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ABSTRACT. Given an image u0, the aim of minimising the
Mumford-Shah functional is to find a decomposition of the
image domain into sub-domains and a piecewise smooth ap-
proximation u of u0 such that u varies smoothly within each
sub-domain. Since the Mumford-Shah functional is highly non-
smooth, regularizations such as the Ambrosio-Tortorelli approx-
imation can be considered, which is one of the most compu-
tationally efficient approximations of the Mumford-Shah func-
tional for image segmentation. While very impressive numer-
ical results have been achieved in a large range of applications
when minimising the functional, no analytical results are cur-
rently available for minimizers of the functional in the piece-
wise smooth setting, and this is the goal of this work. Our main
result is the Γ -convergence of the Ambrosio-Tortorelli approxi-
mation of the Mumford-Shah functional for piecewise smooth
approximations. This requires the introduction of an appro-
priate function space. As a consequence of our Γ -convergence
result, we can infer the convergence of minimizers of the respec-
tive functionals.

1. INTRODUCTION

Due to their volume and complexity, image and video data are among the largest
and fastest-growing sources of information, and present some of the biggest chal-
lenges for data science. Image segmentation, one of the most fundamental and
ubiquitous tasks in image analysis, is the process of partitioning an image into
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disjoint regions with certain characteristics. Typical examples include image edit-
ing (separating foreground from background, merging multiple images), medical
applications (segmenting regions with similar grey-scale values), and biological
imaging (detecting cancerous cells, finding cells, and nuclei).

Variational models such as the Mumford-Shah model [30] are an important
tool for image segmentation. In their model, Mumford and Shah formulated an
energy minimization problem for computing optimal piecewise smooth approxi-
mations of a given image. Particular cases of the minimal partition problem, its
extensions, and generalizations, are proposed in [9, 10, 33].

We consider the image domain to be represented asΩ ⊂ Rd with d ≥ 1, where
Ω is an interval for d = 1 and, for example, a rectangle in the plane for d = 2.
By u0 : Ω → Rm with m ≥ 1, we denote a given bounded scalar (grey-scale) or
vector-valued (colour) image which should be segmented into two regions. Let C
be a closed subset in Ω, made up of a finite set of smooth curves, and let the length
of curves making up C be denoted by |C|. We write | · | for the Euclidean norm.

In the segmentation problem proposed by Mumford and Shah [30], the aim is
to find a decomposition of Ω into sub-domains and an optimal piecewise smooth
approximation u of u0 such that u varies smoothly within each sub-domain,
and rapidly or discontinuously across the boundaries of the sub-domains. This
problem is solved by minimizing the energy functional

(1.1) EMS(u,C) :=
∫

Ω
|u−u0|

2
dx + µ

∫

Ω\C
|∇u|2 dx + ν|C|,

where µ, ν > 0 are fixed parameters, weighting the different terms in the energy
functional. If (u,C) is a minimizer of the above functional, then u is an “optimal”
piecewise smooth approximation of the initial, possibly noisy image u0, C can be
regarded as approximating the edges of u0, and u is smooth outside of C, that is,
in Ω \C. Theoretical results on the existence and regularity of minimizers of (1.1)
are provided by Mumford and Shah [30], Morel and Solimini [27–29], and De
Giorgi et al. [14].

For proving the existence of minimizers based on the direct method from the
calculus of variations, it is necessary to find a topology for which the functional
is lower semi-continuous, while ensuring compactness of minimizing sequences.
However, the last term in (1.1) is not lower semi-continuous with respect to any
compact topology. This motivates the formulation of (1.1) proposed by [13] and
studied in [12], where the curve C is replaced by the set Ju of jumps of u, leading
to the weak formulation of (1.1)

(1.2) EwMS(u, Ju) :=
∫

Ω
|u−u0|

2
dx + µ

∫

Ω\Ju
|∇u|2 dx + ν|Ju|.

A constructive existence result for piecewise constant functions u in (1.2) is pro-
vided in [27, 28], and a practical multi-scale algorithm based on regions growing
and merging is suggested for this case in [21]. Ambrosio and Tortorelli proposed
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two elliptic approximations by Γ -convergence [3,4] to the weak formulation (1.2)
of the Mumford-Shah functional. Approximation [4] is more commonly used in
practise. For ε > 0 and (u,v) ∈ L2(Ω)2, it is defined as

(1.3) EAT
ε (u,v) :=





∫

Ω
|u−u0|

2
dx + µ

∫

Ω
v2|∇u|2 dx

+ ν

∫

Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx,

if (u,v) ∈W1,2(Ω)2 with 0 ≤ v ≤ 1,

+∞, otherwise.

A minimizer (u, Ju) ofEwMS(u, Ju) is approximated by a pair (uε, vε) of smooth
functions, such that uε → u and vε → 1 in the L2(Ω)-topology as ε → 0 and vε
is different from 1 only in a small neighbourhood of Ju which shrinks as ε → 0.
These elliptic approximations result in a coupled system of two equations with un-
knowns uε and vε which can be solved by applying standard numerical methods
for PDEs. Further approximations and numerical results are provided in [6,7,23].
An approximation by Γ -convergence to the weak formulation of (1.1), based on
the finite element method, is discussed in [8]. However, most of the methods
for solving the weak formulation of the Mumford-Shah functional (1.1) do not
explicitly compute the partition of the image and the set of curves C.

The popular active contour model [10], proposed by Chan and Vese and
based on the Mumford-Shah model, can be regarded as a particular case of the
Mumford-Shah model (1.1) by restricting the segmented image u to piecewise
constant functions. This model motivates the generalized, widely used multiphase
level set model [33], also introduced by Chan and Vese. Let E ⊂ Ω be an open
subset of Ω inside the boundary curve C = ∂E of length |C|, and let c(1) and c(2)

be unknown constants. In the active contour model for grey-scale images (i.e.,
m = 1), piecewise constant approximations are considered and the energy

EPC(C, c(1), c(2)) :=
∫

E
|c(1) −u0|

2
dx +

∫

Ω\E
(c(2) −u0)

2
dx + ν|C|

is minimized with respect to c(1), c(2) ∈ R, and C. The parameter ν > 0 is as-
sumed to be given. The first two terms of EPC penalize the discrepancy between
the input image u0 and its piecewise constant approximation with grey-scale val-
ues c(1) in E and c(2) on Ω \ E, respectively. The last term controls the regularity
of the segmentation by penalizing the length of the boundary curve C. Instead of
minimizing over all curves C, we can represent C implicitly as the zero-crossing of
a level set function ϕ : Ω → R, that is, C := {x ∈ Ω : ϕ(x) = 0}, and we assume
the inside (i.e., the set E) and the outside (i.e., the set Ω\E) of C are distinguished
by positive and negative signs of ϕ, respectively: to be precise,

ϕ(x) > 0 in E, ϕ(x) < 0 on Ω \ E, ϕ(x) = 0 on ∂E.
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A typical example of a level set function is the signed distance function to the
curve. In its level set formulation, the energy functional can be rewritten as

ElsPC(ϕ, c(1), c(2)) :=
∫

Ω
|c(1) −u0|

2Hδ(ϕ)dx(1.4)

+

∫

Ω
|c(2) −u0|

2(1−Hδ(ϕ))dx

+ ν

∫

Ω
|∇Hδ(ϕ)|dx,

where Hδ with δ > 0 denotes a smooth approximation of the Heaviside function
H, defined as H(z) = 1 for z > 0 and H(z) = 0 for z < 0. Hence, the aim of
the active contour model is to find a two-phase segmentation of the image, given
by u(x) := c(1)Hδ(ϕ(x)) + c(2)(1 − Hδ(ϕ(x))), x ∈ Ω. In Figure 1.1, the
segmentation of a given image (based on the implementation in [17]) into two
regions, marked in black and white, is shown for ν = 0.2 and ν = 0.6. The value
of the parameter ν governs the smoothness of the boundary of the segmentation;
that is, for larger values of ν the interface between white and black areas becomes
smaller. This example also illustrates how crucial the parameter choice in this class
of models is.

(a) Input image (b) ν = 0.2 (c) ν = 0.6

FIGURE 1.1. Image segmentation results for different values for
parameter ν > 0

Following the level set approach, piecewise smooth segmentations are con-
sidered in [32, 33] by replacing the constants c(1), c(2) by smooth functions in E
and on Ω \ E, respectively. The proposed model can be easily extended to vector-
valued functions, such as colour images as in [10], for instance. Based on the
Mumford-Shah functional, this leads to the energy functional

ElsPS(ϕ, c(1), c(2))(1.5)

:=
∫

Ω
|c(1) −u0|

2Hδ(ϕ)dx +

∫

Ω
|c(2) −u0|

2(1−Hδ(ϕ))dx
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+ µ

∫

Ω

(
|∇c(1)|2Hδ(ϕ)+ |∇c

(2)|2(1−Hδ(ϕ))
)
dx

+ ν

∫

Ω
|∇Hδ(ϕ)|dx

for piecewise smooth functions c(1), c(2), proposed independently by Vese and
Chan [33], and Tsai et al. [32]. Here, the regularity of c(1) and c(2) is controlled
by the parameter µ > 0, and the smoothness of the boundary of the segmentation
is governed by ν > 0. Numerical results have been obtained independently and
contemporaneously by Vese and Chan [33] and Tsai et al. [32]. These results
show that piecewise smooth regions can be reconstructed very well by the model,
that jumps are well located and without smearing, and that the piecewise constant
case can be recovered.

In what follows, we want to study (1.5) and its piecewise constant version
(1.4). In particular, the regularity of the piecewise smooth functions c(1), c(2) in
(1.5) is controlled by the parameter µ, and for µ → ∞ we expect c(1), c(2) to
be piecewise constant. This motivates us to study the dependence of the energy
on µ. In addition, it is desirable to control the smoothness of the vector-valued
approximations c(1), c(2) : Ω→ Rm by using a parameter 1 < p < +∞.

The mathematical analysis of (1.5), however, is a highly non-trivial task be-
cause of the dependence of the functional on the level set function ϕ and on the
approximation Hδ of the non-smooth Heaviside function H, as ϕ is only implic-
itly defined and the non-smoothness of H causes difficulties estimating the last
term of (1.5). They also render the numerical minimization more difficult. To
get around this, we propose another formulation that is more amenable to math-
ematical analysis. Since the Heaviside function H only takes values in {0,1}, this
suggests we replace H(ϕ) by an indicator function v. These considerations lead
to the energy functional

EPS
µ (v, c

(1), c(2)) :=
∫

Ω
|c(1) −u0|

p |v|dx +

∫

Ω
|c(2) −u0|

p |1− v|dx(1.6)

+ µ

∫

Ω
(|∇c(1)|p |v| + |∇c(2)|p |1− v|)dx

+ ν

∫

Ω
|∇v|dx,

in place of (1.5). For v = χE for some measurable set E with finite perimeter
Per(E;Ω), (1.6) may be equivalently written as

EPS
µ (v, c

(1), c(2)) =

∫

E
(|c(1) −u0|

p + µ|∇c(1)|p)dx

+

∫

Ω\E
(|c(2) −u0|

p + µ|∇c(2)|p)dx

+ ν Per(E;Ω).
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To overcome the non-smoothness of the last term of (1.6), several regular-
ization methods and approximations have been proposed in the literature for the
numerical minimization. One of the most computationally efficient approxima-
tions of the Mumford-Shah functional was proposed by Ambrosio and Tortorelli
[3, 4], and uses the Ginzburg-Landau functional EGL

ε defined as

(1.7) EGL
ε (v) :=

∫

Ω

(
ε|∇v|2 +

1
ε
W(v)

)
dx,

which generalizes the approximation in (1.3). Here, ε > 0 is a positive constant,
and the functionW : R→ [0,+∞) is a double well potential with wells at 0 and 1,
satisfying the following assumption.

Assumption 1.1. Let W : R → [0,+∞) be such that the following hold:
• W is continuous.
• W(t) = 0 if and only if t ∈ {0,1}.
• There exist L > 0 and T > 0 such that

(1.8) W(t) ≥ L|t| for all t ∈ R with |t| ≥ T .

The most common example for W is W(x) := x2(x − 1)2. The Ginzburg-
Landau functional (1.7) plays an important role because of the work of Modica
and Mortola [25,26], who proved that the Ginzburg-Landau functional (1.7) can
be used for approximating the TV energy, the last term in (1.6). In the context of
image processing, examples of using the Ginzburg-Landau functional are given by
[6, 7], which relate to previous works by Ambrosio and Tortorelli [1, 3] on diffuse
interface approximation models.

