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Abstract
Learning from Demonstration (LfD) can be an efficient way to train systems with analogous agents
by enabling “Student” agents to learn from the demonstrations of the most experienced “Teacher”
agent, instead of training their policy in parallel. However, when there are discrepancies in agent
capabilities, such as divergent actuator power or joint angle constraints, naively replicating demon-
strations that are out of bounds for the Student’s capability can limit efficient learning. We present a
Teacher-Student learning framework specifically tailored to address the challenge of heterogeneity
between the Teacher and Student agents. Our framework is based on the concept of “surprise”,
inspired by its application in exploration incentivization in sparse-reward environments. Surprise is
repurposed to enable the Teacher to detect and adapt to differences between itself and the Student.
By focusing on maximizing its surprise in response to the environment while concurrently minimiz-
ing the Student’s surprise in response to the demonstrations, the Teacher agent can effectively tailor
its demonstrations to the Student’s specific capabilities and constraints. We validate our method
by demonstrating improvements in the Student’s learning in control tasks within sparse-reward
environments.
Keywords: Learning from Demonstration, Surprise, Heterogeneous Agents, Teaching Agents

1. Introduction

Learning from Demonstration (LfD) enables an agent to learn new tasks by imitating another agent.
Compared to traditional Reinforcement Learning (RL), LfD is particularly beneficial for learning
tasks that require numerous interactions. This benefit is further amplified in multi-agent scenarios,
such as assembly (Knepper et al., 2013) or warehouse systems (Dusadeerungsikul et al., 2022).
In these situations where agents often share common goals, training multiple agents from scratch
for the same task is data-inefficient (Da Silva et al., 2017). Hence, utilizing a Teacher-Student
framework, where one Teacher agent explores the environment and instructs others, can be a more
effective approach (Ilhan et al., 2019). For example, consider different robot manipulators on an
assembly line. As they share many elements, such as task objectives and working environments,
having one robot learn the task first and then instruct others can be a more efficient strategy com-
pared to having multiple robots learn in parallel.

However, agents in these scenarios cannot always be assumed to be entirely identical (Moreira
et al., 2015). Even in systems with analogous agents, small variations in dynamics can occur be-
tween agents due to several reasons, such as under-performing components or different mechanical

. The code is available at https://github.com/labicon/Surprise based Teaching
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parts (Da Silva et al., 2020). When Student agents learn from a Teacher agent’s demonstrations,
these discrepancies can lead to performance issues if the Student cannot replicate the Teacher’s
demonstrations (Ravichandar et al., 2020). For instance, in the example of manipulators on an as-
sembly line, variations such as maximum joint angles in different robot models may exist. Then, the
Teacher agent must provide demonstrations that are achievable for the Student during the teaching,
even when those differences are not explicitly stated. These differences can be inferred through the
trajectory of each agent. For example, when teaching a robot arm, the Teacher agent can infer the
Student robot’s capabilities by observing the robot’s maneuvers and accordingly offer demonstra-
tions that align with the Student’s movements.

In this work, we address this challenge by presenting a Teacher-Student learning framework
that adapts the Teacher’s demonstration trajectories to the heterogeneity between the Student and
Teacher agents. To quantify this heterogeneity, we introduce the concept of surprise, which mea-
sures the informational differences between agents or environments. Consequently, the surprise
should be small for state-action pairs that have been encountered before and large for those that are
unfamiliar. While existing work has focused on surprise between the agent and environment (Berseth
et al., 2019), we use surprise to measure the differences between the Teacher’s and Student’s expe-
riences, thereby quantifying their heterogeneity without explicit knowledge of these differences.

