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ABSTRACT X

Experiments are the gold standard for causal inference. In many
applications, experimental units can often be recruited or chosen
sequentially, and the adaptive execution of such experiments may
offer greatly improved inference of causal quantities over non-
adaptive approaches, particularly when experiments are expensive.
We thus propose a novel active learning method called ACE (Active
learning for Causal inference with Expensive experiments), which
leverages Gaussian process modeling of the conditional mean func-
tions to guide an informed sequential design of costly experiments.
In particular, we develop new acquisition functions for sequential
design via the minimization of the posterior variance of a desired
causal estimand. Our approach facilitates targeted learning of a
variety of causal estimands, such as the average treatment effect
(ATE), the average treatment effect on the treated (ATTE), and in-
dividualized treatment effects (ITE), and can be used for adaptive
selection of an experimental unit and/or the applied treatment. We
then demonstrate in a suite of numerical experiments the improved
performance of ACE over baseline methods for estimating causal
estimands given a limited number of experiments.
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« Mathematics of computing — Nonparametric statistics;
Multivariate statistics.
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1 INTRODUCTION

In many real-world scenarios, we rely on experiments to gauge the
impact of a particular action, policy, or change. Examples include
clinical trials to test the effect of a new treatment, phased intro-
duction of government policies before rolling out on a larger scale
[10], and large-scale experiments that are one of a kind, such as
the Tennessee STAR project that focused on issues in education
[13]. Recent technological advancements gave rise to online exper-
iments, including mobile health applications [14] and thousands
of experiments conducted daily in internet companies [11]. Such
experiments often focus on the inference of causal estimands, such
as the average treatment effect (ATE) and average treatment effect
on the treated (ATTE) on the population level or the individualized
treatment effect (ITE) on the individual level.

In many of the above applications, experiments can be performed
(or are already conducted) in a sequential manner. Such adaptive
experimentation has practical motivations in real-world scenarios.
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Figure 1: Basic structure of the problems studied in this work.
X denotes the confounders, A is the treatment, and Y is the
outcome of interest.

First and foremost, experiments are often highly expensive (e.g., clin-
ical trials), and it is thus desirable to maximize the efficiency with
a limited experiment size. Second, studies often span an extended
period of time and must be performed sequentially as investigators
work to increase precision (or reduce uncertainty) on causal esti-
mands of interest. Moreover, dividing a study into several phases
where the experiments “ramp up” to control the associated risks
is common. In such cases, units sequentially enter the experiment,
which makes acquiring information through active learning a natu-
ral choice.

Compared with experiments that emphasize random sampling
and randomization of treatments, active learning is beneficial in
several ways. First, active learning can target different quantities of
interest (Qol). As we will discuss in Section 2, different experiments
have diverse objectives, and the cohorts of interest will also differ.
Therefore, we can rely on active learning to acquire a representative
sample that aligns with our target. Second, active learning makes
use of learned structures to guide experiments. In other words, it
exploits the current knowledge about how units respond to the
treatment to make informed decisions, thus more economical than
a full-batch approach [17]. Finally, understanding the associated
uncertainties in statistical models is crucial for increasing efficiency.
With a small number of expensive experiments, we need to gradu-
ally explore the decision space and acknowledge the uncertainties
in the model. Only then can we generalize our model findings and
confidently make decisions in an uncertain environment.

Throughout the rest of the paper, we work under the basic
structure of the causal diagram in Figure 1. X represents the pre-
experimental attributes, which we assume to be observable for all
units in the pool before the experiment. A is a dichotomous variable
with A; = 1 and A; = 0 denoting that the i-th unit is in the treat-
ment and control group, respectively. Y is the outcome of interest,

which consists of two potential outcomes Yl.(l) =Y;(A; = 1) and
Yl.(o) = Yi(A; = 0) for each unit. We differentiate between two
cases: (1) when the experimenter can decide A, the directed edge

between X and A is removed; (2) when the experimenter can only
decide X, the treatment A is observed during the experiment. In



Table 1: Summary of the scenarios in Section 2, with corre-
sponding Qol).

