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1. Introduction

Fuk-Nagaev inequalities [Fuk and Nagaev, 1971, Nagaev, 1979] generalize exponential deviation
inequalities for the sums of independent random variables, such as Berstein’s, Prokhorov’s and
Bennett’s inequalities, to case when the random variables satisfy minimal integrability conditions.
For example, a corollary of Fuk and Nagaev’s results is the following bound: for a sequence of
independent, centered random variables X1, ..., X, such that max; E|X;|P < co for some p > 2,

> < — -
P ‘];Xk‘ >t] < Zexp( Cl(p)ZZ_HEX/%) +P <m]?x|Xk| > t/4>

n_ E|X,.|P 2
+ Ca(p) <k1tpk|) ]

Nagaev [1979] describes the applications of such results to the laws of large numbers and moment
inequalities. Later, Einmahl and Li [2008], Rio [2017] and Bakhshizadeh et al. [2023], among oth-
ers, improved the original estimates by Fuk and Nagaev in several ways: first, the inequalities
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were extended to martingales and Banach-space valued random variables, and second, the con-
stants were sharpened. For example, inequalities due to Rio [2017], Bakhshizadeh et al. [2023]
hold with Cy(p) = 1/2 and Cy(p) of order pP. The latter fact is important as the order of growth
of these constants translates into the tail behavior of [ _, Xi|.

The goal of this work is to prove a version of the Fuk-Nagaev inequality for the sums of indepen-
dent random matrices and use it to sharpen existing moment inequalities. Let W7, ..., W,, € C?*4
be a sequence of independent self-adjoint' random matrices such that EW), = 044 for all k£ and
where the expectation is taken element-wise. Assume that for all k, |Wy| < U with proba-
bility 1 where || - || stands for the operator (spectral) norm. A line of work by Ahlswede and
Winter [2002], Oliveira [2010], Tropp [2012] culminated in the following version of the “matrix

Bernstein’s” inequality: for all ¢t > 0,
t2/2
>t <2d ——
N ) = < o +Ut/3>

P(iwk

k=1

where 02 = ||3;_; EW?||. An attractive feature of this inequality (as opposed to, say, Tala-
grand’s concentration inequality [Talagrand, 1996]) is that it yields a bound for E|| >, _; Wil
namely, that E|| > 7_, Wi| < K (a log(d) + Ulog(d)) for some absolute constant K > 0.
Tropp’s results have been extended in two directions: first, it was shown by Minsker [2017],
Tropp [2015] that the dimension factor d can essentially be replaced by the so-called effective
rank v (3 p_, EW?) where r(A) := trTjT‘A) for a positive definite matrix A. In particular, this
version of Bernstein’s inequality is applicable in the context of random Hilbert-Schmidt opera-
tors acting on Hilbert spaces. Second, the boundedness assumption was relaxed by Koltchinskii
[2011] to the requirement that maxy, ||[|[Wkl[[[,, < oo where the 91 norm of a random variable

Z is defined via ||Z]|y, = inf {7" >0: Eel¥l < 2}. Finally, Klochkov and Zhivotovskiy [2020]

showed that
P Wil >t ) <err(Vi2 —Co
(n S )( ew (~arpam)

for all t > c3(||V2[|}/2 + M) where V;? is any matrix satisfying V.2 = S°)_ EW? and R =
[maxy, [|[Wgll[l,, - Our results allow to relax the integrability assumptions even further and cover
the case of heavy-tailed random matrices, namely, random matrices such that E||W||? = oo for
some p > 0 (however, we are still able to recover the known bounds for the “light-tailed” random
matrices). For example, Theorem 2.2 below implies that for all p > 1,

(E

where ¢ = log(r(V,?)) V p and K is an absolute constant. This inequality sharpens previously
known results of this type by Junge and Zeng [2013], Dirksen [2011], Chen et al. [2012]: for
example, a version of Rosenthal’s inequality by Chen et al. [2012] states that

<]E zn: Wy
k=1

11t is well-known that the case of general rectangular matrices reduces to this one via the so-called “Hermitian
dilation,” see [Tropp, 2015, section 2.1.17].

n

>

k=1

p\ 1/p
<K 21/2 E _P ® py1/p
) < 1 (1212 + amg W + s (Bomp 1)

p\ 1/p
) <K (||v§1/2ﬁ+ﬂal/p max ||Wk|p>
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where 7 = log(d) V p. The fact that our bound depends on 7(V,?) instead of d immediately allows
one to extend it to Hilbert-Schmidt operators acting on Hilbert spaces.

Finally, let us remark that the order of the constants in the inequality stated above is op-
timal: in the scalar case d = 1, it is known [Johnson et al., 1985] that without any additional
assumptions, the best order of C(p) in the inequality

El/p‘ZWk‘ <C(p (ZEWk> /2+ (;EIWM”>

k=1

1/p

is C(p) = K13}z while Pinelis and Utev [1985] showed that C1(p) = K/p and Cs(p) = Kp are
the best possible in the inequality of the form

1/2
El/P‘ZWk( < Ci(p (ZEWk> +Cg(p)E1/pm]§1X|Wk\p.

k=1

It is clear that our results yield a sharper version the inequality (1) for large p whenever
E maxy |W| is much smaller than EY/? maxy, |[Wy|P.