The framework (1.6) is a very powerful, flexible method that can segment
many types of images, including those that are either difficult or impossible to
segment with classical thresholding or gradient-based methods. Using appropri-
ate approximations of the non-smooth terms, this model has been implemented
successfully, and very impressive numerical results have been achieved in a large
range of applications. However, no analytical results are currently available for
minimizers of (1.6) in the piecewise smooth setting, and this is the goal of this
work.

1.1. Contributions. We will prove Γ -convergence of an Ambrosio-Tortorelli
approximation of (1.6)

Ēµε ,ε(v, c
(1), c(2)) :=

∫

Ω
(|c(1) −u0|

p |v| + |c(2) −u0|
p |1− v|)dx(1.9)

+ µε

∫

Ω
(|∇c(1)|p |v| + |∇c(2)|p |1− v|)dx

+
ν

cW

∫

Ω

(
ε|∇v|2 +

1
ε
W(v)

)
dx,
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to the functional (1.6), where the positive scaling parameter µε approximates
µ > 0, ν > 0 is another scaling parameter, and

cW := 2
∫ 1

0

√
W(t)dt > 0.(1.10)

In particular, minimizers of (1.9) will converge to minimizers of (1.6), giving new
insights into numerical methods for determining minimizers of (1.6).

Minimizers of (1.9) correspond to the segmentation of the vector-valued im-
ages u0 : Ω → Rm with m ≥ 1. Since the wells of W are at 0 and 1, this suggests
that v is an indicator function in the limit ε → 0, and the segmentation, consisting
of smooth approximations c(1), c(2) : Ω→ Rm, is obtained from v : Ω → R.

For piecewise constant segmentations of the form c(1)v + c(2)(1 − v) =
c(1)χE + c

(2)χΩ\E for v = χE and constants c(1), c(2) ∈ Rm, the energy func-

tional (1.9) reduces to Ēε : L1(Ω;R)×Rm ×Rm, where

Ēε(v, c
(1), c(2)) :=

∫

Ω
(|c(1) −u0|

p |v| + |c(2) −u0|
p |1− v|)dx

+
ν

cW

∫

Ω

(
ε|∇v|2 +

1
ε
W(v)

)
dx

for v ∈ W1,2(Ω;R), and Ēε(v, c(1), c(2)) = +∞ otherwise. As an illustrative
example, we prove Γ -convergence of Ēεn to Ē : L1(Ω;R)×Rm ×Rm, where

Ē(v, c(1), c(2)) =

∫

Ω
(|c(1) −u0|

p |v| + |c(2) −u0|
p |1− v|)dx + ν TV(v)

for v ∈ BV(Ω; {0,1}), and Ē(v, c(1), c(2)) = +∞ otherwise. Here, TV(v) de-
notes the total variation of v in Ω.

For piecewise smooth segmentations of the form c(1)v + c(2)(1 − v) where
the approximations c(1), c(2) are functions, any Γ -convergence result requires c(1)

and c(2) to be defined only for x ∈ Ω for which v(x) ≠ 0 and 1− v(x) ≠ 0,
respectively, where the sets {v = 0} and {v = 1} depend on v. Given a func-
tion v ∈ L1((Ω,Ld⌊Ω);R), we want c(1) and c(2), defined on Ω, to be λ|v|- and
λ|1−v|-measurable, respectively. To get this, we introduce the space CLp(Ω) in
Section 2.5, motivated by the space TLp(Ω) in [16]. Denoting the d-dimensional
Lebesgue measure byLd, we say (v, c(1), c(2))∈CLp(Ω) if v ∈ L1((Ω,Ld⌊Ω);R),
c(1) ∈ Lp((Ω, λ|v|);Rm), c(2) ∈ Lp((Ω, λ|1−v|);Rm), where λ|v| and λ|1−v| are
defined by

λ|v| :=





|v|

‖v‖L1(Ω;R)
Ld⌊Ω, ‖v‖L1(Ω;R) ≠ 0,

0 Ld-a.e., otherwise,
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λ|1−v| :=





|1− v|
‖1− v‖L1(Ω;R)

Ld⌊Ω, ‖1− v‖L1(Ω;R) ≠ 0,

0 Ld-a.e., otherwise.

We denote the space of distributions on Ω by D′(Ω), and we consider the space

L1,p(Ω) := {f ∈ D′(Ω) : ∇f ∈ Lp(Ω)}

endowed with the seminorm

‖f‖L1,p := ‖∇f‖Lp .

The reformulation of the first term in the second line of the energy functional (1.9)
with c(1) ∈ Lp((Ω, λ|v|);Rm), c(2) ∈ Lp((Ω, λ|1−v|);Rm) requires the defini-
tion of metric measure Sobolev spaces L1,p((Ω, λ|v|);Rm), L1,p((Ω, λ|1−v|);Rm),
with seminorms ‖·‖L1,p(λ|v|) and ‖·‖L1,p(λ|1−v|), respectively, which are introduced

in Section 2.2. The Sobolev space W1,p((Ω, λ|v|);Rm) is defined by

W1,p((Ω, λ|v|);Rm) := Lp((Ω, λ|v|);Rm)∩ L1,p((Ω, λ|v|);Rm).

Using the notation of metric measure spaces, we consider a rescaled formulation
of the energy functional (1.9):

Eµε ,ε(v, c
(1), c(2)) :=(1.12)

:=
∥∥c(1) −u0

∥∥p
Lp(λ|v| ;Rm)

+
∥∥c(2) −u0

∥∥p
Lp(λ|1−v| ;Rm)

+ µε
∥∥c(1)

∥∥p
L1,p(λ|v|)

+ µε
∥∥c(2)

∥∥p
L1,p(λ|1−v|)

+
ν

cW

∫

Ω

(
ε|∇v|2 +

1
ε
W(v)

)
dx.

We distinguish between two cases for the limit of the positive scaling parameter
µε: namely µε → µ with µ > 0, and µε → +∞ as ε → 0. For +∞ > µ ≥ 0, we
define the limit functional of (1.12) by

Eµ(v, c
(1), c(2)) =(1.13)

=
∥∥c(1) −u0

∥∥p
Lp(λ|v| ;Rm)

+
∥∥c(2) −u0

∥∥p
Lp(λ|1−v| ;Rm)

+ µ
∥∥c(1)

∥∥p
L1,p(λ|v|)

+ µ
∥∥c(2)

∥∥p
L1,p(λ|1−v|)

+ ν TV(v)

for any v = χE ∈ BV(Ω; {0,1}) with

E = {x ∈ Ω : v(x) = 1}, c(1) ∈ W1,p((Ω, λ|v|);Rm), c(2) ∈ W1,p((Ω, λ|1−v|);Rm),
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and Eµ(v, c(1), c(2)) = +∞ otherwise. Note that for any Lebesgue measurable set
E ⊂ Ω such that χE ∈ BV(Ω; {0,1}), the limit functional Eµ reduces to

Eµ(χE, c
(1), c(2))

=
1
|E|

∫

E
|c(1) −u0|

p
dx +

1
|Ω \ E|

∫

Ω\E
|c(2) −u0|

p
dx

+
µ

|E|

∥∥c(1)
∥∥p

L1,p(λχE
)
+

µ

|Ω \ E|
∥∥c(2)

∥∥p
L1,p(λχΩ\E ))

+ ν TV(χE),

where |E| = Ld(E) denotes the d-dimensional Lebesgue measure of E, and where
λχE , λχΩ\E are defined as in (1.11). For a bounded domain E with smooth bound-

ary, the norms ‖c(1)‖L1,p(λχE
) and ‖c(1)‖L1,p(E) = ‖∇c

(1)‖Lp(E) are equivalent.

Our main result is the Γ -convergence of the variational model (1.12) to (1.13)
as ε → 0.

Theorem 1.2. Let Ω ⊂ Rd be an open, bounded set, let 1 < p < +∞, and let
Eµε ,ε : CLp(Ω)→ [0,+∞] be defined by

(1.14) Eµε ,ε(v, c
(1), c(2))

:=





∥∥c(1) −u0

∥∥p
Lp(λ|v| ;Rm)

+
∥∥c(2) −u0

∥∥p
Lp(λ|1−v| ;Rm)

+ µε
∥∥c(1)

∥∥p
L1,p(λ|v|)

+ µε
∥∥c(2)

∥∥p
L1,p(λ|1−v|)

+
ν

cW

∫

Ω
ε|∇v|2 +

1
ε
W(v)dx,

if v ∈ W1,2((Ω,Ld⌊Ω);R), c(1) ∈ W1,p((Ω, λ|v|);Rm),
c(2) ∈ W1,p((Ω, λ|1−v|);Rm),

+∞, otherwise.

Then, the functionals Eµε ,ε Γ -converge, with respect to the CLp(Ω) topology, to

(1.15) Eµ(v, c
(1), c(2))

:=





∫

Ω
|c(1) −u0|

p
dλ|v|(x)+

∫

Ω
|c(2) −u0|

p
dλ|1−v|(x)

+ µ
∥∥c(1)

∥∥p
L1,p(λ|v|)

+ µ
∥∥c(2)

∥∥p
L1,p(λ|1−v|)

+ ν TV(v),

if v = χE ∈ BV(Ω; {0,1}) for E := {x ∈ Ω : v(x) = 1},

c(1) ∈W1,p((Ω, λ|v|);Rm), c(2)∈W1,p((Ω, λ|1−v|);Rm),
+∞, otherwise,

if µε → µ with µ > 0, as ε → 0, and to

(1.16) E∞(v, c
(1), c(2))
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:=





∫

Ω
|c(1) −u0|

p
dλ|v|(x)+

∫

Ω
|c(2) −u0|

p
dλ|1−v|(x)+ ν TV(v),

if v = χE ∈ BV(Ω; {0,1}) for E := {x ∈ Ω : v(x) = 1},

c(1) = c1L
d-a.e. x ∈ E, c(2) = c2L

d-a.e. x ∈ Ω \ E for

constants c1, c2 ∈ R
m,

+∞, otherwise,

if µε → +∞ as ε → 0.

Provided that the compactness property holds, that is., every bounded se-

quence (vn, c
(1)
n , c

(2)
n ) ∈ CLp(Ω) satisfying supn∈NEµεn ,εn(vn, c

(1)
n , c

(2)
n ) < ∞ is

relatively compact, the convergence of minimizers follows from the Γ -convergence
of the energy functional Eµε ,ε. We prove the compactness property in Theo-
rem 4.1 if there exists v = χE for some Lebesgue measurable set E ⊂ Ω, if there
exist κ > 0, r0 > 0 such that P(E;Br (x)) ≥ κrd for every x ∈ ∂∗E, if there exist
κ > 0, r0 > 0 such that P(Ω \ E;Br(x)) ≥ κrd for every x ∈ ∂∗(Ω \ E), and
if there exists a subsequence {vnk} of {vn} such that vnk → v in L1(Ω;R). In
particular, we prove the following corollary.

Corollary 1.3 (Convergence of minimizers). LetΩ ⊂ Rd be an open, bounded
set with d ≥ 2. Suppose that (vn, c

(1)
n , c

(2)
n ) ∈ CLp(Ω) is a minimizer of the en-

ergy Eµεn ,εn in (1.14), for positive sequences {εn}, {µεn} with limn→∞ εn = 0 and
limn→∞ µεn = µ ∈ (0,+∞]. If there exists v = χE for some Lebesgue measurable set
E ⊂ Ω, if there exist κ > 0, r0 > 0 such that P(E;Br (x)) ≥ κrd for every x ∈ ∂∗E,
if there exist κ > 0, r0 > 0 such that P(Ω\E;Br (x)) ≥ κrd for every x ∈ ∂∗(Ω\E),
and if there exists a subsequence {vnk} of {vn} such that vnk → v in L1(Ω;R), then
there exists (v, c(1), c(2)) ∈ CLp(Ω) such that, up to a subsequence (not relabeled ),

(vn, c
(1)
n , c

(2)
n ) converges to (v, c(1), c(2)) in CLp(Ω), and (v, c(1), c(2)) minimizes

the energy Eµ in (1.15) and (1.16) for µ < +∞ and µ = +∞, respectively, over
CLp(Ω).

While we focus on image segmentations into two segments in this work, the
analysis can be extended to images which are partitioned into more than two
segments.

