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Abstract

Long document summarization systems are

critical for domains with lengthy and jargon-

laden text, yet they present significant chal-

lenges to researchers and developers with lim-

ited computing resources. Existing solutions

mainly focus on efficient attentions or divide-

and-conquer strategies. The former reduces

theoretical time complexity, but is still memory-

heavy. The latter methods sacrifice global con-

text, leading to uninformative and incoherent

summaries. This work aims to leverage the

memory-efficient nature of divide-and-conquer

methods while preserving global context. Con-

cretely, our framework AWESOME uses two

novel mechanisms: (1) External memory mech-

anisms track previously encoded document seg-

ments and their corresponding summaries, to

enhance global document understanding and

summary coherence. (2) Global salient con-

tent is further identified beforehand to augment

each document segment to support its sum-

marization. Extensive experiments on diverse

genres of text, including government reports,

meeting transcripts, screenplays, scientific pa-

pers, and novels, show that AWESOME pro-

duces summaries with improved informative-

ness, faithfulness, and coherence than competi-

tive baselines on longer documents, while hav-

ing a smaller GPU memory footprint.

1 Introduction

Large pre-trained transformer models have demon-

strated impressive performance across popular ab-

stractive summarization benchmarks (Lewis et al.,

2020; Raffel et al., 2020). Yet, transformer’s

quadratic memory complexity presents challenges

for summarizing long documents with more than

hundreds of words, such as scientific papers and

investigation reports (Cohan et al., 2018; Huang

et al., 2021), making it infeasible for researchers

and developers with limited hardware resources

(e.g., GPUs with insufficient memories) to con-

tribute to this important research field.

The NLP community has made several inno-

vations to address the long document challenge.

Prior work divides a document into smaller chunks

and summarizes each separately (Gidiotis and

Tsoumakas, 2020), reduces the complexity of at-

tention calculations (Beltagy et al., 2020), and re-

moves unimportant content before running an ab-

stractor (Pilault et al., 2020). In terms of mem-

ory efficiency, divide-and-conquer methods ob-

tain the most significant advantage (Moro and

Ragazzi, 2022). However, information outside

of a document segment and their corresponding

summaries become inaccessible, leading to unin-

formative and incoherent summaries. Unsurpris-

ingly, state-of-the-art performance is obtained by

models that can maintain global context, e.g., by

combining global attentions with local attentions

in transformer-based summarization models (Za-

heer et al., 2021; Phang et al., 2022). Yet, they still

require a large GPU memory footprint in practice.1

Though large language models like GPT-4 (Ope-

nAI, 2023) are trained to handle up to 128K tokens,

the privacy and security of data transmitted and

shared through the API remain concerning, partic-

ularly in sectors dealing with sensitive information,

e.g., clinical notes. Local model development can

bolster privacy and security; however, limited com-

putational resources in these scenarios necessitate

the exploration of efficient modeling techniques.

Therefore, this work aims to address the problem

of long document summarization using constrained

resources, specifically focusing on constrained

GPU memory. We propose AWESOME2, which

is built on the memory-efficient divide-and-conquer

approach, and Augmented With Estimated Salient

cOntent and MEmory mechanism. In essence,

1These approaches require a GPU memory of >40GB to
process documents with over 8K tokens, while the most cost-
effective GPUs only have 24GB of memory (Li, 2022).

2Our code is publicly available at https://shuyangcao.
github.io/projects/awesome/.



AWESOME maintains global context of both the

source document and the summary generated so far

with a limited memory usage, to enhance summary

informativeness, faithfulness, and coherence.

First, external memory mechanism is used on

the encoder side of AWESOME to store informa-

tion as it sequentially reads document segments.

This maintains relevant context for improving doc-

ument understanding and salient content detection,

thus promoting summary informativeness and faith-

fulness. Another memory is applied on the decoder

side to boost generation coherence by tracking the

partial summaries generated for previous document

segments. Importantly, to ensure the GPU memory

efficiency of AWESOME, we curb gradients from

propagating to other document and summary seg-

ments and only implement the external memory in

a limited number of layers.

