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1 Introduction

Topological data analysis, and particularly persistent homology, has been used in many

applications where input data arises as graphs [1]. Recently, particularly with the rise

in neuroscience data [6], there is a push for more methods for measuring structure that

incorporates directionality [2, 3, 4, 5, 7].

We introduce a new method for analyzing directed graphs with persistent homology via a

simplicial �ltration, called the walk-length �ltration, that encodes information about when a

walk visits all vertices in a particular set to determine when a simplex should be included.

Note that if we asked for a path that visits every vertex just once, this would be equivalent

to �nding Hamiltonian paths, which is an NP-complete problem, hence we focus on walks.

While this �ltration is not stable under the network distance used in related work, we de�ne

a modi�cation that replaces the maximum with a summation for which stability can be

obtained. Finally, we show our results of applying walk-length persistence in cycle networks.

2 De�nition

A weighted directed graph (digraph) is a triple D = (V,E,w), where V is a �nite set of

vertices, E � V × V is a set of directed edges and there is a weight on the edges given

by w : E � R�0. We assume that �(v, v�) = 0 if and only if v = v�. A walk of length n in D

is any sequence of vertices � = (v0, � � � , vn) where (vi, vi+1) � E for 0 � i � n� 1. Here the

vertices can be repeated. The weight of a walk � is given by w(�) :=
�n�1

i=0 w(vi, vi+1)� The

collection of all complete weighted digraphs (V, V × V,�) will be denoted by N .

Let D = (V,E,w) be a weighted digraph. For any subset of vertices � � V , de�ne

fD(�) = inf{w(�) : � is a walk in D that contains all vertices in �}�

If there is no such walk, we set f(�) = �.

For � � R, we can de�ne a simplicial complex K� = {� � V : f(�) � �}� Then, the

walk-length �ltration is the parameterized collection of simplicial complexes {K�}��R and

DgmWL

k (D) is de�ned as the k-dimensional walk-length persistence diagram associated to

the corresponding walk-length �ltration {K�}��R.

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the bene�t of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 2 Networks X (left) and Y (right) showing the inequality of Proposition 5 can be strict.

As done in [2], the standard network distance dN can be reformulated using pairs of maps

between networks. Here we de�ne the parallel version in our alternate formulation.

� De�nition 4. For X ,Y � N and any two maps 
 : X � Y and � : Y :� X on their sets

of vertices, the �1-distortion and �1-codistortion terms are de�ned respectively as

dis1(
) :=
�

x,x��X

|�X(x, x�)� �Y (
(x),
(x
�))|,

codis1(
,�) :=
�

(x,y)�X×Y

|�X(x,�(y))� �Y (
(x), y)|�

Then, de�ne d
1,map
N

(X, Y ) := 1
2 min�,�

�
max{dis1(
), dis1(�), codis1(
,�), codis1(�,
)}

�
�

Unlike the �� case, here we have d
1,map
N

�= d1N . However, for the purpose of stability, it

su�ces to use the inequality shown in Proposition 5 below.

� Proposition 5. Let X and Y be two networks. Then, d1,map
N

(X ,Y) � d1N (X ,Y)�

An example where the inequality in Proposition 5 is strict is shown in Figure 2. We now

want to obtain stability for the �1-distance:

dB(DgmWL
k (X ),DgmWL

k (Y)) � 2 d1,map
N

(X ,Y) � 2 d1N (X ,Y)�

A proof for this inequality will be included in the full version of the paper.

4 Cycle Networks

Lastly, we turn our attention to a speci�c type of directed graph: cycle networks. For n 	 3,

let Dn be the cycle graph given by a full directed cycle with n vertices where all edges

have weight 1. Next, we de�ne �Dn as a modi�cation: Swap one of the edges, say (x1, x2),

to (x2, x1), keeping its weight 1; to maintain strong connectivity, also add the original

edge (x1, x2) with weight n. We de�ne the cycle network (Gn,�Gn
) and semicycle network

( �Gn,��Gn

) as the respective associated shortest-distance digraphs. We now compare results

with Dowker persistence [2]. See Figure 3 for an example with 6 vertices.

For cycle networks, we have DgmWL
1 (Gn) = DgmD

1 (Gn) =
�
(1, 
n�2�) � R

2
�
. For

semicycle networks, we conjecture that

DgmD

1 ( �Gn) =
�
(1, 
(n� 1)�2�) � R2

�
and DgmWL

1 ( �Gn) =
�
(1, n� 1) � R2

�
�
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Figure 3 Comparison between Dowker and walk-length �ltrations. On the top, a cycle with all

weights equal to 1. Then, add a vertex (1, 6) with weight 1 and change weight of (6, 1) to 6.

The relevance of these semicycle networks �Gn lies in that they hint at an interesting

property of the walk-length �ltration: a higher sensitivity to directionality in cycles, resulting

in non-directed cycles dying later than complete directed cycles.
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