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Abstract

An important aim of inverse problems in topological data analysis is to better understand sets of

directional topological descriptors that uniquely correspond to an underlying shape; such sets are

called faithful for the shape. Here, we specifically focus on sets of verbose persistence diagrams

that arise from lower-star filtrations of geometric simplicial complexes. While explicit constructions

of finite faithful sets in this setting exist in the literature, they do not come with any guarantees

of optimality in terms of cardinality. To better understand faithful sets with low cardinality, we

first establish a tight lower bound on the size of any faithful set. Then, we construct a family of

simplicial complexes for which faithful sets must have size at least linear in the number of vertices.

1 Introduction

The persistent homology transform of a shape in Euclidean space was first explored in [15],

and is the set of persistence diagrams corresponding to lower-star filtrations in every possible

direction. Importantly, [15] establishes that this uncountably infinite set of persistence

diagrams uniquely represents the underlying shape, i.e., it is faithful for the underlying

shape. Since then, related theoretical work has focused on finding finite sets of persistence

diagrams or other topological descriptors (such as Euler Characteristic functions or Betti

functions) that are faithful [1, 3, 7, 14]. A key parameter in such work is whether or not

the descriptors are assumed to be verbose or concise, i.e., if they contain information with a

trivial lifespan. The relevance of verbose or concise descriptors was explored in [5, 13, 18],

although with slightly different language.

In the full version of this work [8], we develop a framework for comparing the rela-

tive strengths of different topological descriptor types through the cardinality of faithful

sets. Roughly speaking, if faithful sets of a particular topological descriptor type are always

larger than faithful sets of another type, it is weaker than that other type. Thus, in such

quantitative comparisons, it can be vital to understand minimum faithful sets. While ex-

plicitly identifying a minimum faithful set is a difficult problem in general, we are able to

provide lower bounds on the cardinality of minimum faithful sets, both in general and in

a worst-case construction. In what follows, we focus on the specific topological descriptor

type of verbose persistence diagrams; we refer the reader to our full version to see how this

and similar constructions apply to other common descriptor types.
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2 Preliminary Considerations

We assume the reader has familiarity with ideas from topology, including homology and

simplicial complexes. See [4, 9] for further details. We always take N to include zero. For

a simplicial complex K, we use the notation Ki for its i-skeleton and ni as the number

of i-simplices. We always assume our simplicial complexes are geometric and finite. A

filter of K is a map f : K → R such that, for τ, σ ∈ K, whenever τ is a face of σ, then

we have f(τ) ≤ f(σ). Then, letting F (t) := f−1(−∞, t], the sequence {F (t)}t∈R is the

filtration associated to f ; in particular, the filtration is a sequence of nested subcomplexes

along with inclusion maps F (s) →֒ F (t) for every s ≤ t. Moreover, for each k ∈ N, the

inclusion F (s) →֒ F (t) induces a linear map on homology, Hk(F (s)) → Hk(F (t)). We

write βs,t
k (K, f) to mean rank of this map, or simply βs,t

k if K and f are clear from context.

In particular, the lower-star filter of a simplicial complex K immersed in R
d with respect

to some direction s ∈ S
d−1, is the map fs : K → R defined by fs(σ) = max{s·v | v ∈ K0∩σ}.

Note that s defines a preorder on K0, v0 ≤ v1 ≤ . . . ≤ vn0−1. Then, the lower-star filtration

of K with respect to s is

∅ ⊂ f−1
s (−∞, s · v0] ⊆ f−1

s (−∞, s · v1] ⊆ . . . ⊆ f−1
s (−∞, s · vn0−1] = K.

Any filter function has compatible index filters, which are functions f ′ : K → R such that f ′

orders all the simplices of K uniquely and if f(τ) ≤ f(σ), then f ′(τ) ≤ f ′(σ). We say their

corresponding filtrations are compatible index filtrations.

Our principal objects of study are verbose persistence diagrams. As they are closely

related to the more familiar concise persistence, we begin with the following definition.

