
Q-Pilot: Field ProgrammableQubit Array Compilation with Flying Ancillas

Hanrui Wang1∗, Daniel Bochen Tan2∗, Pengyu Liu3, Yilian Liu4, Jiaqi Gu5, Jason Cong2, Song Han1
1MIT, 2University of California, Los Angeles, 3Carnegie Mellon University, 4Cornell University, 5Arizona State University, *Equal Contributions

ABSTRACT
Neutral atom arrays, particularly the reconfigurable field programmable
qubit arrays (FPQA) with atom movement, show strong promise for
quantum computing. FPQA has a dynamic qubit connectivity, facili-
tating cost-effective execution of long-range gates, but it also poses
new challenges in the compilation. Inspired by the FPGA compi-
lation strategy, we develop a router, Q-Pilot, that leverages flying
ancillas to implement 2-Q gates between data qubits mapped to fixed
atoms. Equipped with domain-specific routing techniques, Q-Pilot
achieves 1.4×, 27.7×, and 6.7× reductions in circuit depth for 100-
qubit random, quantum simulation, and QAOA circuits, respectively,
compared to alternative fixed atom array architectures.

1 INTRODUCTION
Quantum computing (QC) hardware has seen rapid scaling, with
superconducting systems offering up to 433 qubits [1–4], and neutral
atom arrays reaching 1000+ qubits [5, 25]. Utilizing these machines
requires mapping qubits in a quantum program/circuit to physical
qubits on the QPU, typically constrained by limited connectivity
given by a coupling graph. For example, Fig. 1a illustrates a simple
QPU with four physical qubits connected in a ring. 2-Q entangling
gates, crucial for quantum programs, are restricted to adjacent phys-
ical qubits (e.g., (𝑝0, 𝑝1)). Consider a quantum program with gates
CZ(𝑞0, 𝑞1), CZ(𝑞1, 𝑞2), and CZ(𝑞2, 𝑞0). In Fig. 1b, the initial qubit map-
ping is 𝑞𝑖 ↦→ 𝑝𝑖 for 𝑖 = 0, 1, 2. While this mapping supports the
first two gates, CZ(𝑞2, 𝑞0) involves non-adjacent 𝑝2 and 𝑝0. Here,
a SWAP gate is inserted to route qubits, transforming the mapping.
However, SWAP is costly: it can increase circuit depth, leading to
more decoherence noise, and typically requires three 2-Q entangling
gates, accumulating gate errors. Given the current QPUs’ relatively
high noise levels, as quantum circuits grow, it becomes crucial that
compilers minimize the overheads incurred by mapping and routing
to optimize performance [7, 8, 14, 18, 22–24, 26, 29–31, 34–37].

A recent breakthrough enables atom movement during quantum
circuit execution [10], profoundly impacting compilation by introduc-
ing dynamic coupling graphs for QPUs, as opposed to static configu-
rations (Fig.1). In this work, we focus on a field programmable qubit
array (FPQA) architecture that incorporates this technology. FPQA
features two atom types (Fig.2): SLM atoms (blue) are fixed atoms
in traps generated by a spatial light modulator (SLM); AOD atoms
(yellow) are movable atoms in traps generated by a 2D acousto-optic
deflector (AOD). The 2D AOD, a product of two 1D AODs, allows
us to specify 𝑋 coordinates for columns (yellow dashes) and 𝑌 co-
ordinates for rows. Consequently, AOD qubits move by entire rows
and columns. To avoid non-deterministic behavior from trap overlap,
we prohibit AOD rows/columns from moving over others. Physically,
atom movement is a high-fidelity operation primarily constrained by
coherence time: with only 0.1% coherence time, an atom can traverse

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0601-1/24/06.
https://doi.org/10.1145/3649329.3658470

p1p3

p0

p2

(a) (b)
q0
q1
q2

p0
p1
p2

p0
p2
p1

SW
AP

qA |0〉 p3
q0

q2

p0

p2
|0〉

(c)

Figure 1: (a) The coupling graph of a QPU. (b) Qubit mapping
and routing. The initial mapping is annotated at the beginning
of each wire/qubit. A SWAP gate changes the mapping. (c)
Using an ancilla and two more CNOTs to implement CZ(𝑞0, 𝑞2).

All atom pairs within Rydberg
radius are performing CZ gates

simultaneously

AOD grid is reconfigurable
during computation 

SLM atoms are fixed

Fixed SLM Atoms Movable AOD Atoms

Valid CZ Gates

Rydberg Range

AOD Grid

1 2 3

4 5 6 7

8 9 10 11

0
0’ 1’ 2’ 3’

4’ 5’ 6’ 7’

8’ 9’ 10’ 11’

Move
AOD
Grid

1 2 3

4 5 6 7

8 9 10 11

0

0’ 1’ 2’ 3’

4’ 5’ 6’ 7’

8’ 9’ 10’ 11’

Figure 2: Field Programmable Qubit Array (FPQA).

a region for ∼ 2, 000 qubits [10]. These movements are explicitly
applied for 2-Q gates, which are induced by a global Rydberg laser
activating all atoms. If two qubits are within the Rydberg radius 𝑟𝑏 ,
they become ‘coupled,’ enabling the application of a CZ gate by the
Rydberg laser. Moving atoms between circuit stages couples different
qubit pairs, resulting in a dynamic coupling graph. To avoid unin-
tended 2-Q gates, other atoms must be sufficiently separated (> 2.5𝑟𝑏).
The global Rydberg laser requires less control and calibration, en-
hancing the scalability of FPQA compared to prior works [16, 28]
where the laser individually address qubits for 2-Q gates.

