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ABSTRACT

Experiments are the gold standard for causal inference. In many

applications, experimental units can often be recruited or chosen

sequentially, and the adaptive execution of such experiments may

offer greatly improved inference of causal quantities over non-

adaptive approaches, particularly when experiments are expensive.

We thus propose a novel active learning method called ACE (Active

learning for Causal inference with Expensive experiments), which

leverages Gaussian process modeling of the conditional mean func-

tions to guide an informed sequential design of costly experiments.

In particular, we develop new acquisition functions for sequential

design via the minimization of the posterior variance of a desired

causal estimand. Our approach facilitates targeted learning of a

variety of causal estimands, such as the average treatment effect

(ATE), the average treatment effect on the treated (ATTE), and in-

dividualized treatment effects (ITE), and can be used for adaptive

selection of an experimental unit and/or the applied treatment. We

then demonstrate in a suite of numerical experiments the improved

performance of ACE over baseline methods for estimating causal

estimands given a limited number of experiments.
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Multivariate statistics.

KEYWORDS

Active learning, Bayesian modeling, Causal inference, Experimental

design, Gaussian processes, Uncertainty quantification

1 INTRODUCTION

In many real-world scenarios, we rely on experiments to gauge the

impact of a particular action, policy, or change. Examples include

clinical trials to test the effect of a new treatment, phased intro-

duction of government policies before rolling out on a larger scale

[10], and large-scale experiments that are one of a kind, such as

the Tennessee STAR project that focused on issues in education

[13]. Recent technological advancements gave rise to online exper-

iments, including mobile health applications [14] and thousands

of experiments conducted daily in internet companies [11]. Such

experiments often focus on the inference of causal estimands, such

as the average treatment effect (ATE) and average treatment effect

on the treated (ATTE) on the population level or the individualized

treatment effect (ITE) on the individual level.

In many of the above applications, experiments can be performed

(or are already conducted) in a sequential manner. Such adaptive

experimentation has practical motivations in real-world scenarios.

𝑋

𝐴 𝑌

Figure 1: Basic structure of the problems studied in this work.

𝑋 denotes the confounders, 𝐴 is the treatment, and 𝑌 is the

outcome of interest.

First and foremost, experiments are often highly expensive (e.g., clin-

ical trials), and it is thus desirable to maximize the efficiency with

a limited experiment size. Second, studies often span an extended

period of time and must be performed sequentially as investigators

work to increase precision (or reduce uncertainty) on causal esti-

mands of interest. Moreover, dividing a study into several phases

where the experiments łramp upž to control the associated risks

is common. In such cases, units sequentially enter the experiment,

which makes acquiring information through active learning a natu-

ral choice.

Compared with experiments that emphasize random sampling

and randomization of treatments, active learning is beneficial in

several ways. First, active learning can target different quantities of

interest (QoI). As we will discuss in Section 2, different experiments

have diverse objectives, and the cohorts of interest will also differ.

Therefore, we can rely on active learning to acquire a representative

sample that aligns with our target. Second, active learning makes

use of learned structures to guide experiments. In other words, it

exploits the current knowledge about how units respond to the

treatment to make informed decisions, thus more economical than

a full-batch approach [17]. Finally, understanding the associated

uncertainties in statistical models is crucial for increasing efficiency.

With a small number of expensive experiments, we need to gradu-

ally explore the decision space and acknowledge the uncertainties

in the model. Only then can we generalize our model findings and

confidently make decisions in an uncertain environment.

Throughout the rest of the paper, we work under the basic

structure of the causal diagram in Figure 1. 𝑋 represents the pre-

experimental attributes, which we assume to be observable for all

units in the pool before the experiment.𝐴 is a dichotomous variable

with 𝐴𝑖 = 1 and 𝐴𝑖 = 0 denoting that the 𝑖-th unit is in the treat-

ment and control group, respectively. 𝑌 is the outcome of interest,

which consists of two potential outcomes 𝑌
(1)
𝑖

= 𝑌𝑖 (𝐴𝑖 = 1) and

𝑌
(0)
𝑖

= 𝑌𝑖 (𝐴𝑖 = 0) for each unit. We differentiate between two

cases: (1) when the experimenter can decide 𝐴, the directed edge

between 𝑋 and 𝐴 is removed; (2) when the experimenter can only

decide 𝑋 , the treatment 𝐴 is observed during the experiment. In
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Table 1: Summary of the scenarios in Section 2, with corre-

sponding QoI).

