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1. Introduction

Fuk-Nagaev inequalities [Fuk and Nagaev, 1971, Nagaev, 1979] generalize exponential deviation
inequalities for the sums of independent random variables, such as Berstein’s, Prokhorov’s and
Bennett’s inequalities, to case when the random variables satisfy minimal integrability conditions.
For example, a corollary of Fuk and Nagaev’s results is the following bound: for a sequence of
independent, centered random variables X1, . . . , Xn such that maxk E|Xk|p <∞ for some p ≥ 2,
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)
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)
+ P
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k

|Xk| > t/4

)

+ C2(p)

(∑n
k=1 E|Xk|p

tp

)2

.

Nagaev [1979] describes the applications of such results to the laws of large numbers and moment
inequalities. Later, Einmahl and Li [2008], Rio [2017] and Bakhshizadeh et al. [2023], among oth-
ers, improved the original estimates by Fuk and Nagaev in several ways: first, the inequalities
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were extended to martingales and Banach-space valued random variables, and second, the con-
stants were sharpened. For example, inequalities due to Rio [2017], Bakhshizadeh et al. [2023]
hold with C1(p) = 1/2 and C2(p) of order pp. The latter fact is important as the order of growth
of these constants translates into the tail behavior of |∑n

k=1Xk|.
The goal of this work is to prove a version of the Fuk-Nagaev inequality for the sums of indepen-

dent random matrices and use it to sharpen existing moment inequalities. LetW1, . . . ,Wn ∈ C
d×d

be a sequence of independent self-adjoint1 random matrices such that EWk = 0d×d for all k and
where the expectation is taken element-wise. Assume that for all k, ‖Wk‖ ≤ U with proba-
bility 1 where ‖ · ‖ stands for the operator (spectral) norm. A line of work by Ahlswede and
Winter [2002], Oliveira [2010], Tropp [2012] culminated in the following version of the “matrix
Bernstein’s” inequality: for all t > 0,

P

(∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥ ≥ t

)
≤ 2d exp

(
− t2/2

σ2 + Ut/3

)

where σ2 =
∥∥∑n

k=1 EW
2
k

∥∥. An attractive feature of this inequality (as opposed to, say, Tala-
grand’s concentration inequality [Talagrand, 1996]) is that it yields a bound for E‖

∑n
k=1Wk‖,

namely, that E‖∑n
k=1Wk‖ ≤ K

(
σ
√

log(d) + U log(d)
)

for some absolute constant K > 0.

Tropp’s results have been extended in two directions: first, it was shown by Minsker [2017],
Tropp [2015] that the dimension factor d can essentially be replaced by the so-called effective

rank r
(∑n

k=1 EW
2
k

)
where r(A) := trace(A)

‖A‖ for a positive definite matrix A. In particular, this

version of Bernstein’s inequality is applicable in the context of random Hilbert-Schmidt opera-
tors acting on Hilbert spaces. Second, the boundedness assumption was relaxed by Koltchinskii
[2011] to the requirement that maxk ‖‖Wk‖‖ψ1

< ∞ where the ψ1 norm of a random variable

Z is defined via ‖Z‖ψ1
= inf

{
r > 0 : Ee|Zr | ≤ 2

}
. Finally, Klochkov and Zhivotovskiy [2020]

showed that

P

(
‖

n∑

k=1

Wk‖ ≥ t

)
≤ c1r(V

2
n ) exp

(
−c2

t2

‖V 2
n ‖+Rt

)

for all t ≥ c3(‖V 2
n ‖1/2 + M) where V 2

n is any matrix satisfying V 2
n � ∑n

k=1 EW
2
k and R =

‖maxk ‖Wk‖‖ψ1
. Our results allow to relax the integrability assumptions even further and cover

the case of heavy-tailed random matrices, namely, random matrices such that E‖W‖p = ∞ for
some p > 0 (however, we are still able to recover the known bounds for the “light-tailed” random
matrices). For example, Theorem 2.2 below implies that for all p ≥ 1,

(
E

∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥

p)1/p

≤ K

(
‖V 2

n ‖1/2
√
q + qEmax

k
‖Wk‖+

p

log(ep)
(Emax

k
‖Wk‖p)1/p

)

where q = log(r(V 2
n )) ∨ p and K is an absolute constant. This inequality sharpens previously

known results of this type by Junge and Zeng [2013], Dirksen [2011], Chen et al. [2012]: for
example, a version of Rosenthal’s inequality by Chen et al. [2012] states that

(
E

∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥

p)1/p

≤ K

(
‖V 2

n ‖1/2
√
r + rE1/pmax

k
‖Wk‖p

)

1It is well-known that the case of general rectangular matrices reduces to this one via the so-called “Hermitian
dilation,” see [Tropp, 2015, section 2.1.17].
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where r = log(d)∨ p. The fact that our bound depends on r(V 2
n ) instead of d immediately allows

one to extend it to Hilbert-Schmidt operators acting on Hilbert spaces.
Finally, let us remark that the order of the constants in the inequality stated above is op-

timal: in the scalar case d = 1, it is known [Johnson et al., 1985] that without any additional
assumptions, the best order of C(p) in the inequality

E
1/p
∣∣∣
n∑

k=1

Wk

∣∣∣
p

≤ C(p)



(

n∑

k=1

EW 2
k

)1/2

+

(
n∑

k=1

E|Wk|p
)1/p




is C(p) = K p
log(p) while Pinelis and Utev [1985] showed that C1(p) = K

√
p and C2(p) = Kp are

the best possible in the inequality of the form

E
1/p
∣∣∣
n∑

k=1

Wk

∣∣∣
p

≤ C1(p)

(
n∑

k=1

EW 2
k

)1/2

+ C2(p)E
1/pmax

k
|Wk|p.

It is clear that our results yield a sharper version the inequality (1) for large p whenever
Emaxk |Wk| is much smaller than E

1/pmaxk |Wk|p.

1.1. Organization of the paper.

The rest of the exposition is organized as follows: we present the main results and their proofs
in sections 2.1 and 2.2. Applications of the developed techniques to the empirical processes is
discussed in section 2.3 while implications for the problems of matrix subsampling and covariance
estimation are described in sections 3.1 and 3.2 respectively. Finally, section 4 contains the
required background and proofs of the lemmas that were omitted from the main exposition.