1.2. Overview In Section 2, we shall give some preliminary material which
will include the definition of metric measure spaces, transportation theory, Γ -
convergence, and the space CLp. Section 3 is devoted to the proof of Theorem 1.2
for piecewise constant segmentations, that is, c(1), c(2) ∈ Rm. In Section 4, we
prove Theorem 1.2 for piecewise smooth approximations, and we show the con-
vergence of minimizers of the respective functionals.
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2. DEFINITIONS AND PRELIMINARY RESULTS

2.1. Notation Throughout this paper, let χE denote the characteristic func-
tion of a set E ⊂ Rd. We write Ld for the d-dimensional Lebesgue measure on
Rd, and |E| = Ld(E) stands for the d-dimensional Lebesgue measure of E. For an
open set Ω ⊂ Rd, we designate by B(Ω) the Borel σ -algebra on Ω, and by P(Ω)
the set of Borel probability measures on Ω. For the measure space (Ω,B(Ω), λ),
where λ is a measure on (Ω,B(Ω)), we often write (Ω, λ). For the Lp space of all
measurable functions from (Ω, λ) to Rm, we write Lp((Ω, λ);Rm). If the consid-
ered spaces or measures are clear, we may use Lp(Ω) or Lp(λ) for ease of notation.
The space of functions of bounded variation, BV(Ω;R), is defined as the space of
all functions v ∈ L1(Ω;R) whose distributional first-order partial derivatives are
finite signed Radon measures, defined on the Borel σ -algebra B(Ω;R); that is, for
all i = 1, . . . , d, there exists a finite signed measure vi : B(Ω;R)→ R such that

∫

Ω
v
∂Φ
∂xi

dx = −

∫

Ω
Φ dvi

for all Φ ∈ C∞c (Ω;R). The measure vi is called the weak partial derivative of
v with respect to xi, and is denoted by Div. For v ∈ BV(Ω;R) we shall set
Dv := (D1v, . . . ,Ddv). The total variation of v in Ω for v ∈ L1

loc(Ω;R) is
defined by

TV(v) := sup
{∫

Ω
v divΦ dx : Φ ∈ C∞

c (Ω;Rd), ‖Φ‖L∞(Ω;Rd) ≤ 1
}
.

2.2. Definition of metric measure spaces. Sobolev spaces can be defined
on metric measure spaces [18–20]. For completeness, we recall the standard defi-
nitions of Sobolev spaces:

W1,p(Ω) = {f ∈ D′(Ω) : f ∈ Lp(Ω),∇f ∈ Lp(Ω)},
L1,p(Ω) = {f ∈ D′(Ω) : ∇f ∈ Lp(Ω)},

where Ω ⊂ Rd is an open set, 1 ≤ p ≤ +∞, and D′(Ω) denotes the space of
distributions on Ω. The space W1,p(Ω) is a Banach space when endowed with
the norm ‖f‖W1,p := ‖f‖Lp + ‖∇f‖Lp , and when L1,p(Ω) is endowed with the
seminorm ‖f‖L1,p := ‖∇f‖Lp . Note that W1,p(Ω) ≠ L1,p(Ω) in general.

The definition of Sobolev spaces strongly relies on the Euclidean structure of
the underlying domain Ω. In order to define Sobolev spaces on metric measure
spaces, we need to consider a different approach that does not involve derivatives.
From [19, Theorem 2.2], we obtain the following result.

Theorem 2.1. Let Ω ⊂ Rd be a bounded domain with smooth boundary, and
let 1 < p < +∞. Then, f ∈ W1,p(Ω) if and only if f ∈ Lp(Ω), and there is
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0 ≤ g ∈ Lp(Ω) such that

|f (x)− f (y)| ≤ |x −y|(g(x)+ g(y)) Ld-almost everywhere.(2.1)

Moreover, ‖f‖L1,p is equivalent to infg ‖g‖Lp , that is, there exists a constant C ≥ 1
such that (1/C)‖f‖L1,p ≤ infg ‖g‖Lp ≤ C‖f‖L1,p , where the infimum is taken over
the class of all functions g satisfying (2.1).

This definition can be extended to the case in which Ω is replaced by a metric
space (Ω, d) equipped with a Borel measure λ.

Definition 2.2. Let (Ω, d) be a metric space with a finite positive Borel mea-
sure λ and finite diameter,

diamΩ := sup
x,y∈Ω

d(x,y) < +∞.

Let 1 < p < +∞. The Sobolev spaces L1,p(Ω, d, λ) and W1,p(Ω, d, λ) are defined,
respectively, as

L1,p(Ω, d, λ) :=
{
f : Ω → R : f is measurable, and ∃E ⊂ Ω

with λ(E) = 0 and 0 ≤ g ∈ Lp(λ) such that

|f (x)− f (y)| ≤ d(x,y)(g(x)+ g(y)) ∀x,y ∈ Ω \ E
}
,

and

W1,p(Ω, d, λ) := Lp(λ)∩ L1,p(Ω, d, λ).

The space L1,p(Ω, d, λ) is equipped with the seminorm

‖f‖L1,p(λ) := inf
g
‖g‖Lp(λ)

where 0 ≤ g satisfies

|f (x)− f (y)| ≤ d(x,y)(g(x)+ g(y)) λ-almost everywhere.

The space W1,p(Ω, d, λ) is equipped with the norm

‖f‖W1,p(λ) := ‖f‖Lp(λ) + ‖f‖L1,p(λ).

If the metric d is clear, we also write L1,p(Ω, λ) and W1,p(Ω, λ).
Remark 2.3. Note that other modifications of Lp spaces exist, such as the

weighted Lp space with a weight function w on Ω. However, while these spaces
are defined on a domain Ω, we are interested in Lp spaces, and more generally
Sobolev spaces, on some measure space (Ω, λ) for some nonnegative measure λ.
For f ∈ L1,p(Ω, λ) where λ = χEL

d⌊Ω is the indicator function of some measur-
able bounded domain E ⊂ Ω with smooth boundary, we have f ∈ L1,p(E). In
particular, the norms ‖f‖L1,p(λχE

) and ‖f‖L1,p(E) = ‖∇f‖Lp(E) are equivalent.
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2.3. Transportation theory.

Definition 2.4. Let Ω ⊂ Rd be an open set, and let λ, λ̃ be probability mea-

sures on Ω. We define the set of couplings Π(λ, λ̃) between λ and λ̃ as

Π(λ, λ̃) :=
{
π ∈ P(Ω×Ω) : π(E ×Ω) = λ(E), π(Ω× E) = λ̃(E)

for all measurable E ⊂ Ω
}
.

The elements π ∈ Π(λ, λ̃) are also referred to as transportation plans between λ

and λ̃.

Definition 2.5. Let 1 ≤ p < +∞, λ ∈ P(Ω), and {λn} ⊂ P(Ω). A sequence
of transportation plans {πn} ⊂ Π(λ, λn) is called stagnating if

lim
n→∞

∫

Ω×Ω
|x − y|p dπn(x,y) = 0(2.2)

is satisfied.

Since Ω is bounded, the existence of a stagnating sequence of transportation
plans is equivalent to the weak convergence of probability measures, that is, {λn}
converges weakly-∗ to λ if and only if for any 1 ≤ p < +∞ there is a sequence of
transportation plans {πn} ⊂ Π(λ, λn) for which (2.2) is satisfied [2, 34].

Lemma 2.6 ([16]). Let 1 ≤ p < +∞, let λ ∈ P(Ω), let {λn} ⊂ P(Ω), and let
{πn} ⊂ Π(λ, λn) for all n ∈ N. If {πn} is a stagnating sequence of transportation
plans, then for any c ∈ Lp((Ω, λ);Rm),

lim
n→∞

∫

Ω×Ω
|c(x) − c(y)|p dπn(x,y) = 0.

Lemma 2.7 ([16]). Suppose that the sequence {λn} in P(Ω) converges weakly-
∗ to λ ∈ P(Ω). Let cn ∈ Lp((Ω, λn);Rm), n ∈ N, and let c ∈ Lp((Ω, λ);Rm).
Consider two sequences of stagnating transportation plans {πn} and {π̃n}, with
πn, π̃n ∈ Π(λ, λn). Then,

lim
n→∞

∫

Ω×Ω
|c(x) − cn(y)|

p
dπn(x,y) = 0

⇐⇒ lim
n→∞

∫

Ω×Ω
|c(x) − cn(y)|

p
dπ̃n(x,y) = 0.

Definition 2.8. Given a Borel map T : Ω → Ω and λ ∈ P(Ω), the push-
forward of λ by T is denoted by T#λ ∈ P(Ω), and is given by

T#λ(E) := λ(T−1(E)), E ∈ B(Ω).
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For any bounded Borel functionϕ : Ω→ R, the following change of variables
holds: ∫

Ω
ϕ(x)d(T#λ)(x) =

∫

Ω
ϕ(T(x))dλ(x).

Definition 2.9. A Borel map T : Ω → Ω is called a transportation map be-

tween the measures λ ∈ P(Ω) and λ̃ ∈ P(Ω) if λ̃ = T#λ.

For a transportation map T between measures λ, λ̃ ∈ P(Ω), we associate

with T the transportation plan πT ∈ Π(λ, λ̃) given by πT := (Id×T)#λ, where
Id×T : Ω → Ω×Ω with (Id×T)(x) = (x, T(x)). For any ϕ ∈ L1(Ω×Ω,R), a
change of variables yields

∫

Ω×Ω
ϕ(x,y)dπT (x,y) =

∫

Ω
ϕ(x,T(x))dλ(x).

2.4. Γ -convergence. We recall the notion of Γ -convergence [5, 11].

Definition 2.10. Let (X,d) be a metric space, and let {En} be a sequence
of functions En : X → [−∞,+∞]. We say that {En} Γ -converges to a function
E : X → [−∞,+∞] if the following two properties are satisfied:

• (Liminf inequality) For every x ∈ X and every sequence {xn} ⊂ X such
that xn → x with respect to d,

E(x) ≤ lim inf
n→∞

En(xn).

• (Limsup inequality) For every x ∈ X, there exists a sequence {xn} ⊂ X
such that xn → x with respect to d, and

lim sup
n→∞

En(xn) ≤ E(x).

The limit function E is called the Γ -limit of the sequence {En}, and we write

Γ - lim
n→∞

En = E.

Definition 2.11. Let (X,d) be a metric space. A sequence of nonnegative
functionals {En} with En : X → [−∞,+∞] satisfies the compactness property
if, for any increasing subsequence {nk} of natural numbers and any bounded
sequence {xk} ⊂ X such that

sup
k∈N

Enk(xk) <∞,

the sequence {xk} is relatively compact in X.
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For functionals {En} satisfying the compactness property, the notion of Γ -
convergence is particularly useful since it guarantees the convergence of minimiz-
ers (or approximations of minimizers) of En to minimizers of E. It also guarantees
the convergence of the minimum energy of En to the minimum energy of E. To
be precise, we have the following.

Proposition 2.12. Let En : X → [0,∞] be nonnegative functionals not identi-
cally equal to +∞, satisfying the compactness property, and Γ -converging to the func-
tional E : X → [0,∞] that is not identically equal to +∞. Then,

lim
n→∞

inf
x∈X

En(x) = min
x∈X

E(x).

Furthermore, every bounded sequence {xn}n∈N in X for which

(2.3) lim
n→∞

(En(xn)− inf
x∈X

En(x)) = 0

is relatively compact, and each of its cluster points is a minimizer of E. In particular,
if E has a unique minimizer, then a sequence {xn} satisfying (2.3) converges to the
unique minimizer of E.

Theorem 2.13 (Γ -Convergence and Compactness of the Ginzburg-Landau
Functional [24–26, 31]). Let Ω ⊂ Rd be an open, bounded set, and εn → 0.
Suppose Assumption 1.1 is satisfied, and define EGL

εn by (1.7). Then, Γ - limn→∞E
GL
εn =

cW TV, with cW as in (1.10). Furthermore, let {vn} ⊂ W1,2(Ω;R) be such that

M := sup
n∈N

EGL
εn (vn) < +∞.

Then, there exist a subsequence {vnk} of {vn} and v ∈ BV(Ω; {0,1}) such that
vnk → v in L1(Ω;R).

Using the results of Modica and Mortola [25,26], Modica [24] and Sternberg
[31] independently proved Theorem 2.13 under the stronger assumption that

1
c
|t|q ≤ W(t) ≤ c|t|q

for all |t| ≥ T for some T > 0, c > 0, and q ≥ 2. Fonseca and Tartar [15]
showed that the weaker assumption of linear growth in (1.8) is sufficient for The-
orem 2.13.