Following Achiam and Sastry (2017), we define surprise as the KL-divergence between two
transition probability functions. First, we maximize the Teacher’s surprise with respect to the en-
vironment to incentivize exploration, thus aiding the Teacher in learning its task in sparse-reward
environments. Second, for the Student to effectively learn from the Teacher, we argue that the
Teacher should also be able to reason about the Student’s learning capabilities. Specifically, we pro-
pose that the Teacher must consider the surprise as perceived from the perspective of the Student.
To achieve this, the Teacher learns its own policy with the objective of maximizing its own surprise
while minimizing that of the Student. When the Teacher’s demonstrations contain state-action se-
quences different from the Student’s dynamics or constraints, the Student’s surprise will be large.
Consider the example of a manipulation task, where the Student agent has a smaller maximum joint
angle than the Teacher. The Teacher may demonstrate trajectories that reach its maximum joint
angle; however, the Student will never be able to directly match these trajectories due to physical
limitations. Since the Student will never experience such a state, it will perceive a large surprise for
such demonstrations. Consequently, the Teacher must adjust its policy to accommodate trajectories
within the Student’s maximum joint angle.

Our contributions can be summarized in three ways. First, we introduce a Teacher-Student
framework in which the Teacher learns its own task in a sparse-reward environment while simulta-
neously teaching a Student with differing dynamics or constraints. Second, we leverage the notion
of surprise, defined as the KL-divergence between the base transition probability function and the
learned transition probability function, to enable the Teacher to manage the differing dynamics or
constraints of Students without explicit knowledge of these factors. Finally, we empirically demon-
strate that our Teacher can adapt its demonstrations to align with the Student’s capabilities, resulting
in the Student achieving higher rewards.

2. Related Works

Teaching Algorithms. The transfer of knowledge or skills from one agent to another, and the
successful utilization of the learned policy by the latter, can be highly beneficial. Algorithms within
the family of imitation learning (Hussein et al., 2017) and behavior cloning (Ly and Akhloufi, 2021)
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enable an agent to learn a policy from the demonstrations of an expert agent or a human. However,
these algorithms typically rely on the expert providing an optimal trajectory and are often limited
to scenarios where the teaching and learning agents have similar kinematic systems (Ravichandar
et al., 2020).

On the other hand, teaching mechanisms places greater emphasis on the Teacher agent’s ability
to suggest beneficial actions for the Student (Zimmer et al., 2014), rather than just demonstrating
optimal trajectory. Importance advising (Torrey and Taylor, 2013) enables the Teacher to calculate
a metric to offer advice when beneficial and to correct mistakes. This method allows for advice to
be exchanged between simultaneously learning agents even without an expert Teacher; however, its
application is primarily limited to discrete action spaces (Da Silva et al., 2017).

In real-world settings, teaching strategies need to adapt to challenges such as differences in
kinematics and capabilities between agents, as well as restrictions on agent actions. While some
adaptive control models (Petersen et al., 2000; Nishimura et al., 2021) can handle differences in
noise distributions, they fall short when it comes to differences in dynamics parameters or state
constraints. Liu et al. (2019) accounts for different dynamics using state-alignment while neglect-
ing demonstration action. However, they neglect the non-feasible problem where the demonstration
trajectory have infeasible state for the learning agent. While Cao et al. (2021) suggested a feasibil-
ity metric for an imitation learning agent focusing on informative teaching data that demonstrates
feasible trajectories, we concentrate on the Teacher’s side to provide beneficial demonstration data
to meet the needs of the Student.
Surprise in Reinforcement Learning. Surprise is a concept originating from information the-
ory and derived from Shannon entropy (Shannon, 2001). Surprise serves as a valuable tool for
stabilization or exploration in RL. Minimizing surprise drives agents toward familiar state-action
pairs (Berseth et al., 2019), while maximizing surprise encourages exploration toward unfamiliar
state-action pairs (Mazzaglia et al., 2022). Bayesian surprise (Itti and Baldi, 2009) has been used
for exploration incentive, using latent dynamics models to maximize information gain (Mazzaglia
et al., 2021; Sun et al., 2011) or using Bayesian neural networks to model dynamics and maximize
surprise (Houthooft et al., 2016). However, these methods can be computationally intensive, may
not generalize well to continuous action spaces, or may struggle to scale in higher dimensional
environments. To overcome these challenges, Achiam and Sastry (2017) defined surprise as the
KL-divergence between the learned and true transition probability functions, aiming to motivate
exploration with a reduced computational burden.