Scenario Design Observation QoI

1 𝐴𝑖
𝑋𝑖 (Before)

𝑌𝑖 (After)
ATE

2A 𝑋𝑖 , 𝐴𝑖 𝑌𝑖 ATE

2B 𝑋𝑖 𝐴𝑖 , 𝑌𝑖 (After) ATE, ATTE, ...

3 𝑋𝑖 𝐴𝑖 , 𝑌𝑖 (After) ITE

case (2), the classical assumptions (individualistic, probabilistic, and

unconfoundedness) for a regular assignment mechanism apply. See

[6] for details.

Using active learning in causal inference for problems with the

above structure is an under-explored topic. [19] proposed a cri-

terion based on the type-S error rate for estimating the ITE. [7]

also focused on the ITE and developed several acquisition func-

tions based on Bayesian active learning by disagreement (BALD).

However, both these works focused on sampling from observational

data. In particular, they assume that (𝑋,𝐴) are observable, and we

choose for which units we would like to observe 𝑌 . However, we

find this setting to be less useful in practice because we seldom ob-

serve 𝐴 before the experiment. The treatment is either assigned as

the unit enters the study or observed as the experiment progresses.

Therefore, we always base the sequential designs on observed 𝑋 in

this work.

The main contributions of this paper are two-fold: First, we

identify several real-world applications in which a sequential design

can benefit objectives in causal inference. We classify them into

three scenarios where the available design components and goals

differ. Naturally, our second contribution is to develop specific

strategies for each scenario. In particular, we use Gaussian processes

(GPs) to model the potential outcomes. Based on the uncertainty

quantification provided by GPs, we develop acquisition functions

that suit different objectives.

The rest of the paper is organized as follows. Section 2 extends

the discussions in Section 1 by describing three scenarios in more

detail. Section 3 describes the Bayesian nonparametric modeling

framework and our proposed strategy for the sequential design

problem. Section 4 contains simulation studies to show the effec-

tiveness of our method. Section 5 concludes.

2 THREE SCENARIOS FOR APPLICATIONS

This section discusses motivating applications where sequential

designs can be impactful. We classify them into three scenarios,

and a summary is provided in Table 1.

2.1 Traditional random controlled trials

By traditional random controlled trials (RCTs), we refer to the fol-

lowing setting: participants are recruited with consent; they under-

stand when and where the experiment takes place; however, they

may not know the exact treatment received (single-anonymous).

Therefore, we cannot control which units enter the study, but we

can assign the treatment 𝐴𝑖 according to the observed 𝑋𝑖 . The goal

in this Scenario 1 is thus to accurately estimate the ATE. A common

characteristic of traditional RCTs is the high monetary and/or time

costs required for experimentation. Thus, careful planning before

the experiment and timely adjustments during the experiment are

both critical. Here, we highlight below two instances of this in

behavioral experiments and clinical trials.

Informally speaking, behavioral experiments aim to study how

humans respond to certain stimuli, whether visual, audio, or spe-

cific instructions. These experiments are crucial in many fields,

including psychology, cognitive science, economics, and marketing.

The outcome of the experiments includes responses to questions

or performance in tasks, but it can also be physical measurements

such as hormone levels and brain activity. The experiments often

contain the following steps: (1) setting up the environment for

the experiment; (2) recruiting participants, often with monetary

compensation; (3) assigning the treatment and conducting the ex-

periment; (4) observing the outcomes. In practice, the remaining

steps for a single participant only take a short time after setting up

the experiment. Therefore, participants sequentially entering the

experiment allows for sequential treatment assignment.

Moreover, it is possible to acquire background information dur-

ing the recruitment step or at the beginning of the experiment. For

instance, when using a software interface, the first section can ask

questions or conduct tests that provide the information 𝑋 . If the

outcome of interest is the response time, we can assign different

treatments to units with similar initial response times. A mathe-

matical formulation focusing on variance reduction of the ATE will

be presented in Section 3.