1.1. Organization of the paper.

The rest of the exposition is organized as follows: we present the main results and their proofs
in sections 2.1 and 2.2. Applications of the developed techniques to the empirical processes is
discussed in section 2.3 while implications for the problems of matrix subsampling and covariance
estimation are described in sections 3.1 and 3.2 respectively. Finally, section 4 contains the
required background and proofs of the lemmas that were omitted from the main exposition.

2. Main results

In this section we state the new concentration and moment bounds - Theorems 2.1 and 2.2. The
required notation will be introduced on demand. Let us remark that throughout the paper, the
values of constants K, ¢, C(-) is often unspecified and can change from line to line; we use K
and ¢ to denote absolute constants and C(-) to denote constants whose value depends on the
parameters in brackets.

2.1. Fuk-Nagaev-type inequality

The following proposition is the key technical result that will serve as the starting point for
the derivation of the main results. Therefore, we state it separately. Everywhere below, M =
maxg—1,..n [|[Will, Q1/2(Z) stands for the median of a real-valued random variable Z, and
€1,...,Ey denote independent symmetric Bernoulli random variables that are independent from
Wi, ..., W,. Finally, || - ||2 is the Euclidean norm.

Proposition 2.1. Let Wi,..., W, € C™? be a sequence of centered, independent, self-adjoint
random matrices. Let U > 0, and assume that V;? satisfies V2 = >, EWZI{||W}|| < U}. Finally,
set o3, = ||V;2|| where r(-) represents the effective rank. Then, whenever

> oy VU/3V sup Q1/2 << (Z Wk) U7U>> )
lvll2=1 k=1

N | =+
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the following inequality holds:
> 12t | < 647‘(V2) exp —ﬂ
- " o +tU/6

(o
- e

k=1
If the random matrices are symmetrically distributed (that is, W; and —W; are equidistributed

for all j), then
> 3t> < 16r(Vn2) exp {—

IP’( iWk
+4]P’<

k=1
> t/2> P (
under the assumption that % > oy VU/3.

Remark 2.1. IfWi,..., W, have symmetric distribution, then P (||[>p_, Wi| > t) > 1P (M > t)
in view of Lévy’s inequality [Ledouz and Talagrand, 2013, Proposition 2.3 |. This shows that the
quantile U is necessary in the lower bound for t. The term oy is also known to be necessary —
for instance, take W; = &;A; where &1, ..., &, are i.i.d. N(0,1) random variables and A1, ..., A,
are fized self-adjoint matrices Tropp [2012].

Z E-Ika

k=1

> eWid{|[Wi| > U}
k=1

>t> FAP(M > t).

(t/2)? ]
o2 4+tU/6

S

k=1

Y Wl{||Wil > U}

k=1

>t> +P(M >t)

Proof. Let us reduce the general case to the situation when W7y, ..., W,, are symmetric. To this
end, it suffices to apply Lemma 2.3.7 in van der Vaart and Wellner [1996]: it implies that whenever

6t > supy, =1 Qu/2 ((Xp=y W) v,0)),
> 3t> |

(S50 ) <o

k=1
Obviously, this inequality holds without any assumptions if W7y,..., W) are symmetrically dis-
tributed. Next, in view of Hoffmann-Jgrgensen inequality (Proposition 4.1),

P( zn:Eka >3t> §4P< zn:Eka
k=1

k=1
Given U > 0, we define, for each k =1,... n,

Wi, = e Wi L{||[Wi|| < U} and Ay, == e, W, L{||Wy|| > U}.

ZEka

k=1

>t> +P(M >t).

Clearly, ||> "7 exWill < [I>hsy Well + || >on_i Agll, all the random matrices Wi, Ay, are

symmetric, and
>t>§IP< >t/2>+}P><
n

P ( zn: Eka
n
Z&ka ngWk
k=1

k=1
Therefore,
k=1

&

n
3

k=1

> t/2> = A1 +A2

n
S a
k=1

>3t>§4A1+4A21P< >t>+IP>(M>t).
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The first term on the right-hand side of inequality (2.1) can be bounded directly via Theorem 4.1.
Let V2 satisfy V;2 = >, EWZI{||Wj|| < U}. Then for o7, = ||V;?|| and ¢ such that £ > oy +U/3,

t/2)?

44, < 16r(V;2 __ 2]

1= 16r (V) exp [ o2 +tU/6}

The result follows. O
We are now ready to deduce the first main result of the paper.