Scenario Design Observation Qol
_ X; (Before)
1 A; Y; (After) ATE
2A Xi, Aj Y; ATE
2B Xi A, Y; (After) ATE, ATTE, ...
3 Xi A, Y; (After) ITE

case (2), the classical assumptions (individualistic, probabilistic, and
unconfoundedness) for a regular assignment mechanism apply. See
[6] for details.

Using active learning in causal inference for problems with the
above structure is an under-explored topic. [19] proposed a cri-
terion based on the type-S error rate for estimating the ITE. [7]
also focused on the ITE and developed several acquisition func-
tions based on Bayesian active learning by disagreement (BALD).
However, both these works focused on sampling from observational
data. In particular, they assume that (X, A) are observable, and we
choose for which units we would like to observe Y. However, we
find this setting to be less useful in practice because we seldom ob-
serve A before the experiment. The treatment is either assigned as
the unit enters the study or observed as the experiment progresses.
Therefore, we always base the sequential designs on observed X in
this work.

The main contributions of this paper are two-fold: First, we
identify several real-world applications in which a sequential design
can benefit objectives in causal inference. We classify them into
three scenarios where the available design components and goals
differ. Naturally, our second contribution is to develop specific
strategies for each scenario. In particular, we use Gaussian processes
(GPs) to model the potential outcomes. Based on the uncertainty
quantification provided by GPs, we develop acquisition functions
that suit different objectives.

The rest of the paper is organized as follows. Section 2 extends
the discussions in Section 1 by describing three scenarios in more
detail. Section 3 describes the Bayesian nonparametric modeling
framework and our proposed strategy for the sequential design
problem. Section 4 contains simulation studies to show the effec-
tiveness of our method. Section 5 concludes.

2 THREE SCENARIOS FOR APPLICATIONS

This section discusses motivating applications where sequential
designs can be impactful. We classify them into three scenarios,
and a summary is provided in Table 1.

2.1 Traditional random controlled trials

By traditional random controlled trials (RCTs), we refer to the fol-
lowing setting: participants are recruited with consent; they under-
stand when and where the experiment takes place; however, they
may not know the exact treatment received (single-anonymous).
Therefore, we cannot control which units enter the study, but we
can assign the treatment A; according to the observed X;. The goal
in this Scenario 1 is thus to accurately estimate the ATE. A common
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characteristic of traditional RCTs is the high monetary and/or time
costs required for experimentation. Thus, careful planning before
the experiment and timely adjustments during the experiment are
both critical. Here, we highlight below two instances of this in
behavioral experiments and clinical trials.

Informally speaking, behavioral experiments aim to study how
humans respond to certain stimuli, whether visual, audio, or spe-
cific instructions. These experiments are crucial in many fields,
including psychology, cognitive science, economics, and marketing.
The outcome of the experiments includes responses to questions
or performance in tasks, but it can also be physical measurements
such as hormone levels and brain activity. The experiments often
contain the following steps: (1) setting up the environment for
the experiment; (2) recruiting participants, often with monetary
compensation; (3) assigning the treatment and conducting the ex-
periment; (4) observing the outcomes. In practice, the remaining
steps for a single participant only take a short time after setting up
the experiment. Therefore, participants sequentially entering the
experiment allows for sequential treatment assignment.

Moreover, it is possible to acquire background information dur-
ing the recruitment step or at the beginning of the experiment. For
instance, when using a software interface, the first section can ask
questions or conduct tests that provide the information X. If the
outcome of interest is the response time, we can assign different
treatments to units with similar initial response times. A mathe-
matical formulation focusing on variance reduction of the ATE will
be presented in Section 3.

