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ABSTRACT. Given an image uo, the aim of minimising the
Mumford-Shah functional is to find a decomposition of the
image domain into sub-domains and a piecewise smooth ap-
proximation u of ug such that u varies smoothly within each
sub-domain. Since the Mumford-Shah functional is highly non-
smooth, regularizations such as the Ambrosio-Tortorelli approx-
imation can be considered, which is one of the most compu-
tationally efficient approximations of the Mumford-Shah func-
tional for image segmentation. While very impressive numer-
ical results have been achieved in a large range of applications
when minimising the functional, no analytical results are cur-
rently available for minimizers of the functional in the piece-
wise smooth setting, and this is the goal of this work. Our main
result is the I'-convergence of the Ambrosio-Tortorelli approxi-
mation of the Mumford-Shah functional for piecewise smooth
approximations. This requires the introduction of an appro-
priate function space. As a consequence of our I'-convergence
result, we can infer the convergence of minimizers of the respec-
tive functionals.

1. INTRODUCTION

Due to their volume and complexity, image and video data are among the largest
and fastest-growing sources of information, and present some of the biggest chal-
lenges for data science. Image segmentation, one of the most fundamental and
ubiquitous tasks in image analysis, is the process of partitioning an image into
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disjoint regions with certain characteristics. Typical examples include image edit-
ing (separating foreground from background, merging multiple images), medical
applications (segmenting regions with similar grey-scale values), and biological
imaging (detecting cancerous cells, finding cells, and nuclei).

Variational models such as the Mumford-Shah model [30] are an important
tool for image segmentation. In their model, Mumford and Shah formulated an
energy minimization problem for computing optimal piecewise smooth approxi-
mations of a given image. Particular cases of the minimal partition problem, its
extensions, and generalizations, are proposed in [9, 10, 33].

We consider the image domain to be represented as Q ¢ R with d > 1, where
Q is an interval for d = 1 and, for example, a rectangle in the plane for d = 2.
By up: Q — R™ with m = 1, we denote a given bounded scalar (grey-scale) or
vector-valued (colour) image which should be segmented into two regions. Let C
be a closed subset in Q, made up of a finite set of smooth curves, and let the length
of curves making up C be denoted by |C|. We write | - | for the Euclidean norm.

In the segmentation problem proposed by Mumford and Shah [30], the aim is
to find a decomposition of Q into sub-domains and an optimal piecewise smooth
approximation u of U such that u varies smoothly within each sub-domain,
and rapidly or discontinuously across the boundaries of the sub-domains. This
problem is solved by minimizing the energy functional

(1.1) st(u,C)::J Iu—uolzdx+uJ [Vul?dx + v|C|,
o o\

where p, v > 0 are fixed parameters, weighting the different terms in the energy
functional. If (u, C) is a minimizer of the above functional, then u is an “optimal”
piecewise smooth approximation of the initial, possibly noisy image 1, C can be
regarded as approximating the edges of 1, and u is smooth outside of C, that is,
in Q\ C. Theoretical results on the existence and regularity of minimizers of (1.1)
are provided by Mumford and Shah [30], Morel and Solimini [27-29], and De
Giorgi et al. [14].

For proving the existence of minimizers based on the direct method from the
calculus of variations, it is necessary to find a topology for which the functional
is lower semi-continuous, while ensuring compactness of minimizing sequences.
However, the last term in (1.1) is not lower semi-continuous with respect to any
compact topology. This motivates the formulation of (1.1) proposed by [13] and
studied in [12], where the curve C is replaced by the set J,, of jumps of u, leading
to the weak formulation of (1.1)

(1.2) T“’Ms(u,Ju)::J Iu—uolzdx+uJ [Vul|?dx + v|Jul.
Q

u

A constructive existence result for piecewise constant functions u in (1.2) is pro-
vided in [27,28], and a practical multi-scale algorithm based on regions growing
and merging is suggested for this case in [21]. Ambrosio and Tortorelli proposed



T-Convergence of an Ambrosio-Tortorelli Approximation Scheme 191

two elliptic approximations by I'-convergence [3, 4] to the weak formulation (1.2)
of the Mumford-Shah functional. Approximation [4] is more commonly used in
practise. For € > 0 and (u,v) € L2(Q)?, it is defined as

J lu — uol?dx +uJ v?|Vul|?dx
Q Q

(v—1)?
(1.3) T?T(u,v) ] + VJQ <6|Vv|2 + P ) dx,

if (u,v) e W2 Q)2 with0<v <1,

+ 00, otherwise.

L

A minimizer (u, Jy,) of E¥MS (u, J,,) is approximated by a pair (u¢, V¢) of smooth
functions, such that u; — u and v¢ — 1 in the L?(Q)-topology as € — 0 and v,
is different from 1 only in a small neighbourhood of J,, which shrinks as € — 0.
These elliptic approximations result in a coupled system of two equations with un-
knowns u¢ and ve which can be solved by applying standard numerical methods
for PDEs. Further approximations and numerical results are provided in [6,7,23].
An approximation by I'-convergence to the weak formulation of (1.1), based on
the finite element method, is discussed in [8]. However, most of the methods
for solving the weak formulation of the Mumford-Shah functional (1.1) do not
explicitly compute the partition of the image and the set of curves C.

The popular active contour model [10], proposed by Chan and Vese and
based on the Mumford-Shah model, can be regarded as a particular case of the
Mumford-Shah model (1.1) by restricting the segmented image u to piecewise
constant functions. This model motivates the generalized, widely used multiphase
level set model [33], also introduced by Chan and Vese. Let E C Q be an open
subset of Q inside the boundary curve C = 9E of length |C|, and let ¢!V and ¢?
be unknown constants. In the active contour model for grey-scale images (i.e.,
m = 1), piecewise constant approximations are considered and the energy

EPC(C,c W, ) := J le™ —ug|? dx +J (c? —up)?dx + vIC]|
E O\

is minimized with respect to ¢V, ¢? € R, and C. The parameter v > 0 is as-

sumed to be given. The first two terms of ZF¢ penalize the discrepancy between
the input image u¢ and its piecewise constant approximation with grey-scale val-
ues ¢V in E and ¢® on Q \ E, respectively. The last term controls the regularity
of the segmentation by penalizing the length of the boundary curve C. Instead of
minimizing over all curves C, we can represent C implicitly as the zero-crossing of
a level set function @: Q — R, thatis, C := {x € Q: @(x) = 0}, and we assume
the inside (i.e., the set E) and the outside (i.e., the set Q\ E) of C are distinguished
by positive and negative signs of @, respectively: to be precise,

@(x)>0inE, @(x)<0onQ\E, @(x)=0o0noE.
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A typical example of a level set function is the signed distance function to the
curve. In its level set formulation, the energy functional can be rewritten as

(1.4) EC (@, eV, c?) = JQ lcW —ug|?Hs (@) dx
n j 162~ ugl?(1 - Hs(@)) dx
Q

N vj IVHs ()] dx,
Q

where Hs with 6 > 0 denotes a smooth approximation of the Heaviside function
H, defined as H(z) = 1 for z > 0 and H(z) = 0 for z < 0. Hence, the aim of
the active contour model is to find a two-phase segmentation of the image, given
by u(x) := ¢WHs(@(x)) + c? (1 — Hs(@(x))), x € Q. In Figure 1.1, the
segmentation of a given image (based on the implementation in [17]) into two
regions, marked in black and white, is shown for v = 0.2 and v = 0.6. The value
of the parameter v governs the smoothness of the boundary of the segmentation;
that is, for larger values of v the interface between white and black areas becomes
smaller. This example also illustrates how crucial the parameter choice in this class
of models is.

(a) Input image

FIGURE 1.1. Image segmentation results for different values for
parameter v > 0

Following the level set approach, piecewise smooth segmentations are con-
sidered in [32, 33] by replacing the constants ¢V, ¢/? by smooth functions in E
and on Q \ E, respectively. The proposed model can be easily extended to vector-
valued functions, such as colour images as in [10], for instance. Based on the
Mumford-Shah functional, this leads to the energy functional

(1.5  EB(p,e,c?)

- L} e~ o Hs (@) dx + JQ 162~ uo2(1 - Hs (@) dx
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o jQ (Ve 2Hy (@) + V@ 2(1 — Hs (@) dx

vj IV Hs ()| dx
Q

for piecewise smooth functions ¢V, c¢?, proposed mdependently by Vese and
Chan [33], and Tsai et al. [32]. Here, the regularity of ¢! and ¢ is controlled
by the parameter p > 0, and the smoothness of the boundary of the segmentation
is governed by v > 0. Numerical results have been obtained independently and
contemporaneously by Vese and Chan [33] and Tsai ez @/ [32]. These results
show that piecewise smooth regions can be reconstructed very well by the model,
that jumps are well located and without smearing, and that the piecewise constant
case can be recovered.

In what follows, we want to study (1.5) and its piecewise constant version
(1.4). In particular, the regularity of the piecewise smooth functions ¢V, ¢ in
(1.5) is controlled by the parameter u, and for y — o we expect ¢V, ¢c¢®? to
be piecewise constant. This motivates us to study the dependence of the energy
on U. In addition, it is desirable to control the smoothness of the vector-valued
approximations ¢V, ¢ : Q — R™ by using a parameter 1 < p < +oo.