◮ Definition 2.1 (Concise Persistence Diagram, ρ). Let f : K → R be a filter function. We

define the kth-dimensional persistence diagram as the following multiset:

ρf
k :=

{

(i, j)µ(i,j)

s.t. (i, j) ∈ R
2

and µ(i,j) = βi,j−1
k − βi,j

k − βi−1,j−1
k + βi−1,j

k

}

,

where R = R∪{±∞} and (i, j)m denotesm copies of the point (i, j). The persistence diagram

of f , denoted ρf , is the union of all k-dimensional persistence diagrams ρf := ∪k∈Nρ
f
k .

Since simplices can appear at the same parameter value in a general filtration, not all cycles

are represented in the persistence diagram. However, having every simplex “appear” in the

persistence diagram is helpful, in addition to being natural. Thus, we introduce verbose

persistence diagrams, which contain this information.

◮ Definition 2.2 (Verbose Persistence Diagram, ρ̂). Let f : K → R be a filter and let f ′ be

a compatible index filter. For k ∈ N, the k-dimensional verbose persistence diagram is the

following multiset:

ρ̂f
k :=

{

(f(σi), f(σj)) | (i, j) ∈ ρf ′

k

}

. (1)

The verbose persistence diagram of f , denoted ρ̂f , is the union of all ρ̂f
k .

While concise persistence diagrams may feel more familiar, the idea of verbose persistence

diagrams is not new. Indeed, many typical algorithms for computing persistence (e.g., [4,

Chapter VII]), explicitly compute topological events with trivial lifespan but then discard

them from the output. In [11], persistence diagrams are the same as our definition of ρ̂.

In [16], we see filtered chain complexes as a source of verbose persistence; [2, 12, 13, 17] also

take this view.
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In particular, in this section, we identify a family of simplicial complexes for which

minimum faithful sets of verbose persistence diagrams are linear in the number of vertices.

We use αi,j to denote the angle that vector vj − vi makes with the x-axis. We assume

angles take value in [0, 2π). We establish a preliminary observation, a specific instance of

the general phenomenon that a simplicial complex stratifies the sphere of directions based

on vertex order [3, 10].

◮ Observation 1. Suppose that a simplicial complex K in R
2 contains an edge [v1, v2] such

that v1 and v2 have degree one. Then a birth event occurs at the height of v1 in ρ̂(K, s) for

all s in the half of S
1 defined by the open interval H = (α1,2 − π, α1,2 + π) (i.e., all s so

that s ·v1 > s ·v2) and as an instantaneous event for s ∈ HC (i.e., all s so that s ·v1 ≤ s ·v2).

We also establish the following elementary lemma.

◮ Lemma 3.2. Consider a pair of nested triangles as in Figure 2. Then angle A is larger

than θ, φ−B, and ψ − C.

Proof. Adding angles in the larger triangle, we see θ + φ+ ψ = π. Then,

θ + (φ−B) +B + (ψ − C) + C = π

(A+B + C) + θ + (φ−B) + (ψ − C) = A+ π

π + θ + (φ−B) + (ψ − C) = A+ π

θ + (φ−B) + (ψ − C) = A.

All the terms in the last line are positive, meaning A is larger than θ, φ−B, and ψ−C. ◭

Figure 2 Nested triangles as discussed in Lemma 3.2

We now construct the building block that forms the complexes used in our bound.

◮ Construction 1 (Clothespin Motif). Let K be a simplicial complex in R
2 with a vertex

set {v1, v2, v3, v4}. Suppose that only v3 is in the interior of the convex hull of {v1, v2, v4},

and that the edge set consists of [v1, v2] and [v3, v4]. See the left image in Figure 3.

Construction 1 was built specifically for the following necessary condition for faithful

sets of verbose descriptors. We state this condition in terms of ρ̂’s in the following lemma.

◮ Lemma 3.3 (Clothespin Repesentability). Let K be a clothespin motif, as in Construction 1,

and suppose that ρ̂(K,S) is faithful. Then we have at least one direction s ∈ S such that the

angle formed between s and e1 = (1, 0) lies in the region [α3,2−π, α3,4−π]∪[α3,2+π, α3,4+π].