For clinical trials, the general procedure is similar to the pre-

vious four steps. However, in RCTs that test the effect of a new

treatment or drug, discriminating between different patients will

be unethical. For this reason, many clinical trials require double

anonymity. Therefore, we must be more cautious and consider the

specific problem. As an example, an interesting problem in disease

prognostics is whether text messages help raise awareness and mit-

igate risk factors after recovery. In the study of [2], the experiment

lasted for years, while the typical follow-up time is three or six

months after recovery. For this particular application, using infor-

mation from earlier units is less prone to ethical concerns. Through

this discussion, we mainly hope to emphasize that issues including

ethics, privacy, and fairness arises in many applications, and we

always need to address these issues before applying the strategies

outlined in this work.

2.2 Online experimentation

In Scenario 2, we shift our focus to experiments in the online en-

vironment. A salient difference is that, while users consent when

agreeing to the terms and conditions, they often become part of

an experiment without even realizing it. In this case, companies

can choose which users to include in the experiment rather than

receiving them as inputs, which offers more flexibility in planning

experimental campaigns.

A. When the treatment can be assigned.

We first consider a setting similar to Scenario 1, where we are

again interested in the ATE. During the experiment, on top of

choosing which unit to include in the study, we can freely assign a

treatment to the unit, i.e., we are designing the tuple (𝑋𝑖 , 𝐴𝑖 ). An
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Table 2: Summary of different target populations, QoI, and

associated weights.

Target population QoI Weight𝑤 (𝑥)

Combined ATE 1

Treated ATTE 𝑒 (𝑥)

Overlap ATO 𝑒 (𝑥) (1 − 𝑒 (𝑥))

Truncated combined I(𝛼 < 𝑒 (𝑥) < 1 − 𝛼)

Matching min{𝑒 (𝑥), 1 − 𝑒 (𝑥)}

instance of this would be introducing a small feature change in

the mobile application, potentially affecting all users. Experiments

testing the impact on a small set of users have become standard

practice, as even a minor change can unexpectedly influence user

engagement, conversion, and other statistics. During implementa-

tion, the experiments go through ramping where traffic gradually

increases to control unknown risks [11, 21]. Therefore, a sequential

design naturally fits in with this procedure.

In the potential outcomes framework, we can consider the prob-

lem as estimating two response surfaces: one for the treatment

group and one for the control group. Due to the possible effect

heterogeneity, we must explore the entire feature space to estimate

the ATE accurately. Thus, a sequential design favors unexplored

regions when increasing the number of units. As the experiment

size grows, we will likely have a design in the attributes 𝑋 that

evenly fills the feature space for both response surfaces (see, e.g.,

existing work in łspace-fillingž designs [8]).

B. When the treatment can only be observed.

So far, we have focused on randomized experiments. In this sec-

tion, we enter the realm of observational studies by assuming we

no longer have control over the treatment 𝐴𝑖 . Continuing the topic

of the mobile application experiment, sometimes the change can

be significant, for instance, a restyle of the user interface. In these

cases, the users are often offered a choice between the old and

new versions. Consequently, we no longer control to which groups

the users belong. In the structural model in Figure 1, we cannot

ignore the directed edge from 𝑋 to 𝐴, indicating the existence of

confounding.

In what follows, we assume that unconfoundedness holds given

the user characteristics 𝑋 . We can thus define the propensity score:

𝑒 (𝑥) = Pr(𝐴𝑖 = 1|𝑋𝑖 = 𝑥) . (1)

Given this assumption, we can definemultiple quantities-of-interest

(QoIs) in the form of weight average treatment effects (WATE):

𝜏𝑤 =

∫
X
𝑤 (𝑥) (𝜇 (1) (𝑥) − 𝜇 (0) (𝑥))𝑑𝑥

∫
X
𝑤 (𝑥)𝑑𝑥

, (2)

where 𝜇 (1) (𝑥) and 𝜇 (0) (𝑥) are the expected values of𝑌 (1) and𝑌 (0)

given 𝑋 = 𝑥 , respectively. The choice of the weights𝑤 (𝑥) depends

on our population of interest.𝑤 (𝑥) = 1 for all units means we view

all the units equally, corresponding to the usual ATE; if we are

more interested in the units that receive the treatment, we can take

𝑤 (𝑥) = 𝑒 (𝑥), which gives us the average treatment effect on the

treated (ATTE). Table 2 (adapted from [12]) summarizes such QoIs.

