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ABSTRACT

Efficient use of urban micromobility resources such as bike sharing
is challenging due to the unbalanced station-level demand and
supply, which causes the maintenance of the bike sharing systems
painstaking. Prior efforts have been made on accurate prediction of
bike traffics, i.e., demand/pick-up and return/drop-off, to achieve
system efficiency. However, bike station-level traffic prediction is
difficult because of the spatial-temporal complexity of bike sharing
systems. Moreover, such level of prediction over entire bike sharing
systems is also challenging due to the large number of bike stations.
To fill this gap, we propose BikeMAN, a multi-level spatio-temporal
attention neural network to predict station-level bike traffic for
entire bike sharing systems. The proposed network consists of an
encoder and a decoder with an attention mechanism representing
the spatial correlation between features of bike stations in the
system and another attention mechanism describing the temporal
characteristic of bike station traffic. Through experimental study
on over 10 millions trips of bike sharing systems (> 700 stations)
of New York City, our network showed high accuracy in predicting
the bike station traffic of all stations in the city.

1 INTRODUCTION

Bike sharing has become an essential micromobility option for
urban residents worldwide due to its advantages in convenience and
economy over other urban mobility means. Within a docked/station-
based bike sharing system, a micromobility user picks up a bike
from one station (demand), accomplishes her or his trip, and drops
the bike off at another station (return).

Through data analysis of the bike sharing systems in several
cities, a critical issue lies in that there were imbalanced demands
and returns distributions in those bike sharing systems, i.e. a ma-
jority of demand and a majority of redistributed/returned bikes
only occurred in a small portion of stations [14]. A typical imbal-
anced traffic map of the bike sharing system is shown in Figure
1, where the bike traffics spatially vary across the city map. Such
imbalance not only degrades the user satisfaction, but also leads
to operation inefficiency and resource waste to the bike sharing
systems. How to predict the future bike traffic (pick-ups and drop-
offs) and the subsequent rebalanced distribution of bikes in every
station becomes essential and challenging. In order to solve the
balancing problems, the general idea is propose an accurate pick-up
and drop-off prediction model.

Bike sharing traffic (pick-up and drop-off) prediction can usually
be defined as a time series prediction problem from multi-source
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Figure 1: Imbalanced bike usage heatmap of NYC. Red areas
represent high demand, while light blue areas represent low
demand.

and heterogeneous data [8]. In this work we propose a Bike sharing
Multi-level Attention neural Network called BikeMAN for station-
based pick-up and drop-off prediction with historical spatial and
temporal traffic features and some external related factors (includ-
ing weather conditions and points of interest (POIs)). Our work
will not only give the prediction results for bike sharing system
operators to efficiently rebalance their bike distribution, but also
to provide information for citizens about the bike availability at
the stations of their interest in future hours or minutes. Our main
contributions are as follows:

1) Comprehensive bike data analysis: We have provided a com-
prehensive and detailed real-world data analysis on how the
weather conditions, station locations and surrounding POIs
impact the bike usage in the metropolitan area like New York
City, and visualized them to validate our insights.
Multi-level spatio-temporal attention model: To the best of
our knowledge, we propose the first novel multi-level atten-
tion neural network consisting of a spatial attention and a
temporal attention mechanism to predict station-level bike
usage (pick-ups and drop-offs), which accurately predicts the
traffics of all the stations. The spatial attention mechanism
developed in this work captures not only the correlation of
features within a single station, but also the correlation spa-
tial of features across all stations in the city. The developed
temporal attention mechanism captures temporal correlation
between features across different timestamps.

3) Extensive experimental studies: We have conducted extensive
experimental studies upon over 10 millions trips. Our multi-
level attention neural network demonstrates high accuracy
compared with other basic and encoder-decoder models in
multi-station predictions.
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The rest of the paper is organized as follows. We first review the
related in work in Section 2. After that, we present the data analysis
in Section 3. Given the features, we then present the core model of
our approach in Section 4. We show the performance evaluation in
Section 5, and conclude in Section 6.