The mathematical analysis of (1.5), however, is a highly non-trivial task be-
cause of the dependence of the functional on the level set function @ and on the
approximation Hs of the non-smooth Heaviside function H, as @ is only implic-
itly defined and the non-smoothness of H causes difficulties estimating the last
term of (1.5). They also render the numerical minimization more difficult. To
get around this, we propose another formulation that is more amenable to math-
ematical analysis. Since the Heaviside function H only takes values in {0, 1}, this
suggests we replace H(@) by an indicator function v. These considerations lead
to the energy functional

(1.6) £ (v,cV,c?) —J lcD uolplvldx+J lc® —upl? |1 —v]dx
o
+[JJ (VO 1P [u] + 1Ve@|P |1 = v]) dx
Q

+v[ [Vv|dx,
Q

in place of (1.5). For v = x, for some measurable set E with finite perimeter
Per(E; Q), (1.6) may be equivalently written as

£ (v, e, c?) —J (e —uol? + u[Ve|P) dx

+J (Ie® = ugl? + ulve®|7) dx
Q\E

+ v Per(E; Q).
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To overcome the non-smoothness of the last term of (1.6), several regular-
ization methods and approximations have been proposed in the literature for the
numerical minimization. One of the most computationally efhicient approxima-
tions of the Mumford-Shah functional was proposed by Ambrosio and Tortorelli
[3,4], and uses the Ginzburg-Landau functional Z&" defined as

(1.7) FSL(v) := L} (sle|2+%W(v)> dx,

which generalizes the approximation in (1.3). Here, € > 0 is a positive constant,
and the function W: R — [0, +c0) is a double well potential with wells at 0 and 1,
satisfying the following assumption.

Assumption 1.1. Let W: R — [0, +00) be such that the following hold:
o W is continuous.

o W(t) =0 ifand only ift € {0,1}.
o Thereexist L > 0 and T > 0 such that

(1.8) W(t) = L|t|] forallt € Rwith |t| = T.

The most common example for W is W (x) := x2(x — 1)2. The Ginzburg-
Landau functional (1.7) plays an important role because of the work of Modica
and Mortola [25,26], who proved that the Ginzburg-Landau functional (1.7) can
be used for approximating the TV energy, the last term in (1.6). In the context of
image processing, examples of using the Ginzburg-Landau functional are given by
(6,71, which relate to previous works by Ambrosio and Tortorelli [1, 3] on diffuse
interface approximation models.

The framework (1.6) is a very powerful, flexible method that can segment
many types of images, including those that are either difficult or impossible to
segment with classical thresholding or gradient-based methods. Using appropri-
ate approximations of the non-smooth terms, this model has been implemented
successfully, and very impressive numerical results have been achieved in a large
range of applications. However, no analytical results are currently available for
minimizers of (1.6) in the piecewise smooth setting, and this is the goal of this
work.

1.1. Contributions. We will prove I'-convergence of an Ambrosio-Tortorelli
approximation of (1.6)

(1.9)  Fpe(v,cV,c?) = [Quc(” “uol” [w] + 16 — ul? |1 - ) dx
+ ugf VeV P [u] + 1Ve@ P [1 - v]) dx
Q

+ LJ <£|Vv|2 + lW(v)) dx,
Cw JQ &
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to the functional (1.6), where the positive scaling parameter pe approximates
p > 0, v > 0 is another scaling parameter, and

1
(1.10) Cw = 2Jo AW () dt > 0.

In particular, minimizers of (1.9) will converge to minimizers of (1.6), giving new
insights into numerical methods for determining minimizers of (1.6).

Minimizers of (1.9) correspond to the segmentation of the vector-valued im-
ages Ug: Q — R™ with m > 1. Since the wells of W are at 0 and 1, this suggests
that v is an indicator function in the limit &€ — 0, and the segmentation, consisting
of smooth approximations ¢V, c¢®: Q — R™, is obtained from v: Q — R.

For piecewise constant segmentations of the form ¢cVv + ¢ (1 —v) =
cWxp +cPxg g for v = x; and constants ¢V, ¢? € R™, the energy func-
tional (1.9) reduces to F¢: L' (Q;R) X R™ x R™, where

Eew,cV,e)i= | (1~ uol? [v]+ le® = ugl? |1 - v]) dx

+ LJ (€|V’U|2 + lW(v)) dx
Cw JQ &

for v € W"2(Q;R), and fg(v,c(l)lc(z)) = +00 otherwise. As an illustrative
example, we prove I'-convergence of Z¢, to £: L' (Q;R) X R™ x R™, where

Fw,cV,c?) = J (IcV —uol? [v] + 1c® —upl? |1 = v])dx + vTV(v)
Q

forv € BV(Q;{0,1}), and E(v,cV,c?) = +o0 otherwise. Here, TV(v) de-
notes the total variation of v in Q.

For piecewise smooth segmentations of the form cDv +c@(1 - v) where
the approximations ¢V, ¢ are functions, any I'-convergence result requires ¢!
and ¢® to be defined only for x € Q for which v(x) # 0 and 1 - v(x) # 0,
respectively, where the sets {v = 0} and {v = 1} depend on v. Given a func-
tion v € L'((Q, £9]0); R), we want ¢V and ¢?, defined on Q, to be A|y - and
Aj1—v|-measurable, respectively. To get this, we introduce the space CL” (Q) in
Section 2.5, motivated by the space TLP(Q) in [16]. Denoting the d-dimensional
Lebesgue measure by £4, we say (v,cV,c?) € CLP(Q) ifv € LI((Q, £90); R),
¢ € LP((Q,Ajp)); R™), c@ € LP((Q, A1_y|); R™), where Ajy| and Aj1_y| are
defined by

vl
71(1[9, ”v”Ll(Q;R) 0,
Alv\ = ”v”Ll(Q;R)

0 L%, otherwise,
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[1-v]
1o, 1=Vl * 0,
Alj—y| = IT—=vilqr)

0 L% ., otherwise.
We denote the space of distributions on Q by D’(Q), and we consider the space
L'7(Q) == {f € D'(Q): Vf € LP(Q)}
endowed with the seminorm

If e == IV fllve.

The reformulation of the first term in the second line of the energy functional (1.9)
with ¢ € L7 ((Q,A1p);R™), ¢? € LP((Q,A)1-y|); R™) requires the defini-
tion of metric measure Sobolev spaces LY ((Q, A R™), LY7 ((Q, Al1—v)); R™),
with seminorms || - ||L1,n()\m) and || - ||L1,n()\‘17m), respectively, which are introduced
in Section 2.2. The Sobolev space WP ((Q, Ajp)); R™) is defined by

WP ((Q, Ajp)); R™) = LP ((Q, Ay ); R™) n L1M7 ((Q, Ap)); R™).

Using the notation of metric measure spaces, we consider a rescaled formulation
of the energy functional (1.9):

(1.12) Fpee(v, eV, c?) .=
i=le® - u0||fv<mv|;uam> +[|e® - u0||ff’(7\n-v|;ﬂ@m)
bl + e P
+ % L} (sle|2 + éW(v)) dx.
We distinguish between two cases for the limit of the positive scaling parameter

He: namely pe — p with p > 0, and pg — +o0 as € — 0. For +o0 > pu > 0, we
define the limit functional of (1.12) by

(1.13) Fy(v,cV,c?) =
= ||C(1) - uo”f”(?\w\;ﬂ&"‘) + ||C(2) - uo||f"’(2\\1-v\;ﬂ&’")

+ulleMf g, +Hle? I, ) + Y TV)
forany v = x; € BV(Q; {0, 1}) with

E={xeQ:v(x) =1}, cV e W"(QAL);R™), c?@ e W' ((Q,A11_y)); R™),



T-Convergence of an Ambrosio-Tortorelli Approximation Scheme 197

and £, (v, ¢V, @) = +o0 otherwise. Note that for any Lebesgue measurable set
E c Q such that x; € BV(Q; {0, 1}), the limit functional Z, reduces to

fu (XE!C(l)lc(Z))

1
= mj e — uo|? dx + lc® — upl? dx

1
IQ\El Q\E
(2)
llc ||L1n Q\E))*'VTV(XE)’

Lt

Tl ”L”’Mx) |Q\E|

where |E| = L£9(E) denotes the d-dimensional Lebesgue measure of E, and where
Axps Axqp are defined asin (1.11). For a bounded domain E with smooth bound-

ary, the norms ||C(1)||Ll,p()\XE) and ¢Vl ur gy = IV I1p (g are equivalent.
Our main result is the I'-convergence of the variational model (1.12) to (1.13)
as € — 0.
Theorem 1.2. Let Q C R4 be an open, bounded set, let 1 < p < +oo, and let
Euee: CLP(Q) — [0, +00] be defined by

(1.14) Ey (v, eV, c?)
([le" ~ uO”f’”(Mm;R?ﬂ) +[]e® - uOHL"’(A“ _oRm) T pelc ||L"" Ao
2) v 2 -
e+ o [ eVUR s cW @) dx,
ifv e WH2((Q, L40);R), ¢V € WP ((Q,A1y)); R™),
c® e WhP ((Q,A)1_y)); R™),

+ 00, otherwise.

Then, the functionals E,, ¢ T-converge, with respect to the CL?(Q) topology, to

(1.15) Ey(v,cV,c?)

J le® — g |P dAjy (x) +J lc@ —ug|P dA |1 —y| (x)
Q
+ulleM i, + Bl g, ) + YTV,
=) 1fv—erBV(Q,{O,1})forE:= {xeQ:v(x) =1},
cM eWP ((Q,A1));R™), ¢® e WP (Q,A_v)); R™),
| +oo, otherwise,

if Ue = M withpu >0, as € — 0, and to

(1.16) Ew(v,cV,c®)
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j |C(1)—uo|pd7\|v\(X)+J 1€? — upl? dAj1_y (x) + v TV(),

Q Q

ifv =x; € BV(Q;{0,1}) for E := {x € Q: v(x) = 1},
= cW =ciriqe x€E, c? =c,L%ae x € Q\E for

constants ¢1, ¢, € R™,

+ 00, otherwise,

if e — +00 ase — 0.

Provided that the compactness property holds, that is., every bounded se-
quence (vn,c,(@l), Cilz)) € CLP(Q) satisfying sup,,cn Epenren (Un, Cﬁl),cﬁz)) < o0 is
relatively compact, the convergence of minimizers follows from the I'-convergence
of the energy functional F,, . We prove the compactness property in Theo-
rem 4.1 if there exists v = xj for some Lebesgue measurable set E C Q, if there
exist K > 0, 7o > 0 such that P(E; By (x)) > k¥4 for every X € 0*E, if there exist
Kk >0, 9 > 0 such that P(Q \ E;B,(x)) = kr? for every x € 0*(Q\ E), and
if there exists a subsequence {vy, } of {vy} such that vy, — v in LY(Q;R). In
particular, we prove the following corollary.