Clearly stating the target population will be significant for the

sequential selection of 𝑋 . A design will now favor units belonging

to regions that are unexplored and also have a large weight𝑤 (𝑥).

Intuitively, we will be trying to create a sample similar to the target

population of interest; this intuition is verified in Section 4.

2.3 Marketing

In both Scenario 1 and 2, we focused on quantities defined by a

population. However, the average effect is not of primary interest in

many experiments. Instead, finding individuals with high ITEs may

be more beneficial since this allows us to invest more resources with

precision. Marketing campaigns provide an instance with extensive

applicability. For instance, supermarkets hope to offer discounts that

ultimately increase the total purchase; banks advertise new products

to those most likely to invest; internet advertising platforms show

advertisements to raise conversion as high as possible.

These real-world applications all have structures similar to Sce-

nario 2B. First, the companies initiating the experiments have in-

formation on the users, including demographic information (al-

though there can be limitations on using this for algorithm develop-

ment) and past engagement. Next is an immediate outcome, such as

whether to accept an offer or click a link. Although this sign-post

outcome is valuable, the experimenters are ultimately interested in

metrics that provide long-term value. These components constitute

our framework’s (𝑋,𝐴,𝑌 ) variables.

Therefore, we can use the same modeling framework, but the

acquisition function for sequential designs will differ. Exploration is

encouraged for learning about the entire response surface, while an

optimization problem requires an exploration-exploitation tradeoff.

Thus, we want to explore and find users that respond positively to

the campaigns (exploration). Once we are confident of our findings,

we should lean our resources toward these users to maximize the

impact of the marketing effort (exploitation).

3 ACE METHODOLOGY

This section describes the proposed ACE methodology for sequen-

tial designs in the aforementioned three scenarios. We first intro-

duce a GP learning framework for modeling potential outcomes,

then propose different novel acquisition functions that target learn-

ing for the desired QoIs in each scenario (see Table 1).

3.1 Gaussian process regression

We briefly introduce GP regression, which we use to model the

relationship between the attributes 𝑋 and the potential outcomes.

Specifically, we build separate GP models for the conditional mean

functions for the treatment and control groups. This allows for

different smoothness levels for the two response surfaces, which is

crucial for modeling heterogeneity of the treatment effects.

Given 𝑛 observations with attributes 𝒙𝑛 = [𝑥1, . . . , 𝑥𝑛] and treat-

ment 𝑎, the corresponding outputs 𝒚𝑛 = [𝑦1, . . . , 𝑦𝑛] take a multi-

variate normal prior:

𝒚𝑛 ∼ N
(
𝑚0 (𝒙𝑛), Σ0 (𝒙𝑛, 𝒙𝑛) + 𝜂

2𝐼𝑛

)
, (3)

where𝑚0 (·) is themean function, Σ0 (·, ·) is a covariance kernel, and

𝜂2 is the variance of a normally-distributed random error. There are

many possible specifications for𝑚0 (·) and Σ0 (·, ·), which contain
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hyperparameters that we can estimate by maximum likelihood. See

[15] for a detailed discussion. At any new point 𝑥 with the same

treatment 𝑎, the conditional posterior of the expected outcome is

also Gaussian:

𝜇 (𝑎) (𝑥) |𝒚𝑛 ∼ N
(
𝑚𝑛 (𝑥), 𝜎

2
𝑛 (𝑥)

)
,

𝑚𝑛 (𝑥) =𝑚0 (𝑥) + Σ0 (𝑥, 𝒙𝑛)
(
Σ0 (𝒙𝑛, 𝒙𝑛) + 𝜂

2𝐼𝑛

)−1 (
𝒚𝑛 −𝑚0 (𝒙𝑛)

)
,

𝜎2𝑛 (𝑥) = Σ0 (𝑥, 𝑥) − Σ0 (𝑥𝑖 , 𝒙𝑛)
(
Σ0 (𝒙𝑛, 𝒙𝑛) + 𝜂

2𝐼𝑛

)−1
Σ0 (𝒙𝑛, 𝑥) .