2 RELATED WORK

The station-level prediction is challenging because of the spatial-
temporal characteristics of the bike sharing demand pattern of a
station and a large number of stations in a city. Recent studies have
been focused on tackling this challenge. Hulot et al. [6] proposed
a statistical learning model using temporal and weather features
to predict the hourly pick-ups and drop-off at each station of the
system. Chen et al. [4] used recurrent neural networks (RNNs) trying
to capture the temporal characteristics in bike sharing demand. Li,
et al. [8] proposed a representation learning method which encoded
the spatial-temporal information of the bike sharing system, and the
representation was then fed to Long-Short-Term-Memory (LSTM)
to predict bike demand. Chai, et al. developed a multi-graph con-
volutional networks as the representation of the spatial-temporal
data instead, but they also fed the learned representation to LSTM
[3]. Lin et al. [10] proposed a novel graph convolutional neural
network with data-driven graph filter model to predict hourly de-
mand for a large number of stations in the bike sharing systems.
Despite the accuracy shown upon the selected bike stations (say,
only 272 selected out of all ~800 stations in [10]), they have not
extensively, systematically and comprehensively studied the entire
bike sharing system (like NYC) for station traffic prediction, and
provided deployment insights like our work here.

Attention mechanisms have been widely used in natural lan-
guage processing [1, 11]. The idea of implementing attention on
neural networks extend to speech recognition [2, 5, 15], video sum-
marization [7] and captioning [12], and human action recognition
[13]. Liang, et al. employed a attention mechanisms in an encoder-
decoder structure for station-level geo-sensory time series predic-
tion [9]. Different from the prior studies, based on extensive data
analysis, we design a novel multi-level attention mechanism for
bike sharing system.

3 DATA ANALYSIS

We first overview the datasets and then present the data analysis
of the bike sharing dataset.

3.1 Data Overview

We use three types of data sets in our project: the user trip data, the
weather condition data and POIs data. Details of each are discussed
in the following.

1) User Trip Data: It contains information of every single
trip including the trip’s duration, start/end time , start/end
stations and their longitude/latitude, and user information.
The user trip data of NYC bike sharing system is provided on
a monthly base with over 2 million records each month. In
this study, we use the user trip data from June 2019 to October
2019 collected online!, with a total of over 10 millions trips.

https://www.citibikenyc.com/system-data
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2) Weather Condition Data: Characterizing the hourly weather
historical conditions, it contains hourly temperature, precip-
itation, wind speed, humidity and other 6 weather observa-
tions. We adopt the hourly weather data of New York City
from June 2019 to October 20192,

3) POI Data: POIs data, obtained from NYC Open Data Portal3,
includes the GPS coordinates, facility domain and some other
details (say, facility names) of over 20 thousand POI facilities
in New York City. There are totally 13 major types of POIs
(e.g. residential, transportation and commercial etc.), each of
which contains a number of minor types.

3.2 Analysis

We present the following insights regarding effects of weather and
POIs upon the station traffics based on the data and visualization.

3.2.1 Station Traffic and weather. The bike usage is highly cor-
related with weather conditions. The two dominating effects are
precipitation and wind speed. In general, wind speed and precipita-
tion negatively impact the number of bike usage. Figure 2 shows the
relationship between the hourly user trip amount of entire city and
temperature, precipitation and wind speed in June, 2019 in NYC.
Precipitation has the greatest influence on bike usage. On June 10,
0.46 inch of precipitation reduced the total amount of cycling from
an average of 8000 to less than 4000.

Wind speed is another important factor. Usually when the wind
speed is higher than 15mph, a notable decrease in bike usage will
happen. While the temperature’s impact on hourly bike demand is
not as significant as the others, but its long-term influence cannot
be ignored. Given above, we take those three factors into account
and feed them to the deep learning model as input features.

Demand and Weather
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Figure 2: Bike demand and weather correlation in June, 2019.

3.2.2  Station Traffic and POls. From the previous demand heatmap,
Figure 1, we can also see that the bike usage of stations is highly
location dependent. One of the major reasons behind this is that
different locations have different types of POIs. Figure 3 illustrate
this clearly. We use the distribution of commercial and residential
POIs from the 13 categories as an example for visualization. The

2https://www.wunderground.com/history/daily/us/ny/new-york-city/KLGA/
3https://data.cityofnewyork.us/City-Government/Points-Of-Interest/rxuy-2muj
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commercial POIs are mainly located on the center of Manhattan,
surrounded by residential facilities. The different distributions of
each types of POIs result in the dependency of bike usage on lo-
cations. Therefore, we take into account the distribution of the 13
types of POIs within <150m of each station as input features.

