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Abstract

The future climate significantly impacts building
performance and increases uncertainties in energy
simulations. A rising temperature trend is expected to
heighten cooling loads during summer and result in more
carbon emissions. Understanding the impact of future
climate on building performance is significant for
policymakers to make informed decisions. Building
retrofit measures can improve building energy efficiency
and reduce operational carbon emissions, yet their
effects under future climate conditions have not been
fully investigated so far. Thus, we proposed an
assessment methodology for evaluating long-term
energy consumption and operational carbon reduction
potential using a building stock dataset. For this study,
commercial buildings in the northwestern (NW) region
were utilized to assess the impacts of future climate and
building retrofit. In addition, we selected Montana with
a cold and dry climate as an example to analyze and
discuss the carbon emission reduction potential in
buildings. The main findings are: (1) Under future
climate trends, changes in energy use intensity (EUI)
will fluctuate due to variations in heating and cooling
degree-days (HDDs and CDDs) and increasing HDDs
will lead to increasing EUI (2) After applying annual
building retrofitting, the long-term EUI reduction
potential of buildings in the NW region will decrease
with the increasing retrofitting degree, and the short-term
EUI reduction potential will be impacted by the change
of heating and cooling degree days. (3) In Montana, the
long-term carbon intensity reduction potential of
retrofitted buildings will decrease under future climate
trends with the increasing renewable energy penetration.

Introduction

The Pacific Northwest (NW) region of the United States
is well-known for its rich forest resources, extensive
coastline, and other diverse geographical environments.
However, worsening global warming has been affecting

this area for several decades. The average temperature of
this region has increased by 1.3°F from 1895 to 2011 and
is anticipated to continue to increase in the future
(Melillo et al., 2014). The rising temperature has led to
environmental deteriorations such as sea level rise
(Council, 2012), a decrease in mountain snowpack area
in winters (Mote, 2006), the occurrence of wildfires with
unprecedented severity (Halofsky et al., 2020), etc.
Moreover, the region's building energy consumption and
carbon emission may be among the many aspects
affected by the warmer climate. Several studies have
revealed the relationship among ambient temperature,
building energy consumption, and carbon emission.
Santamouris et al. (2015) reviewed previous studies and
summarized that for every 1°C increase in ambient
temperature, the total and peak electricity demands are
possible to be up to 8.5% and 4.6%, respectively.
However, Zhou et al. (2013) identified due to global
warming, a maximum reduction of 6% in the combined
heating and cooling energy consumption in the United
States by 2095, and its effect on carbon emission is
negligible. Furthermore, Sun et al. (2014) discovered the
effect of urban heat islands on building energy
consumption through simulation studies of office
buildings in representative cities in various climate zones
across the United States, including three cities in the NW
region (Salem OR, Boise ID, Helena MT). The result
shows that the higher ambient temperature in urban areas
causes higher cooling energy consumption in colder
climate zones (Helena, MT) and lower total energy
consumption in less cold areas (Salem, OR and Boise,
ID), compared to their surrounding rural areas.

According to previous studies, it is essential to assess
building performance in energy consumption and carbon
emission and consider the potential influence of future
weather trends. In addition, to contribute to sustainability
and low-carbon development goals within the building
sector, the solutions to reduce energy consumption and
carbon emission are significant and should be applied to
assess the building performance enhancement potential.
Previous research indicates that building retrofits hold



significant potential to enhance performance by reducing
energy consumption and carbon emissions in specific
regions (Lou et al.,, 2021; Sadineni et al., 2011).
Therefore, a comprehensive long-term building
performance assessment that accounts for changing
climatic conditions is necessary. Moreover, an
assessment method to evaluate the retrofit impact on
large-scale buildings is required under future climate
trends.