We introduce Q-Pilot, the first scalable FPQA router drawing
inspiration from FPGA placement and routing. Our approach, termed
“routing with flying ancillas,” involves qubit mapping akin to cell
placement and the use of movable ancilla qubits to bridge fixed atoms,
similar to FPGA routing. The advantages of flying ancillas include 1)
high-parallelism circuit execution, 2) scalable compilation, and 3) no
atom transfer required during computation. To boost parallelism and
thus reduce circuit depth, we implement a high-parallelism generic
router, dynamically arranging AODs and scheduling 2-Q gates. The
router heuristically schedules as many parallel executable gates as
possible in one laser stage up to AOD movement constraints. We
also devise application-specific strategies: for each Pauli string in
quantum simulation, we create multiple ancillas for a “root” qubit and
employ graph algorithm to find the longest chain in the SLM array to
perform the gates; for QAOA, we create ancilla per qubit instead of
per gate, and leverage the commutation of gates to maximize parallel
execution and reduce depth. Extensive experiments demonstrate that
our FPQA compilation framework outperforms the best baseline,
achieving 1.4×, 27.7×, and 6.7× smaller circuit depth for 100-qubit
random, quantum simulation, and QAOA circuits.

https://doi.org/10.1145/3649329.3658470

2 RELATEDWORKS
Previously, research focused on fixed atom arrays with static cou-
pling. Ref. [9] introduced the first compiler framework for this archi-
tecture, extending existing techniques for superconducting devices
and addressing unique constraints, including long-range interaction
restriction zones and sporadic atom loss. Ref. [20] further considers
gate durations in compilation. Geyser (Ref. [27]) leverages native 3-Q
operations by blocking 3-Q sub-circuits and re-synthesizing them.

Ref. [11] first considered atom movement, exploring a hypotheti-
cal architecture with ‘1D displacement’ capability, more restrictive
than FPQA. Ref. [32] presented the first optimal 2D FPQA compiler,
formulating constraints and using an SMT solver for qubit mapping
and routing. However, the solver-basedmethod’s scalability is limited
by the exponential SMT solving. Their updated work [33] improves
the scalability at some expense of optimality and reached the scale of
about 100-qubit circuits within a day. Additionally, it is worth noting
that they employ atom transfer operations, moving an AOD atom to
an empty SLM trap when in proximity and vice versa. While atom
transfer is already utilized in experiments [12], frequent transfers
‘heat up’ the atoms, potentially resulting in atom loss errors.

3 FLYING ANCILLAS
3.1 Motivating Example of Routing CZ
Revisiting the issue of the last gate in Fig. 1, (c) introduces an al-
ternative using ancilla qubit 𝑞𝐴 at 𝑝3 instead of the SWAP: 𝑞𝐴 is
initialized to |0⟩, the three-qubit initial state (in order 𝑞0𝑞𝐴𝑞2) can
be written as 𝑎 |000⟩ + 𝑏 |001⟩ + 𝑐 |100⟩ + 𝑑 |101⟩. After the first CNOT,
it becomes 𝑎 |000⟩ + 𝑏 |001⟩ + 𝑐 |110⟩ + 𝑑 |111⟩. After the CZ, it be-
comes 𝑎 |000⟩ + 𝑏 |001⟩ + 𝑐 |110⟩ − 𝑑 |111⟩. After the second CNOT, it is
𝑎 |000⟩ +𝑏 |001⟩ +𝑐 |100⟩ −𝑑 |101⟩, which is the same as the case where
CZ(𝑞0, 𝑞2) acts on the initial state. In this process, 𝑞𝐴 acts as a ‘fan-
out’ of 𝑞0. However, note that it is only on the Z basis. Hence, this
method’s effectiveness hinges on the targeted 2-Q gate, specifically
CZ in our case (and ZZ later on), but it is not universally applicable.
Thus, we decompose other 2-Q gates using CZ or ZZ beforehand.
Some previous works [15, 17] leveraged these fan-outs to reduce cost
in circuit synthesis, but we apply them in routing because uniquely
in FPQA, the fan-out qubits can move physically. If we rely on SWAPs
for the routing, the depth increases by 3 because we need 3 CNOT for
1 SWAP, yet the new approach only increases depth by 2.

3.2 General Theory of Routing CZs with Ancillas
We prove a general result independent of the coupling graph. Given
an arbitrary 𝑛-qubit state Ψ = 𝐶0 |0⟩ +𝐶1 |1⟩ + ... +𝐶2𝑛−1 |2𝑛 − 1⟩, and
a set of qubit pairs C, applying CZ𝑗, 𝑗 ′ ∀(𝑗, 𝑗 ′) ∈ C yields

Ψ′ = ©­«
∏
(𝑗, 𝑗 ′) ∈C

CZ𝑗, 𝑗 ′
ª®¬Ψ =

2𝑛−1∑︁
𝑥=0

𝐶𝑥

∏
(𝑗, 𝑗 ′) ∈C

(−1)𝑥 𝑗𝑥 𝑗 ′ |𝑥⟩, (1)

where 𝑥 𝑗 is the 𝑗-th bit of 𝑥 . We consider an alternative proce-
dure as illustrated in Fig. 3 where we 1) apply transversal CNOTs
from the 𝑛 qubits to 𝑛 fresh ancillas yielding Φ1, 2) apply one of
the four possibilities (2 choices of whether to +𝑛 for 2 indices)
CZ𝑗 (+𝑛), 𝑗 ′ (+𝑛) ∀(𝑗, 𝑗 ′) ∈ C yielding Φ2, and 3) apply transversal
CNOTs again yielding Φ3. We prove that Φ3 = Ψ′ ⊗ |0𝑛⟩, so our
procedure is equivalent to applying the original CZs in Eq. 1.