Theorem 2.1. Let Wi,...,W, € C¥? be a sequence of centered, independent, self-adjoint
random matrices, and assume that EMP < oo for some p > 1. Moreover, suppose that V,?

satisfies V2 = 5, EW?, and set 0 = ||V;2||. Then
< 2 7 >
>12t> _K(r(Vn)exp[ a2+4tEM} +P(M >1t)

(
i (10;()61)))% <Ei\”ﬂ>2>

whenever t > 2(o VEM/3) and where K is an absolute constant.

n

> w

k=1

(t/2)?

2p P p P 2*
Remark 2.2. In principle, the term (@) (%)2 can be replaced by ((@) %)

for any integer k > 1, at the cost of increasing the constants appearing in the bound.

Proof. We will continue using the notation introduced in the proof of Proposition 2.1. First of
all, note that sup,,-1 Q12 (< (Z?Zl Wj) v, v>> < /2 for the choice of o stated above. Next,

plugging the inequality
n
]P’(Zeka >t>§]P’< >t/2>—|—IP< >t/2>

k=1
into relation (2.1) with V2 and o2 specified in the conditions of the theorem, we deduce that

]P’( Zn:Wk > 12t> < 1287(V;?) exp [W} +4P (M > t)

— o2 +tU/6
+ 16 (]P’ (
Next, we apply Markov’s inequality to get the bound

n E n A P
P( A, >t/2> < EIXi, Adl”
k=1

(t/2)r
Theorem 4.2 implies that for all p > 2,

p\ 1/p
p
<E > = Klog(p) (]E

D A

k=1

S

k=1

D A

k=1

>t/2>>2.

n

D A

k=1

S a
k=1

1/p
+ (EmaXAk|p> .
k<n
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Moreover, if we set U := 24EM, then Proposition 4.2 applies with ¢ = 1 and tq = 0, the latter
due to the inequality
P <

1/p
< 6Emax | Ag|| < 6Emax |[Wi| <6 (Emax ||Wk||p) )
k<n k<n k<n

" p \’EMP
P(I;Ak >t/2>§(Klog(ep)) o

Note that whenever 0 < p < 2, the same result still holds since

n
(IE S Ay
k=1

in view of Proposition 4.2. The conclusion follows. O

n

D A

k=1

EM

— < 1/24.
Uf/

>0><IP’(M>U)<

Therefore,

n
E ZAk.

k=1

implying that

py\ 1/p
> < KEYP max | Wy ||?
k<n

Let us mention that using Markov’s inequality with the exponential instead of polynomial
moments leads to the version of Bernstein’s inequality due to Klochkov and Zhivotovskiy [2020]
(their argument relies on similar tools but does not require symmetrization and the Hoffmann-
Jorgensen inequality).

2.2. Moment inequalities

Now we will establish moment inequalities by integrating the tail estimates of Proposition 2.1.
As before, assume that V,? satisfies V,2 = >°, EW}? and let 02 = ||[V}2|.

Theorem 2.2. Let Wi,..., W, € C¥™? be a sequence of centered, independent, self-adjoint
random matrices, and let Q, = inf{s > 0: P(||3}_; Axll > s/2) < £37P}. Then for allp > 1,

n
<]E > Wi
k=1
where ¢ = log(r(V,2))Vp and K > 0 is an absolute constant. In particular, we have the following
“closed-form” Rosenthal-type moment inequalities:

(o
k=1
k=1

Remark 2.3. The well-known relation | M|y, < Klog(n)maxg<n [|Xk|ly, [fvan der Vaart and
Wellner, 1996] could be useful when combined with the inequality (2.2).

p\ /P
) < K (0\a+aQi +Q, +EV7M?),

p\ 1/p
p 1/ )
< K (oya+qEM + EM?)Y?) and
) (ova+ aear + 2 earr)

p\ 1/p
) < K (0y/q +log(r(V2)EM + p|| M|y, ) -
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Proof. Observe that

n
>
k=1

P
< 2PE

p

E

n
Z&ka

k=1

oo oo
= 2pp/ PP >t |dt=6° -p/ PP > 3t | dt,
0 0

where we used the symmetrization inequality [van der Vaart and Wellner, 1996, Lemma 2.3.6]
on the first step and the integration by parts formula on the second step, and the linear change
of variables on the third step. To estimate the last integral, we choose U = @1/2 and apply
inequality (2.1) in the range t > ¢y := 2(o vV U/3) to deduce that

ZEka

k=1

ZEka

k=1

p
<127(0 vV U/3)P

+6pp</ooo Pt (16r (V;2) exp [—(72(1/2]2/6} A 1) dt

+/ tP*ll[D(Mzt)dt+/ 4t1’11P< ZAk >t/2>IP’< Zska
0 0 k=1

k=1
Recalling the definition of @, one easily checks that
> t) dt

6pp/ 4#3—111»( > A > t/2> P( > Wi
0 k=1 k=1
<4-6°Qb+2"7'E

Combined with the first line of display (2.2), this inequality implies that

ZEka

k=1

n

> Wi

k=1

E

>t) dt>.

p

Ze?ka

k=1

p
<127°(c VU/3)P + 6PEMP + 4 - 67 Q¥

+ 6Pp /OOO 1 (16r (Vi2) exp [—0_2(’;/2]2/6] A 1) dt.

