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Abstract— In collaborative human-robot manipulation, a
robot must predict human intents and adapt its actions accord-
ingly to smoothly execute tasks. However, the human’s intent in
turn depends on actions the robot takes, creating a chicken-or-
egg problem. Prior methods ignore such inter-dependency and
instead train marginal intent prediction models independent of
robot actions. This is because training conditional models is
hard given a lack of paired human-robot interaction datasets.

Can we instead leverage large-scale human-human interac-
tion data that is more easily accessible? Our key insight is
to exploit a correspondence between human and robot actions
that enables transfer learning from human-human to human-
robot data. We propose a novel architecture, INTERACT,
that pre-trains a conditional intent prediction model on large
human-human datasets and fine-tunes on a small human-robot
dataset. We evaluate on a set of real-world collaborative human-
robot manipulation tasks and show that our conditional model
improves over various marginal baselines. We also introduce
new techniques to tele-operate a 7-DoF robot arm and collect a
diverse range of human-robot collaborative manipulation data
which we open-source. We release our code and datasets at
https://portal-cornell.github.io/interact/.

I. INTRODUCTION

If robots are to work alongside human partners to achieve
shared goals, they need models for how to coordinate with
humans. Such coordination is dependent on understanding
the human partner’s intent and predicting how these intents
might change in response to the robot’s actions [1]. Consider
the shared human-robot manipulation task in Fig. 1 where a
human and a robot are simultaneously reaching for objects
on a shelf. The robot needs to predict the human’s intent, i.e.,
which object they are reaching for, to safely and confidently
reach for a different object. However, the human’s intent in
turn depends on the action the robot takes in the future. This
cyclic dependency between human intent and robot actions
presents a non-trivial chicken-or-egg problem. We tackle the
problem in this paper by training intent prediction models
that condition on future robot actions.

There’s been a lot of recent focus on intent prediction for
collaborative manipulation [2]–[5], including approaches [6]
that leverage large-scale human-activity datasets [7], [8].
Nevertheless, these models predominantly operate in a
marginal framework, without conditioning on future robot
actions. Such an approach can yield sub-optimal outcomes;
consider again the scenario illustrated in Fig. 1. An un-
conditioned model may estimate that the human has an
equal likelihood of reaching for either object on the shelf.
Consequently, the robot may deduce that it is unsafe to
proceed with reaching for any object.

1Department of Computer Science, Cornell University

Fig. 1: We present INTERACT, a model that predicts future
human intent conditioned on the future robot action. Left:
When a human passes an object over, INTERACT conditions
on the future object handover action of one human and
predicts that the other human will move towards it. Right: In
this human-robot interaction, given the robot’s plan to reach
for the can on the right, INTERACT predicts the human will
reach for the pepper. We transfer a model trained on human-
human interactions to human-robot interactions.

Conditional transformer models show promise in over-
coming such issues and have been successfully used in
self-driving [9]–[13] to model dependencies between road
agents and forecast their joint behaviors. Such models require
extensive human-generated driving data [14], [15]. However,
adapting such methods to the domain of human-robot col-
laborative manipulation is not straightforward due to a key
obstacle: the scarcity of large-scale human-robot interaction
datasets for training. Acquiring such datasets, even on a
smaller scale, poses its own challenges, given the complexity
of teleoperating 7-DoF robot arms. The question then arises:
can we capitalize on the readily available, large-scale human-
human interaction data?

Our key insight lies in leveraging the correspondence
between human and robot actions to facilitate transfer
learning from human-human to human-robot interactions.
For example, in common manipulation tasks such as object
handovers, humans often discern each other’s intentions by
observing arm and hand movements. We hypothesize that
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human reactions to robot arm movements exhibit similar
patterns, allowing for the effective transfer of learned models.

