[41] Yaroslav Golubev, Maria Eliseeva, Nikita Povarov, and Timofey Bryksin. 2020.
A study of potential code borrowing and license violations in java projects on
github. In International Conference on Mining Software Repositories (MSR).

[42] L. Gong, J. Zhang, M. Wei, H. Zhang, and Z. Huang. 2023. What is the intended
usage context of this model? An exploratory study of pre-trained models on
various model repositories. TOSEM 32, 3 (2023), 1–57.

[43] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: Github’s data from
a firehose. In Internat’l Working Conf. on Mining Software Repositories (MSR).

[44] RemoGresta, Vinicius Durelli, and Elder Cirilo. 2023. Naming Practices in Object-
oriented Programming: An Empirical Study. Journal of Software Engineering
Research and Development (2023), 5–1.

[45] Shangwei Guo, Chunlong Xie, Jiwei Li, Lingjuan Lyu, and Tianwei Zhang. 2022.
Threats to pre-trained language models: Survey and taxonomy. arXiv preprint
arXiv:2202.06862 (2022).

[46] X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu, et al. 2021. Pre-trained
models: Past, present and future. AI Open 2 (2021), 225–250.

[47] André Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne Etien,
and Stéphane Ducasse. 2018. How do developers react to API evolution? A
large-scale empirical study. Software Quality Journal 26 (2018), 161–191.

[48] Hugging Face. 2023. Repositories and Licenses. https://huggingface.co/docs/
hub/repositories-licenses.

[49] Purvish Jajal, Wenxin Jiang, Arav Tewari, Joseph Woo, Yung-Hsiang Lu,
George K Thiruvathukal, and James C Davis. 2023. Analysis of Failures and Risks
in Deep Learning Model Converters: A Case Study in the ONNX Ecosystem.
arXiv (2023). https://arxiv.org/abs/2303.17708

[50] Susmit Jha, Sumit Kumar Jha, Patrick Lincoln, Nathaniel D Bastian, Alvaro
Velasquez, and Sandeep Neema. 2023. Dehallucinating large language models
using formal methods guided iterative prompting. In 2023 IEEE International
Conference on Assured Autonomy (ICAA). IEEE, 149–152.

[51] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. Cure: Code-aware neural
machine translation for automatic program repair. In International Conference
on Software Engineering (ICSE’21). IEEE, 1161–1173.

[52] W. Jiang, V. Banna, N. Vivek, A. Goel, N. Synovic, G.K. Thiruvathukal, and J.C.
Davis. 2023. Challenges and practices of deep learning model reengineering: A
case study on computer vision. arXiv (2023).

[53] Wenxin Jiang, Chingwo Cheung, George K. Thiruvathukal, and James C. Davis.
2023. Exploring Naming Conventions (and Defects) of Pre-trained Deep Learn-
ing Models in Hugging Face and Other Model Hubs. arXiv:2310.01642 (2023).

[54] Wenxin. Jiang, Nicholas. Synovic, Matt. Hyatt, Taylor R. Schorlemmer, Rohan.
Sethi, Yung-Hsiang Lu, George K. Thiruvathukal, and James C. Davis. 2023. An
Empirical Study of Pre-Trained Model Reuse in the Hugging Face Deep Learning
Model Registry. In ICSE.

[55] W. Jiang, N. Synovic, P. Jajal, T.R. Schorlemmer, A. Tewari, B. Pareek, G.K.
Thiruvathukal, and J.C. Davis. 2023. PTMTorrent: A Dataset for Mining Open-
source Pre-trained Model Packages. MSR (2023).

[56] W. Jiang, N. Synovic, R. Sethi, A. Indarapu, M. Hyatt, T.R. Schorlemmer, G.K.
Thiruvathukal, and J.C. Davis. 2022. An Empirical Study of Artifacts and Security
Risks in the Pre-Trained Model Supply Chain. In ACM Workshop on Software
Supply Chain Offensive Research and Ecosystem Defenses (SCORED).

442

Authorized licensed use limited to: Purdue University. Downloaded on June 21,2024 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

PeaTMOSS: A Dataset and Initial Analysis of
Pre-Trained Models in Open-Source Software MSR 2024, April 2024, Lisbon, Portugal

[57] Katikapalli Subramanyam Kalyan, Ajit Rajasekharan, and Sivanesan Sangeetha.
2021. Ammus: A survey of transformer-based pretrained models in natural
language processing. arXiv (2021).