Second, AWESOME incorporates global

salient content selected by an efficiently trained

extractor through (1) direct text concatenation, or

(2) inserting their key-value matrices into attention

calculation. This lets the summarizer be aware

of important topics at a global level, to enhance

salience estimation and summary informativeness.

We experiment with five popular long-input

benchmarks of different genres: investigation re-

ports in GovReport (Huang et al., 2021), meet-

ing transcripts in QMSum (Zhong et al., 2021),

TV screenplays in SummScreen (Chen et al.,

2022), scientific papers in arXiv (Cohan et al.,

2018), and fictions in BookSum (Kryscinski et al.,

2022). First, on all the five datasets, all AWE-

SOME variants uniformly outperform Se3 (Moro

and Ragazzi, 2022), the divide-and-conquer base-

line, on summary informativeness as evaluated by

ROUGE (Lin, 2004) and on coherence as measured

by DiscoScore (Zhao et al., 2022) and a metric

based on entity graphs (Guinaudeau and Strube,

2013)—both metrics are highly correlated with hu-

man judgment, according to Zhao et al. (2022). Sec-

ond, AWESOME with memory mechanisms also

improves summary faithfulness over Se3 on Gov-

Report, according to SummaC (Laban et al., 2022),

an entailment-based faithfulness metric. Lastly,

compared with more memory-intensive models that

also maintain global context, such as Phang et al.

(2022) and Liu et al. (2022), AWESOME achieves

better or comparable automatic scores for infor-

mativeness, coherence, and faithfulness on Gov-

Report (Huang et al., 2021). On BookSum which

comprises the lengthiest documents and summaries

Approach In→Out Enc Enc←Dec Dec

Efficient Attention x→ y ■ ■  

Extract-Abstract xe → y □ ⋆  

Dynamic Weight x→ y □ ■+⋆  

Divide-Conquer xi → yi □ □ #

Table 1: Existing approaches to long document summa-

rization (§2.1). In→Out: Longer inputs (|x| > |xe| >
|xi|) or outputs (|y| > |yi|) produce more nodes in the

computation graph, thus the higher memory consump-

tion. Enc: Encoder accessing partial documents (□)

hurts document understanding, compared to reading the

full text (■). Enc←Dec: Decoder reading the full docu-

ment (■) or pre-identified salient content (⋆) enhances

summary informativeness, compared to a segment (□).

Dec: Decoder accessing previously generated summary

content ( ) is crucial for generation coherence than

reading a current summary segment only (#).

among the five datasets, AWESOME produces

more informative and coherence outputs than re-

cent models.

Our contributions are summarized as follows:

1. We conduct a comprehensive study of existing

approaches to long document summarization,

revealing that the number of tokens involved

in training computation significantly affects

GPU memory usage.

2. We design AWESOME based on the

GPU memory-efficient divide-and-conquer

approach. AWESOME leverages the mem-

ory mechanism and global salient content aug-

mentation to compensate the context loss due

to the divide-and-conquer process.

3. We experiment with diverse long-document

summarization datasets, showing the effective-

ness of AWESOME.

2 Related Work

2.1 Efficient Long Document Summarization

We categorize existing efficient long document

summarization models into four major types, as

summarized in Table 1. The model input can be an

original document, extracted important segments

of the document, or a document segment, which

are denoted as x, xe, or xi (for the i-th segment),

and typically, |x| > |xe| > |xi|. The output can

be the full summary y or a summary segment yi
(for xi), where |y| > |yi|. Importantly, longer in-

puts and outputs expand larger computation graph,



leading to higher GPU memory usage. Moreover,

we analyze both the document context and the

summary context used by each approach when

generating summaries. Specifically, we check (1)

full vs. partial documents that are consumed to

obtain the encoder representations (Enc); (2) full

vs. partial encoder representations that are attended

by the decoder (Enc←Dec); and (3) full vs. partial

output that is accessed by the decoder (Dec).