2. Main results

In this section we state the new concentration and moment bounds - Theorems 2.1 and 2.2. The
required notation will be introduced on demand. Let us remark that throughout the paper, the
values of constants K, c, C(·) is often unspecified and can change from line to line; we use K
and c to denote absolute constants and C(·) to denote constants whose value depends on the
parameters in brackets.

2.1. Fuk-Nagaev-type inequality

The following proposition is the key technical result that will serve as the starting point for
the derivation of the main results. Therefore, we state it separately. Everywhere below, M =
maxk=1,...,n ‖Wk‖, Q1/2(Z) stands for the median of a real-valued random variable Z, and
ε1, . . . , εn denote independent symmetric Bernoulli random variables that are independent from
W1, . . . ,Wn. Finally, ‖ · ‖2 is the Euclidean norm.

Proposition 2.1. Let W1, . . . ,Wn ∈ C
d×d be a sequence of centered, independent, self-adjoint

random matrices. Let U > 0, and assume that V 2
n satisfies V 2

n �∑k EW
2
k I{‖Wk‖ ≤ U}. Finally,

set σ2
U = ‖V 2

n ‖ where r(·) represents the effective rank. Then, whenever

t

2
≥ σU ∨ U/3 ∨ sup

‖v‖2=1

Q1/2

(〈(
n∑

k=1

Wk

)
v, v

〉)
,
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the following inequality holds:

P

(∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥ > 12t

)
≤ 64r

(
V 2
n

)
exp

[
− (t/2)2

σ2
U + tU/6

]

+ 16P

(∥∥∥∥∥

n∑

k=1

εkWk1{‖Wk‖ > U}
∥∥∥∥∥ > t/2

)
P

(∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥ > t

)
+ 4P (M > t) .

If the random matrices are symmetrically distributed (that is, Wj and −Wj are equidistributed
for all j), then

P

(∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥ > 3t

)
≤ 16r

(
V 2
n

)
exp

[
− (t/2)2

σ2 + tU/6

]

+ 4P

(∥∥∥∥∥

n∑

k=1

Wk1{‖Wk‖ > U}
∥∥∥∥∥ > t/2

)
P

(∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥ > t

)
+ P (M > t)

under the assumption that t
2 ≥ σU ∨ U/3.

Remark 2.1. If W1, . . . ,Wn have symmetric distribution, then P (‖∑n
k=1Wk‖ > t) ≥ 1

2P (M > t)
in view of Lévy’s inequality [Ledoux and Talagrand, 2013, Proposition 2.3 ]. This shows that the
quantile U is necessary in the lower bound for t. The term σU is also known to be necessary –
for instance, take Wj = ξjAj where ξ1, . . . , ξn are i.i.d. N(0, 1) random variables and A1, . . . , An
are fixed self-adjoint matrices Tropp [2012].

Proof. Let us reduce the general case to the situation when W1, . . . ,Wn are symmetric. To this
end, it suffices to apply Lemma 2.3.7 in van der Vaart and Wellner [1996]: it implies that whenever
6t ≥ sup‖v‖2=1Q1/2 (〈(

∑n
k=1Wk) v, v〉),

P

(∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥ > 12t

)
≤ 4P

(∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥ > 3t

)
.

Obviously, this inequality holds without any assumptions if W1, . . . ,Wk are symmetrically dis-
tributed. Next, in view of Hoffmann-Jørgensen inequality (Proposition 4.1),

P

(∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥ > 3t

)
≤ 4P

(∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥ > t

)2

+ P (M > t) .

Given U > 0, we define, for each k = 1, . . . , n,

W̃k := εkWk1{‖Wk‖ ≤ U} and ∆k := εkWk1{‖Wk‖ > U}.

Clearly, ‖
∑n
k=1 εkWk‖ ≤ ‖∑n

k=1 W̃k‖ + ‖
∑n
k=1 ∆k‖, all the random matrices W̃k, ∆k are

symmetric, and

P

(∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥ > t

)
≤ P

(∥∥∥∥∥

n∑

k=1

W̃k

∥∥∥∥∥ > t/2

)
+ P

(∥∥∥∥∥

n∑

k=1

∆k

∥∥∥∥∥ > t/2

)
:= A1 +A2.

Therefore,

P

(∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥ > 3t

)
≤ 4A1 + 4A2P

(∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥ > t

)
+ P (M > t) .
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The first term on the right-hand side of inequality (2.1) can be bounded directly via Theorem 4.1.
Let V 2

n satisfy V 2
n �∑k EW

2
k I{‖Wk‖ ≤ U}. Then for σ2

U = ‖V 2
n ‖ and t such that t

2 ≥ σU +U/3,

4A1 ≤ 16r
(
V 2
n

)
exp

[
− (t/2)2

σ2
U + tU/6

]
.

The result follows.

We are now ready to deduce the first main result of the paper.

Theorem 2.1. Let W1, . . . ,Wn ∈ C
d×d be a sequence of centered, independent, self-adjoint

random matrices, and assume that EMp < ∞ for some p > 1. Moreover, suppose that V 2
n

satisfies V 2
n �∑k EW

2
k , and set σ2 = ‖V 2

n ‖. Then

P

(∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥ > 12t

)
≤ K

(
r(V 2

n ) exp

[
− (t/2)2

σ2 + 4tEM

]
+ P (M ≥ t)

+

(
p

log(ep)

)2p(
EMp

tp

)2
)

whenever t ≥ 2(σ ∨ EM/3) and where K is an absolute constant.

Remark 2.2. In principle, the term
(

p
log(ep)

)2p (
EMp

tp

)2
can be replaced by

((
p

log(ep)

)p
EMp

tp

)2k

for any integer k ≥ 1, at the cost of increasing the constants appearing in the bound.

Proof. We will continue using the notation introduced in the proof of Proposition 2.1. First of

all, note that sup‖v‖2=1Q1/2

(〈(∑n
j=1Wj

)
v, v
〉)

≤ σ
√
2 for the choice of σ stated above. Next,

plugging the inequality

P

(∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥ > t

)
≤ P

(∥∥∥∥∥

n∑

k=1

W̃k

∥∥∥∥∥ > t/2

)
+ P

(∥∥∥∥∥

n∑

k=1

∆k

∥∥∥∥∥ > t/2

)

into relation (2.1) with V 2
n and σ2 specified in the conditions of the theorem, we deduce that

P

(∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥ > 12t

)
≤ 128r

(
V 2
n

)
exp

[
− (t/2)2

σ2 + tU/6

]
+ 4P (M > t)

+ 16

(
P

(∥∥∥∥∥

n∑

k=1

∆k

∥∥∥∥∥ > t/2

))2

.

