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Summary

This work presents a comprehensive methodology for designing meta-materials with desired non-linear elastic behaviors. The ap-
proach employs a modified asymptotic expansion based homogenization method for topology optimization with finite deformation.
Design and optimization of meta-materials for targeted non-linear elastic response under various loading conditions is explored.

INTRODUCTION

Meta-materials, which are periodic heterogeneous structures designed to achieve specific responses, have gained
considerable attention for various applications, including electromagnetic, acoustic, and elastic domains. This work
focuses on meta-materials tailored for a target nonlinear elastic response. The meta-material design process involves a
two-scale optimization procedure: solving a structural-level problem to obtain the desirable deformation response and
using topology optimization to determine the local meta-material geometry[1][2]. While most previous research has
concentrated on meta-materials under infinitesimal deformations, meta-material design for prescribed nonlinear prop-
erties has been investigated in several studies in the literature [3], [4]. However, these studies either focus on specific
properties such as Poisson’s ratio [3] or utilize discrete meta-material constructions such as truss-based systems [4].
In comparison, this work proposes a continuum domain topology optimization approach for designing meta-materials
with prescribed non-linear response under general deformation modes. In this approach, at the unit-cell level (fine
scale), topology optimization is used to determine the material distribution with local stress-strain responses obtained
from structural-level analysis. In addition, a modified asymptotic expansion is employed for finite deformation ho-
mogenization.

METHOD

Modified Asymptotic Homogenisation

It is well known that multi-scale methods relying on asymptotic expansion of displacements are limited to addressing
infinitesimal problems and lack generalizability to finite deformation problems [5]. Alternative approaches have been
developed to overcome this limitation, including computational homogenization methods using RVEs [4], [6] and
methods that extend asymptotic homogenization to nonlinear problems. In this work, we employ a method involving
a coupled two-scaled problem, achieved by using a Taylor series expansion to modify the asymptotic expansion to
accommodate finite deformations [5]. The modified expansion is used to derive a coupled two-scale problem in
which the coarse-scale stress-strain relation is established numerically by solving the fine-scale problem(s) for a non-
homogeneous structure in lieu of closed-form analytical solutions, as shown in Fig 1.
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Figure 1. Homogenization in the coupled two-scale problems and their inter-dependencies.
Topology Optimisation

In the topology optimisation of the meta-material unit cells, SIMP, mesh filtering, and hyperbolic tangent projection
are employed to mitigate the numerical issues and enhance the robustness of the method. Typically, large deformation
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problems describe material behavior through a linear relationship between the second Piola-Kirchoff stress tensor, S,
and the Green-Lagrangian strain tensor, F, following the St. Venant-Kirchhoff model. We show that this constitutive
relationship is unstable in topology optimization due to issues associated with low-density elements and the inaccurate
strain-softening behavior of the St. Venant-Kirchoff model in compression. To address this instability, we describe the
base material using the linear hyperelastic relationship between the Kirchhoff stress 7 and logarithmic strain In(V),
and employ a projection function to replace the non-linear void elements with linear ones. The nonlinear stress-strain

curve is quantified numerically by sampling a set of target stress-strain pairs. The optimization problem is hence
formulated as follows:

B (k)
min, V(p) st: Rlup)=0; —25—1=0, k=11 ppin<pe<1 1)
ij
where V' is the mean of all elemental densities p., R are the residual forces of the equilibrium equations. The tar-

get stress-strain curve is described using the target stress, Pi(jt’k) at given deformation steps where k refers to the
deformation step, and ¢ denotes the target values.

RESULTS

Meta-material designs are obtained by using the proposed approach for various target stress-strain curves with dif-
ferent deformation modes. In the unit-cell topology optimization process, it is assumed that the given local deformation
gradient (F;) from the structural-level analysis is uniform across the material design domain X. Several examples of
meta-materials generated using this approach for a biaxial tension deformation are shown in Fig 2.
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Figure 2. Meta-materials exhibiting prescribed nonlinear deformations under biaxial tension.

CONCLUSION

By employing a nonlinear deformation homogenization and continuum domain unit cell topology optimization,
meta-materials are designed for target non-linear stress-strain responses under given deformation gradients. The per-
formance of the proposed approach is demonstrated by numerical results.
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