Application of Corollary 4.1 to the last integral yields the inequality (2.2). Finally, let us prove the
inequalities (2.2) and (2.2). To this end, we need to obtain the upper bounds for the quantities Q1
and Q,. To estimate Q1, recall the inequality (2.1) which implies that Q1/2 < 24EM. Similary,
by (2.1) and Markov’s inequality, we deduce that Q, < K bg’(’eP)El/ PMP If, on the other hand,
| M|y, < oo, then the second inequality of Theorem 4.2 combined with the bound (2.1) and the

well-known estimate EM < K||M||y, imply that ||>7_, Axll,, < I[[M],, whence

P ( ZAk > t) < eicHMtM)l
k=1

and Qp, < C'p||M ||y, Let us remark that the inequality (2.2) can be also obtained by integrating
the tail bound (2.1) directly. O

or—lg
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Next, we deduce a version of the previous result that holds for sums of nonnegative definite
random matrices.

Theorem 2.3. Let Wy,..., W, € C¥*? be a sequence of independent, nonnegative definite ma-
trices and let M = max;j—1 __n |[|W;||. Moreover, let A,, := Z?zl EW;. Then for allp > 1,

‘
(&

where ¢ = log(r(Ay)) Vp and K > 0 is an absolute constant.

p\ 1/p
§K<|An||+q]EM+ P (EMP)UP> and
log(ep)

S
k=1

p\ 1/p
) < K ([|[An |l +log(r(An))EM + p|| M|y, ),

Proof. In view of Minkowski’s inequality followed by the symmetrization inequality,

p\ 1/p p\ 1/p
(E ) gllAn|+<E )

< || Anll + 2E (E

n

S

k=1

zn: Wi — EW,
k=1

n py\ 1/p
> Wi ) .
k=1

where €1,...,¢, are i.i.d random signs independent from W1,..., W,. To estimate the second
term in the sum above, we will apply the inequality (2.2) together with the following choice of
V2: recall that in (2.2), we set U = 24EM and note that for all j,

E [W7I{||W;| < 24EM}] < 24EM -EW,

since W; = 0 with probability 1. This relation implies that we can set V;> = 24EM - A,,, whence
r(V;2) = r(Ay). Moreover, 0,/q = \/24q|| A, [EM < ||A,| + 6¢EM, hence (2.2) yields the bound

<]E zn: €ka
k=1

implying the claim. The second inequality is obtained in a similar manner where the inequality
(2.2) is used in place of (2.2). O

p\ 1/p
SK/<||An+qEM+ b (EMP)l/p),
log(ep)

2.3. Inequalities for the empirical processes

The only part of the previous arguments that exploits the “non-commutative” nature of the
random variables is the application of Matrix Bernstein’s inequality. In this section, we state the
results produced by our method for general empirical processes. The only required modification
is the application of Bousquet’s version of Talagrand’s concentration inequality 4.3 in place of
Bernstein’s inequality. We state only the versions of Theorems 2.1 and 2.2 and remark on the
key differences. The required changes to the proofs are minimal hence we avoid the details.

Let F be a set of measurable real-valued functions and let X7, ..., X,, bei.i.d copies of X. As-
sume that Ef(X) = 0 for all f € F. Let us set F'(z) := sup;cz |f(z)|, M = maxj—1 .. F(X}),
and suppose that EMP < oo for some p > 2. Denote Z = sup ¢~ Sor_, f(Xy); for simplicity, we
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will assume that Z is measurable. Finally, let o, satisfy o2 > nsup ferE f?(X). For example, in
the main case of interest of this paper, [|377_; Wi = sup|,,=; tr ((h_y Wi)vvT) correspond-
ing to F = {f,(-) = tr ((-)vvT), |lv]l2 =1} . The following result can be viewed as an extension
of Adamczak’s inequality [Adamczak, 2008] to the heavy-tailed case.

Theorem 2.4. For all t > \/50*,

t2

) 4+P(M >t
2az+64ﬂEJ\4)+ (M=)

i <10gl()ep)>2p <E?”4P>2>

Integrating this tail bound, we obtain the following moment inequalities.

P(Z > 24 (EZ +1)) §K<exp<

where K is an absolute constant.

Theorem 2.5. For allp > 1,

EZ”l/”<K(EZ+U* +pEM + —P EMPl/P>.
(B27)/7 < VB PEM + (B

Let us compare this result with the bound of Theorem 2.2. When applied to the sums of
random matrices, we get the inequality

n p\ 1/p
<E ZWk ) <K (E
k=1

The main difference is that this bounds includes E || _; Wj|| on the right-hand side. However,
for large values of p, it is better than (2.2) since o2 can be much smaller than sz IEW,?H
Moreover, Theorem 2.5 improves upon the inequality proved by [Boucheron et al., 2005, Theorem
12]: the latter states that for all p > 2,

W,
kz::l ’ log(ep)

+ /P + PEM + — (EM”WP>

(EZP)/? < K (IEIZ o+ p(]EMP)l/P) .