2.5. The space CLp. Let Ω ⊂ Rd be an open set. We define

CLp(Ω) :=
{
(v, c(1), c(2)) : v ∈ L1((Ω,Ld⌊Ω);R),

c(1) ∈ Lp((Ω, λ|v|);Rm), c(2) ∈ Lp((Ω, λ|1−v|);Rm)
}
,
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where λ|v| and λ|1−v| are given by (1.11); that is, λ|v| and λ|1−v| are probability
measures on Ω which have Lebesgue densities

|v|

‖v‖L1(Ω;R)
and

|1− v|
‖1− v‖L1(Ω;R)

if

‖v‖L1(Ω;R) ≠ 0 and ‖1− v‖L1(Ω;R) ≠ 0,

respectively. For (v, c(1), c(2)) and (ṽ, c̃(1), c̃(2)) in CLp(Ω), we define the equiv-
alence relation on CLp as

(v, c(1), c(2)) ∼ (ṽ, c̃(1), c̃(2))

⇐⇒





v = ṽ = 0 Ld-a.e., c(1) = c̃(1) λ|v|-a.e.,

c(2) = c̃(2) λ|1−v|-a.e.,

if ‖v‖L1 = 0 or ‖ṽ‖L1 = 0,

v = ṽ = 1 Ld-a.e., c(1) = c̃(1) λ|v|-a.e.,

c(2) = c̃(2) λ|1−v|-a.e.,

if ‖1− v‖L1 = 0 or ‖1− ṽ‖L1 = 0,

λ|v| = λ|ṽ| Ld-a.e., λ|1−v| = λ|1−ṽ| Ld-a.e.,

c(1) = c̃(1) λ|v|-a.e., c(2) = c̃(2) λ|1−v|-a.e.,

otherwise.

By abuse of notation, we also identify CLp(Ω) with the space of equivalence classes
CLp(Ω)/ ∼. For (v, c(1), c(2)) ∈ CLp(Ω) we denote the equivalence class by
[(v, c(1), c(2))], that is,

[(v, c(1), c(2))] = {(ṽ, c̃(1), c̃(2)) ∈ CLp(Ω) : (v, c(1), c(2)) ∼ (ṽ, c̃(1), c̃(2))}.

Similarly, let [v], [c(1)], and [c(2)] be the usual equivalence classes in

L1((Ω,Ld⌊Ω);R), Lp((Ω, λ|v|);Rm) and Lp((Ω, λ|1−v|);Rm),

respectively.

Lemma 2.14. Let (v, c(1), c(2)) ∈ CLp(Ω) with v = w Ld-a.e. for some
constant w ∈ R. For w̃ ∈ R, let vw̃ ∈ L1((Ω,Ld⌊Ω);R) satisfy vw̃ = w̃ Ld-a.e. If
w ∈ R \ {0,1}, then

[(v, c(1), c(2))] =
⋃

w̃∈R\{0,1}

[vw̃]× [c
(1)]× [c(2)].
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If w ∈ {0,1}, then

[(v, c(1), c(2))] = [v]× [c(1)]× [c(2)].

Proof. Clearly, if v = w Ld almost everywhere for w ∈ R \ {0,1}, then

|v|

‖v‖L1
=

1
|Ω| ,

|1− v|
‖1− v‖L1

=
1
|Ω| Ldalmost everywhere,

independently of the value of w. For w ∈ {0,1} the claim immediately follows
from the definition of the equivalence relation. p

For the compactness property and Γ -convergence, we can restrict ourselves to
(v, c(1), c(2)) ∈ CLp(Ω) with 0 ≤ v ≤ 1 Ld almost everywhere. To see this, note

that for any sequence {(vn, c
(1)
n , c

(2)
n )} in CLp(Ω) and εn → 0 such that

sup
n∈N

Eµεn ,εn(vn, c
(1)
n , c

(2)
n ) < +∞,

we have vn → v in L1(Ω;R) with v = χE for some E ⊂ Ω. We may consider

(2.4) un(x) :=





0, vn(x) ≤
1
2
,

1, vn(x) >
1
2
,

instead of vn. To be precise, we have the following result.

Lemma 2.15. Let vn → v in L1(Ω;R), with v = χE for some E ⊂ Ω. Then,
{un} defined by (2.4) satisfies

lim
n→∞

‖un − vn‖L1(Ω;R) = 0.

Proof. We have
∫

Ω
|un − vn|dx =

∫

{vn>1/2}
|1− vn|dx +

∫

{vn≤1/2}
|vn|dx

≤

∫

{vn>1/2}∩E
|χE − vn|dx +

∫

{vn>1/2}\E
(1+ vn)dx

+

∫

{vn≤1/2}∩E
|vn|dx +

∫

{vn≤1/2}\E
|vn − χE|dx

≤

∫

Ω
|χE − vn|dx +

∫

Ω\E
3|vn|dx

+

∫

{vn≤1/2}∩E
|vn − χE|dx +

∫

Ω
|vn − χE|dx,

where all terms go to 0 as n→∞ since vn → v in L1(Ω;R). p
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For (v, c(1), c(2)), (ṽ, c̃(1), c̃(2)) ∈ CLp(Ω) satisfying

(v, c(1), c(2)) ∼ (ṽ, c̃(1), c̃(2)),

where v is nonconstant Ld almost everywhere, 0 ≤ v ≤ 1 Ld almost everywhere,
and 0 ≤ ṽ ≤ 1 Ld almost everywhere, we have v = ṽ Ld almost everywhere. To
see this, note that the equivalence relation on CLp(Ω) implies v = aṽ Ld almost
everywhere and 1− v = b(1− ṽ) Ld almost everywhere for some a,b ∈ R. For
a ≠ b, we obtain v = a(1− b)/(a− b) Ld almost everywhere, in contradiction
to v being nonconstant Ld almost everywhere. This implies that a = b = 1, that
is, v = ṽ Ld almost everywhere.

For (v, c(1), c(2)) and (ṽ, c̃(1), c̃(2)) in CLp(Ω), we define

dCLp((v, c
(1), c(2)), (ṽ, c̃(1), c̃(2)))

:= dTLp((λ|v|, c
(1)), (λ|ṽ|, c̃

(1)))

+ dTLp((λ|1−v|, c
(2)), (λ|1−ṽ|, c̃

(2))),

where for (µ, f ), (λ, g) in TLp(Ω), with

TLp(Ω) := {(µ, f ) : µ ∈ P(Ω), f ∈ Lp(Ω, µ)},

the metric

dTLp((µ, f ), (λ, g))

:= inf
π∈Π(µ,λ)

(∫

Ω×Ω
|x −y|p + |f (x)− g(x)|p dπ(x,y)

)1/p

is introduced in [16]. If µ,λ have densities, we can write the distance dTLp in the
Monge formulation. To be precise,

dTLp((µ, f ), (λ, g))

= inf
T : T#µ=λ

(∫

Ω

[
|x − T(x)|p + |f (x)− g(T(x))|p

]
dµ(x)

)1/p

.

Proposition 2.16. (CLp(Ω), dCLp) is a metric space.

Proof. Nonnegativity, symmetry, and dCLp((v, c
(1), c(2)), (ṽ, c̃(1), c̃(2))) = 0

for (v, c(1), c(2)) = (ṽ, c̃(1), c̃(2)) follow easily from the definition of dTLp . If

dCLp((v, c
(1), c(2)), (ṽ, c̃(1), c̃(2))) = 0,

then

dTLp((λ|v|, c
(1)), (λ|ṽ|, c̃

(1))) = 0,
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dTLp((λ|1−v|, c
(2)), (λ|1−ṽ|, c̃

(2))) = 0,

that is, λ|v| = λ|ṽ| Ld almost everywhere, λ|1−v| = λ|1−ṽ| Ld almost everywhere,
c(1) = c̃(1) λ|v| almost everywhere, c(2) = c̃(2) λ|1−v| almost everywhere, and
these imply

|v|

‖v‖L1
=

|ṽ|

‖ṽ‖L1
Ld-a.e.,

|1− v|
‖1− v‖L1

=
|1− ṽ|
‖1− ṽ‖L1

Ld-a.e.

Hence, (v, c(1), c(2)) ∼ (ṽ, c̃(1), c̃(2)), and we have equality in CLp(Ω). p

It was shown in [16, Proposition 3.12] that for (µ, f ) ∈ TLp(Ω) and a se-
quence {(µn, fn)} in TLp(Ω), (µn, fn) → (µ, f ) in TLp(Ω) as n → ∞ if and
only if {µn} converges weakly-∗ to µ and fn ◦ Tn → f in Lp(µ) as n → ∞

for any stagnating sequence of transportation maps {Tn} between µn and µ with
Tn#µ = µn.

Proposition 2.17. Let (v, c(1), c(2)) ∈ CLp(Ω), and let {(vn, c
(1)
n , c

(2)
n )} be a

sequence in CLp(Ω). Then, (vn, c
(1)
n , c

(2)
n )→ (v, c(1), c(2)) in CLp(Ω) if and only

if {λ|vn|} converges weakly-∗-∗ to λ|v|, c
(1)
n ◦ T (1)n → c(1) in Lp((Ω, λ|v|);Rm),

and c(2)n ◦ T (2)n → c(2) in Lp((Ω, λ|1−v|);Rm) as n → ∞, for any sequences of

transportation maps {T (1)n } and {T (2)n } satisfying T (1)n #λ|v| = λ|vn|, T
(2)
n #λ|1−v| =

λ|1−vn|, and ‖T (1)n − Id‖Lp(λ|v|) → 0, ‖T (2)n − Id ‖Lp(λ|1−v|) → 0.

Proof. Assume that (vn, c
(1)
n , c

(2)
n )→ (v, c(1), c(2)) in CLp(Ω). We have that

dTLp((λ|v|, c
(1)), (λ|vn|, c

(1)
n ))→ 0

and, by [16, Proposition 3.12], we have that {λ|vn|} converges weakly-∗ to λ|v|
and c(1)n ◦ T (1)n → c(1) in Lp((Ω, λ|v|);Rm) for any sequence of transportation

maps {T (1)n } satisfying the conditions in the proposition. Analogously, we obtain

c(2)n ◦ T (2)n → c(2) in Lp((Ω, λ|1−v|);Rm).
If {λ|vn|} converges weakly-∗ to λ|v|,

c(1)n ◦ T (1)n → c(1) in Lp((Ω, λ|v|);Rm)
and

c(2)n ◦ T (2)n → c(2) in Lp((Ω, λ|1−v|);Rm),

then we conclude that

dTLp((λ|v|, c
(1)), (λ|vn|, c

(1)
n ))→ 0,

dTLp((λ|1−v|, c
(2)), (λ|1−vn|, c

(2)
n ))→ 0.

Hence, we obtain that dCLp((v, c
(1), c(2)), (ṽ, c̃(1), c̃(2))) → 0. p
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3. Γ -CONVERGENCE FOR PIECEWISE CONSTANT SEGMENTATIONS

In this section, we study the Ginzburg-Landau image segmentation model where
c(1), c(2) ∈ Rm are constants and correspond to the optimal intensity values
to approximate each of the two segments. For constants c(1), c(2), we define
Ēε : L1(Ω;R)×Rm ×Rm by

Ēε(v, c
(1), c(2)) :=





∫

Ω
(|c(1) −u0|

p |v| + |c(2) −u0|
p |1− v|)dx

+
ν

cW

∫

Ω

(
ε|∇v|2 +

1
ε
W(v)

)
dx,

if v ∈W1,2(Ω;R), c(1), c(2) ∈ Rm,

+∞, otherwise,

(3.1)

where cW is defined in (1.10), and u0 ∈ L∞(Ω;Rm) is given. The aim of this
section is to show that {Ēε} Γ -converges to Ē : L1(Ω;R)×Rm ×Rm, defined by

Ē(v, c(1), c(2)) :=





∫

E
|c(1) −u0|

p
dx

+

∫

Ω\E
|c(2) −u0|

p
dx + ν TV(v),

if v = χE ∈ BV(Ω; {0,1})

for E := {x ∈ Ω : v(x) = 1},

c(1), c(2) ∈ Rm,

+∞, otherwise.

(3.2)

Note that Ēε and Ē follow immediately from the definition of Eµ,ε and Eµ when
c(1), c(2) constant. In this case, the CLp(Ω) topology is not practical, and we
consider the L1(Ω;R) × Rm × Rm topology instead. The main results of this
section are the compactness property and the Γ -convergence of Ēε for piecewise
constant segmentations, which imply the convergence of minimizers, as follows.

Theorem 3.1. Let Ω ⊂ Rd be an open, bounded set, let 1 < p < +∞, and let
Ēε : L1(Ω;R)×Rm ×Rm → [0,+∞] and Ē : L1(Ω;R)×Rm ×Rm as defined by
(3.1) and (3.2), respectively. Then, the functional Ēε satisfies the compactness property
and Γ -converges with respect to the L1(Ω;R)×Rm ×Rm topology to Ē as ε → 0.