Next, we apply Markov’s inequality to get the bound

P

(∥∥∥∥∥

n∑

k=1

∆k

∥∥∥∥∥ > t/2

)
≤ E ‖∑n

k=1 ∆k‖p

(t/2)p
.

Theorem 4.2 implies that for all p ≥ 2,

(
E

∥∥∥∥∥

n∑

k=1

∆k

∥∥∥∥∥

p)1/p

≤ K
p

log(p)

(
E

∥∥∥∥∥

n∑

k=1

∆k

∥∥∥∥∥+
(
Emax
k≤n

‖∆k‖p
)1/p

)
.
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Moreover, if we set U := 24EM , then Proposition 4.2 applies with q = 1 and t0 = 0, the latter
due to the inequality

P

(∥∥∥∥∥

n∑

k=1

∆k

∥∥∥∥∥ > 0

)
≤ P (M > U) ≤ EM

U
≤ 1/24.

Therefore,

E

∥∥∥∥∥

n∑

k=1

∆k

∥∥∥∥∥ ≤ 6Emax
k≤n

‖∆k‖ ≤ 6Emax
k≤n

‖Wk‖ ≤ 6

(
Emax
k≤n

‖Wk‖p
)1/p

,

implying that

P

(∥∥∥∥∥

n∑

k=1

∆k

∥∥∥∥∥ > t/2

)
≤
(
K

p

log(ep)

)p
EMp

tp
.

Note that whenever 0 < p < 2, the same result still holds since

(
E

∥∥∥∥∥

n∑

k=1

∆
(1)
k

∥∥∥∥∥

p)1/p

≤ KE
1/pmax

k≤n
‖Wk‖p

in view of Proposition 4.2. The conclusion follows.

Let us mention that using Markov’s inequality with the exponential instead of polynomial
moments leads to the version of Bernstein’s inequality due to Klochkov and Zhivotovskiy [2020]
(their argument relies on similar tools but does not require symmetrization and the Hoffmann-
Jørgensen inequality).

2.2. Moment inequalities

Now we will establish moment inequalities by integrating the tail estimates of Proposition 2.1.
As before, assume that V 2

n satisfies V 2
n �

∑
k EW

2
k and let σ2 = ‖V 2

n ‖.
Theorem 2.2. Let W1, . . . ,Wn ∈ C

d×d be a sequence of centered, independent, self-adjoint
random matrices, and let Qp = inf{s > 0 : P (‖∑n

k=1 ∆k‖ > s/2) ≤ 1
83

−p}. Then for all p ≥ 1,

(
E

∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥

p)1/p

≤ K
(
σ
√
q + qQ1 +Qp + E

1/pMp
)
,

where q = log(r(V 2
n ))∨ p and K > 0 is an absolute constant. In particular, we have the following

“closed-form” Rosenthal-type moment inequalities:

(
E

∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥

p)1/p

≤ K

(
σ
√
q + qEM +

p

log(ep)
(EMp)1/p

)
and

(
E

∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥

p)1/p

≤ K
(
σ
√
q + log(r(V 2

n ))EM + p‖M‖ψ1

)
.

Remark 2.3. The well-known relation ‖M‖ψ1
≤ K log(n)maxk≤n ‖Xk‖ψ1

[van der Vaart and
Wellner, 1996] could be useful when combined with the inequality (2.2).
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Proof. Observe that

E

∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥

p

≤ 2pE

∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥

p

= 2pp

∫ ∞

0

tp−1
P

(∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥ ≥ t

)
dt = 6p · p

∫ ∞

0

tp−1
P

(∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥ ≥ 3t

)
dt,

where we used the symmetrization inequality [van der Vaart and Wellner, 1996, Lemma 2.3.6]
on the first step and the integration by parts formula on the second step, and the linear change
of variables on the third step. To estimate the last integral, we choose U = Q1/2 and apply
inequality (2.1) in the range t ≥ t0 := 2(σ ∨ U/3) to deduce that

E

∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥

p

≤ 12p(σ ∨ U/3)p

+ 6pp

(∫ ∞

0

tp−1

(
16r

(
V 2
n

)
exp

[
− (t/2)2

σ2 + tU/6

]
∧ 1

)
dt

+

∫ ∞

0

tp−1
P (M ≥ t) dt+

∫ ∞

0

4tp−1
P

(∥∥∥∥∥

n∑

k=1

∆k

∥∥∥∥∥ > t/2

)
P

(∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥ > t

)
dt

)
.

Recalling the definition of Qp, one easily checks that

6pp

∫ ∞

0

4tp−1
P

(∥∥∥∥∥

n∑

k=1

∆k

∥∥∥∥∥ > t/2

)
P

(∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥ > t

)
dt

≤ 4 · 6pQpp + 2p−1
E

∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥

p

.

Combined with the first line of display (2.2), this inequality implies that

2p−1
E

∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥

p

≤ 12p(σ ∨ U/3)p + 6pEMp + 4 · 6pQpp

+ 6pp

∫ ∞

0

tp−1

(
16r

(
V 2
n

)
exp

[
− (t/2)2

σ2 + tU/6

]
∧ 1

)
dt.

Application of Corollary 4.1 to the last integral yields the inequality (2.2). Finally, let us prove the
inequalities (2.2) and (2.2). To this end, we need to obtain the upper bounds for the quantities Q1

and Qp. To estimate Q1, recall the inequality (2.1) which implies that Q1/2 ≤ 24EM . Similary,
by (2.1) and Markov’s inequality, we deduce that Qp ≤ K p

log(ep)E
1/pMp.If, on the other hand,

‖M‖ψ1 <∞, then the second inequality of Theorem 4.2 combined with the bound (2.1) and the
well-known estimate EM ≤ K‖M‖ψ1 imply that ‖

∑n
k=1 ∆k‖ψ1

≤ ‖M‖ψ1
, whence

P

(∥∥∥∥∥

n∑

k=1

∆k

∥∥∥∥∥ > t

)
≤ e

−C t
‖M‖ψ1

and Qp ≤ C ′p‖M‖ψ1
. Let us remark that the inequality (2.2) can be also obtained by integrating

the tail bound (2.1) directly.
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Next, we deduce a version of the previous result that holds for sums of nonnegative definite
random matrices.

