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Abstract

One of the most common problems studied in the context of differential privacy
for graph data is counting the number of non-induced embeddings of a subgraph in
a given graph. These counts have very high global sensitivity. Therefore, adding
noise based on powerful alternative techniques, such as smooth sensitivity and
higher-order local sensitivity have been shown to give significantly better accuracy.
However, all these alternatives to global sensitivity become computationally very
expensive, and to date efficient polynomial time algorithms are known only for few
selected subgraphs, such as triangles, k-triangles, and k-stars. In this paper, we
show that good approximations to these sensitivity metrics can be still used to get
private algorithms. Using this approach, we much faster algorithms for privately
counting the number of triangles in real-world social networks, which can be easily
parallelized. We also give a private polynomial time algorithm for counting any
constant size subgraph using less noise than the global sensitivity; we show this
can be improved significantly for counting paths in special classes of graphs.

1 Introduction

The notion of Differential Privacy (DP) [12] has emerged as the de facto standard notion for supporting
queries on private and sensitive data. DP ensures that changes in private data have limited statistical
influence (measured by the privacy budget ϵ, δ) on the output of queries, without needing any attack
model, which is one of the reasons of its popularity. Networked abstractions are commonly used
in a number of applications, such as public health, social networks, and finance. Such datasets
are usually sensitive, and maintaining privacy is an important concern. Within the context of
network/graph data, two privacy models have been considered in most prior work, namely, edge
and node privacy. There has been a lot of interest in developing private algorithms for a number of
network problems, such as community detection [29, 9, 8, 22], and counting small subgraphs (e.g.,
stars and triangles [25, 36, 23, 31]).

However, efficient private algorithms with good accuracy are not known for many graph problems,
including counting small subgraphs. One of the main challenges is that graph problems often have
very high global sensitivity (the maximum change in the output function due to the change in one
edge/vertex (see Section 3)), in contrast to many statistical and machine learning queries. As a
result, DP algorithms based on global sensitivity (which can usually be computed quite easily for
many problems) do not give good accuracy bounds, in general. For instance, in the edge-privacy

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



model, the global sensitivity of #triangles in a graph G = (V,E) can be as high as n − 2, where
n = |V |, making the added noise too large in many instances. A number of novel alternatives to
global sensitivity have been proposed, e.g., smooth, restricted and multi-level local sensitivity, and
ladder functions [36, 23, 3, 31], which add significantly lower level of noise than mechanisms based
on global sensitivity.

However, all these alternative notions of sensitivity are computationally much more challenging,
and none of the current graph DP algorithms for subgraph counting scale to even moderate size net-
works. Even the simplest problem of counting #triangles privately takes min{mmaxv d(v),M(n)}
time [23], where m = |E|, d(v) is the degree of node v ∈ V , and M(n) is the time for multiplying
two n× n matrices, which is super-quadratic, in general. This is a sharp contrast with the significant
advances in non-private graph mining where complex network properties such as clique counts can be
computed using provably-efficient and practical algorithms [35, 20, 19]. For a few other subgraphs,
such as k-cliques and k-triangles (see [36, 23] for definitions), private algorithms using noise lower
than the global sensitivity are known, but the worst case running time can still be O(nk) [36]. How-
ever, for most subgraph counting problems, no private algorithms which use alternatives to global
sensitivity, and have time comparable to the non-private algorithms, are known.

A main tool for subgraph counting and other graph mining tasks in massive networks are sampling
based approximation algorithms, e.g., [2]; however, these haven’t been used in the context of private
graph algorithms. In this paper, we take the first steps in this direction. Our main contributions are:

•We show that for a query f(G), we can get a private algorithm by adding noise that scales with
an approximation to the smooth sensitivity to an approximation to f(G) (Theorem 1). This result
opens the door to improving efficiency of private algorithms using approximation techniques that
have been very useful in non-private graph analytics. As an illustration, we use this result to obtain a
quasilinear time private algorithm for counting #triangles under edge privacy (Theorem 2) for graphs
which satisfy a stronger transitivity property (see Definition 5). Our algorithm adapts the diamond
sampling technique of [2] for approximate triangle counting, and can also be parallelized easily. No
parallel algorithms have been developed for private subgraph counting so far.

• Extending the approach of [23], we design a private higher-order local sensitivity approach for
subgraph counting, which gives privacy even when the higher-order local sensitivities are estimated
approximately (Theorem 7). This yields the first private algorithm to count the number of embeddings
of any subgraph with ℓ edges in time O(n2ℓ), using less noise than global sensitivity. For the specific
case of paths with ℓ edges, we develop an algorithm that gives a very close approximation to the
higher-order sensitivity in time O(h(d, t, ℓ)poly(n)), where d and t are the degeneracy and treewidth
of G, respectively (defined later). Thus, for paths, the running time does not grow as O(nℓ) for graphs
with bounded degeneracy and treewidth. These properties have been used extensively in developing
efficient algorithms for subgraph counting and other graph mining tasks, e.g., [5, 13, 6]; but, they
haven’t been used for private algorithms.

•We experimentally evaluate our algorithm for counting #triangles (Section 6). We show that our
algorithm for estimating the smooth sensitivity has very good approximation factor, and significantly
better running time than the exact algorithm. Using approximate smooth sensitivity for counting
#triangles gives good accuracy even for fairly low ϵ values, suggesting that using approximate smooth
sensitivity does not compromise performance. Our algorithm also has good scaling, and is the first
private algorithm for counting #triangles which has been run on networks with over 2 million edges.

We note that many details, including proofs are presented in the Supplementary Material (SM).

2 Related Work

The area of DP graph algorithms is quite large and active. There has been a lot of work on DP
algorithms for many basic graph problems, such as community detection, subgraph counting, finding
small cuts, and releasing synthetic graphs [25, 28, 30, 33, 16, 3, 15, 21, 17]. There is some work on
graph algorithms under local DP, e.g., [16], but most of the prior work has been for global DP (as
defined in Section 3), and is our focus in this work. We refer to [27] for a recent survey on private
graph algorithms. For brevity, we only discuss prior work on private subgraph counting that is directly
related to our paper, and in the edge-DP model. We omit the discussion on private estimation of edge
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Privacy model Runtime
Global Sensitivity ϵ O(1)

Ladder function [10] (ϵ, δ) O(matrix mul. of size n)
Recursive mechanism [7] (ϵ, δ) O(mn)
Restricted Sensitivity [3] (ϵ, δ) O(mn)

Blackbox Transformation [4] (ϵ, δ) O(non-private #∆ alg.)
(Exact) Smooth Sensitivity [23] (ϵ, δ) O(matrix mul. of size n)

Our method (ϵ, δ) O(m log2 n) for (C,Λ)-graphs with constant C,Λ

Table 1: Summary of the characteristics of differentially private #triangle counting algorithms in the edge-
privacy model (the other works mentioned here consider other subgraphs also, but we only focus on the runtime
of counting #triangles). The runtime of Blackbox Transformation [4] includes the calculation of an approximated
triangle counts, while all others assume the true counts are given. The runtime of our method is reported with
δ = Ω(n−2) and constant γ (see Corollary 1).

density and degree distribution, which has been studied more extensively, e.g., [14], and results for
node-DP [25], which is less studied.

As mentioned earlier, global sensitivity, denoted by GS(f) for a graph metric f(G) (defined in
Section 3) is high for many subgraph counting problems. Adding noise based on GS(f) leads to
low accuracy, while noise based on just LSf , the local sensitivity, need not be private [31]. Nissim

et al. [31] develop the notion of smooth sensitivity S∗
f, β(G) = maxG′

(
LSf (G

′) · e−β·d(G,G′)
)

,
where d(G,G′) is the swap distance between graphs G and G′, and show that adding noise based on
S∗
f, β(G) is private. However, smooth sensitivity becomes computationally much more challenging,

since its definition involves considering local sensitivity at distance t for all t, which doesn’t seem
like a polynomial time computation. Nissim et al. [31] develop polynomial time algorithms for
computing the smooth sensitivity exactly for counting #triangles, which was improved slightly to
min{mdmax,M(n)} [23], where M(n) is the matrix multiplication time. Polynomial time smooth
sensitivity bounds were also shown for a small number of other subgraphs, but no polynomial time
algorithms are known beyond that. Interestingly, no hardness bounds are known for smooth sensitivity;
the existing hardness bounds, e.g., [23, 36] only give hardness for computing local sensitivity at
distance t. In order to handle other subgraph counts, Karwa et al. [23] develop a different technique
involving local sensitivity of local sensitivity (motivated by the propose-test-release technique [12]),
and use it for private counts of k-cliques. Zhang et al. [36] develop the technique of ladder functions
to handle other kinds of subgraphs, and use it to privately count #k-cliques in the graph in time
O(nT (n)), where T (n) is the time needed to count #k-cliques non-privately. A few other techniques,
such as inverse sensitivity [1] and propose-test-release [12] are known. However, private algorithms
for counting most subgraphs including paths and trees are not known. The recent work of [4] is
related, but only considers approximation in the queries, but not in sensitivity. As a result, our
methods give significantly higher efficiency. We also note that Blocki et al. [4] develop a black-box
approach to make certain approximation algorithms differentially private. However, their work
requires the function being computed to have “small” global sensitivity.

The difficulty of subgraph counting with DP has motivated work in slight variations of the DP model.
Rastogi et al. [34] consider the problems of releasing more general subgraph counts. However, they
consider a relaxed version of edge-DP, called (edge) adversarial privacy, that uses a Bayesian attacker.
Chen et al. [7] design a different approach that gives lower bounds for general subgraph counts
through a linear program to form a recursive strategy. But, as mentioned in [36], their method suffers
from a bias between the true query answer and the lower bound, in exchange for less noise. [32]
presents a different approach based on iterative refinement that estimates counts by degree, and can
be implemented in time O((maxv deg(v))

3m).

There have been studies on subgraph counting (including triangle counting) under other privacy
models: the node-DP model [25, 10], and the shuffle model [18]. We note that our analysis of
approximate smooth sensitivity holds for other privacy models as well, and we expect this could be
used for improved private queries for other problems. However, the specific technique using diamond
sampling for faster triangle counting only holds in the edge-DP model. Fundamentally new ideas are
needed for extending this technique to node-DP and others. For a more comprehensive review of
recent development on subgraph counting with privacy, we refer readers to [27].
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3 Preliminaries

A non-induced embedding of a graph H = (VH , EH) into a graph G = (V,E) is a mapping
ϕ : VH → V such that (ϕ(u), ϕ(v)) ∈ E whenever (u, v) ∈ EH . We use fH(G) to denote the
number of non-induced embeddings of a H in G. We drop the subscript H when it is clear from the
context. Let ℓ = |VH | and n = |V |. A denotes the adjacency matrix of graph G. Let N(i) and N(i)
denote the set of neighbors and non-neighbors of node i ∈ V , respectively; let d(i) = |N(i)| and
d̄(i) = n− 1− d(i). Let dmax = maxv∈V d(v) denote the maximum degree.

Differential privacy on graphs. Let G denote a set of graphs on a fixed set V of nodes. For a graph
G ∈ G, we use V (G) and E(G) to denote the set of nodes and edges of G, respectively. In this
paper, we will focus on the notion of edge privacy [3], where all graphs G ∈ G have a fixed set of
nodes V (G) = V , and two graphs G,G′ ∈ G are considered neighbors, i.e., G ∼ G′, if they differ in
exactly one edge, i.e., |E(G)− E(G′)| = 1.

Definition 1. A (randomized) algorithm M : G → R is (ϵ, δ)-differentially private if for all subsets
S ⊂ R of its output space, and for all G,G′ ∈ G, with G ∼ G′, we have Pr[M(G) ∈ S] ≤
eϵPr[M(G′) ∈ S] + δ [12, 3].

Problem statement: subgraph counting with edge differential privacy. Given a family of graphs
G on a set V of vertices, a subgraph H , and parameters ϵ, δ, construct an (ϵ, δ)-differentially private
mechanism MfH : G → 2V , such that |MfH (G)− fH(G)| is minimized.

We discuss the notions of sensitivity mostly using the notation from [23, 31], with slight changes.
Let LSf (G) = maxG′∼G |f(G)− f(G′)| denote the local sensitivity of f ; we also use LS(f(G))
to denote this. GS(f) = maxG LS(f(G)) denotes the global sensitivity. The local sensitivity of a
function f on a graph G at distance t is defined as LS(t)

f (G) = maxd(G,G′)≤t LSf (G
′)

Definition 2. (Smooth bound on LS [31]) For β > 0, a function S : Dn → R+ is a β-smooth upper
bound on LSf if it satisfies the following conditions: (1) for all x ∈ Dn: S(x) ≥ LSf (x), and (2)
for all x ∼ y ∈ Dn: S(x) ≤ eβ · S(y).