Corollary 1.3 (Convergence of minimizers). Let Q C RY be an open, bounded

set with d = 2. Suppose that (Vy, C,(/LI), C;Z)) € CLP(Q) is a minimizer of the en-

ergy Ey,, en in (1.14), for positive sequences {€n}, {Ue,} withlimy .« &q = 0 and
limp—oo e, = 4 € (0, +00]. If there exists V = Xy for some Lebesgue measurable set
E C Q, if there exist k > 0, ¥o > 0 such that P(E; By (x)) = KTdfor every x € 0*E,
if there exist k > 0, o > 0 such that P(Q\E; By (x)) = Krdforeveryx € 0*(Q\E),
and if there exists a subsequence {Vy, } of {vn} such that vy, — v in LY(Q;R), then

there exists (v,cV,c?) € CLP(Q) such that, up to a subsequence (not relabeled),

(U, iV, ey converges to (v,cV,c?) in CLP(Q), and (v,cV, c?) minimizes

the energy Ey in (1.15) and (1.16) for p < +co and pu = +oo, respectively, over
CL? ().

While we focus on image segmentations into two segments in this work, the
analysis can be extended to images which are partitioned into more than two
segments.

1.2. Overview In Section 2, we shall give some preliminary material which
will include the definition of metric measure spaces, transportation theory, I'-
convergence, and the space CL”. Section 3 is devoted to the proof of Theorem 1.2
for piecewise constant segmentations, that is, c ¢c@ e R™. In Section 4, we
prove Theorem 1.2 for piecewise smooth approximations, and we show the con-
vergence of minimizers of the respective functionals.
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2. DEFINITIONS AND PRELIMINARY RESULTS

2.1. Notation Throughout this paper, let x; denote the characteristic func-
tion of a set E C R%. We write L% for the d-dimensional Lebesgue measure on
R4, and |E| = £9(F) stands for the d-dimensional Lebesgue measure of E. For an
open set O C R4, we designate by B(Q) the Borel o-algebra on Q, and by P(Q)
the set of Borel probability measures on Q. For the measure space (Q, B(Q),A),
where A is a measure on (Q, B(Q)), we often write (Q, A). For the L7 space of all
measurable functions from (Q, A) to R™, we write LP ((Q, A); R™). If the consid-
ered spaces or measures are clear, we may use L¥ (Q) or L” (A) for ease of notation.
The space of functions of bounded variation, BV(€Q; R), is defined as the space of
all functions v € L' (Q; R) whose distributional first-order partial derivatives are
finite signed Radon measures, defined on the Borel o -algebra B(€; R); that is, for

alli=1,...,d, there exists a finite signed measure v;: B(Q;R) — R such that
J v a_cp dx =—-1| ®dv;
Q 0xi Q

for all ® € CZ(Q;R). The measure v; is called the weak partial derivative of
v with respect to X, and is denoted by D;v. For v € BV(Q;R) we shall set
Dv := (Div,...,D4v). The total variation of v in Q for v € LZIOC(Q;[R) is
defined by

TV(U) = sup{J vdivddx: ® € CZO(Q, Rd), ||CI)||L°°(Q;Rd) < 1}
Q

2.2, Definition of metric measure spaces. Sobolev spaces can be defined
on metric measure spaces [18-20]. For completeness, we recall the standard defi-
nitions of Sobolev spaces:

W (Q) = {f e D' (Q): f e LP(Q),Vf eLF(Q)]},
L' (Q) = {f € D'(Q): Vf € LP(Q)},

where Q ¢ R? is an open set, 1 < p < +oo, and D’ (Q) denotes the space of
distributions on Q. The space W (Q) is a Banach space when endowed with
the norm || fllxyir := [Ifllr + IV fllLr, and when LY (Q) is endowed with the
seminorm || fll e := |V fllr. Note that W7 (Q) # L' (Q) in general.

The definition of Sobolev spaces strongly relies on the Euclidean structure of
the underlying domain Q. In order to define Sobolev spaces on metric measure
spaces, we need to consider a different approach that does not involve derivatives.
From [19, Theorem 2.2], we obtain the following result.

Theorem 2.1. Let Q C R4 be a bounded domain with smooth boundary, and
let 1 < p < +oo. Then, f € W'P(Q) if and only if f € LP(Q), and there is
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0 < g € LP(Q) such that
(2.1) IF(x) = fO)] < Ix —yl(g(x) +g(y) LA-almost everywhere.

Moreover, || fl1r is equivalent to infy ||gll1r, that is, there exists a constant C = 1
such that (1/C) || fllpne < infy llgllr < Cllfllire, where the infimum is taken over
the class of all functions g satisfying (2.1).

This definition can be extended to the case in which Q is replaced by a metric
space (Q, d) equipped with a Borel measure A.

Definition 2.2. Let (Q, d) be a metric space with a finite positive Borel mea-
sure A and finite diameter,

diamQ:= sup d(x,y) < +oo.
x,7€Q

Let1 < p < +o0. The Sobolev spaces L7 (Q,d,A) and W"P(Q, d, A) are defined,
respectively, as
LY (Q,d,A) := {f Q — R: f is measurable, and 3E C Q
with A(E) = 0and 0 < g € LP(A) such that
If)—fO) N =dx,y)(gx)+g(y) Vx,y e Q\E},

and
Wl’p(Q, a,A) =LA n Ll’p(Q,d, A).

The space L7 (Q, d, A) is equipped with the seminorm
Ilf 1l a) 2= i2f||g||LV(A)

where 0 < g satisfies
If(x) = f()] <d(x,¥)(g(x)+g(y)) A-almost everywhere.
The space W' (Q,d, A) is equipped with the norm
I e ay 2= I e @y + 1LF e -

If the metric d is clear, we also write L7 (Q, A) and W"? (Q, A).

Remark 2.3. Note that other modifications of L” spaces exist, such as the
weighted L? space with a weight function w on Q. However, while these spaces
are defined on a domain Q, we are interested in L” spaces, and more generally
Sobolev spaces, on some measure space (€, A) for some nonnegative measure A.
For f € L'"?(Q,A) where A = XpL%q is the indicator function of some measur-
able bounded domain E ¢ Q with smooth boundary, we have f € L' (E). In
particular, the norms ”fHL”’(?\xE) and || fllper gy = IV.fllr(g) are equivalent.
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2.3. Transportation theory.

Definition 2.4. Let Q C R be an open set, and let A, A be probability mea-
sures on Q. We define the set of couplings IT(A, A) between A and A as

TI(A,A) := {rr EPQOXQ): MEXQ) =AE), T(QxE) =A(F)

for all measurable E C Q}

The elements 71 € TI(A, A) are also referred to as transportation plans between A
and A.

Definition 2.5. Let 1 <p < +00, A € P(Q), and {A,} C P(Q). A sequence
of transportation plans {11} C II(A, A;,) is called stagnating if

2.2) lim |x — y|Pdm,(x,y) =0
Q

n—-o JOox

is satisfied.

Since Q is bounded, the existence of a stagnating sequence of transportation
plans is equivalent to the weak convergence of probability measures, that is, {A,}
converges weakly-x to A if and only if for any 1 < p < +co there is a sequence of
transportation plans {11, } C IT(A, Ay,) for which (2.2) is satisfied [2, 34].

Lemma 2.6 ([16]). Let1 < p < +, let A € P(Q), let {An} C P(Q), and let

{1tn} C II(A, Ay) for alln € N. If {10y} is a stagnating sequence of transportation
plans, then for any ¢ € LF ((Q,A); R™),

lim 5 lc(x) = c(p)IP dmmp(x,y) = 0.

n—-o JOx

Lemma 2.7 ([16]). Suppose that the sequence {An} in P(Q) converges weakly-
x to A € P(Q). Let cp € LP((Q,A);R™), n € N, and let ¢ € LP ((Q,A); R™).
Consider two sequences of stagnating transportation plans {Ttn} and {Ttn}, with
T, Tty € TL(A, Ay). Then,

lim lc(x) —cn ()P dmry(x,y) =0
n—-o JOoxQO

< lim lc(x) —cn(Y)IP dftn(x,y) = 0.
n—-o0 JOoxQ

Definition 2.8. Given a Borel map T: QO — Q and A € P(Q), the push-
forward of A by T is denoted by T3A € P(Q), and is given by

T:A(E) := A(T"Y(E)), E € B(Q).
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For any bounded Borel function @: Q — R, the following change of variables
holds:

J @ (x) d(T:A) (x) :J @ (T(x)) dA(x).
Q Q

Definition 2.9. A Borel map T: Q — Q is called a transportation map be-
tween the measures A € P(Q) and A € P(Q) if A = T:A.

For a transportation map T between measures A,/i € P(Q), we associate
with T the transportation plan 7 € II(A, A) given by 17 := (Id XT)#A, where

[dXT: Q- QxQwith (Id XT)(x) = (x,T(x)). Forany @ € L'(QxQ,R),a
change of variables yields

J @ (x, y) drr(x, ¥) :j @ (x, T(x)) dA(x).
QxQ Q

2.4. T-convergence. We recall the notion of T-convergence [5, 11].

Definition 2.10. Let (X,d) be a metric space, and let {£,} be a sequence
of functions Ey: X — [—o0, +00]. We say that {Z,} T'-converges to a function
E: X — [—o0, +00] if the following two properties are satisfied:

e (Liminf inequality) For every x € X and every sequence {x,} C X such
that x,, — x with respect to d,

T(x) < liyfgioglffn(xn)-

e (Limsup inequality) For every x € X, there exists a sequence {x,} C X
such that x,, — x with respect to d, and

limsup Eyn (xn) < E(x).