Let us first state a general lemma which is not only valid for constant functions
c(1), c(2), but more generally for functions

c(1) ∈ W1,p((Ω, λ|v|);Rm),
c(2) ∈ W1,p((Ω, λ|1−v|);Rm),

for v ∈ L1((Ω,Ld⌊Ω);R) given.
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Lemma 3.2. Let Ω ⊂ Rd be an open set with finite measure. Define the en-
ergy functional Eµε ,ε as in (1.14), and let εn → 0, {vn} ⊂ W1,2((Ω,Ld⌊Ω);R),
{c(1)n }, {c(2)n } such that

c(1)n ∈ W1,p((Ω, λ|vn|);Rm), c(2)n ∈W1,p((Ω, λ|1−vn|);Rm),

and assume that
M := sup

n∈N

Eµεn ,εn(vn, c
(1)
n , c

(2)
n ) < +∞,

where µεn → µ ∈ (0,+∞] as εn → 0. Then, there exist a subsequence {vnk} of
{vn} and v ∈ BV(Ω; {0,1}), with v = χE L

d almost everywhere for a Lebesgue
measurable set E ⊂ Ω, such that vnk → v in L1(Ω;R).

Proof. As supn∈NE
GL
εn (vn) < +∞, where EGL

ε denotes the Ginzburg-Landau
energy functional defined in (1.7), Theorem 2.13 can be invoked. p

As a first step towards proving Theorem 3.1, we show a compactness result
based on Lemma 3.2.

Theorem 3.3 (Compactness). Let Ω ⊂ Rd be an open set with finite measure,
let εn → 0, and let {vn} ⊂ W1,2(Ω;R), {c(1)n }, {c(2)n } ⊂ Rm, be such that

M := sup
n∈N

Ēεn(vn, c
(1)
n , c

(2)
n ) < +∞.

Then, there exist a subsequence {vnk} of {vn} and v ∈ BV(Ω; {0,1}), with v =
χE for some Lebesgue measurable set E ⊂ Ω, such that vnk → v in L1(Ω;R). If
Ld(E) > 0, then there exists a converging subsequence {c(1)nk } of {c(1)n } with limit

c(1) ∈ Rm. If Ld(Ω \ E) > 0, then there exists a converging subsequence {c(2)nk } of

{c(2)n } with limit c(2) ∈ Rm.

Proof. By Lemma 3.2 we can find a subsequence {vnk} of {vn} and

v ∈ BV(Ω; {0,1}), with v = χE for some Lebesgue measurable set E ⊂ Ω,

such that vnk → v in L1(Ω;R). For Ld(E) > 0 the sequence {c(1)n } has to be
bounded. To see this, note that the energy bound implies that

∫

Ω
|c(1)n −u0|

p |vn|dx is uniformly bounded.

If the sequence {c(1)n } was unbounded, for every n > 0 there exists some kn ∈ N
such that

M ≥ sup
n∈N

∫

Ω
|c(1)n −u0|

p |vn|dx ≥ n‖vkn‖L1(Ω)
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by using the fact that u0 is bounded. This implies that vkn → 0 in L1(Ω;R),

which contradicts Ld(E) > 0. Hence, {c(1)n } is bounded, and the existence of
a subsequence of {c(1)n } converging to c(1) in Rm follows immediately from the
Bolzano-Weierstrass theorem. Similarly, one can show if Ld(Ω \ E) > 0 then

{c(2)n } is bounded, and has a converging subsequence with limit c(2) ∈ Rm. p

Proof of Theorem 3.1. As the compactness property follows from Theorem 3.3,
it remains to show the Γ -convergence. Let

Ē(1)(v, c(1), c(2)) :=
∫

Ω
(|c(1) −u0|

p |v| + |c(2) −u0|
p |1− v|)dx,

so that Ēε(v, c(1), c(2)) = Ē(1)(v, c(1), c(2))+(ν/cW )EGL
ε (v) and (when v = χE)

Ē(v, c(1), c(2)) = Ē(1)(v, c(1), c(2))+ ν TV(v).
Let (vn, c

(1)
n , c

(2)
n ) → (v, c(1), c(2)) in CLp(Ω), that is, vn is bounded in

L1(Ω;R), supn∈N |c
(1)
n | < +∞ and supn∈N |c

(2)
n | < +∞. We have

|Ē(1)(vn, c
(1)
n , c

(2)
n )− Ē

(1)(v, c(1), c(2))|

≤

∫

Ω

(
|c(1)n −u0|

p
∣∣|vn| − |v|

∣∣+ |v|
∣∣|c(1)n −u0|

p − |c(1) −u0|
p
∣∣)dx

+

∫

Ω

(
|c(2)n −u0|

p
∣∣|1− vn| − |1− v|

∣∣

+ |1− v|
∣∣|c(2)n −u0|

p − |c(2) −u0|
p
∣∣
)
dx.

Note that for any δ > 0 there exists Cδ > 0 such that for all a,b ∈ Rm we have

|a|p ≤ (1+ δ)|b|p + Cδ|a− b|p,

implying

|c(i)n −u0|
p ≤ (1+ δ)|c(i) −u0|

p + Cδ|c
(i)
n − c(i)|p.

Hence,

|Ē(1)(vn, c
(1)
n , c

(2)
n )− Ē

(1)(v, c(1), c(2))|

≤ (sup
x∈Ω

|c(1)n −u0(x)|
p)‖vn − v‖L1(Ω)

+

∫

Ω
|v|(δ|c(1) −u0|

p + Cδ|c
(1)
n − c(1)|p)dx

+ (sup
x∈Ω

|c(2)n −u0(x)|
p)‖vn − v‖L1(Ω)

+

∫

Ω
|1− v|(δ|c(2) −u0|

p + Cδ|c
(2)
n − c(2)|p)dx
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≤ C‖vn − v‖L1(Ω) + δĒ
(1)(v, c(1), c(2))+ Cδ|c

(1)
n − c(1)|p ‖v‖L1(Ω)

+ Cδ|c
(2)
n − c(2)|p ‖1− v‖L1(Ω).

Letting n→∞, we have

lim
n→∞

|Ē(1)(vn, c
(1)
n , c

(2)
n )− Ē

(1)(v, c(1), c(2))| ≤ δĒ(1)(v, c(1), c(2))

for any δ > 0. Let δ→ 0 to obtain

lim
n→∞

Ē(1)(vn, c
(1)
n , c

(2)
n ) = Ē

(1)(v, c(1), c(2)).

By stability of Γ -convergence under its continuous perturbations, Proposition 6.20
in [12], we obtain the Γ -convergence of Ēε to {Ē} in L1(Ω;R)×Rm ×Rm. p

By the compactness result in Theorem 3.3, we only consider∅ ⊊ E ⊊ Ω with
0 < Ld(E) < Ld(Ω) for minimizers of the function Ē in (3.2). However, the
Γ -limit Ē in (3.2) is defined for all sets ∅ ⊂ E ⊂ Ω.

4. Γ -CONVERGENCE FOR PIECEWISE SMOOTH APPROXIMATIONS

In this section, we prove the main result of the paper, stated in Theorem 1.2:
namely, the Γ -convergence of the energy functional Eµε ,ε in (1.14) for any positive
parameter µε. In the following, we differentiate between two regimes depending
on the convergence of the positive parameter µεn as εn → 0:

(1) µεn → µ for a constant µ > 0;
(2) µεn → +∞.

These two cases cover all positive limits of µεn as εn → 0. We note that the
analysis is very similar for limεn→0 µεn = µ > 0 and limεn→0 µεn = +∞. We start
by showing compactness.

Theorem 4.1 (Compactness). Let Ω ⊂ Rd, with d ≥ 2, be an open set with
finite measure. Let εn → 0 and {vn} ⊂ W1,2((Ω,Ld⌊Ω);R), {c(1)n }, {c(2)n } be such
that c(1)n ∈ W1,p((Ω, λ|vn |);Rm), c

(2)
n ∈ W1,p((Ω, λ|1−vn|);Rm), and

M := sup
n∈N

Eµεn ,εn(vn, c
(1)
n , c

(2)
n ) < +∞,

for Eµε ,ε defined in (1.14), with limn→∞ µεn ∈ (0,+∞]. Then, there exist a subse-
quence {vnk} of {vn} and v ∈ BV(Ω; {0,1}), with v = χE for some Lebesgue mea-
surable set E ⊂ Ω, such that vnk → v in L1(Ω;R). If Ld(E) > 0, if there exist κ > 0,

r0 > 0 such that P(E;Br (x)) ≥ κrd for every x ∈ ∂∗E, and {c(1)n }n∈N are bounded
in L∞, then (λ|vn|, c

(1)
n ) is precompact in TLp, and any cluster point (λ|v|, c(1)) sat-

isfies c(1) ∈ W1,p((Ω, λ|v|);Rm). Similarly, if Ld(Ω \ E) > 0, if there exist κ > 0,
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r0 > 0 such that P(Ω \ E;Br (x)) ≥ κrd for every x ∈ ∂∗(Ω \ E), and {c(2)n }n∈N

are bounded in L∞, then (λ|1−vn|, c
(2)
n ) is precompact in TLp, and any cluster point

(λ|1−v|, c(2)) satisfies c(2) ∈ W1,p((Ω, λ|1−v|);Rm). In particular, if 0 < Ld(E) <
Ld(Ω), if the above assumptions on the perimeter of E and of Ω \ E hold, and if
{c(i)n }n∈N, i = 1,2, are bounded in L∞, then there are a subsequence (vnk , c

(1)
nk , c

(2)
nk )

of (vn, c
(1)
n , c

(2)
n ) and (v, c(1), c(2)) ∈ CLp(Ω) such that {(vnk , c

(1)
nk , c

(2)
nk )} con-

verges to (v, c(1), c(2)) in CLp(Ω) and Eµ(v, c(1), c(2)) < +∞.

Proof. The existence of a subsequence {vnk} of {vn} and v ∈ BV(Ω; {0,1})
with v = χE for a measurable set E ⊂ Ωwith finite perimeter such that vnk → v in
L1(Ω;R) follows from Lemma 3.2. In particular, {λ|vn|} and {λ|1−vn|} converge
weakly-∗ to λ|v| and λ|1−v|, respectively.

Let us first consider 0 < limn→∞ µεn < +∞, and we assume, without loss of
generality, that µεn are uniformly bounded by positive constants from above and

below. Since the existence of converging subsequences of {c(1)nkℓ ◦ T
(1)
nkℓ
} → c(1)

and {c(2)nkℓ ◦ T
(2)
nkℓ
} → c(2) can be shown in a similar way, we restrict ourselves to

c(1)nkℓ ◦ T
(1)
nkℓ

→ c(1), and in the following assume that Ld(E) > 0. For ease of
notation, we omit the superscript index (1).

Since {λ|vn|} converges weakly-∗ to λ|v|, then {λ|vn|} converges in the p′-
Wasserstein distance to λ|v|, with 1/p + 1/p′ = 1. In particular, there exists a
sequence of transport maps {Tn} satisfying

Tn#λ|v| = λ|vnk | and lim
n→∞

‖Tn − Id ‖Lp
′
(E) = 0.

Let ψ ∈ C∞
c (R

d) be a standard mollifier, for example,

ψ(x) :=




C exp

(
1

|x|2 − 1

)
, |x| < 1,

0, |x| ≥ 1,

where the constant C > 0 is chosen such that
∫

Rd
ψdx = 1. For each a > 0, we

set

ψa(x) =
1
ad
ψ

(
x

a

)
, x ∈ Rd.