For every basis state |𝑥⟩ appended with 𝑛 fresh ancillas, applying
transversal CNOTs flips the ancilla state to |𝑥⟩. Thus,

Φ1 =

(
𝑛−1∏
𝑖=0

CNOT𝑖,𝑖+𝑛

) (
Ψ ⊗ |0𝑛⟩

)
=

2𝑛−1∑︁
𝑥=0

𝐶𝑥 |𝑥𝑥⟩, (2)

q0
q1

|0〉

q2

|0〉
ancilla q3 |0〉 |0〉

q0
q1
q2

create
ancillas

perform
2-Q gates

recycle
ancillas

Ψ

ancilla q4 |0〉
ancilla q5 |0〉

Φ1 Φ2 Φ3

Ψ’

Figure 3: The general case of routing CZs with ancillas. The 3
CZs on the right can be executed simultaneously.

where an overhead line denotes the concatenation of bit-strings.
Then, for every pair (𝑗, 𝑗 ′) ∈ C, we apply one of the 4 possible CZs,

Φ2 =
©­«

∏
(𝑗, 𝑗 ′) ∈C

CZ𝑗 (+𝑛), 𝑗 ′ (+𝑛)
ª®¬Φ1 =

2𝑛−1∑︁
𝑥=0

𝐶𝑥

∏
(𝑗, 𝑗 ′) ∈C

(
(−1)𝑥𝑥 𝑗 (+𝑛) ·𝑥𝑥 𝑗 ′ (+𝑛) |𝑥𝑥⟩

)
=

2𝑛−1∑︁
𝑥=0

𝐶𝑥

∏
(𝑗, 𝑗 ′) ∈C

(−1)𝑥 𝑗𝑥 𝑗 ′ |𝑥𝑥⟩,

(3)

where we use the fact that both the 𝑗-th bit (from the left) and the
(𝑗 +𝑛)-th bit of 𝑥𝑥 equals the 𝑗-th bit of 𝑥 , similarly for 𝑗 ′. Applying
transversal CNOTs, again, flips every state |𝑥𝑥⟩ back to |𝑥⟩|0𝑛⟩, i.e.,

Φ3 =

(
𝑛−1∏
𝑖=0

CNOT𝑖,𝑖+𝑛

)
Φ2 = Ψ′ ⊗ |0𝑛⟩, (4)

which finishes our proof.
Note that CZ gates are commutable, so the ones in Eq. 3 can be

applied in any order, which may unlock some freedom in scheduling.
Moreover, for each (𝑗, 𝑗 ′) ∈ C, we have 4 possible CZs to use in Eq. 3
and many of them can be parallelized. For example, in Fig. 3, 𝑛 = 3,
and the original CZs are C = {(0, 1), (1, 2), (2, 0)} which takes at least
3 steps. Using the procedure just presented, the CZs on (0 + 𝑛, 1),
(1 + 𝑛, 2), (2 + 𝑛, 0) can be scheduled to just one step.

3.3 Flying Ancillas in FPQA
The flying ancillas scheme proves particularly advantageous for
FPQA over other QC platforms, owing to its high-fidelity move-
ments. The most similar setting is in a multi-chain ion trap QPU [6],
where chains of ions are laid out in 1D, and two chains can be moved
to merge or split again. However, because there is no distinction be-
tween stationary and movable qubits like in FPQA, moving a regular
qubit in the ion trap quantum computer has the same cost as moving
an ancilla, so the flying ancilla scheme does not hold a big advantage.
Additionally, the limited number of qubits available on ion trap QPUs
discourages leveraging numerous ancillas. Flying qubits, typically
optical, are also employed as communication resources between in-
dividual superconducting QPUs but face challenges, including a low
interfacing fidelity of approximately 80% per flying qubit [21]. In
contrast, in FPQA, the two extra CNOTs required by flying ancilla
can achieve 99.5% fidelity, and the ancilla movement has negligi-
ble error [13]. Despite this high fidelity, the state-of-the-art FPQA
compilation work [32] primarily utilizes only the movement of data
qubits for routing, overlooking the potential advantages of routing
via flying ancillas.

4 ROUTING FRAMEWORK
4.1 Overview
Given a target problem, the input values to the router are (1) the
SLM array parameters (#rows, #columns, and locations), (2) the AOD

Perform multiple
1-Q gates

SLM Atom
Array

Create AOD 
Atom Array w/

Atom Transfer

Recycle Flying Ancillas
with 2-Q gates

Qubit Mapping

1

2

34

5

6

1

2

34

5

1’

2’

6

Measurement

1

2

34

5

6

Turn on Rydberg Laser

Create Flying Ancillas
with 2-Q gates

1

2

34

5

1’

2’

6

Turn on Rydberg Laser

11/18/22, 10:26 PM

noun-flashlight-5313298.svg

file:///Users/hanruiwang/Downloads/noun-flashlight-5313298.svg

1/1

Move AOD atoms

and perform 2-Q gates

1

2

34

5

1’

2’
6

11/18/22, 10:26 PM

noun-flashlight-5313298.svg

file:///Users/hanruiwang/Downloads/noun-flashlight-5313298.svg

1/1

11/18/22, 10:26 PM

noun-flashlight-5313298.svg

file:///Users/hanruiwang/Downloads/noun-flashlight-5313298.svg

1/1

Turn on Rydberg Laser

Perform multiple
sets of 2-Q gates

Create a new set of flying
ancillas if necessary

Create a new AOD Atom topology if necessary

Flying-Ancilla High-Parallelism Router

Perform 1-Q gates

Turn on Raman Laser

11/18/22, 10:26 PM noun-flashlight-5313298.svg

file:///Users/hanruiwang/Downloads/noun-flashlight-5313298.svg 1/1

1

2

34

5

1’

2’

6
Determine which

crosses live
atoms

Flying-Ancilla Mapper

Figure 4: The flowchart of the FPQA compilation framework.

array parameters (#rows and #columns), and (3) the qubit mapping.
We focus on routing in this work, so we simply map qubits in reading
order throughout. We refer to them as configurations of the FPQA.
Based on a configuration and the target problem, we leverage a
high-parallelism router to generate an optimized schedule. A fast
performance evaluator can efficiently return the corresponding per-
formance metric or cost, including the number of 1-Q gates, 2-Q
gates, the circuit depth, and movement distance, which are closely
related to the circuit fidelity.