S∗
f,β(G) = maxG′(LS(f(G′)) · e−βd(G,G′)) is the smallest function satisfying Definition 2, and is

referred to as the β-smooth sensitivity of f at G. Using the local sensitivity at distance t, the smooth
sensitivity can be written as S∗

f,β(G) = maxt=1,...,(n2)
e−tβLS

(t)
f (G).

Definition 3. (Admissible Noise Distribution) [31] A probability distribution on Rd given by a
density function h is (α, β)-admissible if, for α = α(ϵ, δ), β = β(ϵ, δ), the following conditions
hold for all ∆ ∈ Rd and λ ∈ R satisfying ||∆||1 ≤ α and |λ| ≤ β, and for all measurable S ⊆ Rd:
(1) Sliding property: PrZ∼h[Z ∈ S] ≤ eϵ/2 PrZ∼h[Z ∈ S +∆] + δ/2, and (2) Dilation property:
PrZ∼h[Z ∈ S] ≤ eϵ/2 PrZ∼h[Z ∈ eλ · S] + δ/2.

An important example of an admissible noise distribution is the Laplace mechanism Lap(λ) proba-
bility density function is h(z) = 1

2λe
−|z|/λ.

Lemma 1. (Calibrating noise to Smooth Sensitivity [31]) Let Z be a random variable sampled from
an (α, β)-admissible noise. Let Sf,β be the β-smooth upper bound on the local sensitivity of f . Then
algorithm A(x) = f(x) +

Sf,β(x)
α Z is (ϵ, δ)-differentially private.

Definition 4. (An (α, δ)-approximation to a function f ). f̃ is said to be an (α, δ)-approximation
to a function f if for any input x, with probability at least 1 − δ, we have (1 − α)f(x) ≤ f̃(x) ≤
(1 + α)f(x).

Social networks generally have the property that nodes have high clustering coefficient, which is the
fraction of pairs of neighbors of a node which are connected. We consider a more restricted notion
here. We refer to a path with r edges as an r-path. We say a 2-path i, j, k is “closed” if (i, k) ∈ E,
i.e., i, j, k form a triangle in G.

Definition 5. ((C,Λ)-transitive graph) A graph is said to be (C,Λ)-transitive if for any vertex j ∈ V
and edge (i, j) ∈ E, we have: if deg(j) > Λ, then C fraction of all the 2-paths starting with i, j are
closed.

4



4 Approximate smooth sensitivity and fast private triangle counting

We first show that we can ensure privacy even if the smooth sensitivity S∗
f,β is estimated approxi-

mately; we then extend it to show that this works when f(G) and S∗
f,β both are estimated approxi-

mately.
Definition 6. S̃f,β is said to be a γ-upper approximation of the smooth sensitivity S∗

f,β of function
f if S∗

f,β(D) ≤ S̃f,β(D) ≤ eγS∗
f,β(D) for any dataset D. S̃f,β is said to be a (γ, δ′)-upper

approximation of the smooth sensitivity S∗
f,β of function f if S̃f,β is a γ-upper approximation for any

dataset D with probability at least 1− δ′.

We observe below that calibrating noise using a (γ, δ′)-approximation of the smooth sensitivity gives
us privacy. We assume f is a real valued function, since we are focused on graph statistics.
Lemma 2. (Lemma 12) Let S̃f,β be a (γ, δ′)-approximation to S∗

f,β , for γ = β = 16ϵ
ln(2/δ) . Then,

A(D) = f(D) + Lap(
2S̃f,β(D)

ϵ ) is (ϵ, eϵ/2+1
2 δ + 2δ′)-differentially private.

Approximate Smooth Sensitivity for Approximate Query. We now show that approximate smooth
sensitivity can be used even when f(G) is computed approximately, which becomes a bit more
challenging.

Let Af be (α1, δ1)-approximation of a function (query) f for a small constant α1 < 1/2. Let S̃f,β

be (γ, δ2)-upper approximation to S∗
f,β . We will show that we can utilize Af and S̃f,β to calculate a

differentially private version of the function f .

For the purpose of privacy analysis, we define the functions gf , sf , and Sgf as below. Those functions
may not be computed efficiently. However, they are only used for the analysis, and the actual algorithm
does not compute them. The actual computation (Algorithm 3) will only utilize Af and S̃f,β to output
the differentially private version of f . We follow some of the analysiss of [4] to prove our privacy
guarantees below. We share (with [4]) the same process of proving that Sgf (D) is a smooth-upper
bound of the local sensitivity (Smooth Sensitivity) of gf . The main difference is our analyses has
to take into account the newly defined function sf–which is a bounded variant of the Approximate
Smooth Sensitivity (S̃f,β , which approximates S∗

f,β), while [4] uses the global sensitivity GSf of
f . As we can see in Lemma 13, the second condition requires Sgf (D) ≤ eβ

′
Sgf (D

′) for any pair
of neighbor datasets D ∼ D′. While GSf remains unchanged in both D and D′, S̃f,β may have
different values for D and D′ which makes it more difficult to analyze Sgf . We also have to take
into account the small probability δ2 that S̃f,β(D) /∈ {Sf,β(D), eγSf,β(D)}, that will add up in the
δ-part of (ϵ, δ)-DP of the final output.
Definition 7. Let Af be an (α1, δ1)-approximation of f . We define functions gf and sf as:

gf =


Af (D) if (1− α1)f(D) ≤ Af (D) ≤ (1 + α1)f(D),

(1− α1)f(D) if Af (D) < (1− α1)f(D),

(1 + α1)f(D) if Af (D) > (1 + α1)f(D).

(1)

sf =


S̃f,β(D) if Sf,β(D) ≤ S̃f,β(D) ≤ eγSf,β(D),

Sf,β(D) if S̃f,β(D) < Sf,β(D),

eγSf,β(D) if S̃f,β(D) > eγSf,β(D).

(2)

Let Sgf (D) = 4α1gf (D) + 2sf (D)

Lemma 3. (Lemma 13) Given gf , sf , and Sgf as defined above, Sgf is a β′-smooth upper bound of
the local sensitivity of gf , where β′ ≥ 4α1 + γ + β and α1 < 1/2.

In order to prove that Sgf is a β′-smooth upper bound of the local sensitivity of gf , we have to
prove the two conditions: LSgf (D) ≤ Sgf (D), and Sgf (D) ≤ eβ

′
Sgf (D

′) for any pair of neighbor
datasets D ∼ D′. The full proof is in Lemma 13 in the SM. Theorem 1 below summarizes our result.
Theorem 1. (Theorem 4) Let Af be a (α1, δ1)-approximation to f , S̃f,β be a (γ, δ2)-upper
approximation to S∗

f,β , for γ = β = 8ϵ
ln(2/δ) , α1 = 4ϵ

ln(2/δ) . Then, A(D) = Af (D) +

Lap(
8α1Af (D)+4S̃f,β(D)

ϵ ) is (ϵ, eϵ/2+1
2 δ + 2δ1 + 2δ2)-differentially private.
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4.1 Application: fast private triangle counting

In this section, we study the problem of computing f∆(G), the number of triangles
in a graph G(E, V ), by fast approximation of its smooth sensitivity. Recall the def-
initions of local sensitivity at distance t, denoted by LS

(t)
f (G), defined in Section 3.

Figure 1:
Paths (i, k, j)
and (i, o, j)
represent
wedges formed
by nodes
i, j [2].

We denote the local and smooth sensitivity of f∆(G) by LS
(t)
∆ (G) and S∗

∆,β(G).
Let aij =

∑
k∈[n] AikAjk denote the number of common neighbors of nodes i

and j in a graph and bij =
∑

k∈[n] Aik ⊕ Ajk denote the number of nodes that

are neighbors of i or j but not both. Then it has been shown that LS(t)
∆ (G) =

maxi,j cij(t) where cij(t) = min
(
aij +

t+min(t,bij)
2 , n− 2

)
(Claim 3.13 of [31]).

We can rewrite this as LS(t)
∆ (G) = min(maxi,j

(
aij +

bij
2 + t

2

)
,maxi,j aij+t, n−

2) = min(maxi,j
deg(i)+deg(j)

2 + t
2 ,maxi,j aij + t, n− 2).

The bottleneck in computing LS
(t)
∆ (G) (and S∗

∆,β(G)) is estimating â = maxi,j aij .
We adapt the diamond sampling technique of [2] for this task. By doing that, we can

quickly calculate L̂S
(t)

∆ (G) = min(maxi,j
deg(i)+deg(j)

2 + t
2 , â+ t, n− 2) The core

idea in diamond sampling is to find a “diamond” (a 4-cycle) of the form (i, o, j, k)
obtained by the intersection of two “wedges” (a 2-path) (i, o, j) and (i, k, j), as shown
in Figure 1. Since any pair (i, j) is part of a2ij diamonds, the probability of selecting
such a diamond is proportional to a2ij . This idea is formalized in Algorithm 4. Let
W be the matrix Wki = deg(k)× deg(i) for all (k, i) ∈ E, and 0 for all other entries.

We first note that if â = 0, it must be the case that G has no paths of length ≥ 2, for if there is a
2-path i, k, j, then aij ≥ 1. Therefore, if â = 0, we can determine LS

(t)
∆ (G) exactly in time O(m).

Therefore, we assume that â ≥ 1 in the rest of this section.

Even though Algorithm 4 can quickly estimate the quantity max a2ij within a specific bound, it
can only do so with the number of iterations that is sufficiently large–which its exact threshold is
unknown without the access to the dataset and the value of interest (max a2ij) itself (see Lemma 15).
We overcome this issue with the following idea. First, we propose some estimation τ of max a2ij and
run an instance of Algorithm 4 with the number of iterations computed from τ . Second, we compare
the estimation of max a2ij returned by Algorithm 4 with τ to determine if we over- or under-estimate
τ . Third, we adjust τ accordingly and repeat the process until we find a good value of τ .

Algorithm 1 τ estimation
Input: G(E, V )
Output: τ : τ < maxij a

2
ij

1: k := 0, τk := n2, θ := 1
2

2: while TRUE do
3: Calculate s := 3c logn∥W∥

θ2τk
4: x := Algorithm 4(G, s)

5: if maxij xij
∥W∥
s < 3

2τk then
6: τk+1 := 3

4τk
7: k := k + 1
8: else
9: Return τk

10: end if
11: end while

Algorithm 2 Algorithm to compute S̃∆,β(G)
Input: G(E, V ), β, δ, γ

Output: S̃∆,β(G)

1: τk := Algorithm 1(G)
2: τ := τk/3

3: θ := e2γ−1
e2γ+1

4: c := max(logn(1/(2δ)) + 2, 12θ2)

5: Calculate s := 3c logn∥W∥
θ2τ

6: x := Algorithm 4(G, s)

7: â2 :=
maxij xij

∥W∥
s

1−θ

8: Calculate L̂S
(t)

∆ (G), t = 1, . . . , log (n)/β, using â

9: Return maxt=1,...,log (n)/β e
−tβL̂S

(t)

∆ (G)

We implement Algorithm 1 based on this idea. In the algorithm, we first set τ to its largest possible
value (n2) knowing that we are over-estimating τ (τ > max a2ij). We note that by over-estimating
τ , Algorithm 4 (line 6) may not have enough iterations to guarantee the convergence of maxxij to
max a2ij . Note that in the output of Algorithm 4, for any i, j, xij is an approximation of a2ij . We
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determine if we are truly over-estimating τ by applying Corollary 3 (in the SM), comparing the
estimation maxij xij from Algorithm 4 in line 6 to (3/2)τ . The proof utilizes an idea that even
though maxxij may not converge to max a2ij and we may not determine it directly, maxxij can
converge to τ once we under-estimate τ (i.e., τ < max a2ij) and that we can check this convergence
easily. Corollary 3 states that when maxxij < (3/2)τ , max a2ij < 3τ which means we should
lower τ . We keep running Algorithm 4 and reducing τ by 3/4 in each iteration until the estimation
of maxxij lies above (3/2)τ . By Corollary 3, we show that when it happens, τk ≤ max a2ij that
guarantees the convergence of maxxij to max a2ij . Lemma 4 shows that when the algorithm outputs
τk, w.h.p., the true value of interest max a2ij is within τk and 4τk.
Lemma 4. (Lemma 18 in SM) Let τk be the output of Algorithm 1. With probability at least
1− 1/nc−3, τk < maxij a

2
ij < 4τk.