Efficient attentions are designed to reduce the

quadratic complexity of the original transformer

architecture (Vaswani et al., 2017) and maintain

full encoding context by combining global atten-

tions with local attentions built on sliding win-

dows (Beltagy et al., 2020; Zaheer et al., 2021),

text blocks (Phang et al., 2022; Tay et al., 2020), or

clusters of similar tokens (Kitaev et al., 2020; Roy

et al., 2021). Besides the aforementioned attention

variants designed for self-attentions, recent work

has reduced the memory usage of decoder cross at-

tentions by distributing encoder outputs to different

attention heads (Huang et al., 2021) or selecting at-

tendable encoder outputs via KNN search (Bertsch

et al., 2023). Despite the reduced complexity, ef-

ficient attention-based systems effectively require

reading the full document x to generate a summary

y during model training and thus still need huge

GPU memory that scales with the input length.

Extract-then-abstract systems circumvent the

long sequence challenge by first identifying the

salient segments, xe (e.g., sentences), using an ex-

tractor, and then running an abstractor over xe to

produce the final summary (Pilault et al., 2020; Liu

and Lapata, 2019; Zhao et al., 2020). However, the

extracted segments may contain incomplete and

out-of-context information that leads to incompre-

hensible and unfaithful summaries.

To mitigate the error propagation issue of a two-

stage approach, recent studies bridge the extractor

and abstractor via dynamic weights over docu-

ment segments. Rather than feeding the extracted

segments directly to the abstractor, at each sum-

mary decoding step, DYLE (Mao et al., 2022) first

predicts an output token distribution for each seg-

ment separately, and then aggregates over all the

extracted segments as weighted by their extraction

salience. PageSum (Liu et al., 2022) further allevi-

ates context loss by averaging decoder output rep-

resentations conditioned on all document segments.

Though their abstractor processes each document

segment xi separately, jointly training the extrac-

tor and the abstractor still requires loading the full

document x into the GPU memory.

Divide-and-conquer systems split a document

into multiple non-overlapping segments and sum-

marize each segment separately, as done in Gidiotis

and Tsoumakas (2020) and Se3 (Moro and Ragazzi,

2022). SummN (Zhang et al., 2022) uses an ad-

ditional summarization stage to further condense

the segmented summaries. As each document seg-

ment xi is summarized separately, the divide-and-

conquer approach’s fixed GPU memory footprint

is independent from the document length. This

fits well with our goal of long document summa-

rization with limited memory. However, without

access to other parts of the document and their

summaries, the summarizer struggles for content

salience estimation in each isolated segment, and

generates incoherent outputs when piecing together

summaries. Though Wu et al. (2021) concatenate

previously generated summaries as part of the in-

put, a complicated strategy is required for training

sample construction.

AWESOME is built on the memory-efficient

divide-and-conquer approach, and improves sum-

mary informativeness, coherence, and faithfulness

by using newly designed external memories for

accumulating salient information from other docu-

ment segments and their generated summaries. We

further augment AWESOME with global salient

content to provide important topics at the document

level, when summarizing each segment.

2.2 Memory and Content Augmentation

Different memory mechanisms have been studied

for long-range text understanding tasks. For in-

stance, Transformer-XL (Dai et al., 2019) caches

intermediate representations produced in the last

document segment and attends over these repre-

sentations. Compressive Transformer (Rae et al.,

2020) further increases the context range by com-

pressing the oldest cached representations. To sim-

ulate memory reading and writing, Recurrent Mem-

ory Transformer (Bulatov et al., 2022) includes ex-

tra memory vectors in each text segment and passes

their corresponding output vectors to the next seg-

ment. Instead of using a memory with a fixed size,

Memorizing Transformer (Wu et al., 2022a) stores

all prior representations as key-value pairs, and

performs an approximate kNN lookup to retrieve

representations to augment the current segment.