We use the notion of surprise defined in Achiam and Sastry (2017) to enable the Teacher to
demonstrate state-action trajectories that are admissible for the Student. Our goal is to design a
teaching method that allows the Teacher to provide effective demonstrations for a Student agent,
even in the presence of differing state-space constraints and dynamics.

3. Utilizing Surprise to Instruct Heterogeneous Students

We introduce a Teacher-Student framework where the Teacher and Student do not necessarily share
the same dynamics or constraints. Adapting to these differences is crucial for the Student to learn
effectively. Both agents are assumed to lack prior knowledge of the environment, thereby learning
simultaneously. We consider sparse reward environments for both the Teacher and the Student. As
the Teacher must provide expert demonstrations for the Student to follow, it is necessary that the
Teacher first explores the environment to learn a policy that addresses their task. Following Achiam
and Sastry (2017), we define the Teacher’s surprise as the KL-divergence between the Teacher’s
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learned transition probability model and the true transition probability model of the Teacher’s envi-
ronment. Since an agent updates its learned model based on training experiences, the KL-divergence
between the learned model and the true environment will be small in state-action pairs that have been
frequently visited. Consequently, augmenting the Teacher’s reward to be a function of surprise can
encourage the exploration of unfamiliar state-action pairs.

Additionally, we propose a strategy for the Teacher that considers the surprise perceived by
the Student during the learning process. We define the Student’s surprise using the KL-divergence
between the transition probability functions learned by the Teacher and the Student. If the Student
cannot replicate the Teacher’s transition probability functions due to differences in dynamics or
constraints, this will result in a high value of surprise for the Student. Therefore, by penalizing
the Teacher’s reward based on the Student’s perceived surprise, we enable the Teacher to account
for differences in environments and guide the creation of trajectories that satisfy the constraints or
dynamics of the Student.

3.1. Preliminaries

Teacher Agent

Teacher’s Sparse Reward Environment

𝑠𝑠 → 𝑎𝑎 ~ 𝜋𝜋𝑇𝑇  → 𝑠𝑠′ 𝑖𝑖 𝑠𝑠𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0, 
𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝑃𝑃𝑇𝑇 ,𝑃𝑃𝑆𝑆) 

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 > 0 Update 𝜋𝜋𝑇𝑇

Update 𝑃𝑃𝑇𝑇

Sample batch of 
trajectories 𝐷𝐷~ 𝜋𝜋𝑇𝑇 

Update 𝜋𝜋𝑆𝑆
Sample batch of 
trajectories 𝐷𝐷~ 𝜋𝜋𝑆𝑆 

Update 𝑃𝑃𝑆𝑆

Student Agent

Student’s Sparse Reward Environment

Figure 1: Overview of our Teacher-Student framework

In our problem, we consider the
Teacher and Student as sepa-
rate agents and denote them by
subscript T and S, respectively.
We model our environments
as a Markov Decision Process
(MDP) and define this MDP as
the tuple < S,A, re, P, γ >
where the Teacher and Student
have their own respective state
spaces ST ,SS , action spaces
AT ,AS , and extrinsic reward
functions reT : ST × AT →
R, reS : SS × AS → R. Each
environment has a true transition
probability function PT (s

′|s, a)
and PS(s

′|s, a), which give the
true probability of transition to
state s′ from the current state s given action a. While these transition probability functions de-
pend only on the Teacher’s and Student’s state-action pairs, respectively, we omit their subscripts
for easier notation. The agents have their learned transition probability functions denoted by a sub-
script ϕ: PϕT

for the Teacher and PϕS
for the Student. We define a stochastic policy for the Teacher

πT (·|s) : ST → AT and Student πS(·|s) : SS → AS as a distribution over possible actions given
a state s. We assume that the Teacher has full access to the Student’s learned transition probability
function PϕS

.