However, under future climate changes, current research
on the long-term assessment of building performance, in
terms of energy and carbon emissions with dynamically
changing electricity emission factors, is not yet fully
investigated. This research aims to develop an
assessment methodology for evaluating long-term
building performance from the year 2024 to the year
2050 under future climate trends. For this purpose,
commercial buildings in the NW region were chosen as
a case study to determine the effects of future climate and
retrofitting. The NW region comprises four states:
Washington, Idaho, Montana, and Oregon, which are
characterized by three climate types: marine mix (4C),
cool and dry (5B), and cold and dry (6B). From the
building stock dataset, 932 commercial buildings have
been identified as representative of the commercial
infrastructure across the NW region. Initially, we
simulated the energy consumption of all 932 commercial
buildings. Subsequently, we examined the impact of
retrofitting in selected years. Finally, we selected
Montana with a cold and dry climate as an example to
analyze and discuss the carbon emission reduction
potential in buildings.

Methodology

Building Energy Model Development

A physics-based urban-scale building energy modeling
tool (Lei et al., 2021) is utilized for automatic model
generation, using input data from the Commercial
Building Stock Assessment (CBSA) (James et al., 2020).
This tool, featuring a bottom-up creation workflow, is
built upon state-of-the-art building energy modeling
tools and can generate large-scale building energy
models based on building stock data. With the weather
inputs from the EnergyPlus weather file (.epw), the
commercial building's hourly energy consumption for
different energy types such as electricity, and natural gas
can be obtained.

Building Retrofit Strategies

Given the high level of uncertainty regarding which
buildings will undergo retrofits and which retrofit
measures will be implemented, a statistics-based

approach can be adopted for the analysis of building
stock retrofits (Filippi Oberegger et al., 2020). We
operate under the assumption that the building retrofit
cycle spans 10 years, meaning that once a building is
retrofitted, it will not adopt another retrofit for at least
the next decade. Newly constructed buildings are not
included in this research due to the difficulty in
predicting the number that will be built in the NW
regions in the future, as well as the absence of reliable
references that describe state development plans for
long-term urban growth.

Energy Reduction Prediction

A building may consume different types of energy such
as electricity and natural gas. Therefore, the annual
energy reduction (AE) for a building can be obtained
using the following formula:

for annual climate change
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where h represents an hour within one year, and H is the
total number of hours for one year, which is 8640.The k
is the energy source used in commercial buildings such
as electricity, natural gas, and fuel oil, and K is the total
type of energy source adopted in buildings. The y,
means a year in the future, and y, represents a year next
to y;. The building retrofit measures are considered to
improve building performance and reduce carbon
emissions, which could be increasing the insulation of
building envelopes, improving the efficiency of the
HVAC system, etc. The i represents the retrofit
strategies and the 0 represents the baseline model.

Carbon Emission Reduction Prediction

Before calculating the potential carbon emission
reduction, we predict the hourly emission factor of
different energy sources in each year with equation (1)
and evaluate the retrofit impact with equation (2). Next,
the energy reduction will be multiplied by the carbon
emission factor to calculate the operational carbon
emission. Since electricity generation dynamically uses
different energy sources, the dynamic carbon emission
factor is adopted and predicted with equation (3). Then,
equation (8) calculates the aggregated carbon emission
reduction potential.



Hourly Emission Factor of Electricity Prediction

Due to the different energy sources of electricity, the
emission factor for electricity generation is dynamically
changing (Gagnon et al., 2023). In the open-source tool
Cambium dataset, we can acquire the state hourly carbon
emission factors dataset of electricity generation for
some specific years like 2035 and 2040. However, the
carbon emission factors for some years are missing.
Considering the seasonal pattern for energy source
changing, especially renewable energy such as solar and
wind, the seasonal autoregressive integrated moving
average exogenous (SARIMAX) model is adopted to
predict the hourly carbon emission factor for electricity
generation (Li & Zhang, 2023; Singh et al., 2022). The
training datasets are provided by Cambium which
considers scalar increase in end-use electricity demand
incorporating both the operational and structural
consequences of the change (Gagnon et al., 2023).