The estimate provided by (2.5) is better for large values of p if EM is much smaller than EY/? MP.

3. Applications

In this section, we apply the inequalities to get improved bounds to two classical problems -
matrix subsampling and covariance estimation.

3.1. Norms of random submatrices.

Let B be a self-adjoint matrix, and let 1, ..., 4 be i.i.d. Bernoulli random variables with Eé; =
0 € (0,1). Define R = diag(dy,...,0q). We are interested in the spectral norm of the matrix BR
formed by the columns B;, ¢ € I of B with indices corresponding to the random set I = {1 <



/Concentration and moment inequalities 10

i < d: §; = 1}. This problem has previously been studied by Rudelson and Vershynin [2007]
and Tropp [2015] who showed that

1
E|IBR|? < K 8B+ ‘ﬁ N Z 1B I

and

B2 2
BIBRI? <172 (31517 +1og (21018 ) 15y )

respectively, where B(;y denotes the column with the j-th largest norm and K is a numerical

constant. Note that HB(l)H; > ﬁ ZIE‘:;J but it is possible that log(nd) > log (2 1B “F) when

1312

the matrix B has small “stable rank” srank(B) := 'ﬂ@“'l%. Next, we will show that Tropp’s bound

can be improved, and that (3.1) holds with log(nd) replaced with log(nd) A log(srank(B)). To
this end, let ey, ..., eq denote the standard Euclidean basis, and observe that

IBR||* =

We will apply Theorem 2.3 to the last expression with Wy, = 6, BBl . Note that A,, = §BBT
so that [|A,|| = 6||B||?, and that EM = E (maxg—1,...,a 6x||B||3). According to Lemma 5.1 in
[Rudelson and Vershynin, 2007] or Proposition 2.3 in [Tropp, 2008],

67
E rriax Skl Brllz < L‘S Z ||B(k)H2

Finally, r(4,,) = [EETT

I is the stable rank of B. We record the following bound.

Corollary 3.1. The inequalities
(671

IBI2Y 1
BRI < & |15+ 10g (1015 2 Z| Bl

and
57"

B2 1
E|BR — 6B|* < K(1—6) | 6||B||* + log <”|B||§> =y Z ||B(k)|}§
k=1

hold for all 6 € (0,1) and a numerical constant K > 0.

Proof. The first inequality has already been established. The proof of the second bound is quite
similar: it suffices to note that

E|BR — 6B =

d
E | (6r — 0)* BB},
k=1

and that |[E X, (0 — )2 BB || = 5(1-6) | BI and B max (5:-0)*|Bull3 < 3557 LA, 1B I3
O
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3.2. Covariance estimation.

In this section, we consider applications of our results to the covariance estimation problem. Let
X € R? be a random vector such that EX = 0 and E[XX "] = . Given a sequence X1, ..., X, €
R? of i.i.d. copies of X, what is an upper bound for the error of the sample covariance matrix?

In other words, we would like to estimate F,, := H% Z;-L:l X; XJ—-'— — EH One of the long-standing

open questions asks for the minimal assumptions on the distribution of X such that n = C(e)d
suffices to guarantee that EE,, < ¢||X||, or that E,, < ¢||3]|| with high probability. Results of this
type are often referred to as the “quantitative versions of the Bai-Yin theorem,” after [Bai and
Yin, 2008]. Let us give an (incomplete) overview of the long history of the problem. It has long
been known that sub-Gaussian distributions satisfy the required conditions [Vershynin, 2012].
Moreover, very general and precise characterization of the behavior of the sample covariance of
Banach-space valued random vectors has been found by Koltchinskii and Lounici [2017] and,
very recently, further sharpened by Han [2022] in the finite-dimensional case. For the log-concave
and the sub-exponential distributions, the problem was first considered by Kannan et al. [1997],
and the bounds were significantly improved and refined by Bourgain [1996], Rudelson [1999].
It took much longer to remove the logarithmic factors, until the problem was finally solved by
Adamczak et al. [2010, 2011]. Finally, the case of heavy-tailed distributions was investigated by
Vershynin [2011], Srivastava and Vershynin [2013], Mendelson and Paouris [2014], Guédon et al.
[2017], until Tikhomirov [2018] showed that 4 + & moments are essentially sufficient to get the
desired bound. Specifically, his results imply that if ¥ = Iy and supy,,—; E[{(X,v)[" =T < oo
for some p > 4, then

d  max; || X3
E <C T2/p, )2 4 0 1512
n > (p) ( n =+ n

with probability at least 1—1/n. Abdalla and Zhivotovskiy [2024] refined Tikhomirov’s estimates
and essentially showed that n = C(g)r(X) samples suffices to get the desired guarantees in
expectation, although they considered the sample covariance based on properly truncated random
vectors. Next, we show that the results by Abdalla and Zhivotovskiy [2024] can be combined with
the moment inequalities developed in this paper to get sharp moment inequalities for F,,.