(4)

Therefore, we can provide a prediction for any potential user re-

ceiving treatment 𝑎, along with the uncertainty of the prediction.

By specifying two priors for 𝑎 = 1, 0, respectively, we can get

posteriors for 𝜇 (1) (𝑥) and 𝜇 (0) (𝑥) as long as we have data from

both groups. Since the estimations of hyperparameters are done in

isolation, the two response surfaces are allowed to have different

landscapes. We should ensure sufficient samples for both groups to

control the uncertainty in all scenarios.

3.2 Adaptive design strategies

Before specifying the proposed acquisition functions, we make

some additional assumptions. For Scenarios 1 and 2, the quantities

in (2) are defined for a fixed distribution. We assume having a test

set 𝒙test = [𝑥1, . . . , 𝑥𝑛test ] that is a representative sample of the

population of interest. This assumption is reasonable if (1) we have

a sample from a previous study or external source; (2) we can get

compressed data from a large user pool using techniques outlined

in [9, 20]. Then, the QoI becomes a finite-sample version of (2):

𝜏𝑤 =

∑𝑛test

𝑘=1
𝑤 (𝑥𝑘 ) (𝜇

(1) (𝑥𝑘 ) − 𝜇 (0) (𝑥𝑘 ))
∑𝑛test
𝑖=1 𝑤 (𝑥𝑘 )

, (5)

In vector notation, we write the potential outcomes and sample

weights as:

𝝁
(𝑎)

=

(
𝜇 (𝑎) (𝑥1), . . . , 𝜇

(𝑎) (𝑥𝑛test )
)
, 𝑎 = 0, 1, (6)

𝒘 =

(
𝑤 (𝑥1), . . . ,𝑤 (𝑥𝑛test )

)
. (7)

ACE: Design 𝐴𝑖 only (Scenario 1)

In this scenario, we observe 𝑋𝑖 = 𝑥𝑖 when a new unit enters the

experiment. Given the dichotomous treatment variable, the experi-

menter can assign them to either the treatment or control group.

We now consider the joint distribution of the expected potential out-

comes 𝝁 (𝑎) and 𝜇 (𝑎) (𝑥𝑖 ). Augmenting (4) with a superscript (𝑎) to

indicate the treatment group, we can write the variance-covariance

matrix of this distribution as:



Σ
(𝑎)
𝑛 (𝒙𝑛test , 𝒙𝑛test ) Σ

(𝑎)
𝑛 (𝒙𝑛test , 𝑥𝑖 )

Σ
(𝑎)
𝑛 (𝑥𝑖 , 𝒙𝑛test )

(
𝜎
(𝑎)
𝑛 (𝑥𝑖 )

)2

. (8)

We can then use the conditional variance equation once more

to get the posterior variance if we were able to observe 𝜇 (𝑎) (𝑥𝑖 ).

Comparing the expression with the current posterior variance

Σ
(𝑎)
𝑛 (𝒙𝑛test , 𝒙𝑛test ), it is straightforward to calculate the variance

reduction:

𝑟 (𝑥, 𝑎;𝒘) = 𝒘
𝑇
Σ
(𝑎)
𝑛 (𝒙𝑛test , 𝑥)

(
𝜎
(𝑎)
𝑛

)−2
Σ
(𝑎)
𝑛 (𝑥, 𝒙𝑛test )𝒘 . (9)

For Scenario 1, the weight𝒘 is a vector of 1’s since the QoI is the

ATE. We simply calculate this criterion for 𝑥 = 𝑥𝑖 , 𝑎 = 1, 0 and

select the treatment offering a larger variance reduction. A salient

feature of GP regression is that uncertainty reduces quickly around

observed data points. Thus, the variance reduction criterion will

favor the potential outcome with larger uncertainty, which leads

to a design that balances the treatment and control groups.

ACE: Designing (𝑋𝑖 , 𝐴𝑖 ) (Scenario 2A)

In the remaining scenarios, we are free to select the study par-

ticipants sequentially. Therefore, we assume the existence of a user

pool Xpool = {𝑥𝑖 }
𝑛pool

𝑖=1 . Due to practical constraints such as budget

and risk management, only a fraction of the users in the candidate

pool enters the experiment.