(1-¢:B)(1—-B)Y, = (1+6:B)s, )
where Y; is the time series data of hourly carbon
emission factor of electricity generation, B is backshift
operator, ¢, is the coefficient for the autoregressive term
oflag 1, 8, is coefficient for the moving average term of
lag 1, and &, is error term at time t.

Carbon Emission Reduction Calculation

In the previous equation (2), we acquire the hourly
energy reduction with building retrofit measures of
different energy sources k (AE,; ;). With equation (3),
we acquire the hourly emission factor Y; which is a time-
dependent variable and dynamically changing. Then we
aggregate the emission factor for each year. To make the
equation more generalized, we adopt the variable aj
to represent the emission factor for each energy source k
of an hour h within a year y. When the carbon emission
prediction starts from a specific year s, equation (4) - (7)
shows the two different kinds of adopted carbon
emission factors:

for dynamical changing emission factor such as
electricity generation
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for constant emission factor such as natural gas, it can be
simplified as

Anky = Ak, 7

Based on previous research (Lou et al., 2022; Yang et al.,
2023), the carbon emission reduction due to building
retrofit can be calculated by multiplying the energy

reduction with the energy emission factors in
corresponding time and locations. Therefore, the carbon
emission reduction (AC) for simulation period due to
retrofits for a building can be obtained using the
following formula:

H K (8)
ACy‘i = Z Z
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where i represents the retrofit strategies, h represents an
hour within one year, and H is the total number of hours
for one year, which is 8640. The k is the energy source
used in the commercial building such as electricity,
natural gas, and fuel oil, and K is the total types of
energy source adopted in buildings. The y represents
each year. The a represents the emission factor of
energy source, which can be dynamically changing for
electricity generation (Gagnon et al., 2023) or constant
depending on different types of energy source such as
natural gas.
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Study Design

Locations

In this study, the NW region (Washington, Oregon,
Idaho, and Montana) in the United States was identified
to investigate the impact of future climate trends on the
buildings. According to the climate characteristics of the
NW region defined by the IECC 2012 (International
Code Council, 2012), the three climate zones 4C (mixed
marine), 5B (cool dry), and 6B (cold dry) were identified
to investigate the impact of future climate trends on the
buildings, as shown in Figure 1.
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Figure 1. The northwestern regions in Unites States
and corresponding climate characteristics.

Future Climate Scenarios

According to the Intergovernmental Panel on Climate
Change (IPCC), four Representative Concentration



Pathways (RCPs) represent different greenhouse gas
concentration trajectories used for climate modeling and
research (Pachauri & Meyer, 2014). The one of popular
scenarios RCP8.5 was adopted to evaluate future climate
trends due to its prevalence in climate change research
(Chen et al., 2017; Riahi et al., 2011; Rising & Devineni,
2020). The RCP8.5 means a radiative forcing value at
8.5 W/m?, with assuming a continuous increase in
emissions due to high fossil fuel dependency,
particularly coal. This scenario models potential
environmental outcomes by the end of the century.

Then, we used the open-source Weather Research and
Forecasting (WRF) model (Skamarock et al., 2021) to
generate the future climate temperature dataset under
RCP8.5 scenarios as EnergyPlus weather file (.epw) for
dynamic simulations under predicted climate changes.
The heatmaps were applied to visualize the climate
trends for climate zones 5B (Cool and Dry) and 6B (Cold
and Dry) until the end of the 21st century, as shown in
Figure 4, Figure 3, and Figure 4. The color intensity on
these maps indicates temperature levels: darker red
shades signify higher temperatures; darker blue shades
signify lower temperatures and lighter shades indicate
closing to zero temperature. Although the heatmap
shows the dynamic fluctuation of temperature data in the
21% century, there is still a trend in temperature. In
summer, the red color will become dark which means the
temperature will increase, and in winter, the blue color
will become light which means the temperature will also
increase.
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Figure 2. Future monthly temperature trends in current
mixed marine climate region
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Figure 3. Future monthly temperature trends in current
cool and dry climate region
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Figure 4. Future monthly temperature trends in current
cold and dry climate region