We propose a novel architecture, INTERACT (Intent
Prediction via Robot Action-Conditioned Transformer) that
can predict a human’s intent based on the robot’s planned
future action. Our model is trained in two stages. First,
we utilize large sources of both single and multi-human
interaction data, where our model predicts human intent
conditioned on the future action of the other human in the
scene (Fig 1). Then, we exploit a low-level correspondence
between the human’s hand and the robot end-effector to
tele-operate a 7-DoF Franka Emika robot arm alongside a
human partner. This collected Human-Robot dataset contains
human-robot interaction data as well as the corresponding
motion data of the human tele-operating the human arm. We
utilize this pairing to align human and robot representations
for effective transfer learning. Our key contributions are:

1) We introduce a novel transformer-based architecture
that conditions on robot actions to predict human intent.

2) We propose a technique to collect a paired human-robot
dataset via tele-operation for fine-tuning models with
aligned representations and open-source a first dataset
of human-robot collaborative manipulation.

3) Our prediction model demonstrates improved human
intention prediction on multiple real-world datasets of
human-human and human-robot interaction.

II. RELATED WORK

Predicting Human Intent for Navigation. Human intent
prediction has been extensively studied in social navigation.
Research in this domain has focused on developing better
input and output representations for modeling inter-agent
interactions [16]–[18]. The multi-modality of human intents
can be captured by generative neural network architectures
such as Trajectron++ [19]–[22]. Yet, these works are largely
independent of robot actions and predict human intents inde-
pendently for each agent in the scene without enforcing joint
future consistency. Attempts have been made to develop joint
forecasting and planning frameworks [23], [24]. Our work
is inspired by recent progress in the self-driving domain;
transformer models have been applied to predict the joint
futures of agents in the scene by conditioning the robot’s
future actions [9]–[13]. While such an approach is feasible in
self-driving where large-scale interaction datasets [14], [15]
are readily available, it is difficult to collect human-robot
collaboration data. We introduce new techniques to collect a
dataset of human-robot interactions to fine-tune forecasting
models trained on human-human interactions.

Human Pose Prediction. In this work, we represent
human intention as a trajectory of human pose predictions,
which is a challenging problem due to the wide range of
possible human joint movements. Recently, the release of
large-scale datasets of human motion [7], [8], has made
this problem more tractable, leading to rapid progress in
this field. A number of approaches have been proposed to
model the spatio-temporal interaction between human joints
using Graph Neural Networks and Transformers [25], [26].

However, such approaches are limited to predicting future
motion for just one human. Recent works have extended
pose prediction from single-person to multi-person settings.
SoMoFormer [27] uses a transformer architecture that can
accept any joint embedding as a query, allowing the model
to learn interactions between all joints in the scene, in-
cluding from different humans. Multi-Range Transformers
(MRT) [28] utilizes a combination of a local encoder to
learn temporal dependencies between a single agent’s body
pose and a global encoder to learn dependencies with other
agents in the scene. The small sizes of existing human-human
interaction datasets limit these approaches. In this work,
we extend existing human-human interaction datasets and
additionally collect a dataset of human-robot collaboration.

Predicting Human Intent for Collaborative Manipula-
tion. Human-robot collaboration requires representing future
human intents in some form. Many approaches consider
the human to be completely static [29]–[32]. Others reason
about the future motion of specific human joints such as
the wrist, hand, or head [33]–[35]. Similar to social nav-
igation, almost all human intent predictors in the context
of collaborative manipulation [2]–[5], [36]–[38] generate
marginal predictions independent of robot actions. Mainprice
et al. [39] use motion capture data of two humans engaged
in a collaborative task within a shared workspace to predict
single-arm reaching motions. However, they do not use any
human-robot data to align human and robot representations.

Human-Robot Correspondence. Our objective is to col-
lect a dataset of paired human-robot interaction. However,
it is challenging to program a reliable robot policy that
can operate safely with humans. Besides, we require a
method to transfer prediction models trained on human-
human data to our collected data. When robot and human
morphologies match, as in the case of humanoid robots [40]–
[42] or dexterous hands [43], [44], human motion can be
directly imitated. While robotic arm joint movements differ
from human joints, a lower-dimensional mapping must be
created [45]. In this work, we define a correspondence
between the human hand and wrist joints and the robot’s end
effector to be able to control robots for collecting interaction
data. We detect the 6-DoF pose of the human hand using
an OptiTrack motion capture suit for robust pose detection
amidst occlusions in the environment. Then, we map the pose
to the robot’s end-effector and control it using an IK-based
controller. Similar to the human-robot alignment function
used by MimicPlay [46], an imitation learning framework
from human demonstrations, we use the pairing between
the robot’s motion and the tele-operating human’s motion
to transfer our prediction model.