Algorithm 2 calculates an approximation of max a2ij for the Approximated Smooth Sensitivity with
any γ (which is required for Differential Privacy with an arbitrary ϵ). Since τk is guaranteed to
be close to the true value of max a2ij (within a constant factor of 4), we run the last instance of
Algorithm 4 with some constant θ, which is derived from the target approximation factor γ. Lemma 5
shows that the estimation output by Algorithm 4 in line 6 falls within the range of (1− θ, 1 + θ) of
the true value. Following that, Theorem 2 guarantees that the quantity output by Algorithm 2 is a
(γ, δ)-upper approximation to Smooth Sensitivity S∆,β(G) of the triangle count of graph G.

Lemma 5. (Lemma 19 in SM) With probability at least 1 − δ in Algorithm 2, maxij xij
∥W∥
s ∈

(1− θ, 1 + θ)maxij a
2
ij .

Theorem 2. (Theorem 5, 6 in SM) Suppose maxij aij > 0. Algorithm 2 outputs S̃∆,β(G), which is

a (γ, δ)-upper approxmiation to S∆,β(G), in O

(
logn ( 1

2δ )∥W∥1 logm logn(
e2γ−1

e2γ+1

)2
maxij a2

ij

+m+ logn
β + n

)
time.

Proof. (Sketch) Algorithm 1 has a run-time of kO(s′ logm)) where s′ = O(∥W∥1c log n/(θ2τ))
as it executes Algorithm 4 with varying s = s′ and k is the number of search steps. Since at the
end of the search τk > maxij a

2
ij/4 w.h.p., we know that k = O(log 4n2

maxij a2
ij
). In the first step,

we start with τ0 = n2 and reduce τk by a factor of 3/4 after each step. The total running time will
be O(∥W∥1 × logm× c logn

θ2 × 1
n2 (1 + (3/4)−1 + . . . (3/4)−k) = O

(
∥W∥1c logm logn

θ2 maxij a2
ij

)
. Finally,

Algorithm 2 has a run-time of O

(
logn (2δ)∥W∥1 logm logn(

e2γ−1

e2γ+1

)2
maxij a2

ij

+m+ logn
β + n

)
taking into account the

time required to compute W (O(m)) and S̃∆,β(G) (O(log (n)/β + n)) and substituting the values
of c and θ as described in the Algorithm.

Corollary 1. Suppose maxij aij > 0, G is (C,Λ)-transitive (as in Definition 5), and δ ≥ n−2. Then,
for any parameter γ > 0. Algorithm 2 outputs S̃∆,β(G), which is a (γ, δ)-upper approxmation to
S∆,β(G), in O(mmax(1/C2,Λ2)) logm log n/min(γ4, 1/4) + n) time.

Proof. Since
(

e2γ−1
e2γ+1

)2
> γ4 for 0 < γ < 1/

√
2, we have

(
e2γ−1
e2γ+1

)2
> min(γ4, 1/4). Next,

for any node i and j ∈ Ni, we have deg(j)
maxi′j′ ai′j′

≤ max{ 1
C ,Λ}: if deg(j) > Λ, it must

be the case that at least C-fraction of the paths i, j, k for k ∈ Nj are closed, which means
aij ≥ C · deg(j), and so deg(j)

maxi′j′ ai′j′
≤ 1

C ; if deg(j) ≤ Λ, we have deg(j)
maxi′j′ ai′j′

≤ Λ. There-

fore, ∥W∥
maxij a2

ij
=
∑

i∈V (G)

∑
j∈Ni

deg(i)×deg(j)
maxi′j′ a

2
i′j′

=
∑

i∈V (G)
deg(i)

maxi′j′ ai′j′

∑
j∈Ni

deg(j)
maxi′j′ ai′j′

≤∑
i∈V (G)

∑
j∈Ni

max( 1
C2 ,Λ

2) = 2mmax( 1
C2 ,Λ

2), the Corollary follows.

5 Higher-order local sensitivity and improved bounds for path counting

As mentioned earlier in Section 2, Karwa et al. [23] develop a different technique involving local
sensitivity of the local sensitivity, and use it for private counts of k-cliques, since it seems hard to
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Figure 2: Exaples of compact subgraphs and anchor edges in the algorithm for computing higher-order
sensitivity of paths: (Left) D = {r1, r2, r3, r4}, edges (r1, r

′
1), (r2, r′2), (r3, r′3) and (r4, r

′
4) are external

anchor edges, while (r5, r
′
5) is an internal anchor edge. Nodes s and t are the starting and ending nodes of the

path; (Middle) D = {r1, r2, r3}, and (r1, r
′
1), (r2, r′2), (r3, r′3) are external anchor edges, while (r5, r

′
5) is

an internal anchor edge. Node s is the starting node of the path, and the path ends at some other node, not in
this compact subgraph; (Right) D = {r1, r2, r3, r4}, edges (r1, r′1), (r2, r′2), (r3, r′3) and (r4, r

′
4) are external

anchor edges, while (r5, r
′
5) and (r6, r

′
6) are internal anchor edges. Paths pass through this compact subgraph,

without starting or ending in it.

estimate smooth sensitivity for such subgraphs. We generalize it, and develop a multi-level local
sensitivity approach, extending [23], for privately counting the number of copies of any subgraph H;
as in the case of smooth sensitivity, we show that this also works with approximate queries.

Let ℓ denote the number of edges in H . Our main idea involves finding private bounds for higher-
order local sensitivity. Let L = {{i, j} : i, j ∈ V } denote all possible pairs of nodes in V . For
subgraph H , and a subset S ⊂ {{i, j} : i, j ∈ V } of pairs of nodes, let fH(G,S) denote the
number of embeddings of H in the graph G(V,E ∪ S), which contain all the edges corresponding
to pairs of nodes in S. For S = ∅, fH(G, ∅) is the number of embeddings of H in G. We drop
the subscript H when it is clear from the context. Let f (k)(G) = max|S|=k f(G,S); note that
f (0)(G) = f(G). It can be seen that LS(f (k)) ≤ f (k+1)(G), which is the basis for considering
higher-order local sensitivity for subgraph counting. However, a careful analysis of the privacy
bounds becomes involved. Our approach is described in Algorithm 5 in the supplementary material,
and the main result is summarized below.
Theorem 3. Let g(k)(G) = f (k)(G)+g(k+1)(G) ln 1/δ2

ϵ2
+Lap(g(k+1)(G)/ϵ2), for k = ℓ−1, · · · , 0

as computed in Algorithm 5. Then, g(0)(G) is an ((km + 1)ϵ2, δ2 + (km + 1)eϵ2δ2)-DP estimate of
f(G).

The above result, and the definition of f (k)(G) implies that for any subgraph with ℓ edges, the
higher-order local sensitivity approach can be run in time O(n2ℓ). This can be improved further for
paths and trees, as summarized below.
Lemma 6. Private counting for a graph H with a constant ℓ number of edges using higher-order
local sensitivity (Algorithm 5) has running time O(n2ℓ). When H is a path or tree with ℓ edges,
Algorithm 5 has running time O(nℓ+1).

Higher-order local sensitivity with approximate queries. We show that our method works even
if we have a very good approximation f̂(x) to f(x), instead of the exact value (Theorem 7 in the
supplementary material). This allows us to use f̂(x) instead of f(x) in Algorithm 5.

Improved bounds for path counting in graphs with bounded degeneracy and treewidth. We
say that G has degeneracy d, if the nodes can be ordered so that each node has at most d neighbors
with higher index [13]. Informally, G has treewidth t if it has recursive balanced separators of size t;
see [11] for details. There has been a lot of work showing that non-private algorithms for subgraph
counting can be done efficiently when G has either of these parameters bounded, e.g., [5, 13, 6, 11].
We show that if G has degeneracy d and treewidth t, then the higher-order local sensitivity of paths
of length k can be computed in time O(h(d, t, k)poly(n)), where h(d, t, k) is independent of n; thus
the running time does not scale as nk.

Our algorithm and analysis are summarized in Section E in the supplementary material (Theorem 8).
Recall that the goal is to compute f (k)(G) = maxS:|S|≤k f(G,S). We summarize the main ideas
here. We show that a feasible solution, which involves fixing a subset S of pairs of nodes, can be
viewed as a tuple of at most k disjoint subgraphs (Hi, Di), referred to as k-compact subgraphs. This is
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Network Description #nodes #edges #triangles
Oregon-1 AS peering information-Oregon route-views 10,670 22,002 17,145
ca-HepTh Collaboration network-Arxiv High Energy Physics 9,877 51,971 28,339
ca-GrQc Collaboration network-Arxiv General Relativity 5,242 14,496 48,620
Oregon-2 AS peering information-Oregon route-views 10,900 31,h180 82,857
ca-CondMat Collaboration network-Arxiv Condensed Matter 23,133 186,936 173,361
loc-Brightkite Brightkite location based online social network 58,228 428,156 494,728
com-Amazon Amazon product network 334,863 925,872 667,129
email-Enron Email communication network- Enron 36,692 367,662 727,044
ca-AstroPh Collaboration network-Arxiv Astro Physics 18,772 198,110 1.35× 106

com-DBLP DBLP collaboration network 317,080 2,099,732 2.22× 106

loc-Gowalla Gowalla location based online social network 196,591 950,327 2.27× 106

ca-HepPh Collaboration network-Arxiv High Energy Physics 12,008 237,010 3.36× 106

Table 2: Statistics of tested networks.

defined to be a subgraph which satisfies the following conditions (Figure 6): (1) H = Gσ(v, k, F
(i))

for some node v and subset F (i) = {e1, . . . , ei}, where Gσ is the k-hop graph starting at node v,
only restricted to higher degeneracy order nodes than v, (2) the k-hop neighborhood is expanded as
edges in F (i) (referred to as internal anchor edges) are added, one at a time, and (3) D is a subset of
vertices in H , and is referred to as the set of connectors. The compact subgraphs are connected via
edges between connector nodes.

We show that paths using edges from S (which contribute to the count f(G,S)) can be viewed to
consist of segments within these compact subgraphs, passing through internal anchor edges, as well as
edges between connectors (which are also from S). We guess the number of path segments between
connectors within a factor of (1 + 1/(log n)c) for a constant c, which allows us to search for a tuple
of compact subgraphs with the corresponding approximate counts. We show that the number of such
tuples is O(h(d, k)poly(n)), and existence of given tuple can be determined in a similar time.

6 Experimental Results
We evaluate our algorithm for privately computing #triangles using approximate smooth sensitivity
(Algorithm 2), compared with the exact version of smooth sensitivity and other baselines.

Datasets. We consider different real-world networks from [26] as inputs. The networks have have
sizes range from 10K − 300K nodes, with one of the largest ones having over 2 million edges.
Statistics of the networks are presented in Table 2. Due to space limit, we only present the results for
some selected networks here. The full results are presented in the SM.

Infrastructure. All algorithms are implemented in C++ and OpenMP framework for parallelization.
We ran our experiments on a system with a 48-core Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz
and 1.5TB RAM and limit the number of parallel threads in all experiments to 40.

Baselines. We implement two baseline methods: the exact smooth sensitivity of triangle count to
calibrate Laplacian noise (denoted in our experiment as Karwa et al.) [23], and using the ladder
function method (Zhang et al.) [36].

Metrics for evaluating performance. For each input network G, we calculate the following metrics:
• Accuracy of the private triangle counts, defined as TRIANGLE COUNT RELATIVE ERROR =
|Mf∆

(G)−f∆(G)|
f∆(G) , where Mf∆ is the tested private mechanism to output f∆(G).

• Speedup of Algorithm 2, which compares its running time with the time required for [36, 23]
SPEEDUP = Runtime of our algorithm on G

Runtime of baseline algorithm on G (Figure 5).
• Approximation error of Algorithm 2 for estimating smooth sensitivity, defined as SENSITIVITY

APPROXIMATION ERROR = S̃β(G)−Sβ(G)
Sβ(G) (Figure 4).

Parameters. We test our algorithms at different privacy budgets ϵ ∈ {2{−3,−2,−1,0,1}} and a fixed
δ = 10−6. We report the average accuracy and runtime of five (5) repeats of the private triangle count
via approximate smooth sensitivity experiments due to the randomness used in the algorithm. For the
exact calculation, we calculate the smooth sensitivity once and re-sample the noise in each run, since
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the exact calculation of the sensitivity is deterministic and does not change for each setting. We use
the true counts of triangles of the networks as reported by [26].

Figure 3: Triangle Count Relative Error, show-
ing the accuracy of the private triangle count with
noise calibrated by (1) our approximate smooth
sensitivity (Algorithm 2), (2) the exact smooth sen-
sitivity (Karwa et al.), and (3) the ladder function
(Zhang et al.)