With this performance evaluator, our compiler also supports
router-in-the-loop FPQA architecture design space exploration. We
can use the evaluated cost as feedback to optimize a configuration
that targets higher circuit fidelity iteratively. After certain epochs, the
compiler will output the best configuration and optimized schedule.

4.2 Compilation of General Quantum Circuit
The compilation process is shown in Fig. 4. Given a quantum circuit,
we first decompose the target circuit into 1-Q rotations and 2-Q
CZ gates. Then, the gates are performed in alternating 1-Q and 2-
Q stages. In the 1-Q stages, we turn on the individual addressable
Raman laser to perform the desired gates on the target qubits. After
all the available 1-Q gates are done, we move to 2-Q stages. In such
stages, we select a set of CZ gates from the non-dependent front-layer
of the circuit that can be performed in parallel. Then, we create flying
ancillas from the control qubits and move the ancillas close to their
corresponding target qubits. We turn on the Rydberg laser so that
the ancillas will perform CZ gates with the target qubits. At last, we
recycle these ancillas with CNOT gates and repeat this process. After
all gates are done, we perform measurements and get results.

4.3 Customized Router for Quantum Simulation
For specific applications, we propose domain-specific routing strate-
gies for higher parallelism. The first application is quantum simu-
lation. To simulate the evolution under a Pauli string, the core part
of the simulation algorithm works as follows: First, select a starting
qubit inside the given Pauli string and then perform CNOTs on all
pairs between the starting one and other qubits in the string.

We propose a longest path-based algorithm to compile this prob-
lem on the FPQA, described in Alg. 1. We configure the AOD array
so that all ancilla qubits are on the diagonal of the grid and can be
moved with the best flexibility. Then, we select the qubit 𝑖 with the
smallest index and fan out its state to all AOD ancilla qubits. To
maximize the parallelism, we need to find the longest legal path in
the dependency graph, where each qubit points to all other qubits in
its lower-right corner, as shown in Fig. 5.

Algorithm 1: Customized router for quantum simulation
Data: List 𝑃 : qubits in the Pauli string with non-𝐼 paulis
𝑠 ← ∅; Schedule for the compiled program
𝑃 ← 𝑃 \ 𝑃 [0]; 𝑃 [0] is the root qubit
𝑔← ∅; Directed compatibility graph. Two qubits
are compatible if and only if there is a path between them.
for 𝑞𝑖 ∈ 𝑃 do

𝑔.𝑛𝑜𝑑𝑒𝑠 ← 𝑔.𝑛𝑜𝑑𝑒𝑠 ∪ 𝑞𝑖 ;
for 𝑞𝑖 ∈ 𝑃 do

for 𝑞 𝑗 ∈ 𝑃 \ 𝑞𝑖 do
if 𝑞 𝑗 .𝑟𝑜𝑤 >= 𝑞𝑖 .𝑟𝑜𝑤 & 𝑞 𝑗 .𝑐𝑜𝑙 >= 𝑞𝑖 .𝑐𝑜𝑙 then

𝑔.𝑒𝑑𝑔𝑒𝑠 ← 𝑔.𝑒𝑑𝑔𝑒𝑠 ∪ (𝑞𝑖 , 𝑞 𝑗);

while 𝑔 ≠ ∅ do
Find the longest path 𝑙 in 𝑔;
𝑠 ← 𝑠 ∪ GenerateSchedule(𝑙);
𝑔← 𝑔 \ {𝑛 |𝑛 ∈ 𝑙};

Result: Schedule 𝑠

Ancilla Qubit Preparation

Simulate Pauli String: X0Y1Z2X4X5Z6Z8Z9Y10Y11

1 2 3

4 5 6 7

8 9 10 11

0
0’0

1 2 3

4 5 6 7

8 9 10 11

0

0’1

0’2

0’4

0’3

0’0

1 2 3

4 5 6 7

8 9 10 11

0

0’1

0’2

0’0

1 2 3

4 5 6 7

8 9 10 11

0 0’1

0’2

0’4

0’3

0’0 1 2 3

4 5 6 7

8 9 10 11

0

0’4

0’3

0’2

0’1
0’0

1 2 3

4 5 6 7

8 9 10 11

0

0’4
0’3

0’2
0’1

0’0

（0） （1） （2）

（0） （1） （2）

Figure 5: Q-Pilot routing quantum simulation circuits.

Given this longest path, we move the AOD ancilla qubits to their
target SLM qubits and perform CNOTs in parallel. Further, those exe-
cuted qubits will be removed from the candidate set, and the longest
path-finding procedure will repeat until all gates are executed. Note
that this longest path-finding can be implemented efficiently with
dynamic programming. Compared to the generic router, which ap-
plies atom transfer to create and recycle ancilla qubits at each stage,
this specialized router will maintain the states on the ancilla qubits
across stages for one Pauli string, thus having a lower overhead.

4.4 Customized Router for QAOA
Another task that can be highly parallel is Quantum Approximate
Optimization Algorithm (QAOA). In QAOA, we are given a graph,
e.g., Fig. 6, and our target is to perform 2-Q gates on all its edges.

1 2 3

4 5 6 7

8 9 10 11

0
0’ 1’ 2’ 3’

4’ 5’ 6’ 7’

8’ 9’ 10’ 11’

1 2 3

4 5 6 7

8 9 10 11

0
0’ 1’ 2’ 3’

4’ 5’ 6’ 7’

8’ 9’ 10’ 11’

0
11 1

2

3

4

5
6

7

8

9

10

0
11 1

2

3

4

5
6

7

8

9

10

Edge: [0,1] [1,3] [4,9] [5,11]

Edge: [0,2] [2,3] [8,10] [10,11]

1

Figure 6: Scheduling of a QAOA circuit using Q-Pilot. The
graph representation of the circuit is shown on the left. The
edges correspond to interactions between two qubits.