3.2. Surprise for Exploration

In a sparse-reward setting, we motivate the Teacher to maximize its own surprise to explore the
environment. We assume the Teacher does not have access to PT . Instead, the Teacher utilizes its
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own learned transition probability function, PϕT
. As the Teacher agent explores the environment,

this learned function should converge to the true transition function. Therefore, we can represent the
Teacher agent’s surprise by the KL-divergence between the learned transition probability function
and the true transition probability function.

DKL

(
PT (·|s, a)||PϕT

(·|s, a)
)
= H

(
PT (·|s, a), PϕT

(·|s, a)
)
−H

(
PT (·|s, a)

)
,

where H
(
PT (·|s, a)

)
is the entropy of PT (·|s, a) and H

(
PT (·|s, a), PϕT

(·|s, a)
)

is the cross entropy
of PT (·|s, a) and PϕT

(·|s, a).
In deterministic environments with continuous state spaces, Es,a∼πT [H

(
PT (·|s, a)

)
] is constant

and can be dropped from the optimization problem (Achiam and Sastry, 2017). Therefore, the
KL-divergence can be approximated as the cross entropy between the Teacher’s learned transition
probability function and the environment’s true transition probability function. We compute the
cross entropy between the two distributions, PT (·|s, a) and PϕT

(·|s, a), as

H(PT (·|s, a), PϕT
(·|s, a)) = −

∫
S
PT (s

′|s, a) log
(
PϕT

(s′|s, a)
)
ds′

= Es′∼PT (·|s,a)
[
− logPϕT

(s′|s, a)
]
.

(1)

3.3. Computing the Surprise Perceived by the Student

In this section, we discuss how the Teacher can tailor trajectories to accommodate a Student with dif-
ferent dynamics or environmental constraints. We define the Student’s surprise as a KL-divergence
between the Student’s learned transition probability function and that of the Teacher. Therefore, the
Student surprise for state-action pair (s, a) is

DKL

(
PϕT

(·|s, a)||PϕS
(·|s, a)

)
.

Because the Teacher has access to both the Student’s and Teacher’s learned transition probability
functions, we can directly calculate the KL-divergence between the two:

DKL

(
PϕT

(·|s, a)||PϕS
(·|s, a)

)
=

∫
S
PϕT

(s′|s, a) log
(
PϕT

(s′|s, a)
PϕS

(s′|s, a)

)
ds′

= Es′∼PϕT
(·|s,a)

[
logPϕT

(s′|s, a)− logPϕS
(s′|s, a)

]
.

(2)

When the Student and Teacher exhibit similar learned transition dynamics for specific state-
action pairs, the KL divergence in (2) will be small, resulting in a lower surprise value for the Stu-
dent. Conversely, if there are significant differences in their learned transition dynamics, stemming
from different environment constraints or dynamics, the surprise value perceived by the Student in
(2) will be large. In conclusion, a large surprise is likely to occur if the Teacher demonstrates a
trajectory that is incompatible with the Student’s dynamics or constraints. Therefore, our objective
is to minimize this surprise during the Teacher’s demonstrations.

3.4. Shaping the Teacher’s reward for Adaptive Demonstrations

We define the intrinsic reward ri for the Teacher as a weighted sum of the surprise terms for both
the Teacher and the Student. The inclusion of the Teacher’s surprise encourages exploration in a
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sparse-reward environment, facilitating the exploration of novel state-action pairs. Simultaneously,
incorporating the Student’s surprise enables the Teacher to make informed inferences about the
Student’s dynamics and constraints. Consequently, this dual consideration allows the Teacher to
tailor its demonstrations to align with the Student’s capabilities. Each surprise incentive can be
computed using (1) and (2) as follows

ri(s, a) = ηTDKL

(
P (·|s, a)||PϕT

(·|s, a)
)
− ηSDKL

(
PϕT

(·|s, a)||PϕS
(·|s, a)