III. PROBLEM FORMULATION

Marginal Intent Prediction. We begin by modeling the
marginal intent prediction problem as predicting the human’s
intent given the scene context. For simplicity1, we assume

1Our framework can easily be extended to handle multiple humans, a
richer context that includes environment information and visual cues, and
alternate intent definitions that are a function of the observations.



Fig. 2: INTERACT Model Architecture. The scene history ϕ is encoded by the local and global transformer encoders.
The future action aR of the robot is passed as a query to the transformer decoder to generate an action-conditioned human
intent prediction zH . The robot pose embeddings are aligned with paired human pose embeddings via an alignment loss.

there is a single human H interacting with a robot R.
We define the human’s intent zH as a T-horizon sequence

of future poses, i.e., zH = {sH1 , sH2 , . . . , sHT }, where sHt ∈
Rd is the d-dimensional human pose at future timestep t.
For many tasks, this information is sufficient for the robot
to plan it’s future actions. We define context ϕ as salient
information in the scene to predict the human intent. We
set context as the current and past history of human states
ϕ = {sH−T+1, s

H
−T+2, . . . , s

H
0 }. We define marginal intent

prediction model Pθ(zH |ϕ) as predicting human intent zH
conditioned only on the context ϕ, where θ are parameters
of the model. Notably, the predictions are independent of
the robot R. We train this model via Maximum Likelihood
Estimation (MLE) on observed human motions.

max
θ

Eϕ,zH logPθ(zH |ϕ) (1)

Action-Conditioned Intent Predictions. We hypothesize
that marginal model Pθ(zH |ϕ) is insufficient for accurate
intent prediction in close-proximity interactions and requires
conditioning on robot actions. We define the robot’s action
aR ∈ Rj to be its planned goal location denoted as the
j− dimensional robot goal pose. For instance in Fig. 1, the
current poses (and a 1s history) of both the human and robot
represents ϕ, the robot’s planned future end-effector position
is denoted by aR, and the future human intent zH is its future
upper body pose. We define an action-conditioned intent
prediction model Pθ(zH |ϕ, aR) as predicting human intent
zH conditioned on both the context ϕ and the robot action
aR. We augment the context to also include the past his-
tory of robot states, ϕ = {sH−T+1, . . . , s

H
0 , sR−T+1, . . . , s

R
0 },

where sRt ∈ Rj is robot pose at time t. We also train this
model via a similar MLE objective:

max
θ

Eϕ,zH logPθ(zH |ϕ, aR) (2)

However, optimizing the objective above poses an impor-
tant practical challenge - collecting large-scale paired human-
robot interaction data is costly. It requires humans to work

around robots that are already planning reasonable motions.
It is also non-trivial to make use of existing public human-
human motion datasets to aid in this task. We address both
of these challenges next in our approach.

IV. APPROACH

We present INTERACT (Intent Prediction via Robot
Action-Conditioned Transformer), a framework for predict-
ing human intent conditioned on future robot actions for
collaborative manipulation. At train time, we first pre-train
a conditional intent prediction model on human-human in-
teraction data combining publicly available datasets and task
specific datasets that we collect. We then fine-tune this model
on a small scale human-robot dataset where we predict
human intent conditioned on robot actions. Our approach has
two main features: (1) an alignment loss between human and
robot representations to allow transfer between domains (2)
a new tele-operation technique to control a 7-DoF robot arm
for paired human-robot interaction.