First, we create one ancilla for each qubit. These ancillas will be
recycled once the whole graph is done. Then, our router completes
this task in amulti-stage way. Each stage will perform one or multiple
2-Q gates corresponding to some edges in the graph. We illustrate
the detailed procedure of the first stage in Fig. 6. Among all the qubit
pairs, we select the one with the smallest index as the highest-priority
pair to begin with, e.g., (0’,1). Since each AOD row and column must
move simultaneously, we check which pair can be performed inside
the same row, e.g., (1’,3) is matched in this case. The rest of the AOD
columns have already moved outside the SLM array. Then, they will
not interact with any SLM atoms. Once the locations of all ancilla
qubits in the first row are determined, other ancilla qubits on the rest
of the rows can only move vertically due to the grid constraint. Then,
we need to determine the vertical location of each row one by one.
For the second AOD row, we found the best vertical location that can
allow the most pairs to interact, e.g., in this case, we match two pairs
(4’,9) and (5’,11). Note that any undesired interaction is illegal and
thus should be avoided. This process will repeat until no rows can
legally interact with any SLM atoms. Then, we can determine the
locations of all AOD qubits and turn on the Rydberg laser to perform
the parallel 2-Q gates. This greedy algorithm always tries to achieve
the maximum matching on the first row and ultimately reaches a
schedule with max parallelism.

So far, we have finished the first stage of the schedule with four
2-Q gates being performed. In the second stage, the highest-priority
pair now becomes (0’,2), and the same procedure as stage one can
be applied to find a legal schedule with maximal parallelism. After
𝑡 stages, the compilation flow ends with a 𝑡-stage legal schedule
where all 2-Q gates are performed. Lastly, we recycle the ancillas
and complete the task.

5 EVALUATION
5.1 Evaluation Methodology
Benchmarks. We utilize three benchmark types: random, quantum
simulation, and QAOA circuits. Benchmarks were created for 5, 10,
20, 50, and 100 qubits. Random circuits were generated with Qiskit’s
random_circuit function, which randomly places 1-Q and 2-Q gates
on qubits. The number of CNOT gates is set at 2x, 5x, 10x, 20x, and

3.9×

#2-Q gate =  
2 × #qubit

#2-Q gate =  
10 × #qubit

4.2×

C
irc

ui
t D

ep
th

N
um

be
r o

f N
at

iv
e

2-

Q
 G

at
es

1.5×
1.4×

Number of QubitsNumber of Qubits

FPQA
Fixed Atom Array (rectangular)

Fixed Atom Array (triangular)
Superconducting (IBM Washington)

6.3×

N
um

be
r o

f N
at

iv
e

2-

Q
 G

at
es

Pauli Prob =
0.1

6.9×

Pauli Prob =
0.5

9.1×

C
irc

ui
t D

ep
th

Number of Qubits Number of Qubits

27.7×

FPQA
Fixed Atom Array (rectangular)

Fixed Atom Array (triangular)
Superconducting (IBM Washington)

7.7×

N
um

be
r o

f N
at

iv
e

2-

Q
 G

at
es

10.0×

C
irc

ui
t D

ep
th

4-Regular

Graphs

Graphs with
Edge Prob =

0.3

5.7×

Number of Qubits

6.7×

Number of Qubits

FPQA
Fixed Atom Array (rectangular)

Fixed Atom Array (triangular)
Superconducting (IBM Washington)

Figure 7: Comparison of compiled 2-Q gate count and circuit
depth between Q-Pilot and the three baselines on random
circuits. The random circuits vary in size, from 5-Q to 100-Q,
and have 2-Q gate count between 2× and 10× qubit count.

50x the qubit count. Quantum simulation circuits were formed from
100 random Pauli strings. The probability 𝑝 of a qubit having a Pauli
operator 𝑋 , 𝑌 , or 𝑍 varies from 0.1 to 0.5. QAOA circuits were con-
structed using ZZ gates between random qubit pairs. These pairs had
an edge probability 𝑝 of 0.1 to 0.5. We also designed specific QAOA
circuits based on 3-regular and 4-regular graphs. These circuits also
used 5, 10, 20, 50, and 100 qubits.
Baselines. 3 devices as baselines were chosen: the 127-qubit IBM
Washington machine, a 16×16 square lattice, and a 16×16 triangular
lattice of fixed neutral atoms, following Ref. [32]. The IBM machine
features a heavy hexagon coupling graph. The square lattice’s atoms
connect to four nearest neighbors, while the triangular lattice’s atoms
connect to six. Qiskit’s transpiler compiled benchmark circuits onto
these devices at optimization level 3. Circuit depth, defined as the
number of parallel 2-Q gate layers, was a key comparison metric,
alongside the number of 2-Q gates in each compiled circuit for the
baseline devices and Q-Pilot. Additionally, Q-Pilot was benchmarked
against the solver-based compiler from Ref. [32], used for QAOA
problems on 3- and 4-regular graphs. Comparisons included circuit
depths and compilation times, with a 4,000s timeout (∼an hour) set
for the solver-based compiler due to its exponential runtime scaling.