Theorem 2.3. Let W1, . . . ,Wn ∈ C
d×d be a sequence of independent, nonnegative definite ma-

trices and let M = maxj=1,...,n ‖Wj‖. Moreover, let An :=
∑n
j=1 EWj. Then for all p ≥ 1,

(
E

∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥

p)1/p

≤ K

(
‖An‖+ q EM +

p

log(ep)
(EMp)1/p

)
and

(
E

∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥

p)1/p

≤ K (‖An‖+ log(r(An))EM + p‖M‖ψ1
) ,

where q = log(r(An)) ∨ p and K > 0 is an absolute constant.

Proof. In view of Minkowski’s inequality followed by the symmetrization inequality,

(
E

∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥

p)1/p

≤ ‖An‖+
(
E

∥∥∥∥∥

n∑

k=1

Wk − EWk

∥∥∥∥∥

p)1/p

≤ ‖An‖+ 2E

(
E

∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥

p)1/p

,

where ε1, . . . , εn are i.i.d random signs independent from W1, . . . ,Wn. To estimate the second
term in the sum above, we will apply the inequality (2.2) together with the following choice of
V 2
n : recall that in (2.2), we set U = 24EM and note that for all j,

E
[
W 2
j I{‖Wj‖ ≤ 24EM}

]
� 24EM · EWj

since Wj � 0 with probability 1. This relation implies that we can set V 2
n = 24EM ·An, whence

r(V 2
n ) = r(An). Moreover, σ

√
q =

√
24q‖An‖EM ≤ ‖An‖+6qEM, hence (2.2) yields the bound

(
E

∥∥∥∥∥

n∑

k=1

εkWk

∥∥∥∥∥

p)1/p

≤ K ′
(
‖An‖+ qEM +

p

log(ep)
(EMp)

1/p

)
,

implying the claim. The second inequality is obtained in a similar manner where the inequality
(2.2) is used in place of (2.2).

2.3. Inequalities for the empirical processes

The only part of the previous arguments that exploits the “non-commutative” nature of the
random variables is the application of Matrix Bernstein’s inequality. In this section, we state the
results produced by our method for general empirical processes. The only required modification
is the application of Bousquet’s version of Talagrand’s concentration inequality 4.3 in place of
Bernstein’s inequality. We state only the versions of Theorems 2.1 and 2.2 and remark on the
key differences. The required changes to the proofs are minimal hence we avoid the details.

Let F be a set of measurable real-valued functions and let X1, . . . , Xn be i.i.d copies of X. As-
sume that Ef(X) = 0 for all f ∈ F . Let us set F (x) := supf∈F |f(x)|, M = maxk=1,...,n F (Xj),
and suppose that EMp <∞ for some p ≥ 2. Denote Z = supf∈F

∑n
k=1 f (Xk); for simplicity, we
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will assume that Z is measurable. Finally, let σ∗ satisfy σ2
∗ ≥ n supf∈F Ef2(X). For example, in

the main case of interest of this paper, ‖
∑n
k=1Wk‖ = sup‖v‖2=1 tr

(
(
∑n
k=1Wk)vv

T
)

correspond-

ing to F =
{
fv(·) = tr

(
(·)vvT

)
, ‖v‖2 = 1

}
. The following result can be viewed as an extension

of Adamczak’s inequality [Adamczak, 2008] to the heavy-tailed case.

Theorem 2.4. For all t ≥
√
2σ∗,

P (Z > 24 (EZ + t)) ≤ K

(
exp

(
− t2

2σ2
∗ + 64tEM

)
+ P (M ≥ t)

+

(
p

log(ep)

)2p(
EMp

tp

)2
)

where K is an absolute constant.

Integrating this tail bound, we obtain the following moment inequalities.

Theorem 2.5. For all p ≥ 1,

(EZp)
1/p ≤ K

(
EZ + σ∗

√
p+ pEM +

p

log(ep)
(EMp)1/p

)
.

Let us compare this result with the bound of Theorem 2.2. When applied to the sums of
random matrices, we get the inequality

(
E

∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥

p)1/p

≤ K

(
E

∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥+ σ∗
√
p+ pEM +

p

log(ep)
(EMp)1/p

)

The main difference is that this bounds includes E ‖∑n
k=1Wk‖ on the right-hand side. However,

for large values of p, it is better than (2.2) since σ2
∗ can be much smaller than

∥∥∑
k EW

2
k

∥∥.
Moreover, Theorem 2.5 improves upon the inequality proved by [Boucheron et al., 2005, Theorem
12]: the latter states that for all p ≥ 2,

(EZp)
1/p ≤ K

(
EZ + σ∗

√
p+ p(EMp)1/p

)
.

The estimate provided by (2.5) is better for large values of p if EM is much smaller than E
1/pMp.

3. Applications

In this section, we apply the inequalities to get improved bounds to two classical problems -
matrix subsampling and covariance estimation.

3.1. Norms of random submatrices.

Let B be a self-adjoint matrix, and let δ1, . . . , δd be i.i.d. Bernoulli random variables with Eδ1 =
δ ∈ (0, 1). Define R = diag(δ1, . . . , δd). We are interested in the spectral norm of the matrix BR
formed by the columns Bi, i ∈ I of B with indices corresponding to the random set I = {1 ≤



/Concentration and moment inequalities 10

i ≤ d : δi = 1}. This problem has previously been studied by Rudelson and Vershynin [2007]
and Tropp [2015] who showed that

E‖BR‖2 ≤ K


δ‖B‖2 + log(nδ)

bδ−1c

bδ−1c∑

k=1

∥∥B(k)

∥∥2
2




and

E‖BR‖2 ≤ 1.72

(
δ‖B‖2 + log

(
2
‖B‖2F
‖B‖2

)∥∥B(1)

∥∥2
2

)

respectively, where B(j) denotes the column with the j-th largest norm and K is a numerical

constant. Note that
∥∥B(1)

∥∥2
2
≥ 1

bδ−1c
∑bδ−1c
k=1 but it is possible that log(nδ) > log

(
2
‖B‖2

F

‖B‖2

)
when

the matrix B has small “stable rank” srank(B) :=
‖B‖2

F

‖B‖2 . Next, we will show that Tropp’s bound

can be improved, and that (3.1) holds with log(nδ) replaced with log(nδ) ∧ log(srank(B)). To
this end, let e1, . . . , ed denote the standard Euclidean basis, and observe that

‖BR‖2 =

∥∥∥∥∥

d∑

k=1

δkBke
T
k

∥∥∥∥∥

2

=

∥∥∥∥∥

d∑

k=1

δkBkB
T
k

∥∥∥∥∥ .