[58] Andrej Karpathy. 2017. Software 2.0. https://karpathy.medium.com/software-2-
0-a64152b37c35. (2017), 1–8.

[59] A. Kathikar, A. Nair, B. Lazarine, A. Sachdeva, and S. Samtani. 2023. Assessing
the vulnerabilities of the open-source artificial intelligence (AI) landscape: A
large-scale analysis of the Hugging Face platform. In Intern. Conf. on Intelligence
and Security Informatics.

[60] P. Kuckertz, J. Göpfert, O. Karras, D. Neuroth, J. Schönau, R. Pueblas, S. Ferenz,
F. Engel, N. Pflugradt, J.M. Weinand, A. Nieße, S. Auer, and D. Stolten. 2023.
A Metadata-Based Ecosystem to Improve the FAIRness of Research Software.
http://arxiv.org/abs/2306.10620

[61] AndrewMSt Laurent. 2004. Understanding open source and free software licensing:
guide to navigating licensing issues in existing & new software. O’Reilly Media.

[62] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436–444. https://doi.org/10.1038/nature14539

[63] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, et al. 2020.
Retrieval-augmented generation for knowledge-intensive nlp tasks. Adv. in
Neural Information Processing Systems (NeurIPS) (2020).

[64] Li Li, Jiawei Wang, and Haowei Quan. 2022. Scalpel: The Python Static Analysis
Framework. arXiv preprint arXiv:2202.11840 (2022).

[65] S. Li, J. Guo, J.G. Lou, M. Fan, T. Liu, and D. Zhang. 2022. Testing Machine
Learning Systems in Industry: An Empirical Study. In International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP). 263–272.

[66] Y. Li, Z. Zhang, B. Liu, Z. Yang, and Y. Liu. 2021. ModelDiff: Testing-based DNN
similarity comparison for model reuse detection. In ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA). 139–151.

[67] Ziyu Li, Rihan Hai, Alessandro Bozzon, and Asterios Katsifodimos. 2022. Meta-
data Representations for Queryable ML Model Zoos. arXiv:2207.09315

[68] Caroline Lima and Andre Hora. 2020. What are the characteristics of popular
APIs? A large-scale study on Java, Android, and 165 libraries. Software Quality
Journal 28, 2 (2020), 425–458.

[69] Ilyas Saïd Makari, Ahmed Zerouali, and Coen De Roover. 2022. Prevalence and
Evolution of License Violations in npm and RubyGems Dependency Networks.
In International Conference on Software and Software Reuse. Springer, 85–100.

[70] Pedro Marcelino. 2022. Transfer learning from pre-trained models.
https://towardsdatascience.com/transfer-learning-from-pre-trained-models-
f2393f124751

[71] Diego Montes, Pongpatapee Peerapatanapokin, Jeff Schultz, Chengjun Guo,
Wenxin Jiang, and James C Davis. 2022. Discrepancies among pre-trained deep
neural networks: a new threat to model zoo reliability. In ESEC/FSE-IVR track.

[72] Mohammad Mehdi Morovati, Amin Nikanjam, Florian Tambon, Foutse Khomh,
and ZhenMing. 2023. Bug Characterization in Machine Learning-based Systems.
arXiv (2023). https://arxiv.org/abs/2307.14512

[73] Nadia Nahar, Haoran Zhang, Grace Lewis, Shurui Zhou, and Christian Kästner.
2023. A Dataset and Analysis of Open-Source Machine Learning Products. arXiv
preprint arXiv:2308.04328 (2023).

[74] NLPlanet. 2021. A Brief Timeline of NLP: From Bag of Words to the Transformer
Family. Medium (2021). https://medium.com/nlplanet/a-brief-timeline-of-nlp-
from-bag-of-words-to-the-transformer-family-7caad8bbba56

[75] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[76] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia,

Daniel Rothchild, David So, Maud Texier, and Jeff Dean. 2021. Carbon Emissions
and Large Neural Network Training. https://doi.org/10.48550/arXiv.2104.10350

[77] David Piorkowski, Michael Hind, and John Richards. 2023. Quantitative ai risk
assessments: Opportunities and challenges. arXiv (2023).