Nn—oo
The limit function Z is called the I'-limit of the sequence {£,}, and we write

I-lim £, = E.

n—oo

Definition 2.11. Let (X,d) be a metric space. A sequence of nonnegative
functionals {E,} with E,: X — [—oo, +0] satisfies the compactness property
if, for any increasing subsequence {ni} of natural numbers and any bounded
sequence {Xk} C X such that

sup Ep, (xx) < o0,
keN

the sequence {xk} is relatively compact in X.
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For functionals {Z,} satisfying the compactness property, the notion of I'-
convergence is particularly useful since it guarantees the convergence of minimiz-
ers (or approximations of minimizers) of £, to minimizers of . It also guarantees
the convergence of the minimum energy of £, to the minimum energy of E. To
be precise, we have the following.

Proposition 2.12. Let Ey: X — [0, 0] be nonnegative functionals not identi-
cally equal to +co, satisfying the compactness property, and I'-converging to the func-
tional E: X — [0, 0] that is not identically equal to +co. Then,

lim inf £, (x) = min E(x).
n—o xeX xeX

Furthermore, every bounded sequence {xn}nen in X for which

(2.3) lim (£, (x,) — inf £,(x)) =0
n—oo xeX

is relatively compact, and each of its cluster points is a minimizer of E. In particular,
if E has a unique minimizger, then a sequence {Xy} satisfying (2.3) converges to the
unique minimizger of E.

Theorem 2.13 (T-Convergence and Compactness of the Ginzburg-Landau
Functional [24-26,31]). Let Q C RY be an open, bounded set, and &, — 0.
Suppose Assumption 1.1 is satisfied, and define fg} by (1.7). Then, T-limy . fg} =
cw TV, with cw as in (1.10). Furthermore, let {v,} C WY (Q;R) be such that

M := sup TEGnL(vn) < +o00,
neN

Then, there exist a subsequence {Vn,} of {Vn} and v € BV(Q;{0,1}) such that
U, — v in L' R).

Using the results of Modica and Mortola [25,26], Modica [24] and Sternberg
[31] independently proved Theorem 2.13 under the stronger assumption that

1
Elth <W(t) <c|t]?

forall [t| = T forsome T > 0, ¢ > 0, and g = 2. Fonseca and Tartar [15]
showed that the weaker assumption of linear growth in (1.8) is sufficient for The-
orem 2.13.

2.5. The space CL”. Let Q C R be an open set. We define

CLP (@) = {(v,cV,c?): v e L'(Q, £400)s R),
¢ e L7 (@A) R™), ¢ € L7 ((Q, A )sR™ 1,
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where Ajy| and Aj_y| are given by (1.11); that is, Ay and Aj1-y| are probability
measures on Q which have Lebesgue densities

lv| [1-v|

and

vl or) 1= vl qr)
if
vl or) # 0 and |1 - Vg ar) * 0,

respectively. For (v,cM,c¢®@) and (7,¢M,¢@) in CLP (Q), we define the equiv-
alence relation on CL? as

(v,eM,c?) ~ (0,61,e?)

(v =0=0/Lae, cV =D Ay -ae,
c? =¢P Aj_y-ae,
if lvlip =0or [Tl =0,

v=>0=1Llae., cV =¢D Ajy|-a.e.,
= c?® =¢®@ Al1—y|-a.e.,
ifl[1=vllp=0or |1 -7 =0,

A = Al L%ae., Aji—v) = Aj1-g| L%-ace,,
c =M Ajp|-a.e., c? =¢®@ Ajj—y|-ae.,

otherwise.

By abuse of notation, we also identify CL” (Q) with the space of equivalence classes
CLP(Q)/ ~. For (v,cM,c?) € CLP(Q) we denote the equivalence class by
[(v,cV,c?)], that is,

[((v,c®,c)] = {(7,eV,6P) e CLP(Q): (v,cV,eP) ~ (7,eV,6@)}.
Similarly, let [v], [cD], and [¢?] be the usual equivalence classes in
L'((Q, L%10); R), LY ((Q,Ap));R™) and LP ((Q,Aj1—y)); R™),

respectively.

Lemma 2.14. Let (v,cV,c?) € CLP(Q) withv = w L% for some
constant w € R. Forw € R, let vy € L' ((Q, L4 q); R) satisfy Vy = W L g If
w € R\ {0,1}, then

[(v,eM,c®)]= |J [walx[cP]Ix[c?].
weR\{0,1}
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Ifw € {0,13}, then
[(v,cD,cN] =[v]x[cP]x[c?].

Proof: Clearly, if v = w £% almost everywhere for w € R \ {0, 1}, then

lv] 1 1-v] 1 4
=— ————— = —  [%]most everywhere,
i 1ol M=vl, 19l A

independently of the value of w. For w € {0,1} the claim immediately follows
from the definition of the equivalence relation. O

For the compactness property and I'-convergence, we can restrict ourselves to
(v,cM,c@) e CLP(Q) with 0 < v < 1 L4 almost everywhere. To see this, note
that for any sequence {(vy, C#) , Cﬁlz))} in CLP(Q) and &, — 0 such that

sup f“sn,|5n,(vnic‘}(’Ll)’C1(’L2)) < +oo,

neN

we have v,, - v in L' (Q; R) with v = X for some E C Q. We may consider

0, vplx)= l,
(2.4) U (x) 1= %
1, vnlx) > 5

instead of vy,. To be precise, we have the following result.

Lemma 2.15. Let vy, — v in L'(O;R), withv = xg for some E C Q. Then,
{un} defined by (2.4) satisfies

rlLch}o Iy — vn”Ll (R) = 0.

Proof. We have

J Iun—vnldxzj |1—vn|dx+J || dx
Q {vn>1/2} {vn<1/2}
SJ |XE—Un|dX+J (1+vy,)dx
{vn>1/2}nE {un>1/2}\E

+J Ivnldx+J [Un — Xpldx
{vn<1/2}NE {Un<1/21\E

SJ IxE—vnldx+J 3|lvpldx
Q O\E
+J |vn_XE|dX+J lvn — Xgldx,
{vn=<1/2}nE Q

where all terms go to 0 as n — o since V5, — V in LY(Q: R). O
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For (v,c¢W,c®@),(0,¢W,¢?) e CLP (Q) satisfying
(,cW, @) ~ (9,eV,e?),

where v is nonconstant £4 almost everywhere, 0 < v < 1 L4 almost everywhere,
and 0 < ¥ < 1 £4 almost everywhere, we have v = ¥ £4 almost everywhere. To
see this, note that the equivalence relation on CL?”(Q) implies v = av L2 almost
everywhere and 1 —v = b(1 — 7) £4 almost everywhere for some a, b € R. For
a+ b, weobtainv =a(l —b)/(a-b) L2 almost everywhere, in contradiction
to U being nonconstant £4 almost everywhere. This implies that a = b = 1, that
is, v = 7 L% almost everywhere
For (v,c™,c@)Y and (9,¢V,¢@) in CLP(Q), we define
derr (v, eV, e, (7,eM,e@))
= dTLV((A\th N, Aygp,¢M))
+ drrr ((Aj1-v),¢?), (A1-51,¢@)),

where for (u, f), (A, g) in TL? (Q), with
TLP(Q) = {(1, f): p € P(Q), f € LP(Q, )},
the metric
drir (1, f), (A, 9))

inf 4 » 1/p
= rrei]r}u,)\) <.[Q><Q lx =17 +1f(x) =g (0| dTT(X,y))

is introduced in [16]. If i, A have densities, we can write the distance dyy» in the
Monge formulation. To be precise,

drir (1, f), (A, 9))

1/p
— inf (jQUx—T(xMM|f(x)—g<T(x))|V]du<x>) .

T: T#H=A

Proposition 2.16. (CLP(Q),dcyr) is a metric space.
Proof Nonnegat1v1ty, symmetry, and depr (v, W, @), (9,6MW,6@)) =0
for (v,cM,c@) = (9,éW, @) follow easily from the deﬁnmon of dTLp If

derr (v, ¢V, ¢, (0,eM,e@)) =0,
then
drir (A, M), (Aj5,¢1)) =0,
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drr (Aj1—v),¢?), Ap-5,,¢#)) =0,

that is, Alv\ = Ajg| L% almost everywhere, Ajj_y| = Aj1_5| £4 almost everywhere,
¢ = ¢M A, almost everywhere, ¢? = ¢ Ajj_y| almost everywhere, and
these imply

v Ul a 1-vl _ [1-7]

= — -a.e. = -
o=l I =Dy

L.
IIUIIL1 (1D

Hence, (v,cV,c@) ~ (9,¢M,¢P), and we have equality in CL? (Q). O

It was shown in [16, Proposition 3.12] that for (u, f) € TL?(Q) and a se-
quence {(tn, fn)} in TLP(Q), (Un, fn) — (4, f) in TLP(Q) as n — oo if and
only if {tn} converges weakly-x to pt and fr o Ty — f in LP(u) as n — oo
for any stagnating sequence of transportation maps {Ty,} between py, and p with
Tl = Un.

Proposition 2.17. Let (v,cV,c@) e CLp(Q) andlet{(vn,c,(@”,cn )} bea
sequence in CLP(Q). Then, (vn,cﬁl),cﬁ ) = (v,cD, c@) inCLP(Q) if and only
if A un} converges weakly-*-% to Ay, C (1) o T'y(ll) - C(l) in LP((Q,A1y)); R™),
and C,(f) o Tn - c@ i L’”((Q,AH,U\), R™) as n — oo, for any sequences of
transportation maps {Ty(Ll)} and {Ty(Lz)} satisfying Ty(Ll)#/\M = Ay, |» Ty(Lz)#AH,U\ =
Mt—valr and | T8 = 1d llira,) — 0, 1T = Id lip g,y — O

Proof. Assume that (Vy, cll ,c,(@z)) (v,¢D, @) in CLP(Q). We have that
drr (A, ¢, Ap,,ef)) =0

and, by [16, Proposition 3.12], we have that {A},|} converges weakly-* to Ay

and ¢V o TV(L” — ¢ in LP((Q,Ay)); R™) for any sequence of transportation

maps {Ty"} satisfying the conditions in the proposition. Analogously, we obtain
P o T2 — ¢ in LP((Q, Aj1_v|); R™).
If {A}y,|} converges weakly-* to A}y,
VoV —c® in LP((Q,Ap)); R™)
and
DoTP —c® in LP((Q,A71-0));R™),

then we conclude that

drr (A, M), Ay, 1, c)) -0,
drir (Aj1—v), €, Aj1—v, 1, ci2))) = 0.