5.2 Main Results
Results on random circuits. Fig. 7 shows the results of compiling
random circuits. Compared with three baseline devices, for 100 qubits
Q-Pilot shows an average of 4.2× reduction in the compiled 2-Q gate
count, as well as an average of 1.4× reduction in compiled circuit
depth compared with the best-performing baseline approach.
Results on quantum simulation circuits. Fig. 8 shows the results
of compiling quantum simulation circuits. For Pauli probabilities 50%,
Q-Pilot shows an average of 6.9× reduction in the compiled 2-Q gate
count and an average of 27.7× reduction in compiled circuit depth
compared with the best-performing baseline on 100-qubit circuits
compared with the best baseline. Besides the random Pauli strings,
we also test with the Pauli strings used in some molecule simulation
problems [19]. As shown in Table 1, Q-Pilot shows an average 1.36×
reduction in the 2-Q gate count and average 2.60× circuit depth
reduction over the best baseline.
Results on QAOA circuits. Fig. 9 shows the results of compiling
Max-Cut QAOA circuits for 4-regular graphs and random graph with

3.9×

#2-Q gate =  
2 × #qubit

#2-Q gate =  
10 × #qubit

4.2×

C
irc

ui
t D

ep
th

N
um

be
r o

f N
at

iv
e

2-

Q
 G

at
es

1.5×
1.4×

Number of QubitsNumber of Qubits

FPQA
Fixed Atom Array (rectangular)

Fixed Atom Array (triangular)
Superconducting (IBM Washington)

6.3×

N
um

be
r o

f N
at

iv
e

2-

Q
 G

at
es

Pauli Prob =
0.1

6.9×

Pauli Prob =
0.5

9.1×

C
irc

ui
t D

ep
th

Number of Qubits Number of Qubits

27.7×

FPQA
Fixed Atom Array (rectangular)

Fixed Atom Array (triangular)
Superconducting (IBM Washington)

7.7×

N
um

be
r o

f N
at

iv
e

2-

Q
 G

at
es

10.0×

C
irc

ui
t D

ep
th

4-Regular

Graphs

Graphs with
Edge Prob =

0.3

5.7×

Number of Qubits

6.7×

Number of Qubits

FPQA
Fixed Atom Array (rectangular)

Fixed Atom Array (triangular)
Superconducting (IBM Washington)

Figure 8: Comparison of compiled 2-Q gate count and circuit
depth between Q-Pilot and the three baselines on quantum
simulation circuits from 5-Q to 100-Q. The circuits are gener-
ated with Pauli probability 𝑝 = 0.1 and 0.5.

Table 1: Quantum Simulation for Molecule Pauli strings.

Benchmark Device H2 LiH_UCCSD H2O BeH2

Depth
FAA(rectangular) 76 2,772 31,087 43,919
FAA(triangular) 61 2,052 26,189 37,314
Superconducting 77 3,403 40,080 59,259
Ours 61 849 7,585 10,617

#2Q Gate
FAA(rectangular) 82 3,577 41,306 58,720
FAA(triangular) 73 2,616 35,353 51,699
Superconducting 85 5,082 67,247 103,594
Ours 94 2,130 20,966 29,518

edge occupancy 30%. Q-Pilot again shows an average of 10.0× reduc-
tion in compiled 2-Q gate count and an average of 6.7× reduction in
the compiled circuit depth.
Comparison with the Solver-Based Compiler. As illustrated in
Table 2, we compare Q-Pilot against the solver-basedmethods [32, 33]
in compiling QAOA circuits for regular graphs. Ref. [33] relaxes the
formulation of Ref. [32] to tradeoff compilation time and quality.
While the these method achieve better solutions, they struggles with
larger problems, often failing to find a solution within an hour due
to its exponential runtime scaling. In contrast, Q-Pilot efficiently
compiles all these problems in under 1 second, with the compiled
circuit depth not exceeding 4× the optimal depth.

5.3 Analysis
Impact of Array Size on Circuit Depth. Fig. 10 shows how array
sizes affect the compiled circuit depth. We organized the qubits
into rectangular arrays of varying widths (8, 16, 32, 64, 128), with
the optimal array widths marked by stars in the figure. Optimal
array widths vary across different problems, highlighting a trade-off
between greater parallelism within a row and across different rows.
Specifically, in Fig. 10, we observe that QAOA circuits achieve optimal
performance with large array width (128), while random circuits and
quantum simulation problems are best served with moderate array
widths (64 or 32 in our study). The insight here is while larger array
widths offer more parallel execution paths, they might not always
correspond to increased efficiency for all types of problems, possibly
due to overheads or specific characteristics of the circuit structure.
How does the 2-Q gate error rate affect the overall error rate?
Fig. 11 (a) shows the relation between the overall error rate and the
2-Q gate error rate. We model the circuit error with the equation

3.9×

#2-Q gate =  
2 × #qubit

#2-Q gate =  
10 × #qubit

4.2×

C
irc

ui
t D

ep
th

N
um

be
r o

f N
at

iv
e

2-

Q
 G

at
es

1.5×
1.4×

Number of QubitsNumber of Qubits

FPQA
Fixed Atom Array (rectangular)

Fixed Atom Array (triangular)
Superconducting (IBM Washington)

6.3×

N
um

be
r o

f N
at

iv
e

2-

Q
 G

at
es

Pauli Prob =
0.1

6.9×

Pauli Prob =
0.5

9.1×

C
irc

ui
t D

ep
th

Number of Qubits Number of Qubits

27.7×

FPQA
Fixed Atom Array (rectangular)

Fixed Atom Array (triangular)
Superconducting (IBM Washington)

7.7×

N
um

be
r o

f N
at

iv
e

2-

Q
 G

at
es

10.0×

C
irc

ui
t D

ep
th

4-Regular

Graphs

Graphs with
Edge Prob =

0.3

5.7×

Number of Qubits

6.7×

Number of Qubits

FPQA
Fixed Atom Array (rectangular)

Fixed Atom Array (triangular)
Superconducting (IBM Washington)

Figure 9: Comparison of compiled 2-Q gate count and circuit
depth between Q-Pilot and the three baselines on QAOA cir-
cuits. The QAOA circuits vary in size, from 6-Q to 100-Q, and
are generated with edge 𝑝 = 0.3 and 4-regular graphs.