[78] Pytorch. 2021. PyTorch Hub. https://pytorch.org/hub/
[79] Binhang Qi, Hailong Sun, Xiang Gao, Hongyu Zhang, Zhaotian Li, and Xudong

Liu. 2023. Reusing Deep Neural Network Models through Model Re-engineering.
In International Conference on Software Engineering (ICSE).

[80] Shi Qiu, Daniel M German, and Katsuro Inoue. 2021. Empirical study on
dependency-related license violation in the javascript package ecosystem. Jour-
nal of Information Processing 29 (2021), 296–304.

[81] Saidur Rahman, Emilio River, Foutse Khomh, Yann Gal Guhneuc, and Bernd
Lehnert. 2019. Machine learning software engineering in practice: An industrial
case study. arXiv preprint (2019). https://doi.org/10.48550/arXiv.1906.07154

[82] Inioluwa Deborah Raji, Andrew Smart, Rebecca N White, et al. 2020. Clos-
ing the AI accountability gap: Defining an end-to-end framework for internal
algorithmic auditing. In The 2020 conference on fairness, accountability, and
transparency.

[83] Sebastian Raschka, Joshua Patterson, and Corey Nolet. 2020. Machine learning
in python: Main developments and technology trends in data science, machine
learning, and artificial intelligence. Information 11, 4 (2020), 193.

[84] Lawrence Rosen. 2005. Open source licensing. Software Freedom and Intellectual
Property Law (2005).

[85] A. Sajadi, K. Damevski, and P. Chatterjee. 2023. Interpersonal Trust in OSS: Ex-
ploring Dimensions of Trust in GitHub Pull Requests. In International Conference

on Software Engineering: New Ideas and Emerging Results (ICSE-NIER).
[86] S. Schelter, J.H. Boese, J. Kirschnick, T. Klein, and S. Seufert. 2017. Automati-

cally tracking metadata and provenance of machine learning experiments. In
Conference on Neural Information Processing Systems (NeurIPS).

[87] Taylor R Schorlemmer, Kelechi G Kalu, Luke Chigges, Kyung Myung Ko, et al.
2024. Signing in Four Public Software Package Registries: Quantity, Quality,
and Influencing Factors. arXiv:2401.14635

[88] Y. Shen, K. Song, X. Tan, D. Li, W. Lu, and Y. Zhuang. 2023. HuggingGPT: Solving
AI tasks with ChatGPT and its Friends in HuggingFace. arXiv:2303.17580 (2023).

[89] S.S. Sohail, F. Farhat, Y. Himeur, M. Nadeem, D.O. Madsen, Y. Singh, S. Atalla, and
W. Mansoor. 2023. Decoding ChatGPT: a taxonomy of existing research, current
challenges, and possible future directions. Journal of King Saud University-
Computer and Information Sciences (2023).

[90] M. Sojer, O. Alexy, S. Kleinknecht, and J. Henkel. 2014. Understanding the
drivers of unethical programming behavior: The inappropriate reuse of internet-
accessible code. Journal of Management Info. Systems 31, 3 (2014), 287–325.

[91] Sourcegraph. 2023. https://docs.sourcegraph.com/cli
[92] Xin Tan, Kai Gao, Minghui Zhou, and Li Zhang. 2022. An exploratory study of

deep learning supply chain. In Intern. Conf. on Software Engineering (ICSE).
[93] Mina Taraghi, Gianolli Dorcelus, Armstrong Foundjem, Florian Tambon, and

Foutse Khomh. 2024. Deep Learning Model Reuse in the HuggingFace Commu-
nity: Challenges, Benefit and Trends. arXiv:2401.13177

[94] The Linux Foundation. 2019. Fulfilling Open Source License Obliga-
tions: Can Checklists Help? https://events19.linuxfoundation.org/wp-
content/uploads/2018/07/OSLS-2019-Fulfilling-Open-Source-license-
obligations-Can-checklists-help.pdf.

[95] J. Tsay, A. Braz, M. Hirzel, A. Shinnar, and T. Mummert. 2020. AIMMX: Artificial
Intelligence Model Metadata Extractor. In Mining Softw. Repos. (MSR).