A. Data: Collecting Paired Human-Robot Interaction

We make use of large-scale single-human activity data
(AMASS [7]) as well as extend the human-human dataset
in CoMaD [6] as our source of human-human interaction
data. In order to transfer our action-conditioned model for
collaborative manipulation, we further require a dataset of
paired human-robot interactions. However, it is not easy to
design a robot policy that can be deployed alongside a human
partner. To control a robot arm with natural arm movements,
we develop a low-level correspondence between the human
and the robot. Specifically, we map the human hand’s 3-D
position as a translation and use the 3-D rotation from the
human wrist joint to the hand joint to generate a 6-D end-
effector pose for the robot. We track this end-effector pose
using an IK-based joint impedance controller [47]. Our tele-
operation system utilizes an Optitrack Motion capture system
that detects human joint positions at 120Hz and can track the
calculated 6-D end-effector pose in real-time. We collect not
only the joint positions of the robot and its human partner



but also the robot-paired joint positions of the tele-operating
human. The paired data allows us to align human and robot
representations for effective transfer learning (Section IV-C).
More details included in Section V.

B. Model Architecture: Action-Conditioned Transformer

Encoding the Scene Context. Fig 2 gives an overview of
INTERACT’s model architecture, which is based on Multi-
Range Transformer (MRT) [28]. Both the human history
∈ RT×d and robot history ∈ RT×j (when training on
human-human data, the dimensions of both histories are the
same) are passed through linear layers and projected to the
same embedding dimension ∈ RT×D. The human history
is passed through a local transformer encoder, whereas the
combined human and robot history is passed through a
global transformer encoder. To form the final scene context
encoding, both the local transformer encoding ∈ R×T×D and
the global transformer encoding ∈ R2×T×D are concatenated
together ∈ R3×T×D. Note that prior to any values being
passed into the encoders, a Discrete Cosine Transform (DCT)
is applied to them, and an Inverse Discrete Cosine Transform
(IDCT) is applied to the final decoder outputs. This practice
was introduced by [48] to enforce smoothness and periodicity
in generated pose outputs.

Decoding Human-Intent using Action-Conditioning.
MRT decodes future human intent by passing an embedding
of the last observable human pose ∈ R1×d as a query to a
Transformer Decoder. In this work, we offset the entire scene
around the last human observable pose (and add this offset
back into the final predictions). Instead of the last observable
human pose, we pass in the robot’s future action aR ∈ R1×j

embedding as the query. When training on human-human
data, the human pose 1s in the future aH ∈ R1×d is passed in
instead. The future action is passed through a linear layer and
projected to the same embedding dimension as the encoded
contexts ∈ R1×D. This future action embedding is passed in
as the query to the transformer decoder. The scene context
encoding vector forms the key and value for the transformer
decoder. The decoder output ∈ R1×D is first passed through a
sequence of linear layers to generate a T -horizon embedding
∈ RT×D. Finally, a linear layer decodes the embedding
vector to the human’s joint dimensions ∈ RT×J . Note that
the only change in our architecture from MRT is the query
to the transformer decoder.

C. Aligning Human and Robot Representations

Representation Mismatch. As mentioned in the previous
section, the robot and human have different joint dimen-
sions. Besides, they represent different morphologies. In our
transformer model, they are projected into D-dimensional
embeddings via different linear layers. We wish to align the
embeddings from human and robot motion into the same
embedding space. For this purpose, we utilize the paired data
stored during tele-operation while collecting human-robot
data. For each robot pose, sR ∈ Rj , we have a corresponding
human body pose sH ∈ Rd. We create a dataset DHR from

the paired human and robot poses and use it for aligning
human-robot representations.

Alignment Loss. To transfer our model from human-
human to human-robot data, the learned human and robot
embeddings need to be aligned. We leverage the dataset
DHR of paired human and robot poses for this purpose.
Specifically, for our transformer model parameterized by
θ, we wish to align the robot history embedding layers,
parameterized by θHhist and θRhist, where the former is utilized
to embed human-history when training on human-human
interaction data and the latter is used with human-robot data.
Concretely, we employ a simple cosine similarity [49] loss
for the history embedding vectors as follows:

Lhist
align(θhist) =

DHR∑
sR,sH

[
1− SC(fθR

hist
(sR), fθH

hist
(sH))

]
(3)

where SC is the cosine similarity metric between two em-
bedding vectors. Similarly, we also align the future-action
embedding layers, parameterized by θHfut and θRfut.