However, existing work on memory mechanisms

focuses on language modeling, while incorporating

memory mechanisms into the decoding process for
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Figure 1: Illustration of AWESOME. Encoder and

decoder memories can be accessed any time and up-

dated after reading each document segment and gen-

erating the corresponding summary. They accumulate

global context that improves summary informativeness

and coherence (§3.1). When encoding each segment,

global salient content from other segments (lines with

♦-shaped ends, from both past and future) are provided

to further assist salience estimation (§3.2).

generation tasks is nontrivial as it requires updat-

ing both decoding states (e.g., beams) and memory

states. Our work is the first to leverage paramet-

ric memory mechanisms and content augmentation

to incorporate global context for the purpose of

memory-efficient long document summarization.

3 External Memory and Global Salient

Content Augmentation

The architecture of AWESOME (Figure 1) is

based on Se3 (Moro and Ragazzi, 2022), where a

document is summarized segment by segment, with

the final summary obtained by concatenating the

resultant summaries. Document sentences are split

into segments with up to 768 tokens each, while

reference summary sentences are assigned to their

most overlapping segment to create the oracle sum-

mary, as detailed in Appendix A. Following Long-

former (Beltagy et al., 2020), we initialize the en-

coder and decoder parameters from BART (Lewis

et al., 2020). AWESOME preserves the global con-

text and builds communications across segments

with minimal GPU memory increase, by (1) em-

ploying external memories in both the encoder and

the decoder to gather relevant information (§3.1),

and (2) augmenting the encoder with salient con-

tent from other segments (§3.2).

3.1 External Memory Mechanisms

We design two external memory mechanisms to

efficiently enable the information flow from prior

segments to the current segment. Specifically, each

memory module maintains a matrix M ∈ R
m×d,

where m = 1024 is the memory size and d =
1024 is the hidden state dimension of BART. M

is updated after encoding each document segment

and then passed to the next segment. We denote the

memory matrix after the t-th segment as M t. Each

layer of the encoder and decoder can be equipped

with one such external memory. Below we describe

two mechanisms to update M t and incorporate it

in both the encoding and decoding processes. The

layer index in the formulas is omitted for simplicity.

Compressive Memory. For each document seg-

ment, compression-based memory caches its in-

put vectors to be fed into self-attention calculation.

Since storing the input vectors as-is requires the

memory usage m to scale linearly with the con-

text length, we dedicate half of M t to store the

compressed memory, with a compression ratio of

r. With Ht
inp denoting the matrix that contains

input vectors to the transformer self-attention, the

memory compression and update processes are:

M t−1

c ,M t−1

u = M t−1[:
m

2
],M t−1[

m

2
:] (1)

M ′

u = concat(M t−1

u , SG(Ht
inp)) (2)

M ′

c = compress(M ′

u[: −
m

2
]) (3)

M t
u = M ′

u[−
m

2
:] (4)

M t
c = concat(M t−1

c ,M ′

c)[−
m

2
:] (5)

M t = concat(M t
c ,M

t
u) (6)

where SG(·) denotes stopping the gradient back-

propagation to lower GPU usage, and compress(·)
performs convolutions with their stride and kernel

size set to the compression ratio r. r is set to 5 after

tuning on the development sets.

Next, to leverage the memory from the previ-

ous segment in summarizing the current segment,

M t−1 is concatenated with the inputs to the self-

attentions to obtain the key-value matrices:

Ht
mem = concat(M t−1, Ht

inp) (7)

Ht
self = Attn(Ht

inp
︸ ︷︷ ︸

query

, Ht
mem

︸ ︷︷ ︸

key

, Ht
mem

︸ ︷︷ ︸

value

) (8)

where Ht
self is the output of the self-attention.



Our compression-based memory is adopted from

Compressive Transformer (Rae et al., 2020), a

decoder-only model for language modeling. We

are the first to apply it to both the encoder and

the decoder of a Transformer model and on long

document summarization tasks.