For clinical trials, the general procedure is similar to the pre-
vious four steps. However, in RCTs that test the effect of a new
treatment or drug, discriminating between different patients will
be unethical. For this reason, many clinical trials require double
anonymity. Therefore, we must be more cautious and consider the
specific problem. As an example, an interesting problem in disease
prognostics is whether text messages help raise awareness and mit-
igate risk factors after recovery. In the study of [2], the experiment
lasted for years, while the typical follow-up time is three or six
months after recovery. For this particular application, using infor-
mation from earlier units is less prone to ethical concerns. Through
this discussion, we mainly hope to emphasize that issues including
ethics, privacy, and fairness arises in many applications, and we
always need to address these issues before applying the strategies
outlined in this work.

2.2 Online experimentation

In Scenario 2, we shift our focus to experiments in the online en-
vironment. A salient difference is that, while users consent when
agreeing to the terms and conditions, they often become part of
an experiment without even realizing it. In this case, companies
can choose which users to include in the experiment rather than
receiving them as inputs, which offers more flexibility in planning
experimental campaigns.

A. When the treatment can be assigned.

We first consider a setting similar to Scenario 1, where we are
again interested in the ATE. During the experiment, on top of
choosing which unit to include in the study, we can freely assign a
treatment to the unit, i.e., we are designing the tuple (X;, A;). An
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Table 2: Summary of different target populations, Qol, and
associated weights.

Target population Qol Weight w(x)
Combined ATE 1

Treated ATTE e(x)
Overlap ATO e(x)(1—e(x))
Truncated combined la<e(x)<1l-—a)
Matching min{e(x),1 —e(x)}

instance of this would be introducing a small feature change in
the mobile application, potentially affecting all users. Experiments
testing the impact on a small set of users have become standard
practice, as even a minor change can unexpectedly influence user
engagement, conversion, and other statistics. During implementa-
tion, the experiments go through ramping where traffic gradually
increases to control unknown risks [11, 21]. Therefore, a sequential
design naturally fits in with this procedure.

In the potential outcomes framework, we can consider the prob-
lem as estimating two response surfaces: one for the treatment
group and one for the control group. Due to the possible effect
heterogeneity, we must explore the entire feature space to estimate
the ATE accurately. Thus, a sequential design favors unexplored
regions when increasing the number of units. As the experiment
size grows, we will likely have a design in the attributes X that
evenly fills the feature space for both response surfaces (see, e.g.,
existing work in “space-filling” designs [8]).

B. When the treatment can only be observed.

So far, we have focused on randomized experiments. In this sec-
tion, we enter the realm of observational studies by assuming we
no longer have control over the treatment A;. Continuing the topic
of the mobile application experiment, sometimes the change can
be significant, for instance, a restyle of the user interface. In these
cases, the users are often offered a choice between the old and
new versions. Consequently, we no longer control to which groups
the users belong. In the structural model in Figure 1, we cannot
ignore the directed edge from X to A, indicating the existence of
confounding.

In what follows, we assume that unconfoundedness holds given
the user characteristics X. We can thus define the propensity score:

e(x) =Pr(A; = 1|1X; = x). (1)

Given this assumption, we can define multiple quantities-of-interest
(Qols) in the form of weight average treatment effects (WATE):

Sy w@ W (0 - a0 (x))dx
- fX w(x)dx

where p(l) (x) and ;1(0) (x) are the expected values of Y1) and Y(©
given X = x, respectively. The choice of the weights w(x) depends
on our population of interest. w(x) = 1 for all units means we view
all the units equally, corresponding to the usual ATE; if we are
more interested in the units that receive the treatment, we can take
w(x) = e(x), which gives us the average treatment effect on the
treated (ATTE). Table 2 (adapted from [12]) summarizes such Qols.
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Clearly stating the target population will be significant for the
sequential selection of X. A design will now favor units belonging
to regions that are unexplored and also have a large weight w(x).
Intuitively, we will be trying to create a sample similar to the target
population of interest; this intuition is verified in Section 4.