Building Model Information

Baseline model

In this study, we developed 932 representative
commercial building energy models based on the
datasets from the Commercial Building Stock
Assessment (CBSA) program. The CBSA program, as
described by James et al. (2020), gathers and
disseminates data on the features and energy
consumption of commercial buildings in the NW region
of the United States. The developed baseline model
includes various types of buildings such as offices, hotels,
libraries, hospitals, healthcare clinics (ranging from
small clinics and doctor's offices to urgent care centers
and large hospitals with elaborate emergency rooms and
trauma centers), theaters, museums, religious facilities,
dormitories, exercise centers, fire stations, gymnasiums,
school/university, and restaurants. Since electricity and
natural gas account for 94 % of the energy sources used
in existing commercial buildings in the U.S., we only
consider these two to predict the energy consumption of
buildings (EIA, 2018). These buildings feature different
HVAC types, including packaged terminal air
conditioning, four-pipe fan coil systems, packaged
terminal heat pumps, packaged single-zone air



conditioning, packaged single-zone heat pumps, and
packaged variable air volume boxes. We summarized
major building configurations for building energy
modeling of baseline models in Table 1.

Table 1. Building information of baseline model

Major Building Unit Inputs
Configurations

Building Type - Offices, Hotels,
Hospitals,
Restaurants,
Healthcare clinics,
Religious facilities,
School/University,
etc.

Construction - [1853, 2018]

year

Wall material - Wood framed, Metal
building, Steel framed,
Mass

Conditioned area | m? [0, 102164]

Heating setpoint | °C [7,27]

Cooling setpoint | °C [16,29]

HVAC system - Packaged terminal air
conditioning,
Four-pipe fan coil
systems,
Packaged terminal
heat pumps,
Packaged single-zone
air conditioning,
Packaged single-zone
heat pumps,
Packaged variable air
volume boxes, etc.

People density People/1000m? | [0, 160]

Lighting power W/m? [0,429.26]

density

Plug load density | W/m? [0.14, 424.31]

Table 2. Building retrofit measures

Measure Units Annual
Retrofitting
Value
Setpoint adjustment | Heating °C [-3, 0]
Cooling °C [0, 3]
Add wall insulation | U factor -0.05
W/(m?-K))
Add roof insulation | U factor -0.05
W/(m?-K)
Replace window U factor -0.05
W/(m*K)
SHGC -0.05
Replace energy Heating [0, 2.13]
efficient electrical Cooling [0, 0.66]
equipment
Improve service Heater thermal 0.05
water heater efficiency
efficiency
Replace energy Lighting power | -0.05
efficient lighting density
equipment W/m?
Replace energy Plug load -0.05
efficient equipment density
W/m?
Add overhangs - (Yes, No)
Add occupancy - (Yes, No)
control for the
HVAC system
Add occupancy - (Yes, No)
control for lighting
devices

Source: CBSA program (James et al., 2020)

Building Retrofit Measures

In this study, we adopted an annual retrofit rate of 5%,
with each building eligible for retrofitting once every ten
years. After a building has been retrofitted, it will not be
retrofitted within the subsequent decade. After a decade,
the building will be back in the pool as one of the
potential candidates for retrofitting. A uniform
distribution has been used to select the standard
measures. The summary of building retrofit measures
and the annual retrofit range or value is presented in
Table 2.

Result and Discussion

Energy Use Intensity

Based on the proposed method, we calculate the long-
term EUI for the NW region in the United States. Then,
we investigate the impact of future climate and building
retrofitting on the change of EUI from 2024 to 2050. The
results and analysis are included in the following
subsections.