Theorem 3.1. Let X € R be a random vector such that EX = 0 and E[XX '] = X. Let
Xi,..., X, € R? be i.i.d. copies of X. Assume that @ < ¢ for a sufficiently small positive
constant c, and that for some p > 4

E(X,v)? -
Ssu T 1} 0.
oot (E(X, 0)2)p/
Then

o\ 1/2

1< r(¥)  E*Pmaxj<, ||X;|5
E|l-Y x;x] -39 <Cp) | Iz 2 + j<n 1451012 )
n g <C(k p)(” | n n
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Remark 3.1. In the course of the proof, we obtain a slightly stronger inequality
o\ 1/2

1 n
S -s| | < c<n,p><||z||
j=1
—4

n E/2 max;< [| X513 A E*/P max; < || X;/5 (1 N e—r(E)) ""’)
n

n n

Proof. Our proof builds on the results by Abdalla and Zhivotovskiy [2024] which in turn sharpen
the inequality due to Tikhomirov [2018]. Before we dive into the details, let us mention that the
“hypercontractivity” condition (3.1) implies in particular that ||E[|X[2X X 7| < x?tr(X)||S|; the
proof of this fact can be found in [Wei and Minsker, 2017, Lemma 2.3]. Note that

1 & T 1 &
EZIXJ-X]- — Xl = sup EZ E(X,v)?
= =1

[[v]l2=1

Let us state the following decomposition of the error into “peaky” and “spread” parts |[Tikhomirov,
2018]| that holds for arbitrary A > 0:

n n

sup lZ<Xj,y>2 CE(X,0)%| < sup lZ<Xj7U>21{>\<X7;,U>2 > 1)
lwll=1 | 5= loll2<1 7 5=
Peaky part
Lo
s I ;¢(A<vav>2) - E(X,0)?,
Spread part
where

() = {x, for z € [-1,1];

sign(z) for |z| > 1.

We will estimate the two terms separately, starting with the “spread” part. To this end, we will

r(%)
=212l n .’

apply Proposition 4.1 in [Abdalla and Zhivotovskiy, 2024] which implies that for A =

s iZw(MXj,wz)fIE<X,v>2 gcﬁnzn( T(§>+t)

lolla<1 | AT 42 r(X)n

with probability at least 1 — e™t. For t = r(X), we get in particular that

sup (A —E(X,v) 2 < Ck 2||Z||\/
olla<1 A"Z

with probability at least 1 — e~"(*). Next, we will estimate the “peaky” term in the inequality

(3.2). Equation (5) in the work by Abdalla and Zhivotovskiy [2024] states that for all subsets
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J C [n] of cardinality at most k,

1 k
n n
for the function f(k,[n]) defined via

2

[k, [n]) = sup > yiX;
lyllz=1,llyllo<k.supp(v)C[n] || =7

2

and the bounds holds uniformly over all such subsets J. The following result provides a bound

for f(k,[n]).

Theorem 3.2. [Abdalla and Zhivotovskiy, 2024, Theorem 3] Assume that @ < c for a suffi-
ciently small positive constant ¢’. Then

4/(4+p) n
< 112 n an
) < € (ma 13 + 12l (7)ot ).

<(p)

with probability at least 1 — ==, and the bound holds simultaneously for all integers k satisfying

r(X) <k<dn.

Since p > 4, this result implies that

) < ) (max |13 + [SIVAE)

Next, let A = —+ "®)  Following Tikhomirov [2018], Abdalla and Zhivotovskiy [2024], let us

w23l n
define the random set
I, = {j €[n]: (X;,0)* > 1/A}

and m = sup|,,<1 |lv|- Then, in view of the inequality (3.2), we see that

m 1NN f(m, [n])
xS e, E;Mj’wzlw&’wz > s

Now, if r(X) < m < ¢/n, then we can employ Theorem 3.2 to derive the following bound that
holds with probability at least 1 — %:

< A, ) < ©') (max 1 18 + Sl ) - iy 7
L W) (maxjgn I [r®) | m)

K 1311 n

Solutions to the inequality x < a\/x + b satisfy x < 2max(a?,b). Therefore, with probability at
least 1 — C(n—p),

max;<, || X;|* /(%)
m < C1(p) max (r(E), /]<§||E||| J — |-
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It remains to show that m < ¢'n if r(X) < cn for ¢ small enough (clearly, if m < r(X), then (3.2)
holds). By the definition of I,, for any v € RY,

uv—§;{< >ﬁwm¢} {( <&w>ym>1}

2=

o3, |1

: 12
= (7 )

0 x<1/2

where p(z) = ¢ 2z —1 x € (1/2,1] is such that 1{z > 1/2} > p(z) > 1{x > 1}. For brevity,
1 z>1

set Z;(v) := |<XJ—U>|1/2 In view of Markov’s inequality and assumption (3.1),

(x21=ly/75)

Bp(2)) < B (007 > Tzl [ ) < B0 1) 4D

Denote S = supj,,<1 (ijl p(Z;(v)) —Ep(Zj(v))) and 0% = sup|,,<1 Var(p(Z1(v))). We
deduce that

P ( sup |I,| > c’n) <P| sup Zp(Zj) >cdn | <P(S>dn—4r(%)).
lv]l2<1 HUH2:1]‘=1

We will apply Theorem 4.3 to estimate the right hand side in the display above. Specifically,
P(S > dn—4r(X)) < e ! whenever

dn—4r(X) — 2ES — ov2tn — 4t/3 > 0.