2.3 Marketing

In both Scenario 1 and 2, we focused on quantities defined by a
population. However, the average effect is not of primary interest in
many experiments. Instead, finding individuals with high ITEs may
be more beneficial since this allows us to invest more resources with
precision. Marketing campaigns provide an instance with extensive
applicability. For instance, supermarkets hope to offer discounts that
ultimately increase the total purchase; banks advertise new products
to those most likely to invest; internet advertising platforms show
advertisements to raise conversion as high as possible.

These real-world applications all have structures similar to Sce-
nario 2B. First, the companies initiating the experiments have in-
formation on the users, including demographic information (al-
though there can be limitations on using this for algorithm develop-
ment) and past engagement. Next is an immediate outcome, such as
whether to accept an offer or click a link. Although this sign-post
outcome is valuable, the experimenters are ultimately interested in
metrics that provide long-term value. These components constitute
our framework’s (X, A, Y) variables.

Therefore, we can use the same modeling framework, but the
acquisition function for sequential designs will differ. Exploration is
encouraged for learning about the entire response surface, while an
optimization problem requires an exploration-exploitation tradeoff.
Thus, we want to explore and find users that respond positively to
the campaigns (exploration). Once we are confident of our findings,
we should lean our resources toward these users to maximize the
impact of the marketing effort (exploitation).

3 ACE METHODOLOGY

This section describes the proposed ACE methodology for sequen-
tial designs in the aforementioned three scenarios. We first intro-
duce a GP learning framework for modeling potential outcomes,
then propose different novel acquisition functions that target learn-
ing for the desired Qols in each scenario (see Table 1).

3.1 Gaussian process regression

We briefly introduce GP regression, which we use to model the
relationship between the attributes X and the potential outcomes.
Specifically, we build separate GP models for the conditional mean
functions for the treatment and control groups. This allows for
different smoothness levels for the two response surfaces, which is
crucial for modeling heterogeneity of the treatment effects.

Given n observations with attributes x;,, = [x1, ..., x] and treat-
ment a, the corresponding outputs y,, = [y1, ..., yn] take a multi-
variate normal prior:

Yy ~ N(mo(xn), Zo(xn, xn) +7721n), (3)

where mg(+) is the mean function, % (-, ) is a covariance kernel, and
1?2 is the variance of a normally-distributed random error. There are
many possible specifications for mg(-) and X (-, -), which contain



hyperparameters that we can estimate by maximum likelihood. See
[15] for a detailed discussion. At any new point x with the same
treatment a, the conditional posterior of the expected outcome is
also Gaussian:

HD Ol ~ N (ma (), 2(3)),
() = mo ) + o (5,360) (S0 Con ) + 70 (g = m )

-1
GR(x) = Zo(x,%) = 30 (xi:%n) (%0 (¥ x0) +171n) B (xn, ).
©

Therefore, we can provide a prediction for any potential user re-
ceiving treatment g, along with the uncertainty of the prediction.

By specifying two priors for a = 1,0, respectively, we can get
posteriors for ;1(1) (x) and y(o) (x) as long as we have data from
both groups. Since the estimations of hyperparameters are done in
isolation, the two response surfaces are allowed to have different
landscapes. We should ensure sufficient samples for both groups to
control the uncertainty in all scenarios.

3.2 Adaptive design strategies

Before specifying the proposed acquisition functions, we make
some additional assumptions. For Scenarios 1 and 2, the quantities
in (2) are defined for a fixed distribution. We assume having a test
set Xtest = [X1,...,%Xn.,] that is a representative sample of the
population of interest. This assumption is reasonable if (1) we have
a sample from a previous study or external source; (2) we can get
compressed data from a large user pool using techniques outlined
in [9, 20]. Then, the QoI becomes a finite-sample version of (2):

To, = ZZ:T w(xk)(.u(l)(xk) — y(O) (xk))
o S wlx)

In vector notation, we write the potential outcomes and sample
weights as:

(@ = (u<“>(x1), , ..,u(“)(xmest)), a=0,1, (6)

w= (Wi, ..., w(Xny)) - 7)