Figure 4: Error factor in approximate smooth sen-
sitivity output by Algorithm 2 (relative to the exact
smooth sensitivity) on selected networks. Dotted
lines indicate the theoretical upper bound factor eγ

(guaranteed by Theorem 2).

Figure 5: Speedup of Algorithm 2 over the exact
smooth sensitivity (Karwa et al.), and the ladder
function (Zhang et al.)) on selected networks.

Experimental Results. The results show that our
algorithm can achieve similar levels of accuracy to
the exact calculation while being several orders of
magintude faster. Figure 3 shows that when using
approximate smooth sensitivity, the private triangle
counts reach the accuracy of using the exact cal-
culation of the smooth sensitivity across different
privacy budgets in all but two networks (Oregon 1
and Oregon 2). In these two networks, the smooth
sensitivities are relatively large in comparison with
the triangle counts, which makes the noise fluctuate
more for the approximate estimate (see Figure 8).

Figure 4 shows that all approximate smooth sensitivities are within some small factor of the exact
smooth sensitivities. Noter that approximate smooth sensitivities are always larger than the true
smooth sensitivity. It is important since a lower value may expose the privacy due to an inadequate
noise magnitude. In general, a smaller value of ϵ (higher privacy guarantee) requires a more accurate
estimation of the sensitivity. It is illustrated in Figure 4 as the approximate smooth sensitivity is close
to the exact smooth sensitivity in all networks at ϵ = 0.125 or ϵ = 0.25.

Figure 5 shows that our approximation algorithm is orders of magnitude faster than the exact algorithm.
In large graphs (Amazon, DBLP, Gowalla), the speedup may reach 1, 000-fold. Generally, a lower ϵ
requires a smaller approximation factor (γ), which in turn requires a larger number of iterations to
reduce the error in approximation. The majority of tested networks have speedup factors between 10
and 100-fold across all privacy budgets ϵ.

7 Conclusions and future work

We give significant improvement in the running time for privately counting the number of embeddings
of constant size subgraphs in a graph, without using noise based on global sensitivity. Despite a lot of
work on private subgraph counting, efficient algorithms were not known for many subgraphs. Our
results for triangles show significant benefits of our approach, by improving on the runtime over
all prior private algorithms. Our approach of using approximations to sensitivity metrics opens the
possibility of using other techniques from graph sampling and sketching to obtain more efficient
algorithms. For general subgraphs, our focus here has been on theoretical bounds using multi-level
local sensitivity combined with approximate queries. Developing efficient and practical algorithms
for these problems is a good direction for future work.
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A Differential Privacy with high probability

Following [24], we define Indistinguishability and Point-wise Indistinguishability as follows:

Definition 8. Two random variables X,Y having the same support are (ϵ, δ)-indistinguishable if for
all set O ⊆ Supp(X),

Pr[X ∈ O] ≤ eϵ Pr[Y ∈ O] + δ and Pr[Y ∈ O] ≤ eϵ Pr[Y ∈ O] + δ

Definition 9. Two random variables X,Y are point-wise (ϵ, δ)-indistinguishable if with probability
at least 1− δ over a drawn from either X or Y , we have:

e−ϵ Pr[Y = a] ≤ Pr[X = a] ≤ eϵ Pr[Y = a]

The following lemma allows us to interpret a mechanism that is ϵ-differentially private with probability
at least 1− δ as (ϵ, δ)-differentially private.

Lemma 7. (Lemma 3.3 of [24]) If X,Y are point-wise (ϵ, δ)-indistinguishable then they are (ϵ, δ)-
indistinguishable.

We extend the definition of (ϵ, δ)-indistinguishability by allowing some small error probability δ′:

Definition 10. Two random variables X,Y having the same Support are (ϵ, δ, δ′)-indistinguishable
if for all set O ⊆ Supp(X), with probability at least 1− δ′ over a drawn from either X or Y , we
have:

Pr[X ∈ O] ≤ eϵ Pr[Y ∈ O] + δ and Pr[Y ∈ O] ≤ eϵ Pr[Y ∈ O] + δ

The following lemma allows us to interpret a mechanism that is (ϵ, δ)-differentially private with
probability at least 1− δ′ as (ϵ, δ + δ′)-differentially private.

Lemma 8. If X,Y are (ϵ, δ, δ′)-indistinguishability then they are (ϵ, δ + δ′)-indistinguishable.

Proof. Our proof is insired by [24].

We define the set Bad as follow:

Bad = {O : Pr[X ∈ O] > eϵ Pr[Y ∈ O] + δ or Pr[Y ∈ O] > eϵ Pr[Y ∈ O] + δ}

Since X,Y are (ϵ, δ, δ′)-indistinguishability, Pr[X ∈ Bad] < δ′. We have:

Pr[X ∈ O] ≤ Pr[X ∈ O \Bad] + Pr[X ∈ Bad]

≤ eϵ Pr[Y ∈ O \Bad] + δ + δ′

≤ eϵ Pr[Y ∈ O] + δ + δ′.

Similarly for Y , we have Pr[Y ∈ O] ≤ eϵ Pr[X ∈ O] + δ + δ′ and the Lemma follows.

B Missing proofs of Section 4

Approximate Smooth Sensitivity for exact queries

When we can calculate a γ-approximation of the smooth sensitivity S∗
f,β , i.e., S̃f,β is a bounded

approximation of S∗
f,β with probability 1, we can substitute S∗

f,β by S̃f,β to calibrate the noise
directly, although with a bit larger effective constant β′ = β + γ, which in turn will make the noise a
bit larger. Lemma 9 formalizes the equivalence of S∗

f,β and S̃f,β in this case.

Lemma 9. If S̃f,β is a γ-approximation of the smooth sensitivity S∗
f,β , then S̃f,β is a β′-smooth

sensitivity of f at β′ = β + γ.
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Proof. By definition of S̃f,β and S∗
f,β , it follows that S̃f,β(D) ≥ S∗

f,β(D) ≥ LSf (D) for all x.

Second, for all D ∼ D′ ∈ Dn, we have: S̃f,β(D) ≤ eγS∗
f,β(D) ≤ eγeβS∗

f,β(D
′) ≤

eγ+βS̃f,β(D
′) ≤ eβ

′
S̃f,β(D

′) , the lemma follows from Definition 2.

In the case when we can only calculate a (γ, δ′)-approximation of the smooth sensitivity, i.e., S̃f,β

is a γ-approximation of S∗
f,β with probability at least 1− δ′, Lemma 9 cannot be directly applied.

Similar to [31], we use the formalism of admissible noise, to prove we can use S̃f,β to calibrate
an (α, β)-admissible noise with appropriate values of α and β to deliver the privacy guarantee. In
Lemma 10, we analyze the output of such a mechanism on an arbitrary pair of neighbors D and D′.
We condition our analysis on the events of success of S̃f,β on both D and D′ (with probability at
least 1− 2δ′). The failure probability (at most 2δ′) will then add up to the δ-part of the final (ϵ, δ)-DP
guarantee.

Lemma 10. Let h be (α, β′)-admissible noise. Let S̃f,β be a (γ, δ′)-approximation to S∗
f,β , where

β = β′ − γ. Then, A(D) = f(D) +
S̃f,β(D)

α Z is (ϵ, eϵ/2+1
2 δ + 2δ′)-differentially private, where

Z ∼ h.

Proof. We prove that with probability at least 1 − 2δ′, A(D) is (ϵ, eϵ/2+1
2 δ)-differentially private,

and by applying Lemma 8 the Lemma follows.

Let E be the event that S∗(D) ≤ S̃f,β(D) ≤ eγS∗(D); we have Pr[E ] ≥ 1 − δ′. Similarly, let
E ′ be the event that S∗(D′) ≤ S̃f,β(D

′) ≤ eγS∗(D′) for a fixed neighbor D′ of D; we have
Pr[E ′] ≥ 1− δ′, and Pr[E ∪ E ′] ≥ 1− 2δ′. We will condition on E ∪ E ′.

Let S ⊂ R+. Let N(D) =
S̃f,β(D)

α , and define S1 = S−f(D)
N(D) , S2 = S1 + f(D)−f(D′)

N(D) = S−f(D′)
N(D) ,

S3 = S2 N(D)
N(D′) =

S−f(D′)
N(D′) .

We observe that A(D) ∈ S if and only if Z ∈ S1. Similarly, A(D′) ∈ S if and only if Z ∈ S3. We
have

Pr[A(D) ∈ S] = Pr[Z ∈ S1] ≤ eϵ/2 Pr

[
Z ∈ S1 +

f(D)− f(D′)

N(D)

]
+ δ/2

= eϵ/2 Pr[Z ∈ S2] + δ/2 ≤ eϵ Pr

[
Z ∈ S2 exp

(
ln

N(D)

N(D′)

)]
+ eϵ/2δ/2 + δ/2

= eϵ Pr[Z ∈ S3] + eϵ/2δ/2 + δ/2 = eϵ Pr[A(D′) ∈ S] + (eϵ/2 + 1)δ/2,

where the first inequality is because of Sliding Property and

|f(D)− f(D′)|
N(D)

= α
|f(D)− f(D′)|

S̃f,β(D)
≤ α
|f(D)− f(D′)|

S∗(D)
≤ α,

which satisfies the condition for the Sliding Property,

and the second inequality is because of Dilation Property and∣∣∣∣ln N(D)

N(D′)

∣∣∣∣ =
∣∣∣∣∣ln S̃f,β(D)

S̃f,β(D′)

∣∣∣∣∣ ≤
∣∣∣∣ln(eγ S∗(D)

S∗(D′)

)∣∣∣∣ ≤ |γ + ln e±β | ≤ β′,

which satisfies the condition for the Dilation Property.

Lemma 11 specializes Lemma 10 by using Laplacian noise. We note that this is a generalization
of [31]’s analysis of Laplacian noise. We introduce parameter k to control the magnitude of the
Laplacian noise, while [31]’s analysis fixed it to 1. This design gives us the flexibility to choose the
values of α and β given fixed targets of ϵ and δ. When k = 1/2, our design yields the same results
as [31].
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Lemma 11. Let α = kϵ and β = 2k2ϵ
log(2/δ) for any constant k > 0, then Lap(2k) is an (α, β)-

admissible noise.

Proof. For som real-valued random variable Y , let ρδ(Y ) be the least solution to Pr[Y ≤ ρδ] > 1−δ.

Let δ′ = δ/2. Let Z ∼ Lap(2k). It follows that |Z| ∼ Exponential(1/(2k)). We will solve the
value of ρδ′(|Z|) as: 1− e−2k|ρδ′ (|Z|)| = 1− δ′ or ρδ′(|Z|) = log(2/δ)

2k .

Substituting ρδ′(|Z|) to the formula of β, we have:

β =
2k2ϵ

log(2/δ)

=
kϵ

ρδ′(|Z|)

We first prove the Sliding property of Lap(2k). It is equivalent to prove that ln(h(z+∆)
h(z) ) ≤ ϵ/2 for

any |∆| < α and h(z) is the PDF of Lap(2k). For the distribution Lap(2k), h(z) = 1
4ke

−|z|/(2k).
We have:

ln

(
h(z +∆)

h(z)

)
= ln

(
exp(−|z +∆|/(2k))

exp(−|z|/(2k))

)
=

1

2k
(|z| − |z +∆|)

≤ 1

2k
|∆|

≤ 1

2k
kϵ

=
ϵ

2
.

We next prove the Dilation property of Lap(2k), or prove that ln( e
λh(eλz)
h(z) ) ≤ ϵ/2 with probability

at least 1 − δ/2. In the first case, setting λ > 0, we have h(eλz) < h(z), and that ln( e
λh(eλz)
h(z) ) ≤

λ ≤ kϵ
ρδ′ (|Z|) . Since |Z| ∼ Exponential(1/(2k)), the median of the distribution of |Z| is ln(2)

1/(2k) =

2 ln(2)k. With δ < 1, we have δ′ < 1/2 and therefore ρδ′(|Z|) ≥ median(|Z|) = 2ln(2)k. It
follows that ln( e

λh(eλz)
h(z) ) ≤ kϵ

2 ln(2)k < ϵ
2 .

In the second case, λ < 0. We consider the ratio h(eλz)
h(z) :

h(eλz)

h(z)
=

exp(−|zeλ|/(2k))
exp(−|z|/(2k))

= exp

(
|z|
2k

(1− eλ)

)
≤ exp

(
|z|
2k
|λ|
)
.