Hence, we obtain that d¢yr (v, ¢, c@), (9,eM,¢?)) - 0. O
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3. T-CONVERGENCE FOR PIECEWISE CONSTANT SEGMENTATIONS

In this section, we study the Ginzburg-Landau image segmentation model where
¢ ¢ e R™ are constants and correspond to the optimal intensity values
to approximate each of the two segments. For constants ¢!V, c?, we define
Fe: LI(Q; R) x R™ x R™ by

j (e —wugl? [u] + 1@ —uol? |1 - v]) dx
Q

_ Vv 2 1
3.1) F(v,cV,c?y .= + =" L} (EIVUI + EW(v)) dx,
ifv e W (Q;R), ¢V, c@ e r™,

|+ 00, otherwise,

where ¢y is defined in (1.10), and ug € L*(Q;R™) is given. The aim of this
section is to show that {Z,} I-converges to F: LN R) x R™ x R™, defined by

J e — uol? dx
E

+ J lc® —up|? dx + vTV(v),
Q\E

(3.2) Ew,cV,c?):= ifv =xp € BV(Q;{0,1})

forE:={xe€Q:v(x) =1},

cW,c? e R™,

+00, otherwise.

L

Note that Z; and Z follow immediately from the definition of Z,, ¢ and £, when
¢, ¢c? constant. In this case, the CL”(Q) topology is not practical, and we
consider the L'(Q; R) x R™ x R™ topology instead. The main results of this
section are the compactness property and the I'-convergence of E; for piecewise
constant segmentations, which imply the convergence of minimizers, as follows.

Theorem 3.1. Let Q C R4 be an open, bounded set, let 1 < p < +oo, and let
Fe: L'(Q;R) X R™ x R™ — [0, +00] and E: L' (Q;R) x R™ X R™ as defined by
(3.1) and (3.2), respectively. Then, the functional E¢ satisfies the compactness property
and T-converges with respect to the L' (s R) x R™ X R™ topology to E as € — 0.

Let us first state a general lemma which is not only valid for constant functions
¢, ¢?  but more generally for functions

e e W ((Q,Ap)); R™),
c? e WP ((Q,A)1_y)); R™),

forv e L'((Q, £%]0); R) given.
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Lemma 3.2. Let Q C R4 be an open set with finite measure. Define the en-
ergy functional E, ¢ as in (1.14), and let e — 0, {vn} C W2 ((Q, £40); R),
(e, (2} such that

e e WP (Q,A1,);R™), P € WP (Q,A)1_p,); R™),

and assume that

M := sup f“sn,fn(vnic‘l(’Ll)ic‘}(’LZ)) < t+00,
neN

where e, — U € (0,+0] as ey — 0. Then, there exist a subsequence {Vn,} of
{un} and v € BV(Q;{0,1}), withv = xg L4 almost everywhere for a Lebesgue
measurable set E C Q, such that vy, — v in LY (Q: R).

Proof. As sup,, ngnL(Un) < +00, where £ denotes the Ginzburg-Landau
energy functional defined in (1.7), Theorem 2.13 can be invoked. 0

As a first step towards proving Theorem 3.1, we show a compactness result
based on Lemma 3.2.

Theorem 3.3 (Compactness). Let Q C R4 be an open set with finite measure,
let £, — 0, and let {v,} € W2 (Q;R), {C#)}, {6;2)} C R™, be such that

M := sup E, (vp, e, cP) < +oo.
nenN

Then, there exist a subsequence {Vyn,} of {Vn} and v € BV(Q;{0,1}), withv =
Xg for some Lebesgue measurable set E C Q, such that vy, — V in L1(Q; R). If

LAYE) > 0, then there exists a converging subsequence {Cﬁlk)} of {Cﬁl)} with limit
¢V e R™, [FLUQ\E) > 0, then there exists a converging subsequence {cy)} of
(2} with limit ¢ € R™,

Proof. By Lemma 3.2 we can find a subsequence {vy, } of {v,} and

v € BV(Q;{0,1}), with v = X for some Lebesgue measurable set E C Q,

such that vy, = v in L'(Q;R). For £L4(E) > 0 the sequence {C,(/LU} has to be
bounded. To see this, note that the energy bound implies that

J Icﬁf) —uol? lvpldx  is uniformly bounded.
Q

If the sequence {Cﬁl)} was unbounded, for every n > 0 there exists some ky, € N
such that

M = sup | lef) —uol? lvpldx = nllvk, L@
neN
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by using the fact that u is bounded. This implies that vy, — 0 in L'(;R),
which contradicts £4(E) > 0. Hence, {C,(@l)} is bounded, and the existence of
a subsequence of {C#)} converging to cD in R™ follows immediately from the
Bolzano—Weierstrass theorem. Similarly, one can show if £4(Q \ E) > 0 then
{Cn } is bounded, and has a converging subsequence with limit c? e rm, O

Proof of Theorem 3.1. As the compactness property follows from Theorem 3.3,

it remains to show the I'-convergence. Let
D, e, c?) = J (e —upl? [v] + 1c? —uol? |1 - v]) dx,
Q

so that Z¢ (v, ¢, ¢@) = ZW (v, e, ¢@)+ (v/ew)EEL(v) and (when v = xp)
E(w,cW,c?) = f_(”(v,c(”,c(z)) + vTV(v).

Let (Un, e, c'?) — (v,¢W,c@) in CLP(Q), that is, vy is bounded in
LY(Q;R), SUP,, ey Ic(l)l < 400 and sup,, _ |C~£L2)| < +00. We have

1EV (v, ), eit) = EV v,V @)

< [ (el —uol? [1val = 1] + 101 116~ uol? — e — wol? |) dx
# ] (e = aol? 111 = val = 11 - w1
+ 11 =v| |l —ugl? - [c? —u0|p|>dx.
Note that for any 6 > 0 there exists Cs > 0 such that for all a, b € R™ we have

lal? < (1+8)IbIP + Csla - b|?,
implying
lef —ugl? < (1+8)c'? —upl? + Cslef) — cD|P.
Hence,

[EV (v, ), ef) = EV (v, e, P

< (sup e = uo() [P [vn = Vg o
xeQ

+ J v 1(Slc™™ —upl? + CslcP —cV1P)dx
Q

+ (sup le?) = uo ()P lvn = vl g
xeQ

+ J 11 =v](8]c®? —upl? + Csleyt) —cP|P)dx
Q
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< Cllvn = v + SEV (v,eV,e@) + Cslel) = c V1P vl g,

+CsleP) —cP P 1 = vl g
Letting n — co, we have

lim |EV (vy, ¢V, cP) = EV (v, ¢V, @) < SEV (v, eV, c?)

n—o0o

forany 6 > 0. Let 6 — 0 to obtain

lim 2 (vy, ¢V, c?) = ED (v, eV, c?).

n—oo

By stability of I'-convergence under its continuous perturbations, Proposition 6.20
in [12], we obtain the I'-convergence of Z¢ to {£} in L'(Q;R) Xx R™ x R™., O

By the compactness result in Theorem 3.3, we only consider @ < E ¢ Q with
0< 14 (E) < £9(Q) for minimizers of the function  in (3.2). However, the
I-limit £ in (3.2) is defined for all sets @ C E C Q.

4. T-CONVERGENCE FOR PIECEWISE SMOOTH APPROXIMATIONS

In this section, we prove the main result of the paper, stated in Theorem 1.2:
namely, the I'-convergence of the energy functional E, ¢ in (1.14) for any positive
parameter [. In the following, we differentiate between two regimes depending
on the convergence of the positive parameter U, as &y — 0:

(1) ue, — u for a constant u > 0;
() He,, — +00.

These two cases cover all positive limits of pe, as €, — 0. We note that the
analysis is very similar for limg, o te, = 4 > 0 and limg, — He, = +00. We start
by showing compactness.

Theorem 4.1 (Compactness). Let QO C R%, withd > 2, be an open set with
[finite measure. Let €, — 0 and {vy} C W2 ((Q, £ ) R), {Cill) 1, {C;Z)} be such
that ¢y € WP (Q, A, ); R™), exf) € WP (O, A1y, ); R™), and

M .= Sup Tusn’gn(vn,c‘,(,,'l),c?(/,'z)) < 400,
nenN

Jor Ey, ¢ defined in (1.14), with limp_.c U, € (0,+00]. Then, there exist a subse-
quence {Vy, } of {vn} and v € BV(Q; {0,1}), with v = X for some Lebesgue mea-
surable set E C Q, such that vy, — v in LY R). [f[d(E) > 0, if there exist k > 0,
vo > O such that P(E; B, (x)) = KTdfor every x € 0*E, and{cﬁl)}neN are bounded
in L, then (/\\UM,CS)) is precompact in TL?, and any cluster point (Ajy|, cD) sat-
isfies c e Wl””((Q,AM); R™). Similarly z'de(Q \ E) > 0, if there exist k > 0,
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vy > 0 such that P(Q\ E;By(x)) = K?’dfor every x € 0%(Q \ E), and {C';(ILZ)}neN
are bounded in L, then (Aj1-y,,), cﬁz)) is precompact in TLY, and any cluster point
(Aj1-v), €?)) satisfies ¢?) € WP ((Q, Al _v)); R™). In particular, if 0 < L4(E) <
£4(Q), if the above assumptions on the perimeter of E and of Q \ E hold, and if

{Cnl Ynen, 1= 1,2, are bounded in L™, then there are a subsequence (vy,, Cillk) , Cilzk))

of(vn,cn ,c(z)) and (v,cV,c@y e CLP(Q) such that {(vnk,c,ﬁlk),cnk )} con-
verges to (v,cV,¢?) in CLP(Q) and Ey(v, ¢V, c?) < +o0.