ACE: Design A; only (Scenario 1)

In this scenario, we observe X; = x; when a new unit enters the
experiment. Given the dichotomous treatment variable, the experi-
menter can assign them to either the treatment or control group.
We now consider the joint distribution of the expected potential out-
comes p(“) and ;1(“) (xi). Augmenting (4) with a superscript (a) to
indicate the treatment group, we can write the variance-covariance
matrix of this distribution as:

: ®)

Zfla)(xntest’xntest) Zfla)(x"test’xzi) (8)
2 Gixng) (o ) |

We can then use the conditional variance equation once more
to get the posterior variance if we were able to observe 1@ (x).
Comparing the expression with the current posterior variance
Zﬁla) (Xniests Xnpest ) it is straightforward to calculate the variance
reduction:

-2
r(x, a;w) = szﬁla) (Xnpeses X) (0',(1“)) Z,(,a)(x, XneW-  (9)
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For Scenario 1, the weight w is a vector of 1’s since the Qol is the
ATE. We simply calculate this criterion for x = x;,a = 1,0 and
select the treatment offering a larger variance reduction. A salient
feature of GP regression is that uncertainty reduces quickly around
observed data points. Thus, the variance reduction criterion will
favor the potential outcome with larger uncertainty, which leads
to a design that balances the treatment and control groups.

ACE: Designing (X;, A;) (Scenario 2A)

In the remaining scenarios, we are free to select the study par-
ticipants sequentially. Therefore, we assume the existence of a user
pool Xpool = {xi}?j‘;"l. Due to practical constraints such as budget
and risk management, only a fraction of the users in the candidate
pool enters the experiment.

In Scenario 2A, the experimenter has two choices: the user to
include and their assignment. We can use the variance reduction
criterion (9), but the optimization is now over both x and a:

argmax  r(x,a;1).

x€Xpool,a€{0,1}

(10)

In each step, we need to calculate the variance reduction criterion
2npool — 1 times, where n is the current number of users already
in the study. By choosing the unit and treatment that maximizes
variance reduction, we can obtain designs that evenly fill the feature
space for both response surfaces a = 0, 1.

ACE-E: Designing X; only (Scenario 2B)

In this scenario, transitioning from an assigned treatment to an
observed treatment creates a further complication. Although we
can calculate the variance reductions in (9), the actual effect on Qol
estimation depends on the realization of A;. Under the probabilistic
assignment assumption [6], the realization is uncertain at the design
stage. To tackle this problem, we define the ACE-E criterion using
the expected variance reduction:

Er(x;w) = e(x)r(x, 1;w) + (1 — e(x))r(x,0;w). (11)

By weighting with the propensity score, this term estimates the
average variance reduction when we include a particular unit in
our study. Here, since the propensity score differs for each unit, the
Qol is no longer limited to the ATE. Instead, we can take any Qol
from Table 2 and use its corresponding weights for w.

When using the expected variance criterion, the propensity score
is unknown. Therefore, we need to replace it with an estimated
propensity score. Any estimation method based on the available
data is valid, although we advise using robust estimation methods.
The sequential design criterion for Scenario 2B is:

argmaXEAr(x;w) =é(x)r(x, ;w) + (1 —é(x))r(x,0;w),
X € Xpool

(12)

where w denotes the vector of weights with the propensity scores
replaced with their estimated version.
ACE-UCB: Designing X; for maximizing ITE (Scenario 3)

In Scenario 3, the setting is similar in that we have a pool of
users as candidates. However, instead of focusing on a Qol, the
objective becomes finding the units with a significant effect. In our
notation, we would like to include n users into the campaign that
maximizes cumulative ITE

104 = 1) (50 )~ ). (13)
i=1
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where I(-) is an indicator function. This problem is more compli-
cated than a classic optimization problem since it involves potential
outcomes. Even with no noise, we can only observe one of the
potential outcomes rather than the treatment effect. At any point
of the experiment, our real-time evaluation of the total effect (13)
almost always contains uncertainty.