Impact of Future Climate

Based on future climate predictions, the annual EUI
change can be calculated for a baseline from the year
2024 to the year 2050, as shown in Figure 5. The positive
value of change of EUI means the EUI will increase, and
the negative value of change of EUI means the EUI will
decrease. Among the three climate zones, the change of
EUI varied year by year, and the fluctuation of climate
zone 6B with colder climate characteristics is greater
than climate zones 4C and 5B.
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Figure 5. EUI change from 2024 to 2050 under future
climate scenario

We then calculate the annual changes in HDDs and
CDDs from 2024 to 2050, as shown in Figure 5. These
changes affect the EUI; specifically, an increase in
HDDs and a decrease in CDDs lead to an increase in
EUL This rise in EUI occurs because increasing HDDs
means more heating load to maintain setpoint
temperature and decreasing CDDs means less cooling
load of buildings. On average, air conditioning systems
for cooling have higher efficiency than heating systems.
Then, the increasing heating load would be greater than
the cooling load and lead to increasing overall energy
consumption due to the discrepancy between heating and
cooling system efficiency.

Additionally, the building with different HVAC systems
will exhibit varying performance in cooling and heating
due to the different HVAC efficiency. Therefore, we
further investigate three buildings (health-care clinic,
restaurant, school/university) from 2024 to 2050 with
different heating ventilating and air conditioning
(HVAC) systems: packaged terminal AC (PTAC) with
natural gas heating, packaged single zone heat pump
(PSZ-HP), and packaged variable air volume (VAV). As
shown in Figure 6, the different HVAC systems result in
varying changes in heating and cooling loads. Positive
values indicate an increase in load, while negative values
signify a decrease. For PTAC and packaged VAV
systems, the heating load typically dominates the major
change in heating/cooling load. As for the PSZ-HP
system with higher cooling efficiency, it may sometimes
dominate the major changes in heating/cooling with the
increasing future climate trend.
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Figure 6. Change of cooling and heating load for
different HVAC system

Impact of Building Retrofitting

After implementing building retrofit measures, the EUI
reduction potential for buildings across three climate
zones in the NW region from 2024 to 2050 was
predicted, as illustrated in Figure 7. A positive value of
EUI reduction potential indicates a reduction in energy
consumption after implementing building retrofit
measures. Under the combined influence of future
climate trends and annual building retrofits, where the
long-term trend of temperature is expected to increase
and the number of retrofitted buildings will grow in the
future, the EUI reduction potential in these three climate
zones is gradually decreasing. This indicates that
buildings are becoming more energy-efficient as
retrofitting progresses. Moreover, in Figure 5, we
present the annual changes in CDDs and HDDs. When
the CDDs increase, the EUI reduction potential also
increases. For example, in climate zone 4C, in the year
2036, CDDs will increase while HDDs will decrease. In
this scenario, the increasing cooling load dominates the
change in cooling/heating load, leading to an increase in
EUI reduction potential. This suggests that the cooling
efficiency in the NW region can be further improved.
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Figure 7. EUI reduction after retrofitting
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We calculated the potential for carbon intensity
reduction in Montana's cold and dry climate zones, and
the carbon intensity reduction potential is depicted in
Figure 8. The long-term carbon emission reduction
potential is expected to decrease due to highly efficient
building practices and the increasing adoption of
renewable energy sources. From a long-term
perspective, the carbon intensity reduction will decrease
with increasing degree of building retrofitting. However,
during the prediction period, the carbon intensity
reduction does not always decrease and is predicted to
increase in 2030 and 2041. In Cambium datasets, the
long-run marginal carbon emission rate in electricity is
predicted based on future renewable energy usage, and
the percentage of renewable energy adoption in Montana
is shown in Figure 9. The two points of increase in
carbon intensity reduction correspond to two decreases
in renewable energy adoption. The predicted renewable
energy adoption from 2024 to 2050 in Cambium will
decrease after 2030. Consequently, the use of dirty
energy sources will increase to fill the energy gap,
increasing carbon emissions and leading to an increase
in carbon intensity reduction potential. Similarly, in the
year 2040, the increasing usage of dirty energy will
further enhance the carbon intensity reduction potential.
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Figure 8. Carbon intensity reduction in Montana (6B)
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Figure 9. Renewable energy adoption in Montana (6B)