Proof- The existence of a subsequence {vy, } of {vy} and v € BV(Q; {0, 1})
with v = xj for a measurable set E C Q with finite perimeter such that v,, — v in
L' (Q;R) follows from Lemma 3.2. In particular, {A}y,|} and {A}1_y,|} converge
weakly-* to Ajy| and Aj1_y |, respectively.

Let us first consider 0 < limy—.« Ue, < +0, and we assume, without loss of
generality, that ¢, are uniformly bounded by positive constants from above and

below. Since the existence of converging subsequences of {C,(@lk)p (1)}

2)
and {C;kﬂ ° Tnk) } — ¢@ can be shown in a similar way, we restrict ourselves to

c,(@lk)p Tnk(, - ¢M and in the following assume that LA(E) > 0. For ease of
notation, we omit the superscript index (1).

Since {A}y,|} converges weakly-* to Ay, then {Ajy, |} converges in the p’-
Wasserstein distance to Ajy|, with 1/p + 1/p” = 1. In particular, there exists a
sequence of transport maps {T},} satisfying

Tnsd || = A\v"k\ and %gl}o T, —Id ||Lp’ E) = 0.

Let ¢ € CZ (R4) be a standard mollifier, for example,

1
W) = Cexp <7|X|2—1>’ x| <1,
0, x| = 1,

%

where the constant C > 0 is chosen such that [ d(l/ dx = 1. Foreach a > 0, we
R L
set

1 X
Ya(x) = a¥ <E>’ x € R4,

We define convolution in the usual way, that is, (@ *c)(x) := J Y(x—y)c(y)dy,
Q

and for convenience we let D (x) := v(x)/|E|. We claim there exists a positive
converging sequence {dn}nen C R with limy . an = 0, such that

4.1) sup IV(Wa, * ((cn o Tn)ﬁ))”Ll(Rd) < +o0,

neN
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and
(4.2) 71115130 lWa, * ((cn o Tu)V) — (cp o Tp)Dllpr g = 0.

Under these assumptions, we show that ¢ € WP ((Q, Ajp; R™). Since

N 1 P
||Wan * ((cp o Tn)v)Hfﬂ(Rd) = J[Rd m JE Wan(x — y)cn(Tn(y))dy dx

1
= WJW JE Wa, (X = ¥)en (Tn(y) P dy dx

1
~IElP

1
B W”C" © Tul l[r a0y

jE|cn(Tn(y>>|”dy

by the boundedness of {Ey,, ¢,}, we deduce that the sequence

Wa, * ((cn © Tn) V) llLr (e

is uniformly bounded in n. The sequence { fn}, with fi 1= Wa, * ((cCnoTy)D), is
bounded in W1 (R4) by (4.1), and so there exists a subsequence (not relabelled)
that converges in L*(R%) to some f € WVI(R4) forany 1 < & < d/(d — 1).
Choosing & = 1, we have

1113}0 lWa, * ((cn ° Tn)D) = fllp1 ra) = 0.
Define c(x) := f(x)|E| for x € E and c(x) = 0 for x ¢ E. We obtain
lWa, * ((cn o Tw) ) = cVllpig) < lWa, * ((cn o Tn)0) = fllp1gay — 0.
Together with (4.2), and the fact that

llen o T = clluia,) = len o Tw) 0 —cDllp g
< l(cn o T)D — Wa, * ((cn ° Tn)D) g
+ [Wa, * ((cn o Tn)D) = cOllp1 g,

we deduce that
1,1,'141:1'010 ||Cn o Tn - C”LI(A\UI) = 0.

From the fact that {cy} is bounded in L™, and extracting a further subsequence
(not relabeled), we can assume that ¢, o Ty, — ¢ pointwise on E, which implies

that ¢ is also bounded in L*. Moreover,

[[cn o Ty — C||Irj”()\|m) <|len o Tn - CHIIF(IE) llen o Tn = clia,) = O-
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Since ¢y € W"?(A}y,|), by Theorem 2.1 there exist gn € L?(A}y,) and
Qp C Q satisfying

[cn(x) —cnW)] < Ix = Y (gn(x) + gn(Y))

forall x, v € Qu, A, | (Qn) = 1,and lgnlltra,,) < ||Cn||L1,p()\|v”|)+l/n. Using
the transport maps Ty, we can rewrite the above as

(43) len (Tn(x)) _Cn(Tn(y))| < |Th(x) - Tn(y)|(gn(Tn(X)) +gn(Tn(y)))

for all X,y € Tﬁl(Qn) C E, A|v\(Tﬁl(Qn)) = 1, and ”gn o TVLHL”’(AM) <
||Cn||Ll,p()\‘Um) + 1. Now, Ap(T,;1(Qy)) = 1 implies | T, (Qn)| = |El, and so
(4.3) holds for almost every x,y € E. Taking the union over all sets T,;1(Qy)
for n € N, we can further say there exists E with |E| = |E| such that (4.3)
holds for all x, € E and n € N. As g, o T, are bounded in L (Apy)),
there exists a weakly converging subsequence to some g € LV(Ay)). More-
over, (x,y) ~ XTEI(Qn)Z(x;y”Tn(X) = T (Gn(Tn(x)) + gn(Tn(y))) is
also bounded in L”(A}y)), and so it converges weakly along a subsequence to
(x,¥) = Xz (x,¥)Ix — ¥1(g(x) + g(»)). Forany @ : R4 x R4 — R, with
Qe Lp*(/\\v\ X Ajy|) where p* > 0 such that 1/p + 1/p* = 1, we have

jQZ lc(x) — c(9) @ (x, v) dx dy

sli1gLninf 1 2|cn(x)—cn(y)lcp(x,y)dxdy by Fatou’s lemma
~o )11

< lim inf oy ITn(x) = Tn(¥) [ (gn(Tn(x))
+ gn (T ()P (x, y) dx dy by (4.3)

- | Iyl + 9@, ) dxdy.

Therefore,
lc(x) —c()| < |x-yl(g(x) +g(¥))

for almost every x,y € E. By redefining g(x) = +o0, g(y) = +co for any
(x,y) where the above does not hold, we can assume that the inequality holds
for all (x,y) (and the L” norm of g is unchanged). By the weak lower semi-
continuity of norms, we have lgllr ) < liminfy, - [|gn © Tulltr ) where
the righthand side is finite because of boundedness of the energies. It follows that
c e W' ((Q,A1y;R™), and

(44) ”C”LI’V(AIV\) = ||g||L”(A‘U|) = llﬁglf||gn ° TnHL"’()\M)
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= liyllrlioglf”gnHLp(?\\vn\)

.. 1
< h{lri{,?f(||cn||L"”(mvm) + ﬁ)

= llyl’lriloglf||Cn||Ll,V()\lvnl).
If pe,, — +00 as n — oo, the existence of a converging subsequence

{(Ung, i), e}

with limit in CL” (Q) follows in the same way as for the case limy—o te, < +00,
because of the uniform boundedness of E,, ¢, (Vn, c,c?). Furthermore, if

Ue, — +00 as 1 — oo, we have that {Cn)} converges to a constant since, again
omitting the superscript (1),
lim sup ||Cn||Ll,p()\‘Um) = limsupinf lgnllr )
n—oo n—-o  gnp
= limsupinf [|gn © Tulltrap) = 0,

n—o  gn

that is, gn © Tn — 0 in LP(Q,A}y|), and taking the limit on both sides of the
inequality

len (Tn(x)) = cn(Tn ()]
< |Tu(x) — Tn(y)|(gn(Tn(X)) + gn(Tn(y))) A\vl‘a-e-

implies there exists a constant ¢; € R™ such that ¢V = ¢y £ almost everywhere
x € E. Similarly, it follows that ¢ = ¢, £ almost everywhere x € Q \ E for
some constant ¢; € R™,

It remains to show (4.1) and (4.2). To show (4.1) is indeed satisfied, note that
we have for any positive converging sequence {an}nen C R with limy—ean =0

(which will be specified later)

V(@a, * ((cy Tn)?))(x)

_ %vhw ("a_ny) cn(Tu(3) dy

= d+1|E| J ( )cn(Tn(y))dy

+1|E| J (

anHIEI RA\E

) (n(Tn(¥)) = cn(Tn(x))) dy

X-y
an

vw( ) en (T30 v,
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where we extended ¢, to be zero outside of Q in the last equality and used the fact
that [ dV(,U((x —v)/ay)dy =0 as Vy is odd. Hence,
R

IV(pa, * ((cp o Tn)ﬁ))”Ll(Rd)
1 x—y) 3 '
g o | ] 70 (5 ten T - en(Tuen) ay | ax
_
ad*E| Jra
=1, + II,.

JRd\va(x;y)cn(Tn(x))dy\ dx

n

Starting with term II,, a change of variables implies that

llcn e J J (x -y
II,, < \Y
"7 adtE| JE Rd\E| vl n

_ llenll> J

a anlE| JxeEdist(x,0E)<a, Jw:x-a,weR4\E
_ leall= IVl 1B(O,1)] [{x € E: dist(x, 0E) < an}|

B |E| an

) dy dx

IVy | (w)dw dx

Note that the assumption in Corollary A.2 that the topological boundary 0F is
the closure of the reduced boundary 0*E holds for free up to a modification on a
Lebesgue null set (see [22, Proposition 12.20]). By Corollary A.2, we can choose
the sequence {a@n}nen such that we have that IT,, = O(1).

For the term I,,, we use (4.3) to infer

I, <

) vw|("a‘ny)|Tn<x> -~ Tu(y)]

X (Gn(Tn(x)) +gn(Tn(y)))dy‘ dx
1

a4+l E| Jrag

n

L(vw)(X;ny)(cnm(y)))dy dx

X (Gn(Tn(x)) + gn(Tn(y))) dy dx

||Cn||L J J ( )
dy dx.
prrr=ll W WAL ydx

The second term above can be shown to be O( 1) by following the same argument
as for I1,,.