We will apply Theorem 2.3 to the last expression with Wk = δkBkB
T
k . Note that An = δBBT

so that ‖An‖ = δ‖B‖2, and that EM = E
(
maxk=1,...,d δk‖Bk‖22

)
. According to Lemma 5.1 in

[Rudelson and Vershynin, 2007] or Proposition 2.3 in [Tropp, 2008],

E max
k=1,...,d

δk‖Bk‖22 ≤ 2

bδ−1c

bδ−1c∑

k=1

‖B(k)‖22.

Finally, r(An) =
‖B‖2

F

‖B‖2 is the stable rank of B. We record the following bound.

Corollary 3.1. The inequalities

E‖BR‖2 ≤ K


δ‖B‖2 + log

(‖B‖2F
‖B‖2

)
1

bδ−1c

bδ−1c∑

k=1

∥∥B(k)

∥∥2
2




and

E‖BR− δB‖2 ≤ K(1− δ)


δ‖B‖2 + log

(‖B‖2F
‖B‖2

)
1

bδ−1c

bδ−1c∑

k=1

∥∥B(k)

∥∥2
2




hold for all δ ∈ (0, 1) and a numerical constant K > 0.

Proof. The first inequality has already been established. The proof of the second bound is quite
similar: it suffices to note that

E‖BR− δB‖2 = E

∥∥∥∥∥

d∑

k=1

(δk − δ)2BkB
T
k

∥∥∥∥∥ ,

and that
∥∥∥E
∑d
k=1(δk − δ)2BkB

T
k

∥∥∥ = δ(1−δ)‖B‖2 and E max
k=1,...,d

(δk−δ)2‖Bk‖22 ≤ 2(1−δ)
bδ−1c

∑bδ−1c
k=1 ‖B(k)‖22.
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3.2. Covariance estimation.

In this section, we consider applications of our results to the covariance estimation problem. Let
X ∈ R

d be a random vector such that EX = 0 and E[XX>] = Σ. Given a sequence X1, . . . , Xn ∈
R
d of i.i.d. copies of X, what is an upper bound for the error of the sample covariance matrix?

In other words, we would like to estimate En :=
∥∥∥ 1
n

∑n
j=1XjX

>
j − Σ

∥∥∥. One of the long-standing

open questions asks for the minimal assumptions on the distribution of X such that n = C(ε)d
suffices to guarantee that EEn ≤ ε‖Σ‖, or that En ≤ ε‖Σ‖ with high probability. Results of this
type are often referred to as the “quantitative versions of the Bai-Yin theorem,” after [Bai and
Yin, 2008]. Let us give an (incomplete) overview of the long history of the problem. It has long
been known that sub-Gaussian distributions satisfy the required conditions [Vershynin, 2012].
Moreover, very general and precise characterization of the behavior of the sample covariance of
Banach-space valued random vectors has been found by Koltchinskii and Lounici [2017] and,
very recently, further sharpened by Han [2022] in the finite-dimensional case. For the log-concave
and the sub-exponential distributions, the problem was first considered by Kannan et al. [1997],
and the bounds were significantly improved and refined by Bourgain [1996], Rudelson [1999].
It took much longer to remove the logarithmic factors, until the problem was finally solved by
Adamczak et al. [2010, 2011]. Finally, the case of heavy-tailed distributions was investigated by
Vershynin [2011], Srivastava and Vershynin [2013], Mendelson and Paouris [2014], Guédon et al.
[2017], until Tikhomirov [2018] showed that 4 + ε moments are essentially sufficient to get the
desired bound. Specifically, his results imply that if Σ = Id and sup‖v‖2=1 E |〈X, v〉|p = T < ∞
for some p > 4, then

En ≤ C(p)

(
T 2/p

√
d

n
+

maxj ‖Xj‖22
n

)

with probability at least 1−1/n. Abdalla and Zhivotovskiy [2024] refined Tikhomirov’s estimates
and essentially showed that n = C(ε)r(Σ) samples suffices to get the desired guarantees in
expectation, although they considered the sample covariance based on properly truncated random
vectors. Next, we show that the results by Abdalla and Zhivotovskiy [2024] can be combined with
the moment inequalities developed in this paper to get sharp moment inequalities for En.

Theorem 3.1. Let X ∈ R
d be a random vector such that EX = 0 and E[XX>] = Σ. Let

X1, . . . , Xn ∈ R
d be i.i.d. copies of X. Assume that r(Σ)

n ≤ c for a sufficiently small positive
constant c, and that for some p > 4

sup
‖v‖2=1

E〈X, v〉p
(E〈X, v〉2)p/2 = κ <∞.

Then


E

∥∥∥∥∥∥
1

n

n∑

j=1

XjX
>
j − Σ

∥∥∥∥∥∥

2



1/2

≤ C(κ, p)

(
‖Σ‖

√
r(Σ)

n
+

E
2/pmaxj≤n ‖Xj‖p2

n

)
.
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Remark 3.1. In the course of the proof, we obtain a slightly stronger inequality


E

∥∥∥∥∥∥
1

n

n∑

j=1

XjX
>
j − Σ

∥∥∥∥∥∥

2



1/2

≤ C(κ, p)

(
‖Σ‖

√
r(Σ)

n

+
E
1/2 maxj≤n ‖Xj‖42

n

∧ E
2/pmaxj≤n ‖Xj‖p2

n

(
1

n
+ e−r(Σ)

) p−4
2p

)
.

Proof. Our proof builds on the results by Abdalla and Zhivotovskiy [2024] which in turn sharpen
the inequality due to Tikhomirov [2018]. Before we dive into the details, let us mention that the
“hypercontractivity” condition (3.1) implies in particular that

∥∥E‖X‖2XXT
∥∥ ≤ κ2 tr(Σ)‖Σ‖; the

proof of this fact can be found in [Wei and Minsker, 2017, Lemma 2.3]. Note that

∥∥∥∥∥∥
1

n

n∑

j=1

XjX
>
j − Σ

∥∥∥∥∥∥
= sup

‖v‖2=1

∣∣∣∣∣∣
1

n

n∑

j=1

〈Xj , v〉2 − E〈X, v〉2
∣∣∣∣∣∣
.