[96] J. Tsay, M. Braz, A.and Hirzel, A. Shinnar, and T. Mummert. 2022. Extracting
enhanced artificial intelligence model metadata from software repositories.
Empirical Software Engineering 27, 7 (Dec. 2022), 176.

[97] S. Van Der Burg, E. Dolstra, S. McIntosh, J. Davies, D.M. German, and A. Hemel.
2014. Tracing software build processes to uncover license compliance inconsis-
tencies. In Automated software engineering (ASE). 731–742.

[98] Bart Van Oort, Luís Cruz, Maurício Aniche, and Arie Van Deursen. 2021. The
prevalence of code smells in machine learning projects. In 2021 IEEE/ACM 1st
Workshop on AI Engineering-Software Engineering for AI (WAIN). IEEE, 1–8.

[99] Chengcheng Wan, Shicheng Liu, Henry Hoffmann, Michael Maire, and Shan Lu.
2021. Are machine learning cloud apis used correctly?. In ICSE.

[100] Shuo Wang, Surya Nepal, Carsten Rudolph, Marthie Grobler, Shangyu Chen,
and Tianle Chen. 2022. Backdoor Attacks Against Transfer Learning With
Pre-Trained Deep Learning Models. IEEE Transactions on Services Computing
15, 3 (May 2022), 1526–1539. https://doi.org/10.1109/TSC.2020.3000900

[101] Zhi Wang, Chaoge Liu, Xiang Cui, Jie Yin, and Xutong Wang. 2022. EvilModel
2.0: Bringing Neural Network Models into Malware Attacks. Computers &
Security (2022). https://doi.org/10.1016/j.cose.2022.102807

[102] Thomas Wolter, Ann Barcomb, Dirk Riehle, and Nikolay Harutyunyan. 2023.
Open source license inconsistencies on github. ACM TOSEM 32, 5 (2023).

[103] Jun Xia, Yanqiao Zhu, Yuanqi Du, Y Liu, and SZ Li. 2023. A Systematic Survey
of Chemical Pre-trained Models. International Joint Conference on Artificial
Intelligence (IJCAI’23).

[104] Weiwei Xu, Hao He, Kai Gao, and Minghui Zhou. 2023. Understanding and
Remediating Open-Source License Incompatibilities in the PyPI Ecosystem.
arXiv preprint arXiv:2308.05942 (2023).

[105] Zhou Yang, Chenyu Wang, Jieke Shi, Thong Hoang, Pavneet Kochhar, Qinghua
Lu, Zhenchang Xing, and David Lo. 2023. What Do Users Ask in Open-Source
AI Repositories? An Empirical Study of GitHub Issues. arXiv (2023).

[106] Likang Yin and Vladimir Filkov. 2020. Team discussions and dynamics during
DevOps tool adoptions in OSS projects. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. 697–708.

[107] J.D. Zamfirescu-Pereira, R.Y. Wong, B. Hartmann, and Q. Yang. 2023. Why
Johnny can’t prompt: how non-AI experts try (and fail) to design LLM prompts.
In Conference on Human Factors in Computing Systems (CHI).

[108] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. Di Penta. 2017. How
Open Source Projects Use Static Code Analysis Tools in Continuous Integration
Pipelines. In International Conference on Mining Software Repositories (MSR).

[109] Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jesús
González-Barahona. 2018. An empirical analysis of technical lag in npm package
dependencies. In International Conference on Software Reuse. Springer, 95–110.

[110] Haiyin Zhang, Luís Cruz, and Arie Van Deursen. 2022. Code smells for machine
learning applications. In Internat’l Conf. on AI Eng.: Software Eng. for AI. 217–228.

[111] Ziqi Zhang, Yuanchun Li, Jindong Wang, Bingyan Liu, Ding Li, Yao Guo, Xi-
angqun Chen, and Yunxin Liu. 2022. ReMoS: reducing defect inheritance in
transfer learning via relevant model slicing. In ICSE’22.

[112] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. 2020. A comprehensive survey on transfer
learning. Proc. IEEE 109, 1 (2020), 43–76.

443

Authorized licensed use limited to: Purdue University. Downloaded on June 21,2024 at 14:47:06 UTC from IEEE Xplore. Restrictions apply.