Table 2: Comparison of Q-Pilot with solver based method.

Benchmark 6Q 10Q 20Q 50Q 100Q

3-reg.
runtime(s) solver [32] 0.173 0.381 74.5 timeout timeout

iter-p [33] 0.509 2.16 14.6 966 timeout
Ours 5.57E-3 9.89E-3 1.07E-2 7.52E-2 1.77E-1

depth solver [32] 3 3 3 - -
iter-p [33] 3 5 6 10 -
Ours 5 7 11 24 45

4-reg.
runtime(s) solver [32] 18.1 3.93E3 timeout timeout timeout

iter-p [33] 0.852 2.64 23.4 2.34E3 timeout
Ours 6.25E-3 9.31E-3 2.10E-2 7.23E-2 3.42E-1

depth solver [32] 5 5 - - -
iter-p [33] 5 6 8 15 -
Ours 6 9 15 32 60

introduced [32], where 𝜖 is the overall error rate:

𝜖 = 1 − 𝑓 𝑁𝑇
2 𝑓

𝐺1
1 exp

(
−𝑁

∑
𝑖 𝑇0
√
𝐷𝑖

𝑇2

)
, (5)

𝑁 is the maximum number of qubits used (including AOD and SLM),
and𝑇 is the circuit depth.𝐺1 is the number of 1-Q gates. 𝑓1 and 𝑓2 are
the fidelity of 1-Q and 2-Q gates, respectively.𝑇2 is the coherence time
of the qubit, and 𝑇0 is the characteristic time of atom movement. 𝐷𝑖

is the maximum distance atoms moved in stage 𝑖 . In our estimation,
we choose 𝑓1 = 99.9%, 𝑇2 = 1.5s, and 𝑇0 = 300𝜇s [32]. The three
benchmarks used here are 1) quantum simulation circuits with 5
qubits and 100 non-trivial Pauli strings with 𝑝 = 0.1, 2) random 5Q
circuits with an average of two 2-Q gates per qubit, and 3) QAOA
circuits for random 3-regular graphs. The error rates are below 0.5
when the 2-Q gate has an error rate below 10−3.
What is the distribution of the parallelism? Fig. 11 (b) shows
the percentage of stages with the number of 2-Q gates simultane-
ously executed for QAOA problems. The average parallelism of 20Q,
50Q, and 100Q problems are 3.32, 4.13, and 4.90, respectively. As the
problem scales up, the parallelism of the problem is also increased.
Whether the application-specific compilers bring better perfor-
mance for quantum simulation and QAOA? Fig. 12 shows the
advantage of the domain-specific compiler compared to the general
compiler. For quantum simulation, the domain-specific compiler re-
duces the 2-Q gate count by 1.5× and the circuit depth by 8.8×. For
QAOA, the domain-specific compiler reduces the 2-Q gate count
by 2.8× and the circuit depth by 10.1×. The advantages come from
domain-specific heuristics that minimize the circuit depth.

6000

50 Qubits

8 16 32 64 128 8 16 32 64 128

4000

2000

3000

2000

1000

1400

1200

1000

200

150

100

50

100 Qubits

Number of columns of SLM and AOD arrays

C
irc

ui
t D

ep
th 2000

1750

1500

1250
600

200

400

Random Circuit Random Circuit

Quantum Simulation

#2-Q gate = 10 × #qubit
#2-Q gate = 20 × #qubit
#2-Q gate = 50 × #qubit

#2-Q gate = 10 × #qubit
#2-Q gate = 20 × #qubit
#2-Q gate = 50 × #qubit

pauli prob = 0.2
pauli prob = 0.3
pauli prob = 0.5

Quantum Simulation

QAOAQAOA

pauli prob = 0.2
pauli prob = 0.3
pauli prob = 0.5

edge prob = 0.2
edge prob = 0.3
edge prob = 0.5

edge prob = 0.2
edge prob = 0.3
edge prob = 0.5

Figure 10: Circuit depth vs array width of SLM and AOD arrays
in FPQA. The three benchmark circuits are shown here for
50 qubits and 100 qubits. The star in each graph marks the
optimal array width for the smallest circuit depth.

Parallel 2-Q Gates in a Stage

QAOA 20Q
QAOA 50Q
QAOA 100Q

0 5 10 15

0.2

0.1

0.0

R
at

io
 o

f S
ta

ge
s

2-Q Gate Error Rate
10-6 10-4 10-2 100

1.0

0.5

0.0C
irc

ui
t E

rr
or

 R
at

e Random Circuit

Quantum Simulation
QAOA

(a) (b)
Figure 11: (a) Overall error rate vs. 2-Q gate error rate for ran-
dom 6Q circuits with two 2Q gates per qubit, QAOA circuits
based on random 3-regular graphs, and 5Q quantum simula-
tion circuits with 100 Pauli strings and 𝑝 = 0.1. (b) Ratio of
total stages vs number of parallel 2-Q gates in a stage using
Q-Pilot on QAOA circuits with 20-Q, 50-Q, and 100-Q.

Quantum Simulation

N
um

be
r o

f N
at

iv
e

2-
Q

 G
at

es Applicaion-Specific
Quantum Simulation Router

Generic Router

C
irc

ui
t D

ep
th

Number of Qubits

Applicaion-Specific
Quantum Simulation Router

Generic Router

1.5×

8.8×

QAOA

Number of Qubits

Applicaion-Specific

QAOA Router

Generic Router

Applicaion-Specific

QAOA Router

Generic Router

2.8×

10.1×

Figure 12: Advantage of our application specific Quantum
Simulation and QAOA router comparing to the generic router.