We then have ln( e
λh(eλz)
h(z) ) ≤ λ+ |z||λ|

2k < |z||λ|
2k . Consider the event G : {z : |z| < ρδ′(|Z|)}. Under

G, we have |z||λ| 12k ≤ ρδ′(|Z|) ϵ
ρδ′ (|Z|)

1
2k = ϵ

2 . Under h, Pr[G] = 1 − δ/2, which completes the
proof for the Dilation property of Lap(2k).
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Finally, we apply a Laplacian noise with appropriate parameters to provide a concrete mechanism
using Approximate Smooth Sensitivity S̃f,β to guarantee (ϵ, δ)-DP.

Lemma 12. (Lemma 2) Let S̃f,β be a (γ, δ′)-approximation to S∗
f,β , for γ = β = 16ϵ

ln(2/δ) . Then,

A(D) = f(D) + Lap(
2S̃f,β(D)

ϵ ) is (ϵ, eϵ/2+1
2 δ + 2δ′)-differentially private.

Proof. Set k = 4, using Lemma 11 with α = kϵ = 4ϵ, and β′ = β + γ = 32ϵ
ln(2/δ) = 2k2ϵ

ln(2/δ) . Then,
from Lemma 11, the Lap(2k) = Lap(8) distribution is (α, β′)-admissible. By Lemma 10, A(D) =

f(D) +
S̃f,β(D)

α Z = f(D) +
S̃f,β(D)

4ϵ Lap(8) = f(D) + Lap(2S̃f,β(D)/ϵ) is (ϵ, eϵ/2+1
2 δ + 2δ′)-

differentially private and the corollary follows.

Approximate Smooth Sensitivity for Approximate queries

Definition 11. (Definition 7) We define a functions gf and sf as:

gf =


Af (D) if (1− α1)f(D) ≤ Af (D) ≤ (1 + α1)f(D),

(1− α1)f(D) if Af (D) < (1− α1)f(D),

(1 + α1)f(D) if Af (D) > (1 + α1)f(D).

(3)

sf =


S̃f,β(D) if Sf,β(D) ≤ S̃f,β(D) ≤ eγSf,β(D),

Sf,β(D) if S̃f,β(D) < Sf,β(D),

eγSf,β(D) if S̃f,β(D) > eγSf,β(D).

(4)

Let Sgf (D) = 4α1gf (D) + 2sf (D)

Algorithm 3 Fast algorithm using Approximate Smooth Sensitivity for Approximate Query Af

Input: G, f, ϵ, δ
Output: (ϵ, (eϵ/2 + 2)δ)-differentially private estimaton of query f

1: β := γ := 4α1 = ϵ
6 log(2/δ)

2: δ1 := δ2 = δ/2

3: Calculate the (γ, δ2)-upper approximate smooth sensitivity S̃f,β(G)
4: Calculate the (α1, δ1)-approximate f Af (G)

5: Return Af (G) +
8α1Af (G)+4S̃f,β(G)

ϵ Lap(1)

Lemma 13 proves that Sgf is a β′-smooth upper bound of the local sensitivity of gf , i.e., we have to
prove the two conditions:

• LSgf (D) ≤ Sgf (D), and

• Sgf (D) ≤ eβ
′
Sgf (D

′) for any pair of neighbor datasets D ∼ D′,.

where LSgf (D) = maxD′∼D|gf (D)− gf (D
′)| or the local sensitivity of gf at D.

Lemma 13. (Lemma 3) Given gf , sf , and Sgf as defined above, Sgf is a β′-smooth upper bound of
the local sensitivity of gf , where β′ ≥ 4α1 + γ + β and α1 < 1/2.
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Proof. We now prove the two conditions. We first start with proving Sgf is an upper bound on the
local sensitivity LSgf of gf :

LSgf (D) = max
D′:D′∼D

∥gf (D)− gf (D
′)∥

≤ max
D′:D′∼D

∥(1 + α1)f(D)− (1− α1)f(D
′)∥

≤ max
D′:D′∼D

α1∥f(D) + f(D′)∥+ ∥f(D)− f(D′)∥

≤ α1∥f(D) + f(D) + LS(D)∥+ LSf (D)

≤ 2α1f(D) + 2LSf (D)

≤ 4α1gf (D) + 2Sf,β(D)

≤ 4α1gf (D) + 2sf (D)

= Sgf (D).

The first inequality uses Definition 7 and the fifth uses the facts, f(D) ≤ Af (D)
1−α1

≤
2gf (D), and LSf (D) ≤ Sf,β(D) (as Sf,β(D) is a upper bound on LSf (D)).

For the second condition, we need to prove that for any pair D ∼ D′, the values of Sgf on them do
not differ by more than a multiplicative factor of eβ

′
with β′ = 4α1 + γ + β.

Sgf (D) = 4α1gf (D) + 2sf (D)

≤ 4α1(1 + α1)f(D) + 2sf (D)

≤ 4α1(1 + α1)(f(D
′) + sf (D)) + 2sf (D)

= 4α1(1 + α1)f(D
′) + 2(2α1(1 + α1) + 1)sf (D)

≤ 4α1(1 + α1)

1− α1
gf (D

′) + 2(2α1(1 + α1) + 1)eγ+βsf (D
′)

≤ 4α1(1 + α1)(1 + 2α1)gf (D
′) + 2(1 + 4α1)e

γ+βsf (D
′)

≤ 4α1(1 + 4α1)gf (D
′) + 2(1 + 4α1)e

γ+βsf (D
′)

≤ e4α1+γ+β(4α1gf (D
′) + 2sf (D

′))

= eβ
′
Sgf (D

′).

We note that sf , gf , and Sgf are all hypothetical functions, which we may not calculate directly.
We need to connect the statement above (Sgf is a Smooth Sensitivity of gf ) to the functions we can
compute (Af and S̃f,β). Again, we define a hypothetical mechanism A′ that takes D as its input. By
the definition of A′ and the properties of admissible noise, A′ is (ϵ, δ)-DP. Instead of A′, we can only
calculate A, by replacing gf and sf by Af and S̃f,β respectively. Next, we argue that A and A′ are, in
fact, not too different. Lemma 14 conditions on the probability that A and A′ are the same and prove
that the privacy guarantee of A′ is the same with of A in such condition. The failure probabilities (of
Af and S̃f,β in approximation of f and Sf ) will add up to the δ-part of the final (ϵ, δ)-DP.

Lemma 14. Let h be (α, β′)-admissible noise with β′ = 4α1 + γ + β. With Af and S̃f,β defined as

above, Algorithm A(D) = Af (D) +
4α1Af (D)+2S̃f,β(D)

α Z is (ϵ, eϵ/2+1
2 δ + 2δ1 + 2δ2)-differentially

private, where Z ∼ h.

Proof. We prove that with probability at least 1 − 2δ1 − 2δ2, A(x) is (ϵ, eϵ/2+1
2 δ)-differentially

private, and by applying Lemma 8, the Lemma follows.

Let A′(D) = gf (D) +
Sgf

α Z = gf (D) +
4α1sf (D)+2sf (D)

α Z, as we replace Af and S̃f,β by gf and
sf respectively. We note that the use of gf and sf is only for the purpose of privacy bound analysis.

With β′ > 4α1 + γ + β, Lemma 3 shows that Sgf is a β′-smooth upper bound on the sensitivity of

gf . By Lemma 10, A′(D) = gf (D) +
Sgf

α Z is (ϵ, eϵ/2+1
2 δ)-differentially private.
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Since with probability at least 1− δ1, Af (D) is gf (D), and at least 1− δ2, S̃f,β(D) is sf (D), with
probability at least 1− δ1 − δ2, A(D) has the same components as A′(D), hence they are identical.
For a fixed neighbor D′ ∼ D, we also have that A′(D) is identical with A′(D′) with probability
at least 1 − δ1 − δ2. By Lemma 8, A(D), A(D′) are (ϵ, eϵ/2+1

2 δ, 2δ1 + 2δ2)-indistinguishable. It

follows that A(D) is (ϵ, eϵ/2+1
2 δ + 2δ1 + 2δ2)-differentially private.

Theorem 4. (Theorem 1) Let Af be a (α1, δ1) approximation to f , S̃f,β be a (γ, δ2)-upper approxima-

tion to S∗
f,β , for γ = β = 8ϵ

ln(2/δ) , α1 = 4ϵ
ln(2/δ) . Then, A(D) = Af (D) + Lap(

8α1Af (D)+4S̃f,β(D)
ϵ )

is (ϵ, eϵ/2+1
2 δ + 2δ1 + 2δ2)-differentially private.

Proof. Set k = 4, using Lemma 11 with α = kϵ = 4ϵ, and β′ = β + γ + 4α1 = 32ϵ
ln(2/δ) =

2k2ϵ
ln(2/δ) . Then, from Lemma 11, the Lap(2k) = Lap(8) distribution is (α, β′)-admissible. By

Lemma 14, A(D) = f(D) +
S̃f,β(D)

α Z = f(D) +
S̃f,β(D)

4ϵ Lap(8) = f(D) + Lap(
2S̃f,β(D)

ϵ ) is

(ϵ, eϵ/2+1
2 δ + 2δ1 + 2δ2)-differentially private and the Theorem follows.

C Missing proofs of Section 4.1

The main target of this section is to calculate an approximation of max a2ij , such that we can apply it
to approximate a γ-approximation of S∆,β for any γ and β. There are three key components of the
analysis:

• Algorithm 4 uses diamond sampling to quickly calculate xij that approximates a2ij for every
i, j. We use this algorithm as an important sub-routine in Algorithm 1 and 2. Lemma15
shows the utility of the algorithm. We note that due to the Lemma, the quality of each
estimation xij depends on the true value a2ij itself–which is unknown and is the value we
are trying to get. Hence, we cannot directly apply Algorithm 4 to get any-approximation of
max a2ij as we need.

• Algorithm 1 uses multiple rounds of Algorithm 4 with increasing numbers of iterations.
The main idea behind this process is that, with a small number of iterations, Algorithm 4
executes very quickly and gives us a rough estimation xij of a2ij for every i, j. We then
check if the estimation is good enough. We know the estimation is considered good when
maxij xij <

3
2τk × {some constants}. Corollary 2, 3 will explain why. Finally, Lemma 18

concludes the utility of the output of the algorithm, such that after the last iteration k, τk is
at most 4 times the value of max a2ij .

• Algorithm 2 further improves the output of Algorithm 1. Now we know roughly how large
max2ij is, but only within a factor of 4. We will run the final instance of Algorithm 4 with
a special constant θ, which we use to control the approximation of the final estimation. θ
is set by γ-the approximation level required for γ-approximation of the smooth sensitivity
described by the previous section (which in turn is set by (ϵ, δ)). Lemma 19 concludes the
final utility of our estimation.

We define the norm of matrix A as follows: ∥A∥ = ∥A∥1 =
∑

ij Aij , ∥Ai∥ =
∑

k Aik. Note that
degree d(i) = ∥Ai∥, d̄(i) = ∥1− Ai∥. The following concentration bound is shown in [2] for the
output of Algorithm 4.
Lemma 15. Lemma 3 of [2]. Fix θ > 0 and error probability β. For any aij > 0, if the number of
samples s > 3∥W∥ log(2/β)/(θ2a2ij) then

Pr

[∣∣∣∣xij∥W∥
s

− a2ij

∣∣∣∣ > θa2ij

]
≤ β. (5)

The following two lemmas and corollaries relate upper and lower bounds on the random variable
maxij xij output by Algorithm 4 to the quantity of interest, maxij a

2
ij .
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Algorithm 4 Fast estimation of (aij)2
Input: G(V,E),Number of iterations s
Output: xij that approximates a2ij , for all i, j

1: Let A be the adjacency matrix of G
2: for (k, i) ∈ E do
3: Wki = d(k)d(i)
4: end for
5: x← 0
6: for l = 1, . . . , s do
7: Sample (k, i) with probability Wki/∥W∥1
8: Sample j from Nk

9: Sample o from Ni

10: xij+ = Aoj

11: end for
12: Return x

Lemma 16 states that if we choose a constant τ that is close but larger than max a2ij , then after running
Algorithm 4 with s iterations, the maximum of xij is not larger than τ × {some constants}. Similarly,
Lemma 17 states that if we choose a constant τ that is close but smaller than max a2ij , then after
running Algorithm 4 with s iterations, the maximum of xij is not smaller than τ × {some constants}.

With appropriate selections of the constants, Corollary 2 and 2 summarize the two lemmas and
describe the condition in which we may find a good value for τ . They allow us to observe the output
of an instance of Algorithm 4 and compare the outcome with a pre-determined value of τ . Depending
on the sign of the comparision maxxij

∥W∥
s ≷ τ , we can decide that if we are over-estimating τ (by

Corollary 3) or under-estimating τ (by Corollary 2).