We define convolution in the usual way, that is, (ψ∗c)(x) :=
∫

Ω
ψ(x−y)c(y)dy ,

and for convenience we let v̂(x) := v(x)/|E|. We claim there exists a positive
converging sequence {an}n∈N ⊂ R with limn→∞ an = 0, such that

sup
n∈N

‖∇(ψan ∗ ((cn ◦ Tn)v̂))‖L1(Rd) < +∞,(4.1)
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and

lim
n→∞

‖ψan ∗ ((cn ◦ Tn)v̂)− (cn ◦ Tn)v̂‖L1(E) = 0.(4.2)

Under these assumptions, we show that c ∈ W1,p((Ω, λ|v|;Rm). Since

∥∥ψan ∗ ((cn ◦ Tn)v̂)
∥∥p

Lp(Rd) =

∫

Rd

∣∣∣∣
1
|E|

∫

E
ψan(x − y)cn(Tn(y))dy

∣∣∣∣
p

dx

≤
1
|E|p

∫

Rd

∫

E
ψan(x −y)|cn(Tn(y))|

p
dy dx

=
1
|E|p

∫

E
|cn(Tn(y))|

p
dy

=
1

|E|p−1

∥∥cn ◦ Tn
∥∥p

Lp(λ|v|)
,

by the boundedness of {Eµεn ,εn}, we deduce that the sequence

‖ψan ∗ ((cn ◦ Tn)v̂)‖Lp(Rd)

is uniformly bounded in n. The sequence {fn}, with fn := ψan∗((cn◦Tn)v̂), is
bounded in W1,1(Rd) by (4.1), and so there exists a subsequence (not relabelled)
that converges in Lα(Rd) to some f ∈ W1,1(Rd) for any 1 ≤ α ≤ d/(d − 1).
Choosing α = 1, we have

lim
n→∞

‖ψan ∗ ((cn ◦ Tn)v̂)− f‖L1(Rd) = 0.

Define c(x) := f (x)|E| for x ∈ E and c(x) = 0 for x 6∈ E. We obtain

‖ψan ∗ ((cn ◦ Tn)v̂)− cv̂‖L1(E) ≤ ‖ψan ∗ ((cn ◦ Tn)v̂)− f‖L1(Rd) → 0.

Together with (4.2), and the fact that

‖cn ◦ Tn − c‖L1(λ|v|) = ‖(cn ◦ Tn)v̂ − cv̂‖L1(E)

≤ ‖(cn ◦ Tn)v̂ −ψan ∗ ((cn ◦ Tn)v̂)‖L1(E)

+ ‖ψan ∗ ((cn ◦ Tn)v̂)− cv̂‖L1(E),

we deduce that
lim
n→∞

‖cn ◦ Tn − c‖L1(λ|v|)
= 0.

From the fact that {cn} is bounded in L∞, and extracting a further subsequence
(not relabeled), we can assume that cn ◦ Tn → c pointwise on E, which implies
that c is also bounded in L∞. Moreover,

∥∥cn ◦ Tn − c
∥∥p

Lp(λ|v|)
≤
∥∥cn ◦ Tn − c

∥∥p−1
L∞(E) ‖cn ◦ Tn − c‖L1(λ|v|) → 0.
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Since cn ∈ W1,p(λ|vn|), by Theorem 2.1 there exist gn ∈ Lp(λ|vn|) and
Ωn ⊂ Ω satisfying

|cn(x)− cn(y)| ≤ |x −y|(gn(x)+ gn(y))

for all x,y ∈ Ωn, λ|vn|(Ωn) = 1, and ‖gn‖Lp(λ|vn |) ≤ ‖cn‖L1,p(λ|vn |)
+1/n. Using

the transport maps Tn, we can rewrite the above as

(4.3) |cn(Tn(x))−cn(Tn(y))| ≤ |Tn(x)−Tn(y)|(gn(Tn(x))+gn(Tn(y)))

for all x,y ∈ T−1
n (Ωn) ⊂ E, λ|v|(T−1

n (Ωn)) = 1, and ‖gn ◦ Tn‖Lp(λ|v|) ≤

‖cn‖L1,p(λ|vn |)
+ 1. Now, λ|v|(T−1

n (Ωn)) = 1 implies |T−1
n (Ωn)| = |E|, and so

(4.3) holds for almost every x,y ∈ E. Taking the union over all sets T−1
n (Ωn)

for n ∈ N, we can further say there exists Ẽ with |Ẽ| = |E| such that (4.3)
holds for all x,y ∈ Ẽ and n ∈ N. As gn ◦ Tn are bounded in Lp(λ|v|),
there exists a weakly converging subsequence to some g ∈ Lp(λ|v|). More-
over, (x,y) ֏ χT−1

n (Ωn)2(x,y)|Tn(x) − Tn(y)|(gn(Tn(x)) + gn(Tn(y))) is

also bounded in Lp(λ|ν|), and so it converges weakly along a subsequence to
(x,y) ֏ χΩ2(x,y)|x − y|(g(x) + g(y)). For any ϕ : Rd × Rd → R+, with

ϕ ∈ Lp
∗

(λ|ν| × λ|ν|) where p∗ > 0 such that 1/p + 1/p∗ = 1, we have

∫

Ω2
|c(x) − c(y)|ϕ(x,y)dx dy

≤ lim inf
n→∞

∫

T−1
n (Ωn)2

|cn(x)− cn(y)|ϕ(x,y)dx dy by Fatou’s lemma

≤ lim inf
n→∞

∫

T−1
n (Ωn)2

|Tn(x)− Tn(y)|(gn(Tn(x))

+ gn(Tn(y)))ϕ(x,y)dx dy by (4.3)

=

∫

Ω2
|x −y|(g(x) + g(y))ϕ(x,y)dx dy.

Therefore,
|c(x) − c(y)| ≤ |x −y|(g(x) + g(y))

for almost every x,y ∈ Ẽ. By redefining g(x) = +∞, g(y) = +∞ for any
(x,y) where the above does not hold, we can assume that the inequality holds
for all (x,y) (and the Lp norm of g is unchanged). By the weak lower semi-
continuity of norms, we have ‖g‖Lp(λ|v|) ≤ lim infn→∞ ‖gn ◦ Tn‖Lp(λ|v|), where
the righthand side is finite because of boundedness of the energies. It follows that
c ∈ W1,p((Ω, λ|v|;Rm), and

‖c‖L1,p(λ|v|) ≤ ‖g‖Lp(λ|v|) ≤ lim inf
n→∞

‖gn ◦ Tn‖Lp(λ|v|)(4.4)
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= lim inf
n→∞

‖gn‖Lp(λ|vn |)

≤ lim inf
n→∞

(
‖cn‖L1,p(λ|vn |)

+
1
n

)

= lim inf
n→∞

‖cn‖L1,p(λ|vn |)
.

If µεn → +∞ as n→∞, the existence of a converging subsequence

{(vnk , c
(1)
nk , c

(2)
nk )}

with limit in CLp(Ω) follows in the same way as for the case limn→∞ µεn < +∞,

because of the uniform boundedness of Eµεn ,εn(vn, c
(1)
n , c

(2)
n ). Furthermore, if

µεn → +∞ as n → ∞, we have that {c(1)n } converges to a constant since, again
omitting the superscript (1),

lim sup
n→∞

‖cn‖L1,p(λ|vn |)
= lim sup

n→∞
inf
gn

‖gn‖Lp(λ|vn |)

= lim sup
n→∞

inf
gn

‖gn ◦ Tn‖Lp(λ|v|) = 0,

that is, gn ◦ Tn → 0 in Lp(Ω, λ|v|), and taking the limit on both sides of the
inequality

|cn(Tn(x))− cn(Tn(y))|

≤ |Tn(x)− Tn(y)|(gn(Tn(x))+ gn(Tn(y))) λ|v|-a.e.

implies there exists a constant c1 ∈ R
m such that c(1) = c1 L

d almost everywhere
x ∈ E. Similarly, it follows that c(2) = c2 L

d almost everywhere x ∈ Ω \ E for
some constant c2 ∈ R

m.
It remains to show (4.1) and (4.2). To show (4.1) is indeed satisfied, note that

we have for any positive converging sequence {an}n∈N ⊂ R with limn→∞ an = 0
(which will be specified later)

∇(ψan ∗ ((cn ◦ Tn)v̂))(x)

=
1

adn|E|
∇

∫

E
ψ

(
x −y

an

)
cn(Tn(y))dy

=
1

ad+1
n |E|

∫

E
∇ψ

(
x −y

an

)
cn(Tn(y))dy

=
1

ad+1
n |E|

∫

E
∇ψ

(
x −y

an

)
(cn(Tn(y))− cn(Tn(x)))dy

−
1

ad+1
n |E|

∫

Rd\E
∇ψ

(
x − y

an

)
cn(Tn(x))dy,
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where we extended cn to be zero outside of Ω in the last equality and used the fact

that
∫

Rd
∇ψ((x −y)/an)dy = 0 as ∇ψ is odd. Hence,

‖∇(ψan ∗ ((cn ◦ Tn)v̂))‖L1(Rd)

≤
1

ad+1
n |E|

∫

Rd

∣∣∣∣
∫

E
∇ψ

(
x −y

an

)
(cn(Tn(y))− cn(Tn(x)))dy

∣∣∣∣dx

+
1

ad+1
n |E|

∫

Rd

∣∣∣∣
∫

Rd\E
∇ψ

(
x −y

an

)
cn(Tn(x))dy

∣∣∣∣ dx

=: In + IIn.

Starting with term IIn, a change of variables implies that

IIn ≤
‖cn‖L∞

ad+1
n |E|

∫

E

∫

Rd\E
|∇ψ|

(
x −y

an

)
dy dx

=
‖cn‖L∞

an|E|

∫

x∈E:dist(x,∂E)≤an

∫

w:x−anw∈Rd\E
|∇ψ|(w)dw dx

≤
‖cn‖L∞ ‖∇ψ‖L∞ |B(0,1)|

|E|

|{x ∈ E : dist(x, ∂E) ≤ an}|
an

.

Note that the assumption in Corollary A.2 that the topological boundary ∂E is
the closure of the reduced boundary ∂∗E holds for free up to a modification on a
Lebesgue null set (see [22, Proposition 12.20]). By Corollary A.2, we can choose
the sequence {an}n∈N such that we have that IIn = O(1).

For the term In, we use (4.3) to infer

In ≤
1

ad+1
n |E|

∫

E

∣∣∣∣
∫

E
|∇ψ|

(
x −y

an

)
|Tn(x)− Tn(y)|

× (gn(Tn(x))+ gn(Tn(y)))dy

∣∣∣∣dx

+
1

ad+1
n |E|

∫

Rd\E

∣∣∣∣
∫

E
(∇ψ)

(
x − y

an

)
(cn(Tn(y)))dy

∣∣∣∣dx

≤
1

ad+1
n |E|

∫

E

∫

E
|∇ψ|

(
x − y

an

)
(2|Tn(x)− x| + |x −y|)

× (gn(Tn(x))+ gn(Tn(y)))dy dx

+
‖cn‖L∞

ad+1
n |E|

∫

Rd\E

∫

E
|∇ψ|

(
x − y

an

)
dy dx.

The second term above can be shown to be O(1) by following the same argument
as for IIn.

We let

IIIn :=
2

ad+1
n |E|

∫

E

∫

E
|∇ψ|

(
x −y

an

)
|Tn(x)− x|

× (gn(Tn(x))+ gn(Tn(y)))dy dx
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and

IVn :=
1

ad+1
n |E|

∫

E

∫

E
|∇ψ|

(
x −y

an

)
|x −y|

× (gn(Tn(x))+ gn(Tn(y)))dy dx.

A change of variables implies

IIIn ≤
2

an|E|

∫

E

∫

z:x−anz∈E
|∇ψ|(z)|Tn(x)− x|

× (gn(Tn(x))+ gn(Tn(x − anz)))dz dx

≤
2

an|E|

∫

E
|Tn(x)− x|

(
‖∇ψ‖L1gn(Tn(x))

+ ‖∇ψ‖L∞

∫

B(0,1)
gn(Tn(x − anz))dz

)
dx

≤
2‖∇ψ‖L1 ‖gn ◦ Tn‖Lp(E)

|E|

‖Tn − Id‖Lp
′
(E)

an

+
2‖∇ψ‖L∞

|E|

‖Tn − Id ‖Lp
′
(E)

an

×

(∫

E

∣∣∣∣
∫

B(0,1)
gn(Tn(x − anz))dz

∣∣∣∣
p

dx

)1/p

,

by Hölder’s inequality, where p′ satisfies 1/p + 1/p′ = 1. Now,

∫

E

∣∣∣∣
∫

B(0,1)
gn(Tn(x − anz))dz

∣∣∣∣
p

dx

≤ |B(0,1)|p−1
∫

E

∫

B(0,1)
|gn(Tn(x − anz))|

p
dz dx

≤ |B(0,1)|p
∥∥gn ◦ Tn

∥∥p
Lp(E).

We choose an such that, in addition,

‖Tn − Id‖Lp
′
(E)

an
= O(1)

is satisfied, and so IIIn = O(1). The bound on IVn follows straightforwardly from

IVn =
1
|E|

∫

E

∫

z:x−anz∈E
|∇ψ|(z)|z|(gn(Tn(x))+ gn(Tn(x − anz)))dz dx

≤
‖∇ψ‖L∞

|E|

∫

E

∫

B(0,1)
gn(Tn(x))+ gn(Tn(x − anz))dz dx

≤
2‖∇ψ‖L∞|B(0,1)| ‖gn ◦ Tn‖L1(E)

|E|
.
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Putting the bounds on In, IIn, IIIn, and IVn together, we can conclude that (4.1)
holds.