Overall Loss Equation. Our complete loss function is
therefore the following:

L(θ) = λpLpred(θ)+λhL
hist
align(θhist)+λfL

fut
align(θfut) (4)

where Lpred is the prediction loss (MPJPE) on the forecasts

Lpred(θ) =
1

T

T∑
t=1

∥∥ŝHt − sHt
∥∥2
2

(5)

Here, ŝHt , ŝHt are the predicted and ground truth human poses
respectively. λp, λh, and λf are loss coefficients (set to 1,
0.1, and 0.1 respectively). Note that there are two separate
alignment loss terms, one to indicate the alignment of history
motion and one for the alignment of future poses.

V. EXPERIMENTS

A. Collaborative Manipulation Dataset (CoMaD)

Previous multi-pose prediction methods [27], [28] train
and evaluate on small-scale datasets. For example, the
human-human interaction split of CMU-Mocap [50] consists
of just 55 episodes of two human interactions with an average
length of 3 seconds, totaling 6 minutes of human motion
compared to 40 hours of single-human motion in AMASS. In
fact, these methods train their models by augmenting existing
datasets with synthetic single-person activity.

In this paper, we extend the Collaborative Manipula-
tion Dataset (COMAD) [6]. The human-human interaction
dataset (Fig 3.) now includes 8 diverse subjects performing 3
different kitchen tasks with a total of 270 episodes (average
30s length), totaling more than 4 hours of human motion.
Further, we introduce the human-robot dataset consisting of
217 episodes of interaction collected via tele-operation of a
7-DoF Franka-Emika Research 3 robot with a human partner
(Section IV-A). Episodes of each task are divided into train,
validation, and test splits in an 8:1:1 ratio.

Human-Human Data. The length of each episode ranges
from 20 to 40 seconds. The dataset consists of three tasks:



Fig. 3: Collaborative Manipulation Dataset (CoMaD) consists of
Human-Human and Human-Robot interaction data. We collect data
on three different H-H tasks and three different H-R tasks across
several subjects. The bottom right image shows our tele-operation
setup for paired human-robot data collection.

(1) TABLE SETTING (70 episodes): Two humans manipulate
table items, avoiding collisions between them. (2) OBJECT
HANDOVER (106 episodes): One human asks for objects,
and the other human moves in to hand the object over. (3)
REACTIVE STIRRING (94 episodes): One human stirs a pot
and reacts to the other human pouring vegetables into it.

Human-Robot Data. The length of each episode ranges
from 3 to 15 seconds. The dataset consists of three tasks:
(1) CABINET PICK (135 episodes): The robot reaches for
one of two objects on the cabinet, and the human responds
accordingly. If the robot reaches for the object close to the
human, they wait, and if the robot reaches for the object away
from the human, both reach for their respective objects. (2)
CART PLACE (55 episodes): There is a table and cart setup
between the robot and the human. The robot moves an object
from the table to the cart, and the human picks up an object
from the cart to use. If the human moves first, the robot must
wait for the human, and if the robot moves first, the human
must wait for the robot. (3) TABLETOP MANIPULATION (27
episodes): A table has two objects on it, with both the human
and robot reaching for one of them. The human waits for the
robot when it moves in. Similarly, the robot must wait if the
human comes in the way.

B. Experimental Setup

Large Human-Activity Databases. We created synthetic
two-human data using AMASS [7] and pre-trained the model
using the synthetic data and CMU-Mocap [50] data. We use
the human-human interaction data in CMU-Mocap without
adding any synthetic humans.

Baselines (H-H). MARGINAL [6] uses one human’s his-
tory to predict intent, whereas MARGINAL (+ HIST) [28]

also uses the other human’s history. Both are pre-trained on
synthetic AMASS data and fine-tuned on H-H data. ONLY
FINETUNED is only trained on a smaller amount of H-H
data. Our method, INTERACT uses both humans’ histories
and conditions on the other human’s future action.

Baselines (H-R). MARGINAL takes the corresponding H-
H model above and fine-tunes on H-R data, whereas ONLY
FINETUNED is only trained on H-R data. INTERACT takes
our H-H model and fine-tunes on H-R data, replacing the
second human’s encoding with the robot. INTERACT +
ALIGN further incorporates the robot alignment loss (Eq 3).