Let us state the following decomposition of the error into “peaky” and “spread” parts [Tikhomirov,
2018] that holds for arbitrary λ > 0:

sup
‖v‖2=1

∣∣∣∣∣∣
1

n

n∑

j=1

〈Xj , v〉2 − E〈X, v〉2
∣∣∣∣∣∣
≤ sup

‖v‖2≤1

1

n

n∑

j=1

〈Xj , v〉21{λ〈Xi, v〉2 > 1}
︸ ︷︷ ︸

Peaky part

+ sup
‖v‖2≤1

∣∣∣∣∣∣
1

λn

n∑

j=1

ψ(λ〈Xj , v〉2)− E〈X, v〉2
∣∣∣∣∣∣

︸ ︷︷ ︸
Spread part

,

where

ψ(x) =

{
x, for x ∈ [−1, 1];

sign(x) for |x| > 1.

We will estimate the two terms separately, starting with the “spread” part. To this end, we will

apply Proposition 4.1 in [Abdalla and Zhivotovskiy, 2024] which implies that for λ = 1
κ2‖Σ‖

√
r(Σ)
n ,

sup
‖v‖2≤1

∣∣∣∣∣∣
1

λn

n∑

j=1

ψ(λ〈Xj , v〉2)− E〈X, v〉2
∣∣∣∣∣∣
≤ Cκ2‖Σ‖

(√
r(Σ)

n
+

t√
r(Σ)n

)

with probability at least 1− e−t. For t = r(Σ), we get in particular that

sup
‖v‖2≤1

∣∣∣∣∣∣
1

λn

n∑

j=1

ψ(λ〈Xj , v〉2)− E〈X, v〉2
∣∣∣∣∣∣
≤ Cκ2‖Σ‖

√
r(Σ)

n

with probability at least 1 − e−r(Σ). Next, we will estimate the “peaky” term in the inequality
(3.2). Equation (5) in the work by Abdalla and Zhivotovskiy [2024] states that for all subsets
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J ⊆ [n] of cardinality at most k,

∥∥∥∥∥∥
1

n

∑

j∈J
XjX

>
j

∥∥∥∥∥∥
≤ f(k, [n])

n

for the function f(k, [n]) defined via

f(k, [n]) = sup
‖y‖2=1,‖y‖0≤k,supp(y)⊆[n]

∥∥∥∥∥∥

n∑

j=1

yjXj

∥∥∥∥∥∥

2

2

and the bounds holds uniformly over all such subsets J . The following result provides a bound
for f(k, [n]).

Theorem 3.2. [Abdalla and Zhivotovskiy, 2024, Theorem 3] Assume that r(Σ)
n ≤ c′ for a suffi-

ciently small positive constant c′. Then

f(k, [n]) ≤ C(p, κ)

(
max
j≤n

‖Xj‖22 + ‖Σ‖k
(n
k

)4/(4+p)
log4

n

k

)
,

with probability at least 1− c(p)
n , and the bound holds simultaneously for all integers k satisfying

r(Σ) ≤ k ≤ c′n.

Since p > 4, this result implies that

f(k, [n]) ≤ C ′(p, κ)

(
max
j≤n

‖Xj‖22 + ‖Σ‖
√
nk

)
.

Next, let λ = 1
κ2‖Σ‖

√
r(Σ)
n . Following Tikhomirov [2018], Abdalla and Zhivotovskiy [2024], let us

define the random set
Iv =

{
j ∈ [n] : 〈Xj , v〉2 > 1/λ

}

and m = sup‖v‖2≤1 |Iv|. Then, in view of the inequality (3.2), we see that

m

nλ
≤ sup

‖v‖2≤1

1

n

n∑

j=1

〈Xj , v〉21{λ〈Xi, v〉2 > 1} ≤ f(m, [n])

n
.

Now, if r(Σ) ≤ m ≤ c′n, then we can employ Theorem 3.2 to derive the following bound that

holds with probability at least 1− c(p)
n :

m ≤ λf(m, [n]) ≤ C ′(p)

(
max
j≤n

‖Xj‖22 + ‖Σ‖
√
nm

)
· 1

κ2‖Σ‖

√
r(Σ)

n

≤ C ′(p)

κ2

(
maxj≤n ‖Xj‖2

‖Σ‖

√
r(Σ)

n
+
√
m
√
r(Σ)

)
.

Solutions to the inequality x ≤ a
√
x+ b satisfy x ≤ 2max(a2, b). Therefore, with probability at

least 1− c(p)
n ,

m ≤ C1(p)max

(
r(Σ),

maxj≤n ‖Xj‖2
κ2‖Σ‖

√
r(Σ)

n

)
.
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It remains to show that m ≤ c′n if r(Σ) < cn for c small enough (clearly, if m < r(Σ), then (3.2)
holds). By the definition of Iv, for any v ∈ R

d,

|Iv| =
n∑

j=1

1

{
〈Xj , v〉2 > κ2‖Σ‖

√
n

r(Σ)

}
=

n∑

j=1

1

{
|〈Xj , v〉|(

κ2‖Σ‖
√

n
r(Σ)

)1/2
> 1

}

≤
n∑

j=1

ρ




|〈Xj , v〉|(
κ2‖Σ‖

√
n

r(Σ)

)1/2


 ,

where ρ(x) =





0 x ≤ 1/2

2x− 1 x ∈ (1/2, 1]

1 x > 1

is such that 1{x ≥ 1/2} ≥ ρ(x) ≥ 1{x ≥ 1}. For brevity,

set Zj(v) :=
|〈Xj ,v〉|

(

κ2‖Σ‖
√

n
r(Σ)

)1/2 . In view of Markov’s inequality and assumption (3.1),

Eρ(Zj) ≤ P

(
〈X, v〉2 > κ2

2
‖Σ‖

√
n

r(Σ)

)
≤ 4E〈X, v〉4

κ4‖Σ‖ · r(Σ)
n

≤ 4r(Σ)

n
.

Denote S = sup‖v‖2≤1

(∑n
j=1 ρ(Zj(v))− Eρ(Zj(v))

)
and σ2 = sup|‖v‖2≤1 Var(ρ(Z1(v))). We

deduce that

P

(
sup

‖v‖2≤1

|Iv| ≥ c′n

)
≤ P


 sup

‖v‖2=1

n∑

j=1

ρ(Zj) > c′n


 ≤ P (S > c′n− 4r(Σ)) .

We will apply Theorem 4.3 to estimate the right hand side in the display above. Specifically,
P (S > c′n− 4r(Σ)) ≤ e−t whenever

c′n− 4r(Σ)− 2ES − σ
√
2tn− 4t/3 ≥ 0.