Proof. Let K ′ be a simplicial complex in R
2 with the same vertex set as K, but with

edges [v1, v4] and [v2, v3] (see the left side of Figure 3). Recall that, since ρ̂(K,S) is faithful,

the set S must contain some s so that ρ̂(K, s) 6= ρ̂(K ′, s).
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Figure 3 The two simplicial complexes considered in the proof of Lemma 3.3.

Each vertex corresponds to either a birth event or an instantaneous event depending

on the direction of filtration. We proceed by considering each vertex vi individually and

determining subsets Ri ⊂ S
1 such that, whenever s ∈ Ri, the event at s · vi is different when

filtering over K versus K ′, but for s∗ 6∈ Ri, the type of event at s∗ · vi is the same between

the two graphs. Figure 4 shows these regions, and in what follows, we define them precisely.

First, consider v1. By Observation 1, v1 ∈ K corresponds to a birth event for all

directions in the interval B = (α1,2−π, α1,2+π) and v1 ∈ K ′ corresponds to a birth event for

all directions in the interval B′ = (α1,4 −π, α1,4 +π). Then we write R1 = (B\B′)∪(B′ \B),

which is the wedge-shaped region such that for any s ∈ R1, the type of event associated

to v1 ∈ K and v1 ∈ K ′ differ, meaning ρ̂(K, s) 6= ρ̂(K ′, s).

Using this same notation, identify the wedge shaped region Ri for vertex i ∈ [2, 3, 4] such

that any direction from Ri generates ρ̂’s that have different event types at vertex vi when

filtering over K versus K ′. Similar arguments for i ∈ [2, 3, 4] give us the complete list;

R1 = (α1,2 − π, α1,4 − π] ∪ [α1,2 + π, α1,4 + π)

R2 = (α2,3 − π, α2,1 − π] ∪ [α2,3 + π, α2,1 + π)

R3 = (α3,2 − π, α3,4 − π] ∪ [α3,2 + π, α3,4 + π)

R4 = (α1,4 − π, α3,4 − π] ∪ [α1,4 + π, α3,4 + π)

Let W = ∪4
i=1Ri. Then, for any s ∈ W , we have ρ̂(K, s) 6= ρ̂(K ′, s), and for any s∗ ∈ WC ,

we have ρ̂(K, s∗) = ρ̂(K ′, s∗).

Finally, we claim that W is the closure of R3, denoted R3, i.e., exactly the region

described in the lemma statement. This is a direct corollary to Lemma 3.2; the angles

swept out by each regions correspond to the angles formed by pairs of edges in K and K ′;

in particular, the angle ∡v2v3v4 is the largest and geometrically contains the others. This

means the extremal boundaries over all Ri’s are formed by the angles α2,3 ±π and α3,4 ±π,

the defining angles of R3. Observing that each of these four angles appears as an included

endpoint for some Ri, we see R1, R2, R4 ⊆ R3 = W (see Figure 4), as desired. ◭

To get a deeper intuition for this result, observe that the verbose diagrams corresponding

to K and K ′ of Figure 3 are identical when we filter in direction e1, but when we filter

in direction e2, they are distinct. We refer to the wedge shaped region of directions for

which the corresponding verbose diagrams have this distinction as a clothespin’s region of

observability (similar to observability for χ’s discussed in [6, 3]). We notate the region as

W = [α3,4 − π, α2,3 − π] ∪ [α3,4 + π, α2,3 + π]. Crucially, W is defined by the angle v2v3v4,

so a different embedding of K could result in a smaller region.

◮ Remark (W Can be Arbitrarially Small). As the angle ∡v2v3v4 approaches zero, the region

of observability, W , described in the proof of Lemma 3.3 also approaches zero.
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of the m regions of observability, meaning that |S| ≥ m = n0/4. Thus, the size of a faithful

set of ρ̂’s for Km is Ω(n0).
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