)
≈ ηTEs′∼P (·|s,a)

[
− logPϕT

(s′|s, a)
]
− ηSEs′∼PϕT (·|s,a)

[
logPϕT

(s′|s, a)− logPϕS
(s′|s, a)

]
,

(3)

where ηT and ηS are the weights of each surprise term. Following Achiam and Sastry (2017), ηT is
given by

ηT =
η0T

max
(
1, 1

|D|
∑

(s,a)∈D reT (s, a)
) , (4)

where η0T is a predefined constant, reT represents the extrinsic return from a trajectory rollout
D of size |D| following the Teacher’s policy. This factor scales the exploration bonus magnitude
according to the extrinsic rewards of the environment. The Student’s coefficient ηS is defined anal-
ogously, with extrinsic rewards calculated from trajectories sampled from the Student’s policy, and
the Student’s predefined η0S constant.

The reshaped reward for the Teacher is designed to incentivize exploration of new states while
simultaneously disincentivizing visits to states that are excessively unfamiliar to the Student. If the
Teacher demonstrates trajectories that either violate the Student’s constraints or differ significantly
from the Student’s dynamics, the Student’s surprise will be high. This is due to the Student’s
learned transition model differing substantially from these trajectories. As a result, in an effort to
maximize its reward as outlined in (3), the Teacher is encouraged to avoid such trajectories and
instead demonstrate paths that are aligned with the dynamics and constraints of both the Teacher
and the Student.

Finally, the Teacher’s objective is to maximize the augmented sum of extrinsic and intrinsic
rewards. Therefore, the objective function for the Teacher is as follows

LT (πT ) = Eat∼πT (·|st)
[ H∑
t=0

γt
(
reT (st, at) + ri(st, at)

)]
. (5)

3.5. Implementation Details

We can use any RL algorithm to optimize the Teacher policy that aims to maximize (5). In our
experiments, we implemented Trust Region Policy Optimization (TRPO) (Schulman et al., 2015)
to train the Teacher policy, enabling the examination of both continuous and discrete action spaces.
This choice also allows for a direct comparison with Achiam and Sastry (2017), which used TRPO
as their base optimization method, thus providing a more conclusive analysis of performance differ-
ences when incorporating the Student’s surprise. For the Student agent, we implement behavioral
cloning (BC) (Bain and Sammut, 1995; Ross and Bagnell, 2010) to learn from the Teacher’s demon-
stration.

We use probabilistic neural networks (Chua et al., 2018) to learn the transition probability func-
tions of the Teacher and Student agents. We model the transition probability functions of the Teacher
agent as a Gaussian distribution PϕT

(·|s, a) = N
(
µϕT

(s, a),ΣϕT
(s, a)

)
, where µϕT

is the learned
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Figure 2: Mean and standard deviation of reward for the three environments are shown. Results are from 5
random seeds for Mountain Car and Half Cheetah and 8 random seeds for Cart Pole Swing Up. Our algorithm
is deployed in a setting where the Teacher and Student are in the same environment. Baselines are trained in
a single-agent setting where they are trained without the Teacher. Both Teacher and Student in our Teacher-
Student framework can learn successful policy in sparse-reward environments.

mean and ΣϕT
is the learned covariance of the distribution. We update the mean and covariance of

the distributions by optimizing the negative log-likelihood loss function

lossNLL =

N∑
i=0

(µϕT
(si, ai)− sTi+1)Σ

−1
ϕT

(si, ai)(µϕT
(si, ai)− si+1) + log

(
detΣϕT

(si, ai)
)
, (6)

where N is the batch size and si+1 is the sampled true next state of the environment given state and
action pairs (si, ai). The same procedures are applied to the Student’s learned transition probability
function PϕS

(·|s, a).
At each training epoch, we first update the Teacher’s transition probability model with (6) and

the Teacher’s policy to maximize (5). Then, the Teacher gives demonstrations to the Students using
the Teacher’s policy. We update the Student policy with BC for the Teacher demonstration. Finally,
the Student’s transition probability model is updated with the trajectory rollout of its policy.