In Scenario 2A, the experimenter has two choices: the user to

include and their assignment. We can use the variance reduction

criterion (9), but the optimization is now over both 𝑥 and 𝑎:

argmax
𝑥∈Xpool,𝑎∈{0,1}

𝑟 (𝑥, 𝑎; 1). (10)

In each step, we need to calculate the variance reduction criterion

2𝑛pool − 𝑛 times, where 𝑛 is the current number of users already

in the study. By choosing the unit and treatment that maximizes

variance reduction, we can obtain designs that evenly fill the feature

space for both response surfaces 𝑎 = 0, 1.

ACE-E: Designing 𝑋𝑖 only (Scenario 2B)

In this scenario, transitioning from an assigned treatment to an

observed treatment creates a further complication. Although we

can calculate the variance reductions in (9), the actual effect on QoI

estimation depends on the realization of𝐴𝑖 . Under the probabilistic

assignment assumption [6], the realization is uncertain at the design

stage. To tackle this problem, we define the ACE-E criterion using

the expected variance reduction:

𝐸𝑟 (𝑥 ;𝒘) = 𝑒 (𝑥)𝑟 (𝑥, 1;𝒘) + (1 − 𝑒 (𝑥))𝑟 (𝑥, 0;𝒘) . (11)

By weighting with the propensity score, this term estimates the

average variance reduction when we include a particular unit in

our study. Here, since the propensity score differs for each unit, the

QoI is no longer limited to the ATE. Instead, we can take any QoI

from Table 2 and use its corresponding weights for𝒘 .

When using the expected variance criterion, the propensity score

is unknown. Therefore, we need to replace it with an estimated

propensity score. Any estimation method based on the available

data is valid, although we advise using robust estimation methods.

The sequential design criterion for Scenario 2B is:

argmax
𝑥∈Xpool

𝐸𝑟 (𝑥 ;𝒘) = 𝑒 (𝑥)𝑟 (𝑥, 1; 𝒘̂) + (1 − 𝑒 (𝑥))𝑟 (𝑥, 0; 𝒘̂), (12)

where 𝒘̂ denotes the vector of weights with the propensity scores

replaced with their estimated version.

ACE-UCB: Designing 𝑋𝑖 for maximizing ITE (Scenario 3)

In Scenario 3, the setting is similar in that we have a pool of

users as candidates. However, instead of focusing on a QoI, the

objective becomes finding the units with a significant effect. In our

notation, we would like to include 𝑛 users into the campaign that

maximizes cumulative ITE
𝑛∑︁

𝑖=1

I(𝐴𝑖 = 1)
(
𝜇 (1) (𝑥𝑖 ) − 𝜇 (0) (𝑥𝑖 )

)
, (13)
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where I(·) is an indicator function. This problem is more compli-

cated than a classic optimization problem since it involves potential

outcomes. Even with no noise, we can only observe one of the

potential outcomes rather than the treatment effect. At any point

of the experiment, our real-time evaluation of the total effect (13)

almost always contains uncertainty.

Therefore, a sequential design should take uncertainty into ac-

count and address the exploration-exploitation tradeoff.We propose

to use an upper-confidence bound (UCB) type acquisition function,

inspired by the GP-UCB method [18]:

argmax
𝑥∈Xpool

𝑒 (𝑥)
(
𝜇
(1)
𝑛 (𝑥) − 𝜇

(0)
𝑛 (𝑥)

)
+ 𝛽

1/2
𝑛 𝜎TE (𝑥), (14)

where the variance term is:

𝜎2TE (𝑥) = 𝑒 (𝑥)

((
𝜎
(1)
𝑛

)2
+
(
𝜎
(0)
𝑛

)2)

+ 𝑒 (𝑥) (1 − 𝑒 (𝑥))
(
𝜇
(1)
𝑛 (𝑥) − 𝜇

(0)
𝑛 (𝑥)

)2
.

(15)

A detailed derivation of this can be found in the Appendix, and

the specification of 𝛽𝑛 is discussed later in Section 4. This criterion

favors units with (1) large propensity scores, as only those who

participate in the campaign are affected; (2) significant expected

treatment effect for exploitation; (3) high uncertainty for explo-

ration. Thus, this method is less likely to get stuck at local optima

than greedy approaches. Similar to Scenario 2B, we also replace the

propensity score with an estimator if necessary.