We let

2 x—y)
I, == ———— \Y, T, -
" adr | JE JE| vl ( a ITn(x) = x|

n

X (Gn(Tn(x)) + gn(Tu(y))) dy dx



T-Convergence of an Ambrosio-Tortorelli Approximation Scheme

1 X=Y\ .
WVn = ad+lE| JEJE|VW|( n )'X I
X (Gn(Tn(x)) + gn(Tn(y))) dy dx.

and

A change of variables implies

2
II1 S—JJ \% Z2)|Th(x) — x
"= i anzeEl Yl(2)|Tn(x) |

X (gn(Tn(X)) + gn(Tn(x —anz)))dzdx
[m(x) x|(||vw||L1gn(Tn(x))

an|E|
+ [Vl J In(Tn(x —anz)) d2> dx
B(0,1)

_ 20Vl l1gn o Tullir e 1Tn = 1d e )
B |E| an
2|V llps 1Tn —1d 1l )

|E| an
p 1/p
I )"
E

by Hélder’s inequality, where p” satisfies 1/p + 1/p’ = 1. Now,

)

J In(Tn(x —anz))dz
B(0,1)

JB o In(Tn(x — anZ))dZ' dx

< 1B j 19n (Tn(x — an2))|P dz dx
< |B(0, 1)|p ||gn o Tn”LP(E)
We choose ay, such that, in addition,

1Ty — Id [|
n B _ o)
an

217

is satisfied, and so III, = O(1). The bound on IV, follows straightforwardly from

IV, = ij j IVW1(2) 121 (G (Tn (X)) + (T (x — an2))) dz dix
|E| E Jz:x—anz€eE

- ||VW||L°°J J In(Tn(X)) + gn(Tn(x — anz)) dz dx
|E| E JB(0,1)

2IVlie=1B(0, D) 1lgn © Tnllp1 (g
|E]
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Putting the bounds on I, Iy, 111, and IV, together, we can conclude that (4.1)
holds.

To show (4.2) we write

lwa, * ((cn o Tn)D) — (cp o Tn)ﬁ”Ll(E)

<),

[ 0 G = ) en(Ta()) = en(Tu G0N B () v | ax

L@d Wa, (x = ¥)en(Tn(x)) (D () — ﬁ(x))dy' dx
s[ J Wa (x = ) en(Ta (1) = cn(Tn(x)) () dy dx
E JR4

+Jj Wa (X = Y)|en(Ta G 19 (1) = D) | dy dx
E JR4
=:Vu + VI,.

By (4.3) we can bound V,, by

Vi < % JE JE Wa, (X = V) Tn(x) = Tn(D)(Gn(Tn(x)) + gn(Tn(y))) dy dx
- % L_ L W (X — )T (x) — Tu ()] 1gn (T ()] dy dx
2
- EJE J g VN TnX) = Talx = an2)| 1gn (Tn(x))| dz dx

2
< EJ Ty () — x| 1gn (T (x))| dx

Zan

|E| [ Jz x— (lylzeEW(z)'Z| |gn (Tn(x))dzdx

+EJ OI)JWWEE Y(2)|w - Tn(w)|gn(Ta(w + anz))|dw dz

w+anz€E
<2(T, -1d 1% Apl) lgnllrr( A T 2anllgnll Ajon))
+ 2||Tn - Id ”Lv’ Ap))

X JB(O’I) klf(z)(J wawep 19n(Tn(w + anZ)I’”ﬁ(w)dw>l/p dz.

w+anz€E

Since

LM w(z)([ 190 (Taw + @ 2)[PD (w) dw)”” &

w+anz€E

< @l BO, D1 lgnllr v,
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is bounded in 1, then V,, — 0. The term VI,, can be bounded as
Vin = [ len(TaCol [ wa, (x = v dvi(x) dx
E RA\E

12 . 1/p’
|, wax-yay| dwxax)
RA\E

|{x € E: dist(x, E) < an}|>”’”'
|E|

< ||Cn ° T’i’l”Lp(A\m) ([
dist(x,0E) <an

< llenllr @y, (

where, again, p’ satisfies 1/p + 1/p” = 1. Since ap — 0 and lenllr @, 1s
bounded, we have VI, — 0 by Lemma A.2. Putting the bounds on V; and VI,
together, we conclude that (4.2) holds. O

Theorem 4.2 (Liminf inequality). Let Q C R4 be an open, bounded set. Let
(v,cM, @) € CLP(Q) and consider positive sequences {€n}, {lie, }, with

lim &, =0 and 7111£n Ue, € (0, +oo].

n—oo

Assume that {(vn, ¢y, cP)} ¢ CLP(Q) is such that

(W, e, ey = (v,c¢V,c®)  in CLP(Q).

Then,
Fu(v,cV,c?) < liminfZy,, &, (Un, e, el

where Ey, ¢, and Ey are defined in (1.14) and (1.15), respectively.

Proof. Since the case Hg, — +0 as n — co immediately follows from the case
He, — M > 0asn — oo, we restrict ourselves to considering limy . e, < +00 in
the sequel. Without loss of generality, we can assume that
lirrlrlioglffllsn En (Un, CT('LU! C1(’L2) ) <+ 0,
and by passing to a subsequence (not relabelled) we obtain
lim inf £y, e, (Vi cp’s €37) = lim B, e, (Vi ey €37) < oo,

In particular, we can assume, without loss of generality, that

v € WH((Q, £400); R),
c e WP ((Q, A1y, ); R™),
cP € WP (Q,A11-p,); R™),
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for all n € N. Then, by Theorem 2.13, in addition to the CL” convergence of

(U, e, ey — (v,¢M,c@) and (4.4), we have

ll.,,[,'llloglffuzn En (vn, C‘l(’Ll)’ C'i(’LZ) )

. . p p
- hglglf(”(:’(f‘l) - u0||L”(?\|vm) + ||C£l2) - uOHL’”(An-v D)

el o+ el oy, )+ S
= ||C - uo”L"’(AWQ + ||C(2) - uOHfﬂ()\“_v‘) + “HC(UHLIP Q)
+ u||c(2)||L1,, +vTV(v)

= Zv[.l(l}ic )JC(Z)),
as required. O

For the limsup inequality we will make use of the following L -convergence
of translations result.

Proposition 4.3. Let Q C R? be an open, bounded set with Lipschitz bound-
ary, let A = XE£d[Q be the indicator function of some measurable bounded domain
E C Q with smooth boundary, and let f € LP ((Q, A); R™). Let {An} C P(Q) with
Lebesgue densities {pn} C L*(Q). Let Sp: Q — Q be a sequence of transportation
maps which pushes forward X to Ay, and satisfies Sp — 1d in LY (Q; R™). Then,

lim | 1£(5a000) = F)1P dA ) = 0

Proof- Let € > 0 be given. As {p,} € L*(Q), there isa constant C > 0 so that,
forall m € N, |py| < C L%-almost everywhere on Q. Since f € L? ((Q,A); R™),
we can assume without loss of generality that f = 0 L%-almost everywhere on
Q\ E. As continuous, compactly supported functions are dense in L7 (Q), there
exists g € Co(Q) with ||.f — gllzr) < 2&/(3(1 + CY/P)). Further,

1F o Sn = 0 Sallfay = |, 1£G0) = 9GO ddn(x)

- L} £ () = g0 P pn () dx

2¢& p
= (3(1+c1/v)> C.

For n € N sufficiently small, we have [|g o Sn — gllrr (@) < €/3 due to the uniform
continuity of g. Then,

1/
(L2 LF(Sn(x)) = F)IP dA(x))
<llfeSn—goSulliriay +lgeSn—glleriy + 119 — fllray < &

and this concludes the proof. O
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We now proceed to the limsup inequality.

Theorem 4.4 (Limsup inequality) Let Q C R% be an open, bounded set with
Lipschitz boundary. Let (v, ¢V c@) e CLP(Q) with

max{|lcVlpp, [cPllp} < oo,
and consider positive sequences {€n}, {Ue, }, with
lim &, =0 and lim p,, € (0, +].
n— oo Nn—o0o

Then, there exists a sequence {(Vn, C,(@l) , c,(@z))} c CLP(Q) such that

(n, e, cPy = (v,cM,c?) in CLP(Q),

and

limsup Ey,, e, (Un, i, ¢P) < Eu(v, eV, c?),

n—oo

where Ey,, e, and Ey are defined in (1.14) and (1.15), respectively.

Proof: Without loss of generality, we can assume fu(v,c(l),c(z)) < 400,
where we have that v = x; € BV(Q;{0, 1}) for a measurable set of finite perime-
ter E:= {x €e Q: v(x) =1}, and

Ve WhP (Q,A1); R™),
@ e WP ((Q,A11-p)); R™).

By Theorem 2.13, there exists a sequence {v,} C W2 (Q) such that v, — v in
L'(Q;R) and

lim sup 5 (EWIanl2 + %W(vn)> dx < cy TV(D).
n

n—oo

We are left to find ¢ € WP ((Q, A, ) R™), e € WP ((Q, A1y, ); R™)
such that

(4.5) liﬁlf::p e = wollr g, ) < le™ = uollra,)
(4.0) li;nf;lp e - wollr Ay, < @ — WollLr (Aji_u))s
(4.7) llglﬁs;}pug"HC(l)HLln < ullelTwa,)
(4.8) limsupuenHCﬁz)||L1,n(;\“_vm) < ulle® M,

n—oo
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and (v, e, c?) — (v,cM,c@) in CLP(Q).Let {Ti"} and {T¥} be such
that

TV A = Ay, T\ s A v = Aj1-vys
and
”T}SLI) - Id ”Lp()\\m) - 0, ”T}SLZ) - Id ”L’”()\H,m) - 0,

where the existence of Ty(ll), Ty(lz) is guaranteed by the absolute continuity of A}y,
and {Ay, |} converges weakly-* to Ajy|. By Proposition 2.17, it suffices to show
that

(4.9) '}Lllrolo e o TV = ¢ lie (@a)mm) =0,

(4.10) lim e o T2 = ¢ e aay_omm) =0,

for (Vn, e, i) — (v,¢W, @) in CLP(Q).