4. Experiments

We implement our algorithm in sparse reward environments introduced by Houthooft et al. (2016):
Mountain Car, Cart Pole Swing Up, and sparse Half Cheetah. In Section 4.1, we initially test our
method with both the Student and Teacher operating in the same environment to ensure that our
approach doesn’t obstruct the learning capabilities of either agent in homogeneous settings.. Next,
in Section 4.2, we show that our method helps the learning of the Student agent which has a different
environment from the Teacher.

4.1. Identical Teacher-Student Environments

Figure 2 presents the results of our Teacher-Student framework when the Teacher and Student
have identical environments. Compared to our Teacher-Student framework, TRPO, PPO (Schul-
man et al., 2017), and surprise-maximization (Achiam and Sastry, 2017) algorithms tries to learn a
policy without the Teacher. Both Teacher and Student in our method performs at a similar level to
that of Achiam and Sastry (2017). Therefore, we can conclude that the Student-Teacher framework
does not diminish the learning capabilities of the agents. In addition, observing the low returns of
TRPO and PPO, we conclude that surprise motivation is necessary for exploration in sparse reward
environments.
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4.2. Heterogeneity Between Teacher and Student

4.2.1. EXPERIMENT SETUP

After confirming that our framework does not impact learning in the homogeneous setting, we test
our learning framework in the heterogeneous setting where the Teacher and Student are in environ-
ments with different dynamics or constraints where we can examine the ability of the Teacher agent
to adjust its trajectories according to the Student’s environment. Especially, we focus on settings
where the Student’s ability is limited compared to the Teacher. This is because even if the Student
has superior ability compared to the Teacher, its effectiveness would be limited to the Teacher’s
policy due to imitating the Teacher’s policy.

In the Mountain Car environment, we adjust the car power constant in the dynamics equa-
tion. We keep the baseline value of p = 0.001 for the Teacher and reduce that of the Student to
p = 0.0067. In this lower-power version, an agent requires a greater force to achieve the desired
velocity compared to the higher-power setup. Consequently, the Teacher should demonstrate tra-
jectories utilizing larger force magnitudes than those used in its high-power environment. For the
Cart Pole Swing Up environment, we have two experiments with different x-position constraints
and different pole masses. In the different x-position constraints experiment, we have the Teacher’s
constraint to be |xpos| ≤ 3.6 while the Student is using |xpos| ≤ 2.4. For the different pole mass
experiments, the Teacher agent has a pole mass of m = 0.1 while the Student has a heavier pole
mass of m = 0.12. We note that the maximum episode length in the CartPole was increased to 500
for faster exploration. Finally, in the sparse Half Cheetah environment, the Teacher’s head angle is
unconstrained while the Student’s is constrained to |θhead| ≤ 1rad.

In Figure 2, we observed that baseline algorithms that lack an exploration motivation failed
to learn successful policies in complex sparse-reward environments. Consequently, we used sur-
prise maximization (Achiam and Sastry, 2017) as the sole baseline. In this baseline, the Teacher
attempts to learn an optimal policy by exploring the environment through surprise-maximization
while neglecting the Student’s perceived surprise. This comparison highlights the efficacy of incor-
porating the Student’s surprise into the Teacher’s reward structure. Meanwhile, our method enables
the Teacher to tailor demonstrations more effectively to the Student when their environments are
dissimilar. In both scenarios, the Student performs BC on the Teacher’s policy.