To prove that the this relation holds for a suitable choices of parameters c and t (where r(Σ)/n ≤
c), first observe that

σ2 ≤ E(ρ(Z)2 ≤ Eρ(Z) ≤ 4r(Σ)

n
,

where the last inequality follows from the bound (3.2). Next we will estimate ES. Let {εj},
j = 1, . . . , n be a sequence of independent i.i.d. random signs. The standard argument based
on the symmetrization and contraction [Ledoux and Talagrand, 2013, Theorem 4.4] inequalities,
together with the fact that ρ(x) is Lipschitz continuous with Lipschitz constant equal to 2, yields
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that

ES = E sup
‖v‖2≤1




n∑

j=1

ρ(Zj)− Eρ(Zj)




≤ 2E sup
‖v‖≤1

∣∣∣∣∣∣

n∑

j=1

εjρ(Zj)

∣∣∣∣∣∣
≤ 4E sup

‖v‖2≤1

∣∣∣∣∣∣∣∣∣

n∑

j=1

εj
|〈Xj , v〉|(

κ2‖Σ‖
√

n
r(Σ)

)1/2

∣∣∣∣∣∣∣∣∣

≤ 8
(
κ2‖Σ‖

√
n

r(Σ)

)1/2


E sup

‖v‖2≤1




n∑

j=1

〈Xj , v〉




2



1/2

.

Since E sup‖v‖≤1

(∑n
j=1〈Xj , v〉

)2
= E

∥∥∥
∑n
j=1Xj

∥∥∥
2

≤ κ2n‖Σ‖r(Σ) by assumption (3.1), we con-

clude that

E sup
‖v‖2≤1




n∑

j=1

ρ(Zj)− Eρ(Zj)


 ≤ 8n1/4(r(Σ))3/4.

Elementary algebraic computation show that it suffices to choose parameters c and t so that
(4/3+

√
2)t ≤ c′n/2 and 16c3/4+(4+

√
2)c ≤ c′/2, where c′ is a constant defined in Theorem 3.2.

If these relations hold, we conclude that m ≤ c′n with probability at least 1− e−t, and that the
inequality (3.2) holds with probability at least 1 − 1 − c′(p)/n. Combining this result with the
estimates (3.2), (3.2), and Theorem 3.2, we conclude that with probability at least 1 − c′(p)/n,
the “peaky” admits an upper bound of the form

sup
‖v‖2≤1

1

n

n∑

j=1

〈Xj , v〉21
{
〈Xi, v〉2 > κ2‖Σ‖

√
n

r(Σ)

}

≤ f(m, [n])

n
≤ C2(p, κ)

(
maxj≤n ‖Xj‖22

n
+ ‖Σ‖r(Σ)

n

)
.

Combining the estimates (3.2) and (3.2) with the decomposition (3.2), we conclude that with
probability at least 1− e−r(Σ) − c′(p)/n,

∥∥∥∥∥∥
1

n

∑

j=1

XjX
>
j − Σ

∥∥∥∥∥∥
≤ C(p, κ)

(
maxj≤n ‖Xj‖22

n
+ ‖Σ‖

√
r(Σ)

n

)
.

To obtain the desired bound in expectation, let us define the event

A :=





∥∥∥∥∥∥
1

n

∑

j=1

XjX
>
j − Σ

∥∥∥∥∥∥
≤ C(p, κ)

(
maxj≤n ‖Xj‖22

n
+ ‖Σ‖

√
r(Σ)

n

)
 .
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Then P (Ac) ≤ e−r(Σ) + c′(p)/n, and

E
1/2

∥∥∥∥∥∥
1

n

∑

j=1

XjX
>
j − Σ

∥∥∥∥∥∥

2

≤ C1(p, κ)

(
E
1/2 maxj≤n ‖Xj‖42

n
+ ‖Σ‖

√
r(Σ)

n

)

+ E
1/2




∥∥∥∥∥∥
1

n

∑

j=1

XjX
>
j − Σ

∥∥∥∥∥∥

2

1(Ac)


 .

Hölder’s inequality implies that

E
1/2




∥∥∥∥∥∥
1

n

∑

j=1

XjX
>
j − Σ

∥∥∥∥∥∥

2

1(Ac)


 ≤ E

2/p

∥∥∥∥∥∥
1

n

∑

j=1

XjX
>
j − Σ

∥∥∥∥∥∥

p/2(
c′(p)

n
∨ e−r(Σ)

) p−4
2p

.

Finally, we invoke Rosenthal’s inequality (2.2) to deduce that

E
2/p

∥∥∥∥∥∥
1

n

∑

j=1

XjX
>
j − Σ

∥∥∥∥∥∥

p/2

≤ C(p)

[√
r(Σ)

n
‖Σ‖

√
log(er(Σ))

+
log(er(Σ))

n
Emax
j≤n

‖Xj‖22 +
1

n
E
2/pmax

j≤n
‖Xj‖p2

]
.

Since r(Σ) < cn by assumption, log(er(Σ)) < c(p)
(
n ∨ er(Σ)

)(p−4)/2p
, implying the final form of

the bound.

4. Auxiliary results

In this section, we collect the background material and technical results that our arguments rely
on.

Theorem 4.1. [Minsker, 2017, Theorem 3.1] and [Tropp, 2015, Theorem 7.7.1] Let W1, . . . ,Wn ∈
C
d×d be a sequence of independent, centered, self-adjoint random matrices such that ‖Wk‖ ≤

U, k = 1, . . . , n almost surely. Assume that V 2
n � ∑

k EW
2
k and let σ2 = ‖V 2

n ‖. Then for any
t ≥ σ + U/3,

P

(∥∥∥∥∥

n∑

k=1

Wi

∥∥∥∥∥ > t

)
≤ 4r

(
V 2
n

)
exp

[
− t2/2

σ2 + tU/3

]
.

Corollary 4.1. Let p ≥ 1. Under the assumptions of Theorem 4.1,

E
1/p

∥∥∥∥∥

n∑

k=1

Wk

∥∥∥∥∥

p

≤ K (σ
√
q + Uq)

where q = log(er(V 2
n )) ∨ p and K > 0 is a numerical constant.
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Proof. Fix t0 > 0 and note that

E(‖Y ‖p) =
∫ ∞

0

ptp−1
P(‖Y ‖ > t)dt

=

∫ t0

0

ptp−1
P(‖Y ‖ > t)dt+

∫ ∞

t0

ptp−1 · 4r exp
[
− t2/2

σ2 + tU/3

]

≤ tp0 +

∫ ∞

t0

4r(V 2
n )pt

p−1e−t
2/4σ2

dt+

∫ ∞

t0

4r(V 2
n )pt

p−1e−3t/4Udt.