Implementational Details. We utilize a 1s motion his-
tory input to generate a 1s forecast (represented over 15
timesteps). We consider the human pose dimension d = 27,
which includes 9 upper body 3-D joint positions (upper
back, shoulders, elbows, wrists, hands), and the robot pose
dimension j = 6, which includes two 3-D points on the
robot’s end-effector corresponding to the human’s hand and
wrist. We report the Final Displacement Error (FDE), which
is the average distance between the predicted joint positions
and ground truth joint positions at the end of 1s.

C. Results and Analysis

O1. Conditioning on actions improves intent prediction
in both human-human and human-robot interactions.
Fig.4 and Fig.6 both show that INTERACT models outper-
form any MARGINAL models without information about the
intent of the other agent in the scene. MARGINAL models
produce higher FDE on all three H-H and H-R tasks com-
pared to conditional models. This can be seen qualitatively
in Fig.5 where the INTERACT intent predictions anticipate
a handover due to knowledge about the planned action of
the other human in the scene. Similar trends follow in H-R
tasks such as CABINET PICK demonstrated in Fig 7 where
conflict arises as a human and robot simultaneously reach
for objects. If the robot reaches for the object on the right,
we know the human intends to pick the object on the left.

O2. Human-Robot Alignment loss helps improve pre-
diction performance. Fig.6 shows that adding alignment
loss (INTERACT + ALIGN) reduces FDE in predicting future
human poses. This supports our hypothesis that aligning
representations helps in transfer learning from H-H data.

O3. Pre-training models on human-human interactions
is critical for transfer learning. Fig.6 shows that ONLY
FINETUNED trained only on H-R data performs significantly
worse than other MARGINAL and INTERACT that are also
trained on H-H data. It yields notably higher FDE across all
joints in all three H-R tasks we evaluate on.

O4. Pre-training on synthetic human-human activity
data helps learn general human motion dynamics. Fig.4
shows that ONLY FINETUNED produces higher FDE than
models pre-trained on synthetic AMASS data despite the
synthetic data lacking real H-H interactions. This leads us to
believe that large-scale single-human data can be leveraged
even in the multi-human setting.



Fig. 4: All Joints Final Displacement Error (FDE) across all tasks in CoMaD H-H. INTERACT predictions have lowest FDE.

Fig. 5: Top: Final Displacement Error (FDE) of all joints over time in a test-set episode of object handover. Highlighted windows indicate
all object handovers in the episode, where we observe higher errors for MARGINAL. Bottom: Visualizations of the predictions when the
error is at its peak (1s pre-RGB image) show INTERACT anticipates the other’s human action and moves towards the handover location.

Fig. 6: Final Displacement Error (FDE) on all joints per and across all tasks in CoMaD H-R. INTERACT variants perform better than
other models, with reductions in FDE across tasks with human-robot representation alignment.

Fig. 7: Comparing Final Displacement Error (FDE) between
INTERACT and MARGINAL predictions in a test-set CoMaD H-R
Cabinet Pick episode. INTERACT produces more accurate predic-
tions when the planned robot action is picking up a specific item,
indicating the other item is free to pick.

VI. DISCUSSION AND LIMITATIONS

In this work, we present INTERACT, a novel architecture
that predicts human intentions by conditioning on future
robot actions. We also expand the Collaborative Manipu-
lation Dataset (CoMaD) with a novel paired human-robot
dataset collected by tele-operation allowing us to effectively
align a model trained on human-human data to human-
robot interactions. In the future, we aim to demonstrate the
performance of INTERACT in online planning scenarios.
By reasoning about how actions can influence human intent,
robots can be more confident in their plans.

Limitations. There are notable limitations to our work that
we highlight in this section. Robot safety in close proximity
interactions is extremely important, and collisions can be a
concern in the case of errors in human intent prediction.
Safety mechanisms [51] studied extensively should be used
to help target these potential issues. While we collect data
across several subjects, we are limited to certain environ-
ments per task. Our goal is to collect data in a distribution



that represents a few different modes of motion that are
common in human-robot interactions, and plan to expand
the dataset in the future to cover a wider distribution.
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