Therefore, a sequential design should take uncertainty into ac-
count and address the exploration-exploitation tradeoff. We propose
to use an upper-confidence bound (UCB) type acquisition function,
inspired by the GP-UCB method [18]:

argmaxe(x) (! (x) - ) () + o (x), (1)

xXe Xpool

where the variance term is:
2 2
O'%E(x) =e(x) ((a,(ll)) + (a,(lo)) )

+e(®) (1= () (1" () = ) ()

A detailed derivation of this can be found in the Appendix, and
the specification of f, is discussed later in Section 4. This criterion
favors units with (1) large propensity scores, as only those who
participate in the campaign are affected; (2) significant expected
treatment effect for exploitation; (3) high uncertainty for explo-
ration. Thus, this method is less likely to get stuck at local optima
than greedy approaches. Similar to Scenario 2B, we also replace the
propensity score with an estimator if necessary.

(15)

2

4 NUMERICAL EXPERIMENTS

We now explore the performance of the proposed adaptive exper-
imentation method in numerical experiments. For ease of visu-
alization, we make use of the following two-dimensional set-up,
modified from the popular Franke optimization test function [4].
With covariates X € [0, 1]2, the conditional mean functions take
the form:

3 1 1
P (X =x) = 7XP (—1(9)61 -2)% - Z(9x2 - 2)2)

3 1 , 1 )
+2exp | ——(9x1 + 1)2 = = (93 +1
4eXP( 20 Ox1+1)" = - (9% ))

1 1 1
+ Jaexp (—Z(9x1 —7)? - Z(9x2 - 3)2)

- %a exp (—(9x1 —4)% — (9x5 — 7)2) .

Figure 2 visualizes these functions for the treatment and control
groups. We see multiple peaks in the function, which may represent
cohorts of interest, e.g., high-value customers in banking applica-
tions. The treatment positively impacts the group with large x; and
small x7, while the group with large x» is negatively impacted.
Scenarios 1 & 2A.

Table 3 shows the results for ATE estimation in Scenarios 1 and
2A, where an experimenter can assign the treatment. Here, “ALC”
is short for “Active Learning Cohen”, which selects the point with
the largest uncertainty a,ﬁ“) (x) (this is a widely-used GP active
learning strategy; see [5, 16]). We obtain samples of size n = 100 to
estimate the ATE. We report the bias and root mean squared error
(RMSE) compared with the ground truth over 50 replications.
2023-06-14 00:52. Page 5 of 1-7.
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Figure 2: Potential outcomes for the treatment group and the
control group.

Table 3: Scenarios 1 and 2A for ATE estimation. All results
are enlarged by 10°.

Scenario 1 Scenario 2A

Bias RMSE Bias RMSE

Random 1.13 7.42 113 7.42
ALC 0.06 4.75 0.29 1.28
ACE -0.29 5.65 0.20 1.11

Table 4: Scenario 2B for estimating different Qol. All results
are enlarged by 10°.

ATE ATTE ATO
Bias RMSE Bias RMSE Bias RMSE

Random 556 4580 2.62 1283 570 13.68
ALC-E -13.55 4992  0.69 4.56 1.93 5.49
ACE-E 3.55 3292 0.45 2.88 0.05 3.14

We can see both sequential methods outperform random sam-
pling, which is not too surprising. In Scenario 1, ACE has no clear
advantage over ALC, since the decision is dichotomous. However,
when we introduce a pool of size n,01 = 500, ACE selects units
that benefits the estimation the most, resulting in smaller RMSE.
Scenario 2B.

For Scenarios 2B and 3, we use the propensity score function:

logit(e(x)) = —2 + 2x1x3,

where e(x) := Pr(A = 1|X = x). There is thus an imbalance, where
the units in the treatment group are much fewer than in the control
group (the overall propensity is around 20%). In our simulations,
we assume the propensity score is known for simplicity.