Compressive memory favors recency, particu-

larly the previous segment and its summary, po-

tentially causing older relevant history to be lost

during compression.

Attentive Memory. To mitigate the recency bias

by compressive memory, we further investigate an

attention-based memory updating mechanism, to

selectively include content in M t. First, the mem-

ory is additionally accompanied by an extra cross-

attention in each of the encoder and decoder layers,

specialized in retrieving relevant information from

M t. Following prior study (Lei et al., 2020) that

uses memories in video captioning, we update M t

with a gate matrix Gt to control the amount of

content to be updated:

M t = Gt » U t + (1−Gt)»M t−1 (9)

where » denotes the element-wise product and

U t is the matrix containing vectors to update the

memory. U t and Gt are obtained as follows:

U t = tanh(Wu1M
t−1 +Wu2S

t) (10)

Gt = σ(Wg1M
t−1 +Wg2S

t) (11)

St = Attn(M t−1

︸ ︷︷ ︸

query

, SG(Ht
self )

︸ ︷︷ ︸

key

, SG(Ht
self )

︸ ︷︷ ︸

value

) (12)

where W∗ are learnable matrices, St synthesizes

the current segment via an attention calculation,

and SG(·) indicates stopping the gradient back-

propagation. In each encoder and decoder layer,

an extra cross-attention is inserted after the self-

attention, where M t−1 is attended and incorporated

into the current segment’s summarization process.

Unlike our approach, the memory in Lei et al.

(2020) does not employ gradient stopping. This

omission eliminates the memory efficiency gained

from the divide-and-conquer strategy, leading to

comparable high memory usage as the efficient

attention strategy.3 While their memory is suitable

for generating short image captions, our design

with gradient stopping is crucial for efficient long

document summarization.

3Without gradient stopping, the model fails to complete
training with 48GB GPU memory.

Selective Installation of External Memory. To

mitigate the GPU memory overhead incurred by ex-

ternal memory, we selectively add external memory

to specific layers. Due to the high computational

cost of exhaustively searching for the optimal layer

or combination of layers for each dataset, we di-

vide the layers of BART into four groups, each

comprising three layers. We test the performance

of installing external memory in each group sep-

arately and select the group that shows the best

overall performance on the validation set of GovRe-

port.4 The last three layers are chosen for attentive

memory, while the first three layers are selected

for compressive memory. We believe the limited

adaptability of compressive memory prevents its

effective application in the latter layers.

3.2 Global Salient Content Augmentation

The memory mechanisms only grant access to prior

content in the documents, yet subsequent context

can also help with salience estimation, e.g., elab-

orating the pros and cons of a proposed solution

makes it necessary to introduce the problem and the

solution. Moreover, memories store content implic-

itly, so it is unclear whether relevant information

can be stored and retrieved effectively. Therefore,

we inform the system of a document’s important

sentences, which are pre-identified by a separately-

trained extractor. The details of extractor training

can be found in Appendix D. After extracting im-

portant sentences in a document, we study two

methods of injecting them into the summarizer.

Text Concatenation. For each segment, we in-

clude the extracted sentences in the following way

to prioritize long-term context. We start with the

“outermost” extracted sentences, i.e., the earliest

sentence in the past segments and the last sentence

in the future segments, and repeat this process until

the input has reached the maximum length accepted

by the positional encoding of the model (1024 for

BART).5 To differentiate the content in the cur-

rent segment from the added sentences, we prefix

the current segment and the added sentences from

before/after the current segment with “Current

chunk:”, “Previous important sentences:”,

and “Next important sentences:”, respectively.

Text concatenation is easy to implement and most

compatible with the source modality, but the mem-

4Selective installation reduces GPU memory usage by ap-
proximately 9GB.

5Other inclusion strategies can be explored in future work.