The two lemmas and their corollaries below form the basis for Algorithm 1 that finds an appropriate
value of τ using binary search.
Lemma 16. For any τ such that maxij a

2
ij < λτ for some constant 0 < λ, there exists a constant

λ′ > λ such that with probability at least 1− 1
poly(n) , maxij

xij∥W∥
s ≤ λ′τ .

Proof. Consider any i, j. By Chernoff’s bound,

Pr[xij > (1 + θ′)E[xij ]] ≤ exp

(
−θ′2E[xij ]

3

)
.

As E[xij ] =
a2
ijs

∥W∥ , we have that

Pr[xij
∥W∥
s

> (1 + θ′)a2ij ] ≤ exp

(
−
θ′2sa2ij
3∥W∥

)
.

Setting λ′ =
(1+θ′)a2

ij

τ , we have:

1 + θ′ =
λ′τ

a2ij
.

Therefore, we can lower bound θ′ as follows:

θ′ =
λ′τ

a2ij
− 1

=
λ′τ − a2ij

a2ij

≥ λ′τ − λτ

a2ij

=
τ(λ′ − λ)

a2ij
since a2ij > λτ.
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Now, we substitute (1 + θ′)a2ij by λ′τ :

Pr[xij
∥W∥
s

> λ′τ ] ≤ exp

(
−
θ′2sa2ij
3∥W∥

)

= exp

(
−
θ′23∥W∥c log na2ij

3∥W∥θ2τ

)

= exp

(
−
θ′2a2ijc log n

θ2τ

)

≤ exp

(
−
τ2(λ′ − λ)2a2ijc log n

a4ijθ
2τ

)

= exp

(
−τ(λ′ − λ)2c log n

a2ijθ
2

)

≤ exp

(
− (λ′ − λ)

λθ2
c log n

)
= n−c

(λ′−λ)2

λθ2 .

Selecting λ′ > λ s.t c (λ
′−λ)2

λθ2 ≥ 3 and taking the union bound on all pairs ij, the Lemma follows.

Corollary 2. With c > 3, θ = 1
2 , λ = 1, λ′ = 3

2 , with probability at least 1 − 1/nc−2, if
maxij xij

∥W∥
s > 3

2τ then maxij a
2
ij > τ.

Lemma 17. For any τ such that maxij a
2
ij > λτ for some constant 0 < λ, then there exists a

constant λ′′ ≤ (1− θ)λ such that with probability at least 1− 1
poly(n) , maxij

xij∥W∥
s ≥ λ′′τ .

Proof. Since maxij a
2
ij > λτ , there exists pairs of nodes i′j′ such that a2i′j′ > λτ . For such pairs

i′j′, we have:

Pr

[
x2
i′j′
∥W∥
s

< (1− θ)a2i′j′

]
≤ exp

(
−
θ2sa2i′j′

3∥W∥

)

= exp

(
−
3θ2∥W∥a2i′j′c log n

3∥W∥θ2τ

)

= exp

(
−
a2i′j′c log n

τ

)
≤ exp (−λc log n) = n−cλ.

Setting λ′′ ≤ (1 − θ)λ, we have λ′′ ≤ (1−θ)a2
i′j′

τ , or λ′′τ ≤ (1 − θ)a2i′j′ . Therefore

Pr
[
x2
i′j′

∥W∥
s < λ′′τ

]
≤ Pr

[
x2
i′j′

∥W∥
s < (1− θ)a2i′j′

]
≤ n−cλ. Choosing c such that cλ > 3

and taking the union bound over all pairs i′j′, the Lemma follows.

Corollary 3. With c > 3, θ = 1
2 , λ = 3, λ′′ = 3

2 , with probability at least 1 − 1/nc−2, if
maxij xij

∥W∥
s < 3

2τ then maxij a
2
ij < 3τ.

Lemma 18. (Lemma 4) Let τk is the output of Algorithm 1, with probability at least 1 − 1/nc−3,
τk < maxij a

2
ij < 4τk.

Proof. Assume the Algorithm 1 stops at step k. At step k − 1, maxij xij < 3
2τk−1, then by

Corollary 3 we have maxij a
2
ij < 3τk−1 = 3 4

3τk = 4τk. At step k, maxij xij > 3
2τk, then by
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Corollary 2 we have maxij a
2
ij > τk. Applying union bound on k steps, with probability at least

1− 1/nc−3 we have τk < maxij a
2
ij < 4τk, the Lemma follows.

Finally, in Algorithm 2, we postprocess the output of Algorithm 1 to obtain an accurate estimate of
maxij a

2
ij and hence, the smooth sensitivity S̃∆,β(G).

Lemma 19. (Lemma 5) With probability at least 1− δ in Algorithm 2, maxij xij
∥W∥
s ∈ (1− θ, 1 +

θ)maxij a
2
ij .

Proof. We split all pairs ij into 2 sets {i′j′ : a2i′j′ < τ} and the remaining pairs {̃ij̃} that a2
ĩj̃

> τ .
We will prove that the Algorithm will not output xi′j′ for any i′j′.

For every i′j′ such that a2i′j′ < τ , by Lemma 16, set λ = 1, λ′ = 3
2 , since c ≥ 12θ2 or c(λ−λ′)

λθ2 =
12θ21/4

θ2 = 3, we have maxi′j′ xi′j′
∥W∥
s < 3

2τ with probability at least 1− 1/nc−2.

Because maxij a
2
ij > τk = 3τ , by Lemma 17, set λ = 3, λ′ = 3

2 , since c ≥ 2 or cλ > 3, we have

maxij xij
∥W∥
s > 3

2τ with probability at least 1− 1/nc−2.

Then with probability at least 1− 1/2nc−2, Algorithm 2 will not output any xi′j′ .

The remaining sets {̃ij̃} that a2
ĩj̃
> τ . By Lemma 15, ∀ĩj̃ : xĩj̃

∥W∥
s ∈ (1− θ, 1 + θ)a2

ĩj̃
. Applying

the union bound on all pair ĩj̃ and setting c ≥ logn(1/(2δ)) + 2, the Lemma follows.

Theorem 5. (Theorem 2) S̃∆,β(G) output by Algorithm 2 is a (γ, δ)-upper approxmiation to
S∆,β(G).

Proof. From the result of Lemma 19, we have:

(1− θ)max
ij

a2ij ≤ max
ij

xij
∥W∥
s
≤ (1 + θ)max

ij
a2ij

.

Multipling all terms by 1/(1− θ), we have:

max
ij

a2ij ≤max
ij

xij
∥W∥

s(1− θ)
≤ 1 + θ

1− θ
max
ij

a2ij

max
ij

a2ij ≤â2 ≤
1 + θ

1− θ
max
ij

a2ij

max
ij

aij ≤â ≤
√

1 + θ

1− θ
max
ij

aij

max
ij

aij ≤â ≤
√
e2γ max

ij
aij

max
ij

aij ≤â ≤ eγ max
ij

aij .

Therefore with probability at least 1− δ, we have LS
(t)
∆ (G) ≤ L̂S

(t)

∆ (G) ≤ eγLS
(t)
∆ (G) and hence:

S∆,β(G) ≤ S̃∆,β(G) ≤ eγS∆,β(G),

with probability at least 1−δ. It follows that S̃∆,β(G) is (γ, δ)-upper approximation to S∆,β(G).

Theorem 6. (Theorem 2) Suppose maxij aij > 0. Algorithm 2 has a runtime of

O

(
logn (2δ)∥W∥1 logm logn(

e2γ−1

e2γ+1

)2
maxij a2

ij

+m+ logn
β + n

)
.
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Proof. Let m denote the number of edges in G. Then, computing W and ∥W∥ takes O(m) time
and each sampling step requires O(logm) time. However, we can perform the calculation of W and
∥W∥ once and reuse them for all Algorithms (4, 1, and 2). Each sampling step in Algorithm 4 takes
O(logm) time and there are s iterations which results in the total cost of O(s logm).

Algorithm 1 has a run-time of kO(s′ logm)) where s′ = O(∥W∥1c log n/(θ2τ)) as it executes
Algorithm 4 with varying s = s′ and k is the number of search steps. Since at the end of the
search τk > maxij a

2
ij/4 w.h.p., we know that k = O(log 4n2

maxij a2
ij
). In the first step, we start

with τ0 = n2 and reduce τk by a factor of 3/4 after each step. The total running time will be
O(∥W∥1 logm× c logn

θ2 × 1
n2 (1 + (3/4)−1 + . . . (3/4)−k) = O

(
∥W∥1c logm logn

θ2 maxij a2
ij

)
.

Finally, Algorithm 2 has a run-time of O

(
logn (2δ)∥W∥ logm logn(

e2γ−1

e2γ+1

)2
maxij a2

ij

+m+ logn
β + n

)
taking into

account the time required to compute W (O(m)) and S̃∆,β(G) (O(log (n)/β + n)) and substituting
the values of c and θ as described in the Algorithm.

D Details from Section 5

As mentioned earlier, Karwa et al. [23] introduce the notion of local sensitivity of local sensitivity for
private counting of k-cliques. In this work, we generalize this notion to multi-level local sensitivity.
Recall that f(G,S) denotes the number of embeddings of a fixed subgraph H in G that contains all
pairs in S and f (k)(G) = max|S|=k f(G,S). The following lemma is at the core of our approach as
it relates local sensitivity to subgraph counting.

Lemma 20. For all k ≥ 0 we have LS(f (k)) ≤ f (k+1)(G).

Proof. When k = 0 we have LS(f (0)) = LS(f) = max{i,j}∈L |f(G ∪ (i, j)) − f(G− (i, j))| =
max{i,j}∈L f(G, {i, j}) = f (1)(G).

When k ≥ 1, we have LS(f (k)) = max{i,j} |f (k)(G ∪ (i, j))− f (k)(G− (i, j))|. We argue below
that for each {i, j} ∈ L, we have |f (k)(G∪(i, j))−f (k)(G−(i, j))| ≤ f (k+1)(G), and the statement
follows. We have two cases.

Case 1. (i, j) ̸∈ G: let S ⊂ L, |S| = k be a subset such that f (k)(G ∪ (i, j)) = f(G ∪ (i, j), S).
Let T ⊂ L, |T | = k be a subset such that f (k)(G) = f(G,T ). By definition of T , we have
f(G,S) ≤ f(G,T ). We have two sub-cases, depending on whether {i, j} ̸∈ S or {i, j} ∈ S. First,
suppose {i, j} ̸∈ S. This implies f(G ∪ (i, j), S) = f(G,S) + f(G,S ∪ {i, j}), and

|f (k)(G ∪ (i, j))− f (k)(G)| = |f(G,S) + f(G,S ∪ {i, j})− f(G,T )|
≤ f(G,S ∪ {i, j}) ≤ f (k+1)(G).

Next, suppose {i, j} ∈ S. Then, f(G,S) = f(G ∪ (i, j), S) ≥ f(G ∪ (i, j), T ), from the definition
of S. Since f(·, T ) is monotone with respect to the set of edges in the graph, we have f(G ∪
(i, j), T ) ≥ f(G,T ), which implies f(G,S) ≥ f(G,T ). Combined with the earlier observation that
f(G,T ) ≥ f(G,S), we have f(G,T ) = f(G,S). This implies

|f (k)(G∪(i, j))−f (k)(G)| = |f(G∪(i, j), S)−f(G,T )| = |f(G,S)−f(G,T )| = 0 ≤ f (k+1)(G)

Thus, when (i, j) ̸∈ G, in either sub-case, we have |f (k)(G ∪ (i, j))− f (k)(G)| ≤ f (k+1)(G).

Case 2. (i, j) ∈ G: we have |f (k)(G∪ (i, j))− f (k)(G− (i, j))| = |f (k)(G)− f (k)(G− (i, j))| =
|f (k)(G′ ∪ (i, j)) − f (k)(G′)|, where G′ = G − (i, j). Repeating the argument in case 1 for the
graph G′, we have |f (k)(G′ ∪ (i, j))− f (k)(G′)| ≤ f (k+1)(G′) ≤ f (k+1)(G).

Lemma 21. (Lemma 4.4 of [23]) Let B be an (ϵ1, δ1)-differentially private algorithm such that
Pr[B(x) ≥ LSf (x)) > 1 − δ2 for all x. Consider the algorithm A that runs B(x) to obtain

23



an estimate L̃S of the local sensitivity and release both L̃S and a noisy estimate f : A(x) =

(L̃S, f(x) + Lap(L̃S/ϵ2)), where L̃S = B(x), and where Lap(λ) is a Laplace random variable
with mean 0 and scale parameter λ. Then A is (ϵ1 + ϵ2, δ1 + eϵ1δ2)-DP.