We take n = 100, 001 = 500 for the ATE and n = 200, nyo01 =
1,000 for the ATTE and ATO due to the imbalance in the data.
We compare the proposed ACE-E with the expected ALC (ALC-E)
approach as baseline, defined as:

M) 0 (1)
argmax e(x) (Gn (x)) +(1—e(x)) (an (x)) . (16)

x€Xpool
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Figure 3: Visualization of the selected points in the treatment
group for ATTE estimation using the three methods.
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Figure 4: Cumulative ITE [Equation (13)] for different meth-
ods in Scenario 3.

This extends the existing ALC approach [16] to the scenario where
treatments can only be observed.

Results are shown in Table 4, where we observe that the pro-
posed ACE-E has the smallest error in all cases. In Figure 3, we
show an example of the points selected by each method when the
Qol is the ATTE. We plot the points in the treated group since the
small number of treated units confines the estimation accuracy.
The points are plotted against contours of propensity scores, with
darker colors indicating higher propensity. We can see that ALC-E
is space-filling and selects many points near the boundary. How-
ever, each unit is weighted proportional to the propensity score in
ATTE estimation. Our sequential design strategy based on ACE-E
considers this weight in the acquisition. The resulting sample re-
flects this proportional relationship, which could explain why our
method outperforms.

Scenario 3.

In Scenario 3, we compare the proposed ACE-UCB approach

with the following baseline greedy approach:

argmaxe(x) (" (x) - i (x)) . (17)

xXe Xpool

This acquisition exhibits full exploitation by directly maximizing
the expectation of (13). In comparison, (14) has an additional term
encouraging exploration. In our method, we use ; = c¢? logt (com-
mon choice in the UCB literature), with ¢ set as 0.01. We take
n = 50,np00] = 1,000, and present the results of 50 replications
in Figure 4. The boxplots show the superiority of the proposed
ACE-UCB approach, which shows that it can effectively leverage
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the uncertainty from the adopted Bayesian model for targeted opti-
mization of the ITE.

5 CONCLUSION

We proposed in this work a new active learning method called ACE,
which makes use of an underlying Gaussian process model of the
conditional mean functions for guiding the adaptive selection of
expensive experiments. ACE features a range of novel acquisition
functions, which can target the estimation of a variety of causal
estimands (e.g., ATE, ATTE, ITE) for three broad scenarios encoun-
tered in practical causal applications. We then showed the improved
performance of ACE over several baseline methods with limited
experiments in a suite of numerical experiments.

While the proposed ACE approach appears promising, we are
currently embarking on many avenues for future work. First, we
are exploring batch-sequential modifications of the ACE acquisition
functions, to reflect the fact that in practice, one would often con-
duct adaptive experiments in batches. Second, we are investigating
the effectiveness of ACE in a variety of practical causal applica-
tions, including behavioral experiments conducted in laboratory
environments [1] and a real-world marketing campaign [3].
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A DERIVATION OF THE UCB VARIANCE

Here we provide a short derivation of the variance term in Equation
(15).
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First, we have three random variables that are assumed to be
independent given X = x:

I(A = 1) ~ Bernoulli(e(x)),
pD(x) ~ N (uﬁf’(x% (051”)2)’

WO () ~ N (u,ﬁ")(x), (o£°>)2) ,

From the relationship Var(XY) = E(X?)Var(Y) + Var(X)E?(Y),
we can get the variance of I(A = 1) (y(l) (x) — y(o) (x)):

Var []I(A =1) (y(l) (x) - #(0) (x))]
BI(A = )Var (V) (x) - 40 (x)

+ Var(I(A = 1))E? (,u(l)(x) -y (x))

e(x) ((0,(11))2 + (0,(10))2)
+e(x)(1—e(x) (i () - ) ()
B ONLINE RESOURCES

The R codes used for the numerical example can be found at https:
//github.com/difan1996/Causal-design.
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