To show (4.2) we write

‖ψan ∗ ((cn ◦ Tn)v̂)− (cn ◦ Tn)v̂‖L1(E)

≤

∫

E

∣∣∣∣
∫

Rd
ψan(x −y)(cn(Tn(y))− cn(Tn(x)))v̂(y)dy

∣∣∣∣ dx

+

∫

E

∣∣∣∣
∫

Rd
ψan(x −y)cn(Tn(x))(v̂(y)− v̂(x))dy

∣∣∣∣dx

≤

∫

E

∫

Rd
ψan(x −y)|cn(Tn(y))− cn(Tn(x))|v̂(y)dy dx

+

∫

E

∫

Rd
ψan(x − y)|cn(Tn(x))| |v̂(y)− v̂(x)|dy dx

=: Vn +VIn.

By (4.3) we can bound Vn by

Vn ≤
1
|E|

∫

E

∫

E
ψan(x − y)|Tn(x)− Tn(y)|(gn(Tn(x))+ gn(Tn(y)))dy dx

≤
2
|E|

∫

E

∫

E
ψan(x − y)|Tn(x)− Tn(y)| |gn(Tn(x))|dy dx

=
2
|E|

∫

E

∫

z :x−anz∈E
ψ(z)|Tn(x)− Tn(x − anz)| |gn(Tn(x))|dz dx

≤
2
|E|

∫

E
|Tn(x)− x| |gn(Tn(x))|dx

+
2an
|E|

∫

E

∫

z :x−anz∈E
ψ(z)|z| |gn(Tn(x))|dz dx

+
2
|E|

∫

B(0,1)

∫

w:w∈E
w+anz∈E

ψ(z)|w − Tn(w)|gn(Tn(w + anz))|dw dz

≤ 2‖Tn − Id‖Lp
′
(λ|v|)

‖gn‖Lp(λ|vn |) + 2an‖gn‖L1(λ|vn |)

+ 2‖Tn − Id ‖Lp
′
(λ|v|)

×

∫

B(0,1)
ψ(z)

(∫

w:w∈E
w+anz∈E

|gn(Tn(w + anz)|
pv̂(w)dw

)1/p

dz.

Since

∫

B(0,1)
ψ(z)

(∫

w:w∈E
w+anz∈E

|gn(Tn(w + anz)|
pv̂(w)dw

)1/p

dz

≤ ‖ψ‖L∞ |B(0,1)| ‖gn‖Lp(λ|vn |)
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is bounded in n, then Vn → 0. The term VIn can be bounded as

VIn =

∫

E
|cn(Tn(x))|

∫

Rd\E
ψan(x −y)dyv̂(x)dx

≤ ‖cn ◦ Tn‖Lp(λ|v|)

(∫

dist(x,∂E)<an

∣∣∣∣
∫

Rd\E
ψan(x −y)dy

∣∣∣∣
p′

v̂(x)dx

)1/p′

≤ ‖cn‖Lp(λ|vn |)

(
|{x ∈ E : dist(x, ∂E) < an}|

|E|

)1/p′

where, again, p′ satisfies 1/p + 1/p′ = 1. Since an → 0 and ‖cn‖Lp(λ|vn |) is
bounded, we have VIn → 0 by Lemma A.2. Putting the bounds on Vn and VIn

together, we conclude that (4.2) holds. p

Theorem 4.2 (Liminf inequality). Let Ω ⊂ Rd be an open, bounded set. Let
(v, c(1), c(2)) ∈ CLp(Ω) and consider positive sequences {εn}, {µεn}, with

lim
n→∞

εn = 0 and lim
n→∞

µεn ∈ (0,+∞].

Assume that {(vn, c
(1)
n , c

(2)
n )} ⊂ CLp(Ω) is such that

(vn, c
(1)
n , c

(2)
n )→ (v, c

(1), c(2)) in CLp(Ω).

Then,
Eµ(v, c

(1), c(2)) ≤ lim inf
n→∞

Eµεn ,εn(vn, c
(1)
n , c

(2)
n )

where Eµεn ,εn and Eµ are defined in (1.14) and (1.15), respectively.

Proof. Since the case µεn → +∞ as n → ∞ immediately follows from the case
µεn → µ > 0 as n → ∞, we restrict ourselves to considering limn→∞ µεn < +∞ in
the sequel. Without loss of generality, we can assume that

lim inf
n→∞

Eµεn ,εn(vn, c
(1)
n , c

(2)
n ) < +∞,

and by passing to a subsequence (not relabelled) we obtain

lim inf
n→∞

Eµεn ,εn(vn, c
(1)
n , c

(2)
n ) = lim

n→∞
Eµεn ,εn(vn, c

(1)
n , c

(2)
n ) < +∞.

In particular, we can assume, without loss of generality, that

vn ∈W1,2((Ω,Ld⌊Ω);R),
c(1)n ∈W1,p((Ω, λ|vn|);Rm),
c(2)n ∈W1,p((Ω, λ|1−vn|);Rm),
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for all n ∈ N. Then, by Theorem 2.13, in addition to the CLp convergence of

(vn, c
(1)
n , c

(2)
n )→ (v, c(1), c(2)) and (4.4), we have

lim inf
n→∞

Eµεn ,εn(vn, c
(1)
n , c

(2)
n )

= lim inf
n→∞

(∥∥c(1)n −u0

∥∥p
Lp(λ|vn |)

+
∥∥c(2)n −u0‖

p
Lp(λ|1−vn |)

+ µεn
∥∥c(1)n

∥∥p
L1,p(λ|vn |)

+ µεn
∥∥c(2)n

∥∥p
L1,p(λ|1−vn |)

+
ν

cW
EGL
εn (vn)

)

≥
∥∥c(1) −u0

∥∥p
Lp(λ|v|)

+
∥∥c(2) −u0

∥∥p
Lp(λ|1−v|)

+ µ
∥∥c(1)

∥∥p
L1,p(λ|v|)

+ µ
∥∥c(2)

∥∥p
L1,p(λ|1−v|)

+ ν TV(v)

= Eµ(v, c
(1), c(2)),

as required. p

For the limsup inequality we will make use of the following Lp-convergence
of translations result.

Proposition 4.3. Let Ω ⊂ Rd be an open, bounded set with Lipschitz bound-
ary, let λ = χEL

d⌊Ω be the indicator function of some measurable bounded domain
E ⊂ Ω with smooth boundary, and let f ∈ Lp((Ω, λ);Rm). Let {λn} ⊂ P(Ω) with
Lebesgue densities {ρn} ⊂ L∞(Ω). Let Sn : Ω → Ω be a sequence of transportation
maps which pushes forward λ to λn, and satisfies Sn → Id in Lp(Ω;Rm). Then,

lim
n→∞

∫

Ω
|f (Sn(x))− f (x)|

p
dλ(x) = 0.

Proof. Let ε > 0 be given. As {ρn} ⊂ L∞(Ω), there is a constant C > 0 so that,
for all n ∈ N, |ρn| ≤ C Ld-almost everywhere on Ω. Since f ∈ Lp((Ω, λ);Rm),
we can assume without loss of generality that f = 0 Ld-almost everywhere on
Ω \ E. As continuous, compactly supported functions are dense in Lp(Ω), there
exists g ∈ Cc(Ω) with ‖f − g‖Lp(Ω) < 2ε/(3(1+ C1/p)). Further,

∥∥f ◦ Sn − g ◦ Sn
∥∥p
Lp(λ) =

∫

Ω
|f (x)− g(x)|p dλn(x)

=

∫

Ω
|f (x)− g(x)|pρn(x)dx

≤

(
2ε

3(1+ C1/p)

)p
C.

For n ∈ N sufficiently small, we have ‖g ◦Sn−g‖Lp(Ω) < ε/3 due to the uniform
continuity of g. Then,

(∫

Ω
|f (Sn(x))− f (x)|

p
dλ(x)

)1/p

≤ ‖f ◦ Sn − g ◦ Sn‖Lp(λ) + ‖g ◦ Sn − g‖Lp(λ) + ‖g − f‖Lp(λ) < ε,

and this concludes the proof. p
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We now proceed to the limsup inequality.

Theorem 4.4 (Limsup inequality). Let Ω ⊂ Rd be an open, bounded set with
Lipschitz boundary. Let (v, c(1), c(2)) ∈ CLp(Ω) with

max{‖c(1)‖Lp ,‖c
(2)‖Lp} < ∞,

and consider positive sequences {εn}, {µεn}, with

lim
n→∞

εn = 0 and lim
n→∞

µεn ∈ (0,+∞].

Then, there exists a sequence {(vn, c
(1)
n , c

(2)
n )} ⊂ CLp(Ω) such that

(vn, c
(1)
n , c

(2)
n )→ (v, c

(1), c(2)) in CLp(Ω),

and

lim sup
n→∞

Eµεn ,εn(vn, c
(1)
n , c

(2)
n ) ≤ Eµ(v, c

(1), c(2)),

where Eµεn ,εn and Eµ are defined in (1.14) and (1.15), respectively.

Proof. Without loss of generality, we can assume Eµ(v, c(1), c(2)) < +∞,
where we have that v = χE ∈ BV(Ω; {0,1}) for a measurable set of finite perime-
ter E := {x ∈ Ω : v(x) = 1}, and

c(1) ∈ W1,p((Ω, λ|v|);Rm),
c(2) ∈ W1,p((Ω, λ|1−v|);Rm).

By Theorem 2.13, there exists a sequence {vn} ⊂ W1,2(Ω) such that vn → v in
L1(Ω;R) and

lim sup
n→∞

∫

Ω

(
εn|∇vn|

2 +
1
εn
W(vn)

)
dx ≤ cW TV(v).

We are left to find c(1)n ∈ W1,p((Ω, λ|vn|);Rm), c
(2)
n ∈ W1,p((Ω, λ|1−vn|);Rm)

such that

lim sup
n→∞

‖c(1)n −u0‖Lp(λ|vn |) ≤ ‖c
(1) −u0‖Lp(λ|v|),(4.5)

lim sup
n→∞

‖c(2)n −u0‖Lp(λ|1−vn |) ≤ ‖c
(2) −u0‖Lp(λ|1−v|),(4.6)

lim sup
n→∞

µεn
∥∥c(1)n

∥∥p
L1,p(λ|vn |)

≤ µ
∥∥c(1)

∥∥p
L1,p(λ|v|)

,(4.7)

lim sup
n→∞

µεn
∥∥c(2)n

∥∥p
L1,p(λ|1−vn |)

≤ µ
∥∥c(2)

∥∥p
L1,p(λ|1−v|)

,(4.8)
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and (vn, c
(1)
n , c

(2)
n ) → (v, c(1), c(2)) in CLp(Ω).Let {T (1)n } and {T (2)n } be such

that

T (1)n #λ|v| = λ|vn|, T (2)n #λ|1−v| = λ|1−vn|,

and

‖T (1)n − Id ‖Lp(λ|v|) → 0, ‖T (2)n − Id‖Lp(λ|1−v|) → 0,

where the existence of T (1)n , T
(2)
n is guaranteed by the absolute continuity of λ|v|,

and {λ|vn|} converges weakly-∗ to λ|v|. By Proposition 2.17, it suffices to show
that

lim
n→∞

‖c(1)n ◦ T (1)n − c(1)‖Lp((Ω,λ|v|);Rm) = 0,(4.9)

lim
n→∞

‖c(2)n ◦ T (2)n − c(2)‖Lp((Ω,λ|1−v|);Rm) = 0,(4.10)

for (vn, c
(1)
n , c

(2)
n )→ (v, c(1), c(2)) in CLp(Ω).

The proofs for c(2) are analogous to the ones for c(1), so it suffices to show the
above statements for c(1), that is, (4.5), (4.7), (4.9). For ease of notation, we drop

the superscript, write c for c(1), cn for c(1)n , and Tn for T (1)n , and assume that c is
extended by 0 on Rd \Ω.

Let ψ ∈ C∞c (R
d) be a standard mollifier (see the proof of Theorem 4.1).

We define cn := ψan ∗ c ∈ C
∞
c (Ω;Rm) for any nonnegative, strictly decreasing

sequence {an}n∈N ⊂ R+ with limn→∞ an = 0, which is well defined because of
‖c‖Lp < ∞.