Algorithm 5 Estimating higher-order private local sensitivity.
Input: G, ϵ, δ, subgraph H with ℓ edges
Output: Private estimate g(0) for f(G)

1: Let km = ℓ
2: for k = km − 1 down to 0 do
3: g(k)(G) = f (k)(G) + g(k+1)(G) ln 1/δ2

ϵ2
+ Lap(g(k+1)(G)/ϵ2)

4: end for
5: return g(0)(G)

We now give the proof of correctness for Algorithm 5 using Theorem 3.

Proof of Theorem 3

Proof. We prove by induction on k ≥ 1 that g(km−k)(G) computed by Algorithm 5 is a ((k +
1)ϵ2, δ2 + (k + 1)eϵ2δ2)-DP private estimate, and Pr[g(km−k)(G) ≥ f (k)(G)] ≥ 1− δ2.

The base case is k = 1. Note that for km = ℓ, f (km) ≤ 1, since once ℓ edges are fixed, either we
get a fixed subgraph, or it doesn’t result in an embedding. Since LS(f (km−1)) ≤ f (km), it follows
that g(km−1) is an (ϵ2, 0)-DP estimate. Further, Pr[g(km−1) < f (km−1)] = Pr[Lap(f (km)/ϵ2] <
−f (km) ln(1/δ2)/ϵ2] < δ2, which proves the base case.

Next, consider k > 1. From Lemma 20, LS(f (km−k)) ≤ f (km−k+1). Since g(km−k+1) is an
(kϵ2, δ2 + keϵ2δ2)-DP estimate, and Pr[g(km−k+1) > f (km−k+1)] > 1 − δ2 (by induction), it
follows from Lemma 21 that g(km−k) is an (kϵ2 + ϵ2, δ2 + keϵ2δ2 + eϵ2δ2)-DP estimate. Also,
Pr[g(km−k) > f (km−k)] = Pr[Lap(g(km−k+1)/ϵ2) > −g(km−k+1) ln 1/δ2/ϵ2] > 1 − δ2, and the
inductive step follows.

Finally, we analyze the running time of Algorithm 5 using Lemma 6.

Proof of Lemma 6

Proof. Observe that f(G,S) can be computed in time O(n2(ℓ−|S|), so that f (k) can be estimated in
time O((n2)ℓ). Therefore, the total running time for Algorithm 5 is O(n2ℓ).

Improved time for paths of length ℓ. We show that for paths with ℓ edges, the running time
can be actually improved from O(n2ℓ) to O(nℓ+1), by keeping track of slightly more complicated
information. For a subset S ⊂ L of pairs of nodes, let h(S) denote the set of unique nodes in
S. Let π be a function, such that for each u ∈ h(S), π(u) specifies the position node u has in
the embedding of the path. Let f(G,S, π) the number of paths containing the edges in S, but
with the additional constraint that the ordering with respect to π be satisfied. Then, we have
f (k)(G) = max|S|=k,π f(G,S, π).

Proof. (Sketch) Observe that f(G,S, π) can be computed in time O(nℓ+1−|h(S)|) time, since this
involves considering the nodes in the remaining positions of the path, other than those specified by
π. Further, f (k)(G) can be computed in O(nℓ+1) time, since we can first guess the set h(S) and the
ordering π (instead of directly guessing |S| pairs of nodes), and then guess the remaining nodes.

Theorem 7. Let B be an (ϵ1, δ1)-differentially private algorithm such that Pr[B(x) ≥ LS(f, x)] >

1− δ2 for all x. Let f̂(x) ∈ [(1− ϵ3)f(x), (1+ ϵ3)f(x)] be an approximation to f(x), with ϵ3 small
enough so that ϵ3f(x) ≤ LS(f, x) for all x. Consider the algorithm A that runs B(x) releases:
A(x) = (L̃S, f̂(x) + Lap(L̃S/ϵ2)), where L̃S = B(x), and where Lap(λ) is a Laplace random
variable with mean 0 and scale parameter λ. Then A is (ϵ1 + (3 + ϵ3)ϵ2, e

ϵ1(δ1 + δ2) + δ2)-DP.
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Proof. The proof is a modification of Lemma 4.4 of [23]). Define the following events

A(x) = ( ˜LS(f, x) = B(x), f̂(x) + Lap( ˜LS(f, x)/ϵ2))

A(y) = ( ˜LS(f, y) = B(y), f̂(y) + Lap( ˜LS(f, y)/ϵ2))

Amix = ( ˜LS(f, x) = B(x), f̂(y) + Lap( ˜LS(f, x)/ϵ2))

Let Px, Py and Pmix correspond to the distributions of these events.

We first compare Py(S) and Pmix(S) for any subset S. Observe that Pmix(S)
Py(S) = Pr[B(x)∈S]

Pr[B(y)∈S] . Since
B is (ϵ1, δ1)-DP, we have Pr[B(y) ∈ S] ≤ eϵ1 Pr[B(x) ∈ S] + δ1, which implies Py(S) ≤
eϵ1Pmix(S) + δ1.

Next, we compare Pmix(S) and Py(S) for any subset S. Let F denote the event B(x) = ˜LS(f, x) ≥
LS(f, x). Then, Px(S|F )

Pmix(S|F ) = Pr[Lap(z/ϵ2)∈S−f̂(x)]

Pr[Lap(z/ϵ2)∈S−f̂(y)]
≥ exp(− |f̂(y)−f̂(x)|

z ϵ2), where z = ˜LS(f, x).

We have that the fraction |f̂(y)−f̂(x)|
z

≤ 1

z
max{|(1 + ϵ3)f(y)− (1− ϵ3)f(x)|, |(1 + ϵ3)f(x)− (1− ϵ3)f(y)|}

=
1

z
max{|(1 + ϵ3)(f(y)− f(x)) + 2ϵ3f(x)|, |(1− ϵ3)(f(x)− f(y)) + 2ϵ3f(x)|}

≤ (1 + ϵ3)z + 2ϵ3f(x)

z
, with probability 1− δ1

≤ 3 + ϵ3, with probability 1− δ1.

where the second inequality holds because |f(x)− f(y)| ≤ LS(f, x) ≤ ˜LS(f, x), with probability
1− δ1.

This implies Px(S|F )
Pmix(S|F ) ≥ e−(3+ϵ3)ϵ2 with probability 1 − δ1. Equivalently, Pmix(S|F ) ≤

e(3+ϵ3)ϵ2Px(S|F ) + δ1. Therefore, Pmix(S) = Pmix(S ∧ F ) + Pmix(S ∧ F̄ ) ≤ e(3+ϵ3)ϵ2Px(S) +
δ1 + δ2. Putting everything together, Py(S) ≤ eϵ1Pmix(S) + δ1 ≤ eϵ1+(3+ϵ3)ϵ2Px(S) + eϵ1(δ1 +
δ2) + δ2.

E Estimating higher-order local sensitivity for path counts

Let H denote paths of length ℓ. We assume the graph G has degeneracy d and treewidth t. We
show that f (k)(G) = max|S|=k fH(G,S) can be computed in time O(poly(n)(dt)k) under these
assumptions on G (i.e., in time smaller than O(n2ℓ)). Let σ denote a degeneracy ordering of the
nodes in V . So node v has index σ(v). Let Nσ(v) = {v′ : v′ ∈ N(v), σ(v′) > σ(v)} be the set of
neighbors of v with index larger than σ(v); by definition of degeneracy, it follows that |Nσ(v)| ≤ d
for all v. Let v, u be two nodes such that σ(v) < σ(u). Then, dist(v, u, σ,K) denotes the length of
the shortest path from v to u in a graph K, when restricted to nodes v′ with σ(v) < σ(v′) < σ(u).

Let G(Ê) denote the graph induced by E ∪ Ê. Let Nσ(v, k, Ê) = {u : dist(v, u, σ,G(Ê)) ≤ k}
be the set of nodes within k-hops of v in the graph G(Ê), restricted to higher index nodes than v. Let
Gσ(v, k, Ê) denote the graph induced by the subset Nσ(v, k, Ê) of nodes. We say a pair e = (u′, v′)

is an internal anchor pair in Gσ(v, k, Ê), if u′, v′ ∈ Nσ(v, k, Ê), and (u′, v′) ̸∈ E(Gσ(v, k, Ê))
(i.e., (u′, v′) is a newly added edge); else, we say (u′, v′) is an external anchor pair with respect to
Gσ(v, k, Ê). We will add internal anchor pairs sequentially. Let ei be the edge added in the ith step,
and let F (i) = {e1, . . . , ei}.
k-compact subgraph. We define (H,D) to be a k-compact subgraph if

• H = Gσ(v, k, F
(i)) for some node v and subset F (i) = {e1, . . . , ei}

• i ≤ k
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Figure 6: (Left) D = {r1, r2, r3, r4}, edges (r1, r
′
1), (r2, r

′
2), (r3, r

′
3) and (r4, r

′
4) are external

anchor edges, while (r5, r
′
5) is an internal anchor edge. Nodes s and t are the starting and ending

nodes of the path; (Middle) D = {r1, r2, r3}, and (r1, r
′
1), (r2, r

′
2), (r3, r

′
3) are external anchor

edges, while (r5, r
′
5) is an internal anchor edge. Node s is the starting node of the path, and the path

ends at some other node, not in this compact subgraph; (Right) D = {r1, r2, r3, r4}, edges (r1, r′1),
(r2, r

′
2), (r3, r

′
3) and (r4, r

′
4) are external anchor edges, while (r5, r′5) and (r6, r

′
6) are internal anchor

edges. Paths pass through this compact subgraph, without starting or ending in it.

• The pair e1 = (u1, v1) is an internal anchor pair in Gσ(v, k, ∅). For each j = 2, . . . , i,
the pair ej = (uj , vj) is an internal anchor pair in the graph Gσ(v, k, F

(j−1) =
{e1, . . . , ej−1}).

• D is a subset of vertices in H , and is referred to as the set of connectors.

Lemma 22. Let (H,D) be a k-compact subgraph. Then H has O(kdk) nodes and edges. and the
tuple (H,D) can be described using O(k2dk+1 log d) bits.

Proof. (Sketch) We prove by induction on i that Gσ(v, k, F
(i)) has at most (i + 1)dk nodes and

edges.

First observe that Nσ(v, k, ∅) has at most dk nodes and edges, since that all have index more than
σ(v). We have i = 1 as the base case. Let σ(u1) < σ(v1). Then Gσ(v, k, {e1}) will have at
most 2dk more nodes, with at most dk additional reachable nodes through v1. In the inductive
step, Gσ(v, k, F

(i) = {e1, . . . , ei}) has at most dk nodes (through vi, assuming σ(ui) < σ(vi)) in
addition to those in Gσ(v, k, F

(i−1)).

The neighborhood of each node u ∈ Nσ(v, k, F
(i)) can be represented in O(d log(kdk)) bits.

Therefore, the total number of bits needed to specify H is O(kdkd log(kdk)) = O(kdk+1 log(kdk)).
D consists of at most k nodes from Nσ(v, k, F

(i)); therefore, D can be specified in O(k log(kdk))
bits. Therefore, (H,D) can be specified in O(kdk+1 log(kdk)) bits, which implies the number of
distinct (H,D) pairs is at most exp(kdk+1 log(kdk)).

Pairing of connector set. The connector set D = {r1, . . . , rℓ}, with ℓ ≤ k, represents nodes which
have incident edges outside the compact subgraph H . We might have to consider three kinds of paths,
corresponding to Figure 6

1. As in Figure 6 (Left), these start at a node s in H , then pass through multiple anchor
edges, and end at a node t in H . We partition D into two singletons and multiple pairs
π2(D) = {(rπ(1)), (rπ(2), rπ(3)), . . . , (rπ(ℓ))}. This corresponds to paths which leave H at
node rπ(1) and finally return at node rπ(ℓ), with disjoint segments from rπ(2j) to rπ(2j+1)

lying within H , for each j. We refer to the set of such pairings as Π2(D).

2. This corresponds to paths which start at a node s in H , then pass through
multiple anchor edges, and don’t return to a node in H eventually (as in Fig-
ure 6 (Middle)). We partition D into one singleton and multiple pairs π1(D) =
{(rπ(1)), (rπ(2), rπ(3)), . . . , (rπ(ℓ−1), rπ(ℓ))}. We refer to the set of such pairings as Π1(D).