4 NUMERICAL EXPERIMENTS

We now explore the performance of the proposed adaptive exper-

imentation method in numerical experiments. For ease of visu-

alization, we make use of the following two-dimensional set-up,

modified from the popular Franke optimization test function [4].

With covariates 𝑋 ∈ [0, 1]2, the conditional mean functions take

the form:

𝜇 (𝑎) (𝑋 = 𝒙) =
3

4
exp

(
−
1

4
(9𝑥1 − 2)2 −

1

4
(9𝑥2 − 2)2

)

+
3

4
exp

(
−

1

49
(9𝑥1 + 1)2 −

1

10
(9𝑥2 + 1)2

)

+
1

2
𝑎 exp

(
−
1

4
(9𝑥1 − 7)2 −

1

4
(9𝑥2 − 3)2

)

−
1

5
𝑎 exp

(
−(9𝑥1 − 4)2 − (9𝑥2 − 7)2

)
.

Figure 2 visualizes these functions for the treatment and control

groups. We see multiple peaks in the function, which may represent

cohorts of interest, e.g., high-value customers in banking applica-

tions. The treatment positively impacts the group with large 𝑥1 and

small 𝑥2, while the group with large 𝑥2 is negatively impacted.

Scenarios 1 & 2A.

Table 3 shows the results for ATE estimation in Scenarios 1 and

2A, where an experimenter can assign the treatment. Here, łALCž

is short for łActive Learning Cohenž, which selects the point with

the largest uncertainty 𝜎
(𝑎)
𝑛 (𝑥) (this is a widely-used GP active

learning strategy; see [5, 16]). We obtain samples of size 𝑛 = 100 to

estimate the ATE. We report the bias and root mean squared error

(RMSE) compared with the ground truth over 50 replications.

Figure 2: Potential outcomes for the treatment group and the

control group.

Table 3: Scenarios 1 and 2A for ATE estimation. All results

are enlarged by 103.

Scenario 1 Scenario 2A

Bias RMSE Bias RMSE

Random 1.13 7.42 1.13 7.42

ALC 0.06 4.75 0.29 1.28

ACE -0.29 5.65 0.20 1.11

Table 4: Scenario 2B for estimating different QoI. All results

are enlarged by 103.

ATE ATTE ATO

Bias RMSE Bias RMSE Bias RMSE

Random 5.56 45.80 2.62 12.83 5.70 13.68

ALC-E -13.55 49.92 0.69 4.56 1.93 5.49

ACE-E 3.55 32.92 0.45 2.88 0.05 3.14

We can see both sequential methods outperform random sam-

pling, which is not too surprising. In Scenario 1, ACE has no clear

advantage over ALC, since the decision is dichotomous. However,

when we introduce a pool of size 𝑛pool = 500, ACE selects units

that benefits the estimation the most, resulting in smaller RMSE.

Scenario 2B.

For Scenarios 2B and 3, we use the propensity score function:

logit(𝑒 (𝒙)) = −2 + 2𝑥1𝑥2,

where 𝑒 (𝒙) := Pr(𝐴 = 1|𝑋 = 𝒙). There is thus an imbalance, where

the units in the treatment group are much fewer than in the control

group (the overall propensity is around 20%). In our simulations,

we assume the propensity score is known for simplicity.

We take 𝑛 = 100, 𝑛pool = 500 for the ATE and 𝑛 = 200, 𝑛pool =

1, 000 for the ATTE and ATO due to the imbalance in the data.

We compare the proposed ACE-E with the expected ALC (ALC-E)

approach as baseline, defined as:

argmax
𝑥∈Xpool

𝑒 (𝑥)
(
𝜎
(1)
𝑛 (𝑥)

)2
+ (1 − 𝑒 (𝑥))

(
𝜎
(0)
𝑛 (𝑥)

)2
. (16)
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Figure 3: Visualization of the selected points in the treatment

group for ATTE estimation using the three methods.

Figure 4: Cumulative ITE [Equation (13)] for different meth-

ods in Scenario 3.

This extends the existing ALC approach [16] to the scenario where

treatments can only be observed.