To prove that the this relation holds for a suitable choices of parameters ¢ and ¢t (where r(X)/n <
¢), first observe that

o? < E(p(2)? < Ep(2) < ),

n

where the last inequality follows from the bound (3.2). Next we will estimate ES. Let {¢;},
j =1,...,n be a sequence of independent i.i.d. random signs. The standard argument based
on the symmetrization and contraction [Ledoux and Talagrand, 2013, Theorem 4.4| inequalities,
together with the fact that p(z) is Lipschitz continuous with Lipschitz constant equal to 2, yields
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that

n

ES=E suwp | p(Z)—Ep(Z))

o<1 \ 5=

n n
(X}, v)]
< 2E sup Zejp(Zj) <4E sup ZEJ‘ ’ 1/2
o<1 |5 = (HQHZH n )
r(X)

o\ 1/2
n

8
: 7 | B (0
o v|[|2<L1 .
(ﬁmw@Q =

2 2
Since E supjj, <1 (Z?=1<Xj,v>> =E HZ?:l XjH < k2n|2||r(X) by assumption (3.1), we con-
clude that

n

E sup [ S]0(2)—Ep(2;) | <snt/i(r(2))"/4,

vll2<t \ 55

Elementary algebraic computation show that it suffices to choose parameters ¢ and ¢ so that
(4/3+v/2)t < ¢/n/2 and 16¢3/* + (44-+/2)c < ¢/ /2, where ¢ is a constant defined in Theorem 3.2.
If these relations hold, we conclude that m < ¢/n with probability at least 1 — e~¢, and that the
inequality (3.2) holds with probability at least 1 — 1 — ¢/(p)/n. Combining this result with the
estimates (3.2), (3.2), and Theorem 3.2, we conclude that with probability at least 1 — ¢/(p)/n,
the “peaky” admits an upper bound of the form

1 < n
sup 230021 {0602 > s [ |

folla<1 ™ 4= (%)

< f(mrl[n]) < 02(]9, li) (manS:L|Xj||2 + ||E||7“(E)> )

- n

Combining the estimates (3.2) and (3.2) with the decomposition (3.2), we conclude that with
probability at least 1 — e™"*) — ¢/(p)/n,

1 max,<, || X;||3 (2
Zﬂﬂf—zscm@<J<”3“+zw()>
n 4 n n
Jj=1

To obtain the desired bound in expectation, let us define the event

1 max;<, || X;|| r(X)
A=<= x;xT 3| < maXj<n 145012 4 sy, /70 0
LY X, _mnm< Xl 4y 7

j=1
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Then P(A€) < e ") +¢/(p)/n, and

2
1 EY2 max;<, | X |4 [r(X
El/2 BZXJX]T_E §C1(P7f€)< ;LS ” JH2+HE” (n)>
=1

2

1
+EVZ =3 XX -5 1(49)
n

j=1
Holder’s inequality implies that
2 p/2 p—4
2 ||IES xxT s 10| <mr |y xxT on| (R yere) T
ﬁzl i (A9 | < gzl VR n € :
j= Jj=

Finally, we invoke Rosenthal’s inequality (2.2) to deduce that

p/2
1
EP) =Y XX[ -3l <C(p)
j=1

V2 5 g er(5)

| logler®)

1
2 2
Emax [|X;3 + ~E*7 max IXjIIS] :

Since r(X) < cn by assumption, log(er(X)) < ¢(p) (n V e’"(z))(p_4)/2p, implying the final form of

the bound. O

4. Auxiliary results

In this section, we collect the background material and technical results that our arguments rely
on.

Theorem 4.1. [Minsker, 2017, Theorem 3.1] and [Tropp, 2015, Theorem 7.7.1] Let W1, ..., W,, €
C¥*4 be a sequence of independent, centered, self-adjoint random matrices such that |Wy| <
U, k =1,....n almost surely. Assume that V. = >, EW? and let 0® = ||V,2||. Then for any

t>o0+U/3,
IP’( ZWl >t> <A4r (Vnz)exp {]52/2]

— o2 +tU/3
Corollary 4.1. Let p > 1. Under the assumptions of Theorem 4.1,
> Wi
k=1

where g = log(er(V.2)) Vp and K > 0 is a numerical constant.