The proofs for c@ are analogous to the ones for ¢V so it suffices to show the
above statements for ¢V, that is, (4.5), (4.7), (4.9). For ease of notation, we drop
the superscript, write ¢ for ¢V, ¢, for C#), and Ty, for TV(LU, and assume that ¢ is
extended by 0 on R4 \ Q.

Let ¢ € CZ(R%) be a standard mollifier (see the proof of Theorem 4.1).
We define ¢y, := @q, * ¢ € CX(Q; R™) for any nonnegative, strictly decreasing
sequence {an}nen C Ry with limy— an = 0, which is well defined because of
ey < oo.

First, we prove (4.9). For this, note that

||Cn oTy — C||€1"()\‘U|) = JQ lcn (T (x)) —c(x)|P dA\vl(X)
p
B JQ ‘ J[Rd Wa, (Tn(x) = ¥)(c(¥) —c(x))dy | dAw(x)
SJ J W(z)|C(T"(x)+anz)_C(X)|dedA‘v|(x)
Q JRd

:J uJ(z)j 16(Tn (X) + anz) — ¢(x) [P dA ) (x) dz,
R4 Q

where we used the substitution z := (¥ — Tn(x))/an. By the reverse Fatou’s
lemma, we obtain

limsup ||Cn o Ty — C||Irjp(?\\v|)

n—oo

< J W) limsup [ 16(T(x) + anz) — c(x)|” dAp| (x) dz = 0,
Rd Q

n—oo
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where the last equality follows from Proposition 4.3. This yields (4.9).
To show (4.5), note that

llen — wollr ) = llen © Ty —ug © TullLr )
= ”Cn o TT’L - C”Lr’()\“,\) + ”C - uOHLp()\w\)
+ lluo — uo © TullLr ay)-
Hence, (4.5) immediately follows from (4.9) and Proposition 4.3.

It remains to prove (4.7). Let {bn}nen be a sequence with limy—.c by = 0,
whose relation to {an}nen will be specified below. We introduce the sequence
{Ep,} C {x € E: dist(x,0E) > by} with smooth boundary, such that Ej, — E
as N — o in the sense that Xg, — XE in L' and P(Ep,) — P(E). For x,y € Ep,,
we have

len(x) —cn(Y)| = ‘ J{Rd Y(z)(c(x +anz) —c(y + anz))dZ'
< J Y(z)lc(x +anz) —c(y +anz)ldz
[Rd
<|x—y| Lmd Y(z)(g(x +anz)+g(y +anz))dz

<|x -yl ( an Y(z)g(x +anz)dz + J{Rd Y(z2)g(y +anz)| d2>
< |x = yI(WPa, *x g)(x) + (Ya, * g) (V).

Hence, we obtain
||Cn||LW()\|W|[Ebn) < llYa, * gHL"’(?\\umlEbn) < lpa, * gHLf’(A“,M)-
Assuming that g is extended by 0 on R4 \ E, we have

IWa, * gllLr @,

) <JQ (a9 COV dA|vn(x)>1/p

1/p
JQ (W, *g)(Tn(x))I”dk\\m(X))

IA

IA

(
(JQ (W, * 9)(Ta(x)) - g(x) |7 dAm(x))”p +lglra,,
(

1/p
[ w@ [ 1900+ anz) - gxIP anu 0 dz) - +lglhra,
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implying, by Proposition 4.3, that

lim sup lenlliir (it ) < limsup |Qa, * glltra,,) < 1glra)-
N — 0o

n—oo

Since ”C”LI"”(AM) = infy gl ) by the definition of || - ”Ll’”(?\\w)’ this yields

limsupIICnIILl,n()\WM[Eb ) < ”C”Ll’n()\\vl)'
- n

n—oo

We denote the complement of Ej, in R4 by Ef,n and, since ¢;, € C*®, we have
llenllLir ) = ||C"||L1””(?\\vmlfbn) + ||C"||L1’”(?\\uml51§n).

It remains to show that

limsupllcnllpiea,, 1, 0-

oo B
We have
p _ 4 _
||C"||L‘~”(mvmlggn) - ||vcn||Lr’(mvmlEgn) - LZ\EI,,,” IVenl? A, ()

_ j [(Va, % €)(Tn ()17 dAjy| ()
Q\Ebn

a+1 n
JQ\E;,",

d an
< el o IV lIE dAjy ()
=ar Clltr ) VWL o lv) ().

bn

p
dAjy(x)

J iV(/J(Z)C(Tn(x) —anz)dz
R4 Ay

Suppose that
1/2p)
an = <J d/\‘m(x)) , neN,
Q\Ep,

so that limy .. an = 0 as required above. Then,

limsup llcnll e, | 0,

c ) =
N— oo Ebn

which yields

limsupIICnIILl,p(Alvnl) < ”C”Ll'p()\\m)'

n—oo
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If limy .o te, = 4 > 0, then we have

lim sup Mg, ”C””Ll””(Mvm) <ulc ||L1Jﬂ()\|v‘),

n—oo

which concludes the limsup inequality.
For limy e g, = +00, C is constant L4 almost everywhere x € E. This
implies that
imsuplien s, ) = Illiny, =0

and hence the limsup inequality also holds for limy .« pte, = +00. O

The I'-convergence result in Theorem 1.2 follows from the liminf inequal-
ity in Theorem 4.2 and the limsup inequality in Theorem 4.4. Note that the
property max{[|cV |17, [[c? I} < o in Theorem 4.4 is used to simplify the no-
tation, as for any (v,cV,c?) € CLP (Q) we have that ¢V € L” ((Q,Ajy)); R™),
c@ € LP((Q,A1-y|); R™), and hence we can assume without loss of generality
that max{|lcV|lr, lc@ |l1r} < o holds.

By the compactness property in Theorem 4.1 with regularity assumptions on

E and the I'-convergence of the energy functionals, we can conclude the conver-

gence of minimizers (Vn, C#) , Cﬁlz)) (see Corollary 1.3), once we have shown that

2)
sup, e maxillcy I, les =} < co.

Proof of Corollary 1.3. To show that supneNmax{llcn =, lesP =} < oo,
we suppose m = 1 for simplicity, that is, up : O — R. One can proceed in a
similar way for m > 1. Let M := ||[ugllL~, and assume that (vn,cﬁl),cﬁz)) is a

minimizer of E,, ¢,. For a contradiction, we suppose there exists i € {1,2} and
n € N such that IIC,(/LI)IILDG > M + 1. We define

M, 1fc (x) > M,
cD(x) =4 (x), ifey(x)e[-M,M],
-M, 1fc (x)< -M.

Clearly, [|€nll1~> < M. Moreover,

o |
e —wollZe ) = J‘CW)BM e~ 10 () 1P Ay ()

ap [~ M~ up(0)I? dApy,(x)
cn (X)E(=M—1,-M) g

<lew () —uo(x) 1P

+J M — 16(x) [P dAjy, | (x)
D(x)e(MM+1) ——————

<les? (x)—uo (x) 1P
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+ J _ [ =M —uo(x)|” dAjy, (x)
P (x)<—M-1+ > 4

<lew (x)~uo (%) 1P -1

+j | IM — uo(x)1P Ay, (x)
cixyezM+1 —mm——

<lei (x) o () [P ~1

< llew = wollfra,, ) - [{x: lcP(x)| > M + 1} K

>0
One can easily check that, for all x, y,
e (x) = e ()] < lef) (x) = i ()],

and therefore ”5#) ”Ll’”(?\\vm) < IICW ”L”’(?\wm)' We have shown that

-

Frteyen (U, €, ER) <y, 60 (Uny iV, D),

which contradicts the assumption that (vn,c,(@l),c,(@z)) is a minimizer.

IIC,(/Li)IILm <M+ 1foralli=1,2,and n € N.

APPENDIX A. ENLARGED BOUNDARIES FOR
SETS OF FINITE PERIMETER

For completeness, we include a bound on the volume

[{x € R%: dist(x,dE) < a}l,

Hence,
O

where E denotes a set with finite perimeter which is used in the compactness result

in Theorem 4.1.

Theorem A.1 ([1, Theorem 2.106)). IfZ is a compact, countably H*-rectifiable
set in R, and if there are k > 0 and vy > 0 such that H*(Z N B, (x)) = krk for
every X € Z and every v < v, then Z is k-Minkowski regular; that is, there exists a

constant 0 > 0 such that

{x € R%: dist(x, Z) < a}l = omg_xa® *H*(Z) + 0(a® %) asa — 0,

where Mg _y denotes the d — m dimensional sphere.
Applying Theorem A.1 to our setting yields an estimate for

l{x € R%: dist(x,dE) < a}| :

Corollary A.2. Let E be a bounded set of finite perimeter in R4. Assume that
the topological boundary OE is the closure of the reduced boundary 0* E. Assume that
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for some k > 0 and some vy > 0 we have P(E; By (x)) = kv~ for every x € 0*E.
Then,

[{x € R%: dist(x,dFE) < a}| = 2aP(E) +o(a) asa — O.

Proof. The assumptions on E imply that E is compact and countably H4~!-
rectifiable. Since OF is the closure of 0*E, the fact that

P(E; By (x)) = HY (B, (x) N 0*E)

has lower density estimates implies by continuity that Z = 0E has lower density
estimates, and then one applies Theorem A.1. O

Note that the assumption on the topological boundary in Corollary A.2 holds
for free up to a modification on a Lebesgue null set (see [22, Proposition 12.20]).
Hence, when applying Corollary A.2 to a bounded set E with finite perimeter in
the proof of Theorem 4.1, it is sufficient to assume that for some k > 0 and some
7o > 0 we have P(E; By (x)) > kr?~! for every x € 0*E.
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