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1 Introduction

Topological data analysis, and particularly persistent homology, has been used in many
applications where input data arises as graphs [1]. Recently, particularly with the rise
in neuroscience data [6], there is a push for more methods for measuring structure that
incorporates directionality [2, 3, 4, 5, 7).

We introduce a new method for analyzing directed graphs with persistent homology via a
simplicial filtration, called the walk-length filtration, that encodes information about when a
walk visits all vertices in a particular set to determine when a simplex should be included.
Note that if we asked for a path that visits every vertex just once, this would be equivalent
to finding Hamiltonian paths, which is an NP-complete problem, hence we focus on walks.
While this filtration is not stable under the network distance used in related work, we define
a modification that replaces the maximum with a summation for which stability can be
obtained. Finally, we show our results of applying walk-length persistence in cycle networks.

2 Definition

A weighted directed graph (digraph) is a triple D = (V, E,w), where V is a finite set of
vertices, £ C V x V is a set of directed edges and there is a weight on the edges given
by w: E — R>(. We assume that w(v,v’) = 0 if and only if v = v'. A walk of length n in D
is any sequence of vertices v = (vg, ..., v,) where (v;,v;41) € E for 0 < i <n — 1. Here the
vertices can be repeated. The weight of a walk «y is given by w(y) := Z?:_ol w(v;, vi+1). The
collection of all complete weighted digraphs (V,V x V,w) will be denoted by N

Let D = (V, E,w) be a weighted digraph. For any subset of vertices ¢ C V, define

fp(o) = inf{w(y) : v is a walk in D that contains all vertices in o}.

If there is no such walk, we set f(o) = co.

For § € R, we can define a simplicial complex K5 = {o¢ C V : f(o) < §}. Then, the
walk-length filtration is the parameterized collection of simplicial complexes {Ks}ser and
ngZVL(D) is defined as the k-dimensional walk-length persistence diagram associated to
the corresponding walk-length filtration {Ks}scr-
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Figure 1 A counterexample to stability under an £.-distance. The one-dimensional persistence
points are (1,2) for D and (1 + ¢,2 4 2¢) for D..

Given a strongly connected weighted digraph D = (V, E,w), the shortest-distance func-
tion wp: V xV — Ris given by wp(u,v) := min{w(y) : v is a walk in D from u to v}. The
complete weighted digraph (V,wp) is called the shortest-distance digraph associated to D.

» Proposition 1. Let D = (V,E,w) be a strongly connected weighted digraph, and let
X = (V,wp) be the shortest-distance digraph assoctated to D. Then, the walk-length filtrations
for D and X are the same.

3  Stability

One useful property is that of stability: if the input data is close in some metric, then the
resulting representation is closer in its own metric. For this purpose, we work with complete
weighted digraphs, where there is an edge for any two distinct vertices; these can also be
called networks. The standard in the persistence for digraphs literature is to use the network
distance dy [2, 3, 7]. We first point out that our filtration is not stable under this distance.
A counterexample is shown in Figure 1. In essence, the issue arises because our filtrating
function f is a sum in the walk length but the network distance das is a maximum. For this
reason, we define a summation version of the network distance.

» Definition 2. Let X = (X,wx) and Y = (Y,wy) be two networks. Define the £1-distortion
of a correspondence R C X XY as

dis'(R):= > |wx(z,2) —wy(y.¢)].

(zy), (e’ y")ER
1
Then the network £1-distance dy, : N x N' = R is defined as dj(X,)) = 3 m}%n dis'(R).

» Proposition 3. The network ¢1-distance d}\/ is a pseudometric.
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Figure 2 Networks X (left) and Y (right) showing the inequality of Proposition 5 can be strict.

As done in [2], the standard network distance dps can be reformulated using pairs of maps
between networks. Here we define the parallel version in our alternate formulation.

» Definition 4. For X,y € N and any two maps ¢ : X =Y and 1 :Y :— X on their sets
of vertices, the {1-distortion and ¢;-codistortion terms are defined respectively as

dis' () :== Z lwx (z,2") — wy (p(z), p(2))],

z,x’'€X

codis (¢, 9) == Z lwx (z,9(y)) — wy (¢(z),y)].

(z,y)EX XY

Then, define d/l\’/m‘p(X7 Y) := 3 ming y { max{dis' (i), dis' (), codis' (¢, ¥), codis' (v, ) } }.

1,map

Unlike the /., case, here we have d""" # d/lv. However, for the purpose of stability, it
suffices to use the inequality shown in Proposition 5 below.

» Proposition 5. Let X and Y be two networks. Then, d™(X,Y) < di (X, V).

An example where the inequality in Proposition 5 is strict is shown in Figure 2. We now
want to obtain stability for the ¢;-distance:

dp(Dgm)'"(X), Dgm (V) < 2dy"P(X, ) < 2d) (X, D).

A proof for this inequality will be included in the full version of the paper.

4 Cycle Networks

Lastly, we turn our attention to a specific type of directed graph: cycle networks. For n > 3,
let D,, be the cycle graph given by a full directed cycle with n vertices where all edges
have weight 1. Next, we define l~)n as a modification: Swap one of the edges, say (z1, z2),
to (x9,x1), keeping its weight 1; to maintain strong connectivity, also add the original
edge (x1,z2) with weight n. We define the cycle network (G, we,, ) and semicycle network
(én, wan) as the respective associated shortest-distance digraphs. We now compare results
with Dowker persistence [2]. See Figure 3 for an example with 6 vertices.

For cycle networks, we have Dgm}'“(G,) = Dgm? (G,) = {(1,[n/2]) € R?}. For
semicycle networks, we conjecture that

Dgm? (G,) = {(1,[(n —1)/2]) € R?} and Dgm)"™(G,) = {(1,n - 1) € R*}.
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Figure 3 Comparison between Dowker and walk-length filtrations. On the top, a cycle with all

weights equal to 1. Then, add a vertex (1,6) with weight 1 and change weight of (6,1) to 6.

The relevance of these semicycle networks én lies in that they hint at an interesting

property of the walk-length filtration: a higher sensitivity to directionality in cycles, resulting
in non-directed cycles dying later than complete directed cycles.
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