Discussion

In this study, we proposed a methodology to assess the
impact of future climate trends and retrofitting on
building energy and carbon reduction potential. Given
the dynamical future climate trends, an assessment
methodology is crucial for analyzing these trends and
their impacts. We discovered a correlation between the
EUI reduction potential of baseline buildings and
changes in CDDs and HDDs under future climate trends.
Additionally, we used three examples to demonstrate the
EUI variations in different buildings with various HVAC
systems. Grouping HVAC systems or building
typologies could aid in further investigating the EUI
performance of different building groups. This study
primarily focuses on building retrofitting as a solution to
enhance building performance in the face of future
climate change. We proposed a retrofitting scenario by
considering the uncertainties of building retrofitting with
an annual retrofit rate to improve building energy
efficiency. Since this study evaluates buildings from
2024 to 2050 and considers the lifespan of HVAC
systems usually around 20 years, HVAC system
replacement is not included in this scenario. For longer-
term building evaluations, considering HVAC system
replacement could make the model more realistic.
Moreover, the retrofitting value of different retrofit
measures can be more diversified when retrofitting
different types of buildings. Further investigation is
necessary to understand the correlation between future
climate changes and the annual building retrofitting rate.



For building decarbonization through retrofit measures,
we selected Montana, with its cold and dry climate, as an
example to explore the potential for carbon intensity
reduction, and the results of renewable energy adoption
predictions from the Cambium dataset are used to prove
the analyzed result. For other regions with different
energy structures, a similar approach can be applied to
assess the potential for carbon intensity reduction and to
highlight spatial variability. Moreover, when evaluating
the building performance under future climate trends, the
increasing trend of building electrification, particularly
in space and water heating, is an important factor. The
high level of uncertainty in electrification adoption,
along with the potential advantages of integrating
electrification technologies with renewable generation
and energy storage, also plays a significant role.

Conclusion

To understand the impact of future climate trends on
building performance and to support the decarbonization
goal of the building sector, this study proposed an
assessment methodology. We evaluated long-term
building performance using a building stock dataset.
Commercial buildings in the NW region, encompassing
four states (Washington, Idaho, Oregon, Montana) with
three distinct climate features (mixed marine, cool and
dry, cold and dry), were selected for investigation.
Finally, we selected Montana with a cold and dry climate
as an example to analyze and discuss the carbon
emission reduction potential in buildings. Our findings
indicate that under future climate trends, the change of
EUI will fluctuate due to changes in HDDs and CDDs.
When HDDs increase and CDDs decrease, the EUI will
increase. Moreover, different HVAC systems will have
varying performance in terms of changes in cooling and
heating load, which will also impact a change in EUI
When the cooling efficiency of HVAC systems is higher,
such as with heat pumps, the cooling load will gradually
become dominant in the change of cooling/heating load
due to future climate changes.

Under the retrofitting scenarios, our analysis indicates
that the long-term EUI reduction potential will decrease
with the annual building retrofit measures, and when the
cooling degree day increases under future climate
prediction, the EUI reduction potential will increase due
to the increasing cooling load dominant to the increasing
cooling/heating load. We further investigated the
Montana state to predict carbon intensity reduction
potential under the future climate trend. The result shows
that predicted carbon intensity reduction in Montana
state will be impacted by future renewable energy
penetration, when renewable energy penetration
increases, the carbon intensity reduction will decrease

due to the less carbon emission, otherwise, when
renewable energy penetration decreases, the carbon
intensity reduction will increase due to more carbon
emission by increasing dirty energy source.
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Nomenclature

AE = energy consumption reduction

¢ = coefficient for the autoregressive term

B = backshift operator

6 = coefficient for the moving average term

& = error term

Y = time dependent emission factor of energy generation

a = annual emission factor of energy generation

Subscripts

0 = baseline

i = building retrofitting

t = time with a unit (e.g., hour, minute)
1 =time lag

k = energy source

h = an hour within one year

Yy, = a year in future

Yy, = a year next to y;

y = a year during the simulation period

s = a specific year which is the start year of the
simulation period
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