Next, take t0 = 2σ
√
log(er(V 2

n )) +
4
3U log(er(V 2

n )). The first integral on the right-hand side of
(4) admits the following bound due to Lemma 4.1:

∫ ∞

t0

4r(V 2
n )pt

p−1e−t
2/2σ2

dt ≤ 4r(V 2
n )p(2σ)

p/2

∫ ∞

√
log(er(V 2

n ))

up−1e−u
2

du

≤ 4rp2p/2σp2(p−1)/2Γ((p+ 1)/2)

∫ ∞

µ1/
√
2σ2

e−u
2/2e−u

2

du

≤ 4rp2pσp((p+ 1)/4)(p−1)/2 σ

µ1
e−µ

2
1/4σ

2

≤ 4rp2pσp((p+ 1)/4)(p−1)/2e−(2σ(
√

log(1+r)))2/4σ2

≤ 16 · 2pσp((p+ 1)/4)(p+1)/2

where Γ(x) ≤ (x/2)x−1 for x ≥ 2. Similarly, for the second integral on the last line of (4),
introducing u = 3t

2U and applying Lemma 4.1, we deduce that

∫ ∞

µ

4rptp−1e−3t/2Udt ≤
∫ ∞

µ2

4rptp−1e−3t/2Udt ≤ 4rp

(
3µ2

2U

)p ∫ ∞

3µ2/2U

up−1e−udu

≤ 4rp

(
3µ2

2U

)p
2p−1Γ(p)

∫ ∞

3µ2/2U

e−u/2e−udu ≤ 4rp

(
3µ2

2U

)p
2p(p/2)p−1e−3( 4

3U log(1+r))/4U

≤ 8 (2 log(1 + r))
p
(2p)p.

Proposition 4.1. [Hoffmann-Jørgensen inequality: Ledoux and Talagrand, 2013, Proposition
6.7] Let X1, . . . , Xn be independent, symmetrically distributed random variables with values in a

separable Banach space with norm ‖ · ‖B. Set Sk =
∑k
i=1Xi, k ≤ N . Then for any s, t > 0,

P (‖SN‖B > 2t+ s) ≤ 4 (P (‖SN‖B > t))
2
+ P

(
max
i≤N

‖Xi‖B > s

)
.

Proposition 4.2. [Ledoux and Talagrand, 2013, Proposition 6.8] Let 0 < q < ∞ and let
X1, . . . , Xn be independent, symmetrically distributed random variables with values in a sepa-
rable Banach space with norm ‖ · ‖B. Set Sk =

∑k
i=1Xi, k ≤ N . Then for t0 = inf{t > 0 :

P(‖SN‖B > t) ≤ (2 · 3p)−1},

E ‖SN‖pB ≤ 2 · 3pEmax
i≤N

‖Xi‖pB + 2 (3t0)
p
.

Theorem 4.2. [Ledoux and Talagrand, 2013, Theorems 6.20 and 6.21] Let X1, . . . , Xn be inde-
pendent random variables with values in a separable Banach space with norm ‖ · ‖B. There exists
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a numerical constant K such that for all p > 1,

E
1/p

∥∥∥∥∥

n∑

k=1

Xk

∥∥∥∥∥

p

B

≤ K
p

log(ep)

(
E

∥∥∥∥∥

n∑

k=1

Xk

∥∥∥∥∥
B

+ E
1/pmax

k
‖Xk‖pB

)
and

∥∥∥∥∥
∥∥∥

n∑

k=1

Xk

∥∥∥
B

∥∥∥∥∥
ψ1

≤ K

(
E

∥∥∥∥∥

n∑

k=1

Xk

∥∥∥∥∥
B

+

∥∥∥∥max
k

‖Xk‖B
∥∥∥∥
ψ1

)
.

Theorem 4.3. [Bousquet, 2003, Theorem 7.3] Let F be a countable set of measurable real-
valued functions and let X1, . . . , Xn be i.i.d. Assume that Ef(X1) = 0 for all f ∈ F and that
supf∈F |f(X1)| ≤ U with probability 1. Denote Z = supf∈F

∑n
k=1 f (Xk). Assume that σ2

∗ ≥
n supf∈F Ef2(X1) and set v = σ2

∗ + 2E[Z]. Then for all t ≥ 0,

P

(
Z ≥ EZ +

√
2tv +

tU

3

)
≤ e−t.

The inequality (4.3) immediately implies that with probability at least 1 − e−t, Z ≤ 2EZ +
σ∗

√
2t+ 4tU/3. Alternatively, the bound can be stated as

P (Z ≥ 2EZ + t) ≤ exp

(
− t2/2

σ2
∗ + 4Ut/3

)
.

Finally, we state two elementary integral estimates required in the proofs.

Lemma 4.1. Fix p ≥ 2. Then for any t > 0,
∫ ∞

t

up−1e−u
2/2du ≤ e−t

2/2 · 2p−2(tp−2 + (
√
p/t)p).

Proof. Making the change of variables v = u− t and using the relation e−u
2/2 ≤ 1 that holds for

all u gives that
∫ ∞

t

up−1e−u
2/2du ≤

∫ ∞

0

(t+ v)p−1e−(t+v)2/2du

≤ e−t
2/2

∫ ∞

0

2p−2(tp−1 + vp−1)e−tve−v
2/2dv

≤ e−t
2/2 · 2p−2(tp−2 + t−p · Γ(p)) ≤ e−t

2/2 · 2p−2(tp−2 + (
√
p/t)p)

where Γ(·) denotes Euler’s gamma function and where we used the inequality Γ(p) ≤ pp/2.

Lemma 4.2. For any positive real numbers p > q and any t > 0,

tp ≤ 2p/qΓ(p/q + 1)et
q/2,

where Γ(·) is the Euler’s gamma function.

Proof. Start with the identity tp = (tq/2)p/q

Γ(p/q+1)2
p/qΓ(p/q + 1) and observe that it suffices to show

that (tq/2)p/q

Γ(p/q+1) ≤ et
q/2. The latter is equivalent to the inequality ax

Γ(x+1) ≤ ea for all x > 1, a > 0.

This inequality follows from the following estimate:

Γ(x+ 1)

ax
=

∫∞
0
txe−tdt

ax
≥
∫ ∞

a

(
t

a

)x
e−tdt ≥

∫ ∞

a

e−tdt = e−a.
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