4.2.2. RESULTS

Figure 3 presents the training results of each experiment. In contrast to Figure 2, where the Stu-
dent’s performance closely mirrors that of the Teacher, Figure 3 exhibits a notable gap between the
returns of the Teacher and the Student due to differences in their environments. Furthermore, the
Student’s average return is higher in our method compared to the baseline, with the exception of the
Mountain Car environment. Despite minimal differences in the Teacher’s performance across the
two methods, there is a noticeable disparity in the Student’s rewards. This observation challenges
the expectation that the Student’s behavior cloning performance should closely mirror that of the
Teacher, indicating that our method produces trajectories more conducive to the Student’s learning
while maintaining effective learning of the Teacher. Therefore, we can conclude that the Teacher’s
objective of minimizing the Student’s surprise can improve the Student’s performance, even in the
absence of explicit knowledge about these discrepancies.

In Figure 4, we further analyze the Teacher’s behavior by plotting its demonstration trajectories
throughout training in the Mountain Car environment. Initially, the trajectories of each algorithm
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Figure 3: Teacher and Student training results where each agent has different constraints or dynamics. While
the average reward of the Teacher is similar for both methods, the Student learning from our Teacher achieves
higher average rewards. These show that our method can provide better demonstrations for the Student with
different constraints/dynamics.

appear similar. However, as training progresses, significant differences emerge in the actions taken
at specific points in the state space. By the end of training, it is evident that the Teacher using our
method has adapted to demonstrate larger forces. This adaptation is particularly beneficial for the
Student agent’s learning process, as it aligns better with the Student’s need to apply greater force
due to its lower power configuration.

We further investigate the impact of the Student surprise term by varying its weight in the
sparse Half Cheetah environment. Figure 5 reveals that a higher emphasis on the Student surprise
results in an increased performance gap between Student agents learning from the two different
Teachers. This suggests that prioritizing the Student’s surprise in the Teacher’s objective encourages
the Teacher to develop a policy that is more closely aligned with the Student’s capabilities, which
may differ from those of the Teacher.

5. Conclusions and Future works

We proposed a Teacher-Student learning framework, where the Teacher adapts its policy to demon-
strate pedagogically effective trajectories to a Student agent acting under different constraints or
dynamics parameters. This is achieved by minimizing Student surprise with respect to the Teacher’s
demonstration, while simultaneously maximizing the Teacher’s surprise to encourage exploration.
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Figure 4: Teacher demonstration for Mountain Car environment where the Student has less power available
than the Teacher. In training epoch 0, both methods appear to be similarly random. In the 100th epoch,
our method begins to exhibit larger forces corresponding to the f-axis on the figures. At the end of training,
we see there is a clear distinction between the forces exhibited by the two methods. Our method adapts to
the low-power dynamics of the Student environment by demonstrating much larger forces compared to the
surprise maximization algorithm.
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(a) η0T = 0.001, η0S = 0.001

0

500

St
ud

en
t R

ew
ar

d
ours surprise maximization

0 200 400 600 800 1000
epochs

250

500

750

Te
ac

he
r R

ew
ar

d

(b) η0T = 0.001, η0S = 0.005

Figure 5: Training results in a sparse Half Cheetah environment with varying weights on Student surprise.
The performance gap of the Student widens with an increased weight on Student surprise. This suggests that
placing greater emphasis on Student surprise leads the Teacher to provide demonstrations that are more easily
followed by the Student.

We implemented this algorithm in sparse reward environments and demonstrated that a behavior
cloning agent learns more effectively from a Teacher trained with our method. We showed that our
method can adapt the teaching trajectories such that the Student learns more efficiently by exam-
ining the demonstrations of the Teacher agent in the Mountain Car environment. Moreover, our
method achieved comparable performance to baseline algorithms when both the Teacher and the
Student were learning within the same environment settings.

As future works, we plan to extend our algorithm to the offline-online settings where transition
dynamics of agents or Teacher policy are pre-trained offline. Another interesting future work could
allow the Teacher to learn latent strategies to predict the transition dynamics of the Student rather
than having full access to the Student’s learned transition probability functions.
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