In order to avoid the inclusion of another bike station when
counting the nearby POIs around one station, we have to choose
the distance to the station as small as possible. However, during our
study, we found that the closest distance between two bike stations
is less than 100m. If we use this closest distance, a large number of
stations will have no POIs within this distance. Therefore, we set
the distance of counting surrounding POIs to be 150 m. In this way,
there are 91.25% of stations of which distance between each other
is larger than 150m, and there are only 6.92% of stations having no
POIs within this range, which suffices to characterize POI features.

&
(a) Demand (b) Distribution of (c) Distribution of
heatmap on Thu, commercial POIs residential POIs
Jun 6, 2019

Figure 3: Demand heatmap and distribution of commercial
and residential POIs.

In summary, based on the analysis above, besides the bike de-
mand we use weather conditions including precipitation, wind
speed, and temperature, nearby (< 150 m) POIs, and station longi-
tude and latitude as the input features of each bike stations.

4 BIKEMAN FOR BIKE STATION TRAFFIC
PREDICTION

Our system’s framework is shown in Figure 4. Bike demand data
set and two external features: hourly weather conditions data set
and point of interest data set are processed respectively and then
integrated together as the neural networks input. The model then
will output the future demand prediction of one station.

Stations
identification

Weather,
POIs Data

POlIs extraction
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Figure 4: System architecture of BikeMAN.

4.1 Preliminaries

We consider that for totally N stations in a city, each station i has
s features at timestamp ¢ : F;; = (Fi1¢,.... Fijt, ... Fist), Where

i€[1,..,N]and j € [1,..,s], and let F(p) and Fl(ldt) be the bike

traffic (pick-ups and drop-offs) of statlon i at time t.

The problem of this work is defined as: given the features of
each station of previous 7~ timestamps,

Fioqu = (Fri-7ts o Fig—7its o FNp—724)s 1€ [1,..,N], (1)
we aim at predicting the bike traffic of all the stations yl(f)t 4+ and
ﬁl(]t:)t)w’ for alli € [1,..., N] at the next r timestamps in the bike

sharing system such that

;P _pP) (D) _ p(D)
ZH ik~ Fiisull?. and  min leymk il

@

4.2 Design of Multi-level Attention Neural
Networks

The structure of our network follows the encoder-decoder architec-
ture with two attention mechanisms on the top of it. The encoder
and decoder are two separate RNN components each of which is a
stack of two LSTMs. In encoder part, a spatial attention mechanism
is implemented on the input features to generate the inputs of the
RNN with the previous RNN states. In the decoder part, a temporal
attention mechanism is implemented on the output hidden states
of the other RNN to compute the decoder outputs based on their
correlation with encoder hidden states. We detail the two attention
mechanisms as follows.

Decoder
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Figure 5: Core model architecture of BikeMAN.

4.2.1  Spatial Attention. The spatial attention mechanism is devel-
oped to describe the spatial correlation between the features of all
stations. The intuition behind the spatial attention is that the traffic
at each station is largely location-dependent as shown in Fig. 3,
which can be characterized by the neighborhood POI distributions.
For example, on a weekday morning demand in residential areas
would be higher than commercial areas because people need to ride
to work. Inspired by the work of [1, 2, 7, 9, 12, 13], we designed the
following spatial attention mechanism.

Specifically, given the set of features of all the station of previous
7 timestamps, F;_q~;, we first flatten it to create a vector f;_q;
so that the length at each timestamp is N X s. For the k-th feature

of the vector f;_q~;, denoted as f;‘_,]_t, the score of this feature is
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calculated by Eq. (3):
ek = v tanh (Ws[ht_l;ct_l] +Usff_,m+bs), 3)

where v, bs, W, and Uy are the learnable model parameters, h; 1
and c;—1 are the hidden state and cell state of the RNN, respectively,
at the previous timestamp. Then the attention weight of this feature
is a softmax function of the score of this feature as in Eq. (4):

exo (e

t s T v
Nx j
L exp (et)

This way, the spatial attention captures the correlation between
features of a station as well as the correlation between features
across all of them. The input vectors of the RNN at timestamp ¢ is
then computed by the multiplication of the attention weights and
original input features of the model:

[24

4)

fo=(aff, . offf L RN )
4.2.2 Temporal Attention. The temporal attention mechanism cap-
tures correlation between features across different timestamps. The
intuition behind this is that there is a strong time dependency of
the demand of a station at time ¢ on previous demand. For example,
on a sunny day morning if a large number of people choose to ride
bikes to work, then in the evening the demand of stations around
business areas is likely to be huge due to the return flows. The
temporal attention scores between the current decoder RNN hidden
state and one of the previous encoder RNN hidden states, A; s/, are
calculated as Eq. (6) by a concatenation manner as [11]:

A = v] tanh (Wy[h;he ), (6)
where v; and W are learnable parameters, 7~ is the number of
timestamps of encoder, h; is hidden state of encoder at timestamp
t which is in range of [1, 7], and hy is hidden state of decoder
at timestamp ¢’. The attention weight, denoted as Yt is then a
sof'tmax function of A;  as in Eq. (7):

exp (Agr)
ST exp (Anr)

Finally, the output of the attention mechanism, d;/, is then a weighted
sum of the encoder RNN hidden states shown in Eq. (8):

Yer = (7)

-
dy = Z Ve [he;hy]. )

=1
4.2.3  Predictions and Model Training. Through a fully connected
(fc) layer, the concatenation of decoder RNN hidden state, hy/, and
weighted sum of encoder RNN hidden states, d;/, is mapped to final

predictions of traffics (y € {9;?),)7;,[)) }) at all stations of time ¢’

Vi = Wpldyshy ] +bp, )
where W), and b, are learnable parameters. The entire model is
trained using the Adam optimizer which minimizes the mean square
error between the predicted values and the ground truths as the

loss function:
L(0) =+/(yr =3r)2 (10)
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which is fast and efficient in practice. Based on the machines used,
the training time for the New York City only takes 4 hours.

5 EXPERIMENTAL EVALUATIONS

We first present the evaluation setup, followed by the experimental
results.

5.1 Evaluation Setup

5.1.1 Data Pre-processing. : We evaluate the BikeMAN and related
schemes with the datasets presented in Section 3.1. All experimental
evaluations are conducted upon a desktop with Intel i5-8700, 16GB
RAM, an Nvidia GeForce GTX 1080Ti and Windows 10. We first go
through all the bike sharing datasets and delete the stations which
do not appear in all the datasets. We find 766 stations in common
among all the datasets from Jun, 2019 to Oct, 2019. Then we extract
the nearby (< 150 m) POIs around each of those common bike
stations. The time interval is set to be 1 hour. The time stamps of
encoder inputs are set 12, and the time stamps of decoder inputs
are set 1. This means that we want to use this model to predict the
return of all the stations in the next following hours based on their
demand of previous 12 hours.

Since some of the weather conditions have multiple data points
between two continuous whole points, we take mean values of
these data over an hour as the hourly data of this time. Most of the
precipitation data is 0 as it is usually sunny in NYC. However, when
it is rainy, the hourly precipitation is not high, typically within
1 inch, which is too small compared to the bike demand/return.
Therefore, we normalize the precipitation data by min-max normal-
ization such that they fall in the range of [0, 10]. For longitude and
latitude data, the difference between two stations is even smaller,
typically at the magnitude of 1072, Therefore, we normalize these
two features again by min-max normalization to make them fall in
the range of [0, 100]. We use the trips in June, July, and August 2019
for training and validating our model, and use the ones in October,
2019 to test our trained model.

5.1.2  Parameter Setups. : The parameters are set as followed. The
learning rate is 0.001. The rate of gradients clipping is 2.5. The
dropout rate is 0.3. The number of layers stacked in LSTMs is 2. The
total number of stations is 766, each of which has 19 features. The
number of encoder time stamps is 12 and that of decoder is 1. Since
the output of BikeMAN is a vector of length 766 with each element
being the demand for a station, the dimensions of hidden states
h in every LSTM of encoder and decoder are 1,024. The batch size
is set to be 64. Total number of training epochs is 100 with 2,300
iterations.

5.1.3 Comparison Metrics. : Root mean square error (RMSE) and
mean absolute error (MAE) are selected as the metrics for evalua-
tions:

RMSE =

1 M
2 = 0% (1)

LM
MAE = Zi:(yi = 3i), (12)
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where M, y; and §; are the total number of predictions made by
the model, the ground-truth of the bike pick-ups/drop-offs and the
predicted bike pick-ups/drop-offs, respectively.