Results are shown in Table 4, where we observe that the pro-

posed ACE-E has the smallest error in all cases. In Figure 3, we

show an example of the points selected by each method when the

QoI is the ATTE. We plot the points in the treated group since the

small number of treated units confines the estimation accuracy.

The points are plotted against contours of propensity scores, with

darker colors indicating higher propensity. We can see that ALC-E

is space-filling and selects many points near the boundary. How-

ever, each unit is weighted proportional to the propensity score in

ATTE estimation. Our sequential design strategy based on ACE-E

considers this weight in the acquisition. The resulting sample re-

flects this proportional relationship, which could explain why our

method outperforms.

Scenario 3.

In Scenario 3, we compare the proposed ACE-UCB approach

with the following baseline greedy approach:

argmax
𝑥∈Xpool

𝑒 (𝑥)
(
𝜇
(1)
𝑛 (𝑥) − 𝜇

(0)
𝑛 (𝑥)

)
. (17)

This acquisition exhibits full exploitation by directly maximizing

the expectation of (13). In comparison, (14) has an additional term

encouraging exploration. In our method, we use 𝛽𝑡 = 𝑐2 log 𝑡 (com-

mon choice in the UCB literature), with 𝑐 set as 0.01. We take

𝑛 = 50, 𝑛pool = 1, 000, and present the results of 50 replications

in Figure 4. The boxplots show the superiority of the proposed

ACE-UCB approach, which shows that it can effectively leverage

the uncertainty from the adopted Bayesian model for targeted opti-

mization of the ITE.

5 CONCLUSION

We proposed in this work a new active learning method called ACE,

which makes use of an underlying Gaussian process model of the

conditional mean functions for guiding the adaptive selection of

expensive experiments. ACE features a range of novel acquisition

functions, which can target the estimation of a variety of causal

estimands (e.g., ATE, ATTE, ITE) for three broad scenarios encoun-

tered in practical causal applications. We then showed the improved

performance of ACE over several baseline methods with limited

experiments in a suite of numerical experiments.

While the proposed ACE approach appears promising, we are

currently embarking on many avenues for future work. First, we

are exploring batch-sequential modifications of the ACE acquisition

functions, to reflect the fact that in practice, one would often con-

duct adaptive experiments in batches. Second, we are investigating

the effectiveness of ACE in a variety of practical causal applica-

tions, including behavioral experiments conducted in laboratory

environments [1] and a real-world marketing campaign [3].
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A DERIVATION OF THE UCB VARIANCE

Here we provide a short derivation of the variance term in Equation

(15).

First, we have three random variables that are assumed to be

independent given 𝑋 = 𝑥 :

I(𝐴 = 1) ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑒 (𝑥)),

𝜇 (1) (𝑥) ∼ N

(
𝜇
(1)
𝑛 (𝑥),

(
𝜎
(1)
𝑛

)2)
,

𝜇 (0) (𝑥) ∼ N

(
𝜇
(0)
𝑛 (𝑥),

(
𝜎
(0)
𝑛

)2)
,

From the relationship Var(𝑋𝑌 ) = E(𝑋 2)Var(𝑌 ) + Var(𝑋 )E2 (𝑌 ),

we can get the variance of I(𝐴 = 1)
(
𝜇 (1) (𝑥) − 𝜇 (0) (𝑥)

)
:

Var
[
I(𝐴 = 1)

(
𝜇 (1) (𝑥) − 𝜇 (0) (𝑥)

)]

= E(I(𝐴 = 1))Var
(
𝜇 (1) (𝑥) − 𝜇 (0) (𝑥)

)

+ Var(I(𝐴 = 1))E2
(
𝜇 (1) (𝑥) − 𝜇 (0) (𝑥)

)

= 𝑒 (𝑥)

((
𝜎
(1)
𝑛

)2
+
(
𝜎
(0)
𝑛

)2)

+ 𝑒 (𝑥) (1 − 𝑒 (𝑥))
(
𝜇
(1)
𝑛 (𝑥) − 𝜇

(0)
𝑛 (𝑥)

)2
.

B ONLINE RESOURCES

The R codes used for the numerical example can be found at https:

//github.com/difan1996/Causal-design.
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