How scalable is the Q-Pilot? We test Q-Pilot with a large number
of qubits to show its scalability. For the QAOA problem, we choose
random graphs with edge 𝑝 = 0.5. It takes 1.51s, 10.75s, and 129.50s to
compile 500, 1000, and 2000 qubits. For quantum simulation problems,
we choose 100 random Pauli strings. It takes 6.91s, 14.28s, and 30.48s
to compile 500, 1000, and 2000 qubits. We generate random circuits
with a depth of 10 for general circuits, and it takes 2.64s, 8.70s, and
32.31s to compile 500, 1000, and 2000 qubits. The fast speed proves
that Q-Pilot is scalable and can handle large-scale problems.

6 CONCLUSION AND OUTLOOK
We design a compilation framework for FPQA with movable atoms,
enabling flexible qubit mapping and efficient 2-Q gate execution.
Our approach includes a versatile router for enhanced parallelism
in quantum simulations and QAOA. Future directions involve refin-
ing search heuristics for better solutions, exploring quantum error
correction in FPQA-based QPUs, and using compiler insights for
hardware advancements like multi-functional FPQA zones.

ACKNOWLEDGEMENT
This work is partially supported by NSF grant 442511-CJ-22291, MIT-
IBM Watson AI Lab, and Qualcomm Innovation Fellowship. The
authors would like to thank Dolev Bluvstein, Mikhail D. Lukin, and
Hengyun Zhou for valuable discussions on neutral atom arrays.

REFERENCES
[1] https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-

Processor-and-Next-Generation-IBM-Quantum-System-Two.
[2] https://www.rigetti.com/.
[3] https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html.
[4] https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-

aims-for-quantum-supremacy.
[5] https://www.quera.com/aquila.
[6] https://ionq.com/posts/august-25-2021-deep-dive-reconfigurable-multicore-

quantum-architecture.
[7] M. Alam et al. An efficient circuit compilation flow for quantum approximate

optimization algorithm. DAC’20.
[8] M. Alam et al. Noise resilient compilation policies for quantum approximate

optimization algorithm. ICCAD’20.
[9] J. M. Baker et al. Exploiting long-distance interactions and tolerating atom loss in

neutral atom quantum architectures. ISCA’21.
[10] D. Bluvstein et al. A quantum processor based on coherent transport of entangled

atom arrays. Nature 604, 7906 (2022), 451–456.
[11] S. Brandhofer et al. Optimal mapping for near-term quantum architectures based

on Rydberg atoms. ICCAD’21.
[12] S. Ebadi et al. Quantum optimization of maximum independent set using Rydberg

atom arrays. Science 376, 6598 (2022), 1209–1215.
[13] S. J. Evered et al. High-fidelity parallel entangling gates on a neutral atom quantum

computer. Nature 622 (2023), 268–272.
[14] H. Fan et al. Optimizing quantum circuit placement via machine learning. DAC’22.
[15] P. Gokhale et al. Quantum fan-out: circuit optimizations and technology. QCE’21.
[16] T. M. Graham et al. Multi-qubit entanglement and algorithms on a neutral-atom

quantum computer. Nature 604, 7906 (2022), 457–462.
[17] P. Høyer et al. Quantum fan-out is powerful. Theory of Computing 1, 5 (2005).
[18] G. Li et al. Tackling the qubit mapping problem for NISQ-era quantum. ASPLOS’19.
[19] G. Li et al. Paulihedral: a generalized block-wise compiler optimization framework

for quantum simulation kernels. ASPLOS’22.
[20] Y. Li et al. Timing-aware qubit mapping and gate scheduling adapted to neutral

atom quantum computing. TCAD 42, 11 (2023).
[21] P. Magnard et al. Microwave quantum link between superconducting circuits

housed in spatially separated cryogenic systems. PRL 125 (2020), 260502.
[22] D. Maslov et al. Quantum Circuit Placement. TCAD 27, 4 (2008), 752–763.
[23] Abtin Molavi et al. Qubit mapping and routing via MaxSAT. MICRO’22.
[24] P. Murali et al. Full-stack, real-system quantum computer studies: architectural

comparisons and design insights. ISCA’19.
[25] M. A. Norcia et al. Iterative assembly of 171Yb atom arrays in cavity-enhanced

optical lattices. arXiv:2401.16177.
[26] S. Park et al. A fast and scalable qubit-mapping method for noisy intermediate-scale

quantum computers. DAC’22.
[27] T. Patel et al. Geyser: a compilation framework for quantum computing with

neutral atoms. ISCA ’22.
[28] M Saffman. Quantum computing with atomic qubits and Rydberg interactions:

progress and challenges. Journal of Physics B 49, 20 (oct 2016), 202001.
[29] M. Y. Siraichi et al. Qubit allocation. CGO’18.
[30] B. Tan et al. Optimal layout synthesis for quantum computing. ICCAD’20.
[31] B. Tan et al. Optimal qubit mapping with simultaneous gate absorption. ICCAD’21.
[32] B. Tan et al. Qubit mapping for reconfigurable atom arrays. (2022). ICCAD’22.
[33] D. B. Tan et al. Compiling quantum circuits for dynamically field-programmable

neutral atoms array processors. Quantum 8 (2024).
[34] R.Wille et al. Mapping quantum circuits to IBMQX architectures using theminimal

number of SWAP and H operations. DAC’19.
[35] T.-A. Wu et al. A robust quantum layout synthesis algorithm with a qubit mapping

checker. ICCAD’22.
[36] X. Zhou et al. A Monte Carlo tree search framework for quantum circuit transfor-

mation. ICCAD’20.
[37] A. Zulehner et al. Efficient mapping of quantum circuits to the IBM QX architec-

tures. DATE’18.

https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
https://www.rigetti.com/
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy
https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy
 https://www.quera.com/aquila
https://ionq.com/posts/august-25-2021-deep-dive-reconfigurable-multicore-quantum-architecture
https://ionq.com/posts/august-25-2021-deep-dive-reconfigurable-multicore-quantum-architecture