First, we prove (4.9). For this, note that

∥∥cn ◦ Tn − c
∥∥p

Lp(λ|v|)
=

∫

Ω
|cn(Tn(x))− c(x)|

p
dλ|v|(x)

=

∫

Ω

∣∣∣∣
∫

Rd
ψan(Tn(x)−y)(c(y) − c(x))dy

∣∣∣∣
p

dλ|v|(x)

≤

∫

Ω

∫

Rd
ψ(z)|c(Tn(x)+ anz)− c(x)|

p
dz dλ|v|(x)

=

∫

Rd
ψ(z)

∫

Ω
|c(Tn(x)+ anz)− c(x)|

p
dλ|v|(x)dz,

where we used the substitution z := (y − Tn(x))/an. By the reverse Fatou’s
lemma, we obtain

lim sup
n→∞

∥∥cn ◦ Tn − c
∥∥p

Lp(λ|v|)

≤

∫

Rd
ψ(z) lim sup

n→∞

∫

Ω
|c(Tn(x)+ anz)− c(x)|

p
dλ|v|(x)dz = 0,
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where the last equality follows from Proposition 4.3. This yields (4.9).
To show (4.5), note that

‖cn −u0‖Lp(λ|vn |) = ‖cn ◦ Tn −u0 ◦ Tn‖Lp(λ|v|)

≤ ‖cn ◦ Tn − c‖Lp(λ|v|) + ‖c −u0‖Lp(λ|v|)

+ ‖u0 −u0 ◦ Tn‖Lp(λ|v|).

Hence, (4.5) immediately follows from (4.9) and Proposition 4.3.
It remains to prove (4.7). Let {bn}n∈N be a sequence with limn→∞ bn = 0,

whose relation to {an}n∈N will be specified below. We introduce the sequence
{Ebn} ⊂ {x ∈ E : dist(x, ∂E) > bn} with smooth boundary, such that Ebn → E
as n→∞ in the sense that χEbn → χE in L1 and P(Ebn)→ P(E). For x,y ∈ Ebn ,

we have

|cn(x)− cn(y)| =

∣∣∣∣
∫

Rd
ψ(z)(c(x + anz)− c(y + anz))dz

∣∣∣∣

≤

∫

Rd
ψ(z)|c(x + anz)− c(y + anz)|dz

≤ |x −y|

∫

Rd
ψ(z)(g(x + anz)+ g(y + anz))dz

≤ |x −y|

(∫

Rd
ψ(z)g(x + anz)dz +

∫

Rd
ψ(z)g(y + anz)|dz

)

≤ |x −y|((ψan ∗ g)(x)+ (ψan ∗ g)(y)).

Hence, we obtain

‖cn‖L1,p(λ|vn |⌊Ebn )
≤ ‖ψan ∗ g‖Lp(λ|vn |⌊Ebn )

≤ ‖ψan ∗ g‖Lp(λ|vn |).

Assuming that g is extended by 0 on Rd \ E, we have

‖ψan ∗ g‖Lp(λ|vn |)

=

(∫

Ω
|(ψan ∗ g)(x)|

p
dλ|vn|(x)

)1/p

=

(∫

Ω
|(ψan ∗ g)(Tn(x))|

p
dλ|v|(x)

)1/p

≤

(∫

Ω
|(ψan ∗ g)(Tn(x))− g(x)|

p
dλ|v|(x)

)1/p

+ ‖g‖Lp(λ|v|)

≤

(∫

Rd
ψ(z)

∫

Ω
|g(Tn(x)+ anz)− g(x)|

p
dλ|v|(x)dz

)1/p

+ ‖g‖Lp(λ|v|),
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implying, by Proposition 4.3, that

lim sup
n→∞

‖cn‖L1,p(λ|vn |⌊Ebn )
≤ lim sup

n→∞
‖ψan ∗ g‖Lp(λ|vn |) ≤ ‖g‖Lp(λ|v|).

Since ‖c‖L1,p(λ|v|) = infg ‖g‖Lp(λ|v|) by the definition of ‖ · ‖L1,p(λ|v|), this yields

lim sup
n→∞

‖cn‖L1,p(λ|vn |⌊Ebn
) ≤ ‖c‖L1,p(λ|v|).

We denote the complement of Ebn in Rd by Ecbn and, since cn ∈ C∞, we have

‖cn‖L1,p(λ|vn |)
= ‖cn‖L1,p(λ|vn |⌊Ebn )

+ ‖cn‖L1,p(λ|vn |⌊Ecbn
).

It remains to show that

lim sup
n→∞

‖cn‖L1,p(λ|vn |⌊Ecbn
) = 0.

We have

∥∥cn
∥∥p

L1,p(λ|vn |⌊Ecbn
)
=
∥∥∇cn

∥∥p
Lp(λ|vn |⌊Ecbn

) =

∫

Ω\Ebn
|∇cn|

p
dλ|vn|(x)

=

∫

Ω\Ebn
|(∇ψan ∗ c)(Tn(x))|

p
dλ|v|(x)

=

∫

Ω\Ebn

∣∣∣∣
∫

Rd

1

ad+1
n

∇ψ

(
Tn(x)− y

an

)
c(y)dy

∣∣∣∣
p

dλ|v|(x)

=

∫

Ω\Ebn

∣∣∣∣
∫

Rd

1
an
∇ψ(z)c(Tn(x)− anz)dz

∣∣∣∣
p

dλ|v|(x)

≤
1

a
p
n

∥∥c
∥∥p

Lp(Ω)
∥∥∇ψ

∥∥p
L∞

∫

Ω\Ebn
dλ|v|(x).

Suppose that

an :=
(∫

Ω\Ebn
dλ|v|(x)

)1/(2p)

, n ∈ N,

so that limn→∞ an = 0 as required above. Then,

lim sup
n→∞

‖cn‖L1,p(λ|vn |⌊Ecbn
) = 0,

which yields

lim sup
n→∞

‖cn‖L1,p(λ|vn |)
≤ ‖c‖L1,p(λ|v|).
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If limn→∞ µεn = µ > 0, then we have

lim sup
n→∞

µεn‖cn‖L1,p(λ|vn |)
≤ µ‖c‖L1,p(λ|v|),

which concludes the limsup inequality.
For limn→∞ µεn = +∞, c is constant Ld almost everywhere x ∈ E. This

implies that
lim sup
n→∞

∥∥cn
∥∥p

L1,p(λ|vn |)
=
∥∥c
∥∥p

L1,p(λ|v|)
= 0,

and hence the limsup inequality also holds for limn→∞ µεn = +∞. p

The Γ -convergence result in Theorem 1.2 follows from the liminf inequal-
ity in Theorem 4.2 and the limsup inequality in Theorem 4.4. Note that the
property max{‖c(1)‖Lp ,‖c

(2)‖Lp} < ∞ in Theorem 4.4 is used to simplify the no-
tation, as for any (v, c(1), c(2)) ∈ CLp(Ω) we have that c(1) ∈ Lp((Ω, λ|v|);Rm),
c(2) ∈ Lp((Ω, λ|1−v|);Rm), and hence we can assume without loss of generality
that max{‖c(1)‖Lp ,‖c

(2)‖Lp} < ∞ holds.
By the compactness property in Theorem 4.1 with regularity assumptions on

E and the Γ -convergence of the energy functionals, we can conclude the conver-

gence of minimizers (vn, c
(1)
n , c

(2)
n ) (see Corollary 1.3), once we have shown that

supn∈Nmax{‖c(1)n ‖L∞ ,‖c
(2)
n ‖L∞} < ∞.

Proof of Corollary 1.3. To show that supn∈Nmax{‖c(1)n ‖L∞ ,‖c
(2)
n ‖L∞} < ∞,

we suppose m = 1 for simplicity, that is, u0 : Ω → R. One can proceed in a

similar way for m > 1. Let M := ‖u0‖L∞ , and assume that (vn, c
(1)
n , c

(2)
n ) is a

minimizer of Eµεn ,εn . For a contradiction, we suppose there exists i ∈ {1,2} and

n ∈ N such that ‖c(i)n ‖L∞ > M + 1. We define

c̃(i)n (x) :=





M, if c(i)n (x) > M,

c(i)n (x), if c(i)n (x) ∈ [−M,M],

−M, if c(i)n (x) < −M.

Clearly, ‖c̃n‖L∞ ≤M . Moreover,

∥∥c̃(i)n −u0

∥∥p
Lp(λ|vn |)

=

∫

|c
(i)
n (x)|≤M

|c(i)n −u0(x)|
p
dλ|vn|(x)

+

∫

c
(i)
n (x)∈(−M−1,−M)

| −M −u0(x)|
p

︸ ︷︷ ︸
≤|c

(i)
n (x)−u0(x)|p

dλ|vn|(x)

+

∫

c
(i)
n (x)∈(M,M+1)

|M −u0(x)|
p

︸ ︷︷ ︸
≤|c(i)n (x)−u0(x)|p

dλ|vn|(x)
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+

∫

c
(i)
n (x)≤−M−1

| −M −u0(x)|
p

︸ ︷︷ ︸
≤|c

(i)
n (x)−u0(x)|p−1

dλ|vn|(x)

+

∫

c
(i)
n (x)∈≥M+1

|M −u0(x)|
p

︸ ︷︷ ︸
≤|c

(i)
n (x)−u0(x)|p−1

dλ|vn|(x)

≤
∥∥c(i)n −u0

∥∥p
Lp(λ|vn |)

−
∣∣{x : |c(i)n (x)| > M + 1}

∣∣
︸ ︷︷ ︸

>0

.

One can easily check that, for all x,y ,

|c̃(i)n (x)− c̃
(i)
n (y)| ≤ |c

(i)
n (x)− c

(i)
n (y)|,

and therefore ‖c̃(i)n ‖L1,p(λ|vn |)
≤ ‖c(i)n ‖L1,p(λ|vn |)

. We have shown that

Eµεn ,εn(vn, c̃
(1)
n , c̃

(2)
n ) < Eµεn ,εn(vn, c

(1)
n , c

(2)
n ),

which contradicts the assumption that (vn, c
(1)
n , c

(2)
n ) is a minimizer. Hence,

‖c(i)n ‖L∞ < M + 1 for all i = 1,2, and n ∈ N. p

APPENDIX A. ENLARGED BOUNDARIES FOR

SETS OF FINITE PERIMETER

For completeness, we include a bound on the volume

|{x ∈ Rd : dist(x, ∂E) ≤ a}|,

where E denotes a set with finite perimeter which is used in the compactness result
in Theorem 4.1.

Theorem A.1 ([1, Theorem 2.106]). If Z is a compact, countably Hk-rectifiable
set in Rd, and if there are κ > 0 and r0 > 0 such that Hk(Z ∩ Br (x)) ≥ κrk for
every x ∈ Z and every r < r0, then Z is k-Minkowski regular; that is, there exists a
constant o > 0 such that

|{x ∈ Rd : dist(x,Z) < a}| = omd−ka
d−kHk(Z) + o(ad−k) as a→ 0,

wheremd−k denotes the d−m dimensional sphere.
Applying Theorem A.1 to our setting yields an estimate for

|{x ∈ Rd : dist(x, ∂E) ≤ a}| :

Corollary A.2. Let E be a bounded set of finite perimeter in Rd. Assume that
the topological boundary ∂E is the closure of the reduced boundary ∂∗E. Assume that
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for some κ > 0 and some r0 > 0 we have P(E;Br (x)) ≥ κrd−1 for every x ∈ ∂∗E.
Then,

|{x ∈ Rd : dist(x, ∂E) < a}| = 2aP(E)+ o(a) as a→ 0.

Proof. The assumptions on E imply that E is compact and countably Hd−1-
rectifiable. Since ∂E is the closure of ∂∗E, the fact that

P(E;Br (x)) = Hd−1(Br (x)∩ ∂
∗E)

has lower density estimates implies by continuity that Z = ∂E has lower density
estimates, and then one applies Theorem A.1. p

Note that the assumption on the topological boundary in Corollary A.2 holds
for free up to a modification on a Lebesgue null set (see [22, Proposition 12.20]).
Hence, when applying Corollary A.2 to a bounded set E with finite perimeter in
the proof of Theorem 4.1, it is sufficient to assume that for some κ > 0 and some
r0 > 0 we have P(E;Br (x)) ≥ κrd−1 for every x ∈ ∂∗E.
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LISA MARIA KREUSSER:
Department of Mathematical Sciences
University of Bath
Bath BA2 7AY
UK
E-MAIL: lmk54@bath.ac.uk

CAROLA-BIBIANE SCHÖNLIEB:
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