3. This corresponds to paths which only pass through nodes in H (as in Figure 6 (Right)). We
partition D into multiple pairs π0(D) = {(rπ(1), rπ(2)), . . . , (rπ(ℓ−1), rπ(ℓ))}. We refer to
the set of such pairings as Π0(D).
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Approximate counts corresponding to pairings. Note that for a given compact subgraph
(H,D), there can be multiple pairings in Π0(D),Π1(D),Π2(D). For each such pairing, e.g.,
π ∈ Π0(D) = {(rπ(1), rπ(2)), . . . , (rπ(ℓ−1), rπ(ℓ))}, we can guess a set of tuples of numbers
Num(π, Ê) = {((Num(rπ(2j+1), rπ(2j+2)), j = 0, 1 . . .))}, where

• Num(rπ(2j+1), rπ(2j+2)) corresponds to the number of segments from rπ(2j+1) to rπ(2j+2),
which are within H , and use some edges from Ê as internal anchor edges

• The path segments counted in Num(rπ(2j+1), rπ(2j+2)) and those in
Num(rπ(2j′+1), rπ(2j′+2)) are disjoint. In particular, this means that the internal
anchor edges used in these counts are disjoint.

• The paths within a tuple ((Num(rπ(2j+1), rπ(2j+2)), j = 0, 1 . . .)) contain all the internal
anchor edges in Ê.

In order to reduce the information complexity, we only keep track of Num(rπ(2j+1), rπ(2j+2))
approximately as powers of (1 + µ) for a small µ ∈ (0, 1); we denote these ap-
proximate counts as N̂um(rπ(2j+1), rπ(2j+2)), and the corresponding tuple of counts by
(N̂um(rπ(1), rπ(2)), . . . , N̂um(rπ(ℓ−1), rπ(ℓ))). N̂um(π, Ê) denotes the set of approximate path counts
which use the internal anchor edges Ê. Similarly, approximate counts N̂um(π, Ê) can be defined for
π ∈ Π1(D) and π ∈ Π2(D). Let Π(D) = Π0(D) ∪Π1(D) ∪Π2(D).

Let IA(H) denote the set of internal anchor edges in a compact subgraph H . We refer to a
tuple (H,D,Π(D),

⋃
π∈Π(D) N̂um(π, IA(H))) as an augmented compact subgraph with approximate

counts.

Feasible solutions as a tuple of augmented compact subgraph with approximate counts. We
now observe that any feasible solution involving anchoring a subset S = {(ir, jr) : r = 1, . . . , s}
of pairs of nodes can be viewed as a set of at most k disjoint augmented compact subgraphs with
approximate counts.
Lemma 23. Any feasible solution S = {(ir, jr) : r = 1, . . . , s}, with |S| ≤ k
corresponds to a set of augmented compact subgraphs with approximate counts
(H1, D1,Π(D1),

⋃
π∈Π(D1)

N̂um(π, IA(H1))), . . . , (Hℓ, Dℓ,Π(Dℓ),
⋃

π∈Π(Dℓ)
N̂um(π, IA(Hℓ)),

for some ℓ ≤ k, such that for every j, (Hj , Dj) consists of nodes with lower index than those in
(Hj′ , Dj′), for j < j′.

Proof. (Sketch) Consider the set of all paths P which are considered, i.e., those which use the edges
from S. Let v be the node with the minimum index among those in P . Consider the graph Gσ(v, k, ∅).
If any pair (is, js) ∈ S is an internal anchor pair for Gσ(v, k, ∅), define e1 = (is, js) (this is added
to IA(H1)); this is again repeated if there is another pair (is′ , js′) which is an internal anchor pair
for Gσ(v, k, e1). We stop, when we have a subgraph H1 such that no other pair in S is an internal
anchor pair for H1. If there is a path P ∈ P with one end point u ∈ V (H1) and other end point
outside H1, u will be added to D1. Finally, we construct pairings and associated approximate counts.
If a path P has a segment P ′ from r1 ∈ D1 to r2 ∈ D1 which is within H1, we would have (r1, r2)
as part of a pairing, and the number of such segments will contribute to the associated counts. Thus a
compact subgraph (H1, D1,Π(D1),

⋃
π∈Π(D1)

N̂um(π, IA(H1))) can be constructed corresponding
to the set P .

Next, consider the path segments we get once we delete all the segments in H1. The next compact
subgraph is constructed in a similar manner.

Let S(G, σ, k) denote the set of possible augmented compact subgraphs with approximate counts.
From Lemma 23, it follows that any feasible solution is an element of

⋃
k′≤k S(G, σ, k)k

′
.

Lemma 24. The number of feasible solutions is O(exp(kkdk+1 log(kdk))(k log n)k
2

).

Proof. (Sketch) We first bound |S(G, σ, k)|. For each compact subgraph (H,D), the number of
pairings |Π(D)| is at most kk. For each pairing π ∈ Π(D), there are O(log n)k possible approximate
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counts. Therefore, |S(G, σ, k)| = O(exp(kdk+1 log(kdk))(k log n)k using Lemma 22. The lemma
follows since the number of feasible solutions is at most k|S(G, σ, k)|k.

Finding a tuple of disjoint augmented compact subgraphs with approximate counts in G. We
now show that we can check in polynomial time if an augmented compact subgraph exists. Thus in
time O(|S(G, σ, k)|poly(n), we can check which augmented compact subgraphs exist. For a given
augmented compact subgraph, the total number of paths can be approximated, which allows us to
find the one with the maximum number.

Lemma 25. Suppose we are given a tuple M1, . . . ,Mℓ, where Mj = (Hj , Dj ,Π(Dj), {N̂um(π), π ∈
Π(Dj)}), for some ℓ ≤ k such that for every j, (Hj , Dj) consists of nodes with lower index
than those in (Hj′ , Dj′), for j < j′. It is possible to find a set of nodes v1, . . . , vℓ, sequence of
edges F (1), . . . , F (ℓ), connector sets D̂1, . . . , D̂ℓ, pairings Π(D̂1), . . . ,Π(D̂ℓ), such that for each j,
Hj = Gσ(vj , k, F

(j)), D̂j ⊂ V (Gσ(vj , k, F
(j))), and

⋃
π∈Π(D̂j)

N̂um(π, IA(Hj) = {N̂um(π), π ∈
Π(Dj)} in time O(poly(n)exp(kkdk+1 log(kdk))(k log n)k

2

(kdk)t) if G has degeneracy d and
treewidth t.

Proof. (Sketch) We use cj to denote a color corresponding to Mj . For each node v, it is pos-
sible to decide in time O(kdk) if v can be colored by cj , i.e., if there exist F (j), D̂j such that
(Gσ(v, k, F

(j)), D̂j ,
⋃

π∈Π(D̂j)
N̂um(π, IA(Hj))) = Mj . If v has color cj , it has “conflicts” with

C(v, cj) = V (Gσ(v, k, F
(j))), i.e., we cannot have a node u ∈ C(v, cj) assigned color ci. Our goal

is to find nodes v1, . . . , vℓ such that vj can be assigned color cj , and vj′ ̸∈ C(vj , cj) for any j′ ̸= j.
If G has treewidth t, we can determine if such a coloring can be done in time O(poly(n)(kdk)t) time.
The main idea for the dynamic program is the following.

Let T = (V, E) denote a tree decomposition of G. Each “node” U ∈ V is a subset of V . We construct
an information set I(U) for each U ∈ V , which will allow us to determine possible colors for each
node v ∈ U , in the following manner. I(U) consists of a set of possible colorings x of U . We
consider only x which correspond to colorings in which each color appears at most once; x can be
viewed as a coloring of the subgraph induced by all the nodes in the subtree of T rooted at U . A
coloring x specifies for each node u ∈ U , and for each j, an indication of the following: (1) node u
is colored by cj , (2) node u is not colored by cj , but color cj that can be assigned to it, (3) node u is
not colored by cj , and, moreover, cj cannot be assigned to u. This is because there exists some other
node u′ such that u ∈ C(u′, cj). We don’t keep track of node u′ (otherwise we would end up needing
nk information), but instead specify the set F and position of u in the compact graph Gσ(u

′, k, F ).
The information set I(U) consists of all possible such colorings x; note that |I(U)| = O((kdk)t).

We construct the information sets of all U ∈ V in a bottom-up manner. Suppose U has children
U1, U2 ∈ V . We construct I(U) from I(U1) and I(U2), as described below. For each x′ ∈
I(U1),x

′′ ∈ I(U2), we construct a coloring x, if feasible, in the following manner. For each node
u ∈ U , and for each j:

1. If u ∈ U1 ∩ U2, x is infeasible if the indicators for u in x′ and x′′ are inconsistent

2. If u is contained only in U1, the indicator for u in x is kept to be the same as that in x′;
similarly if u is contained only in U2

3. If u ̸∈ U1 ∪ U2, we check if N(u) ∩ (U1 ∪ U2) ̸= ∅. In this case, we choose an indicator
for u in x that is consistent with the indicators for its neighbors in x′ and x′′. It is also
possible that we have inconsistencies, and in that case, x will not be feasible. If a node
u1 ∈ N(u)∩U1 is in the conflict set of some node with color cj , using the position of u1 in
the associated compact subgraph, we can determine if u would also have a conflict, and if so,
at what position. Similarly, if there exists a node u2 ∈ N(u) ∩ U2. If there simultaneously
exist u1 ∈ N(u) ∩ U1, u2 ∈ N(u) ∩ U2, both of which are in conflict sets with respect to
cj , which induce inconsistent conflicts for node u with respect to cj , we would consider x
infeasible; if the conflicts induced by u1, u2 are consistent, we could keep that indication
for node u with respect to cj .
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Once the information sets I(U) for all U ∈ V are known, we can find a valid coloring in a top-down
manner.

Lemma 26. Suppose we are given a tuple M1, . . . ,Mℓ, where Mj = (Hj , Dj ,Π(Dj), {N̂um(π), π ∈
Π(Dj)}), for some ℓ ≤ k such that for every j, (Hj , Dj) consists of nodes with lower index than
those in (Hj′ , Dj′), for j < j′. It is possible to determine in O(kk) time if the Mj’s are consistent,
i.e., if it is possible to find external anchor edges that are consistent for the tuples.
Theorem 8. If G has degeneracy d and treewidth t, we can get a O(1 + 1/polylog(n)) factor upper
bound on f(G,S) in time O(poly(n)exp(kkdk+1 log(kdk))(k log n)k

2

(kdk)t), .

F Additional Experiments

In this section, we present the complete set of experimental results for private triangle counting
(Algorithm 2) on all the tested networks (12 networks given in Table 2).

Figure 7: Triangle Count Relative Error, showing the accuracy of the private triangle count with noise
calibrated by (1) approximate smooth sensitivity (Algorithm 2), and (2) exact smooth sensitivity.

Figure 8: The ratio of the smooth sensitivity over the actual count of triangles for all networks.
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Figure 9: Speedup of Algorithm 2 (compared to the exact calculation) on all networks.

Figure 10: Sensitivity Approx. Error, showing the error of approximate smooth sensitivity output by
Algorithm 2 (relative to the exact smooth sensitivity) on all networks.

Figure F shows that when approximate smooth sensitivity is used instead of exact smooth sensitivity,
the accuracy of the private triangle counts measured using the metric, Triangle Count Relative Error,
are the same across different privacy budgets in all but two networks (Oregon 1 and Oregon 2)
(Figure 8). In these two networks, the smooth sensitivities are relatively large in comparison with
the triangle counts, making the noise fluctuate much more for the approximate estimate. For the
ca-HepPH dataset, the two outputs coincide.
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Figure 8) shows the ratio of smooth sensitivity to actual triangle count for all datasets. Note that this
ratio is large for the two datasets, Oregon 1 and 2, but small for all the other datasets.

Figure 9 shows the speed-up achieved using Algorithm 2. As seen in the figure, it is orders of
magnitude faster than the exact algorithm on all the 12 datasets. In fact, on large graphs (Amazon,
DBLP, Gowalla), the speedup is as high as 1, 000-fold. Generally, a lower ϵ requires a smaller
approximation factor (γ), which in turn requires a larger number of iterations to reduce the error in
approximation. To summarize, the majority of tested networks have speedup factors between 10 and
100-fold across all privacy budgets ϵ.

Figure 10 shows that all approximate smooth sensitivities computed by Algorithm 2 are close to the
exact smooth sensitivities. We measure this using the metric, Sensitivity Approx. Error. Approximate
smooth sensitivities are always larger than the true smooth sensitivity. It is necessary since a lower
value may expose the privacy due to an inadequate noise magnitude. In general, a smaller value of
ϵ (higher privacy guarantee) requires a more accurate estimation of the sensitivity. It is illustrated
in Figure 10 as the approximate smooth sensitivity is close to the exact smooth sensitivity in all
networks at ϵ = 0.125 or ϵ = 0.25.
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