P

E!/P < K(oy/q+Uq)
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Proof. Fix tg > 0 and note that
E(|Y|?) = / Pt B(| Y| > £)dt
0

to X [e%} L t2/2
= P P([|Y]| > t)dt P~ . 4 -
J e e e e

Stg—i-/ 47"(Vn?)ptpfle*t2/4”2dt+/ 4T(Vnz)ptpfle*3t/4Udt‘
to tO

Next, take tg = 20/log(er(V;2)) + 3U log(er(V;2)). The first integral on the right-hand side of
(4) admits the following bound due to Lemma 4.1:

/ 47“(Vf)ptp_1e_t2/2‘72dt < 47"(V,12)p(20)p/2/ w e du
to log(er(V,2))
< 4rp2r/2gP2P=V/2p((p 4 1)/2)/ e 26~ gy
p1/V20?
< drp2Po?((p + 1)/4) P D/2 L i /Aot
H1

< 4rp2PoP((p + 1) /4) P~ D/2e— (20 (log(14)? /40>
<16 - 2767 ((p + 1)/4)(I)+1)/2

where I'(x) < (2/2)*"! for x > 2. Similarly, for the second integral on the last line of (4),
introducing u = 2‘% and applying Lemma 4.1, we deduce that

Oo 1,-3t/2U > 1,-3t/2U Bus \¥ [ 1
/ 4rptP~ eV gt < / 4rptP~ e 32U gt < 4rp [ 22 / e "du
M 2 2U 3u2/2U

3\ " o 3uz \? 4
< drp <2> 2”‘1F(p)/ e 2e " du < drp <2> 2P(p/2)P~ e 35U los(1+4n))/4U
2U 3“2/2U 2U

< 8(2log(1 +17))* (2p)P.
O

Proposition 4.1. [Hoffmann-Jorgensen inequality: Ledoux and Talagrand, 2013, Proposition
6.7] Let X4, ..., X, be independent, symmetrically distributed random variables with values in a

separable Banach space with norm || - ||p. Set S = Zle X, k < N. Then for any s,t > 0,
Pl > 2 +5) < 4P (ISxl, > 0 + P (a0l > ).

Proposition 4.2. [Ledouzr and Talagrand, 2013, Proposition 6.8] Let 0 < q < oo and let
X1,..., X, be independent, symmetrically distributed random variables with values in a sepa-
rable Banach space with norm || - ||g. Set S = Ele X;, k < N. Then for to = inf{t > 0 :
P(|Snlls > t) < (2-37)71},

E[1Snlp < 2 - 3"Emax|| Xl + 2 (3t0)"

Theorem 4.2. [Ledouz and Talagrand, 2013, Theorems 6.20 and 6.21] Let X4, ..., X, be inde-
pendent random variables with values in a separable Banach space with norm ||-||g. There exists
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a numerical constant K such that for all p > 1,

p
p
<K E
~ log(ep) (

k=1 B
[Son,| <= (2

k=1 P1 k=1
Theorem 4.3. [Bousquet, 2003, Theorem 7.3] Let F be a countable set of measurable real-
valued functions and let Xq,...,X, be i.i.d. Assume that Ef(X1) = 0 for all f € F and that
supse 7 |f(X1)| < U with probability 1. Denote Z = supser Y _y [ (Xy). Assume that o? >
nsup ;e r Ef?(X1) and set v = oF 4+ 2E[Z]. Then for all t >0,

n

D X

n

S ¥

k=1

El/P

+ E/P max ||Xk|%> and

B

+ Hmax||Xk||B ) )
k
B wl

P <Z >EZ 4+ V2tv + tg) <e t.

The inequality (4.3) immediately implies that with probability at least 1 — e~ Z < 2EZ +
o2t + 4tU/3. Alternatively, the bound can be stated as

t2/2

Finally, we state two elementary integral estimates required in the proofs.

Lemma 4.1. Fiz p > 2. Then for any t > 0,
/ wP e 2y < et/ 2P2(tP2 4 (/p/t)P).
t

Proof. Making the change of variables v = v —t and using the relation e~%"/2 <1 that holds for
all u gives that

oo o0
/ wP~ e 2y §/ (t+v)p_1e_(t+”)2/2du
t 0
2 o0 2
< e—t /2/ 2p_2(tp_1 +vp—1)e—tve—v /2dv
0

< PR L P T (p) < e R (R 4 (VB/1)Y)
where I'(-) denotes Euler’s gamma function and where we used the inequality T'(p) < pP/2. 0O
Lemma 4.2. For any positive real numbers p > q and any t > 0,

<22/ (p/q + 1)e"’/?,

where T'(+) is the Euler’s gamma function.

Proof. Start with the identity t? = g(;//?i/lc; 2P/9T(p/q + 1) and observe that it suffices to show

/
that lﬁt(‘;//?ilj < et"/2. The latter is equivalent to the inequality
This inequality follows from the following estimate:

T(z+ 1 CteTtdt [ (t\” >
(x+1) _ fo e > / <t) e~tdt > / e~ tdt = e O
a a a

<eforallz>1,a>0.

o
T'(z+1)

a® a®
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