5.2 Evaluation Results

5.2.1 Predictions by Varying Number of Involved Stations. As a
starting point, we first evaluate BikeMAN on bike traffic of a single
station. We choose three stations for evaluation according to their
demands sorted from high to low. Station 519 is the most popular
bike station in NYC with the highest monthly traffic among all
datasets. We then extend to carry out multi-station prediction, that
is, training and predicting multiple station using a single model at
the same time. Besides the 766 stations which we find commonly
existing among all the datasets, we choose here 190 stations out
of the 766 stations that are common among all the datasets. The
190 stations we choose is based on the total demand from June to
October 2019. We first sort all the stations by the total demand of
and then pick 190 out of them that equally split the stations array.
The accuracies of our model are compared with the encoder-decoder
of the same structure as BikeMAN but no attention mechanisms on
it. The comparison accuracies are shown in Table 1.

Table 1: Predictions of BikeMAN compared with basic encoder-
decoder

BikeMAN LSTM Enc-Dec
RMSE MAE | RMSE MAE

Number of Stations

1 (station 519) 11.70  7.29 11.78  7.16
190 3.86 1.95 5.95 3.26
766 3.79 2.08 5.64 3.26

The results are very interesting as shown in Table 1. It turns out
that the more stations we test, the more effective the attention mech-
anism is in improving the model accuracy. Only with multi-station
predictions will BikeMAN outperform the basic encoder-decoder.
The reasons probably lie in the spatial attention mechanism we
design. In this work, the spatial attention is able to capture not only
the correlation between the bike demand and other features for a
single station, but also the correlation between the features of sta-
tions across the entire city. If there is only one station’s features fed
as input, the model will lose the information of others. Therefore,
our model works better for predictions with multiple stations as
inputs rather than single-station predicitons.

5.2.2  Entire system predictions. For operators of a bike sharing sys-
tem, it is rather important to forecast the pick-ups and drop-offs for
every station in the system than just a portion of stations. Therefore,
we carry out extensive experimental test on the demand/pick-up
and return/drop-off predictions for all 766 bike stations in NYC
and compare our model with the baselines. We vary the RNN unit
in BikeMAN from LSTM to Gated Recurrent Unit (GRU) (BikeMAN-
GRU). Our models are compared with basic LSTM and GRU encoder-
decoder. The results of station traffic predictions are shown in Table
2.

From Table 2, we can see that our model BikeMAN with LSTM
as the RNN units has the best performance among all the models

Table 2: Predictions of BikeMAN compared with basic encoder-
decoder

Models Demand Return

RMSE MAE | RMSE MAE
GRU Dec-Enc 5.661 3.312 | 5.729 3.386
LSTM Dec-Enc | 5.678 3.350 | 5.693 3.338
BikeMAN-GRU 3.461 1.884 | 3.441 1.852

BikeMAN 3366  1.818 | 3.369  1.797

for both demand and return predictions. The RMSE and MAE of
BikeMAN drop by over 40% from LSTM Dec-Enc. This proves the suc-
cess of the spatial and temporal attention mechanisms proposed in
Sec. 4, which are able to capture more information in the heteroge-
neous input data. The model accuracy decreases slightly when LSTM
cells are replaced by GRU cells. For each of the models tested, the
prediction accuracy of demand is almost the same as that of return.
From Fig. 1 it can be seen that the demand and return have similar
pattern over 24 hour period, which explains the similar perfor-
mance of models on demand and return predictions. The predicted
station traffics for the first week of October, 2019 by BikeMAN and
BikeMAN-GRU compared to the ground truth are shown in the figures
below. We can see that BikeMAN highly resembles the ground-truths,
validating the accuracy and effectiveness.

—a— BikeMAN
BikeMAN-GRU
ground truth

|

dernand

Figure 6: Prediction of BikeMAN and BikeMAN-GRU on the bike
demand of station 519 for the first week of October, 2019 (red
line) compared with ground truth.

6 CONCLUSION

In order to realize accurate and practical bike sharing station traf-
fic prediction, we propose BikeMAN, a novel multi-level attention
neural network. We design a novel encoder-decoder architecture,
and leverage the spatial and temporal attentions to capture the cor-
relations between the station features. BikeMAN further takes into
account the external features like weather and points of interest
to enhance the performance. We have conducted extensive data
analysis and experimental studies upon the dataset from the New
York City, demonstrating the accuracy of our proposed scheme.
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