# Samples # Word
Dataset Train Dev Test Doc Summ

GovReport 17,516 974 973 9,409 553
QMSum 1,257 272 279 9,070 70
SummScreen 18,915 1,795 1,793 6,421 381
arXiv 203,037 6,436 6,440 6,030 273
BookSum 314 45 46 143,301 1,294

Table 2: Statistics of datasets used in our experiments.

ory usage increase is quadratic to the length of the

augmented content.

Key-value Vectors. To circumvent the quadratic

memory increase, we join the key-value represen-

tations of tokens in important sentences in the en-

coder self-attentions, and directly inject them into

the summarizer encoder. The memory increase is

only linear to the augmented content’s length.

Concretely, the summarizer encoder first en-

codes all document segments and obtains the repre-

sentations (i.e., encoder outputs) of tokens belong-

ing to the extracted important sentences. During

training, the token representations of these sen-

tences are concatenated with the key-value matrices

in the encoder self-attentions while the query ma-

trix remains in its original form. Up to 1024 tokens

are concatenated via the same inclusion method

for text concatenation, to prioritize the outermost

sentences. A similar idea has been used by Mem-

orizing Transformer (Wu et al., 2022a) to include

retrieved text representations from past segments

for long-form language modeling. Our method

differs in two aspects. First, we extract representa-

tions from future segments, which are crucial for

accurately identifying salient content. Second, we

apply a learnable projection to the augmented rep-

resentations prior to key-value concatenation. This

process is crucial in improving compatibility with

the original key-value matrices.

4 Experimental Setups

Datasets. We conduct experiments on GovRe-

port (Huang et al., 2021), QMSum (Zhong et al.,

2021), SummScreen (Chen et al., 2022), arXiv (Co-

han et al., 2018), and BookSum (Kryscinski et al.,

2022). The average input lengths of these datasets

range from 6K to 143K (Table 2).

Experiment Setups and Comparisons. Our

main experiments are conducted with a GPU mem-

ory constraint of 27GB. For each model, we trun-

cate the input such that its maximum GPU memory

usage during training does not exceed the constraint

when gradient checkpointing (Chen et al., 2016)

is disabled. The constraint is specifically chosen

such that the baselines perform reasonably. Ap-

pendix C.2 provides information on the maximum

number of input tokens that can conform to the

constraint for other models.

For baselines, in addition to the divide-and-

conquer Se3 model (Moro and Ragazzi, 2022),

we compare with state-of-the-art or popular long

document summarization systems including Block-

Attn (Phang et al., 2022),6 Longformer (Beltagy

et al., 2020), LongT5 (Guo et al., 2022), and Un-

limiformer (Bertsch et al., 2023). We also include

an extract-then-abstract model (Extract-Abstract)

and PageSum (Liu et al., 2022) that leverages dy-

namic weights, as discussed in §2. All models are

initialized from BART-large, except for LongT5

that is pre-trained on long-form data. Details of

baseline models are reported in Appendix D.

Evaluation Metrics. We evaluate summary in-

formativeness using ROUGE (Lin, 2004). To mea-

sure coherence, we use DiscoScore (Zhao et al.,

2022) (Disco), a reference-based metric that evalu-

ates discourse coherence by comparing focus (e.g.,

nouns) frequency and semantics between the sys-

tem summary and the reference. We also report a

graph-based reference-free coherence metric (Guin-

audeau and Strube, 2013) (Ent Graph), which

measures the connectivity of summary sentences

linked by entities, reflecting the coherence of topic

transitions. For summary faithfulness, a recent

model-based faithfulness metric, SummaC (Laban

et al., 2022), is used.7

Finally, we show the maximum size of allocated

GPU memory by each model during training.

5 Results

We report results by all AWESOME variants and

comparison models on GovReport in Table 3.

Compared with Se3, AWESOME variants consis-

tently achieve better performance on both ROUGE

and coherence scores, indicating the importance

of maintaining global context for accurate salience

estimation of local content and enforcing coherent

transitions across segment-level summaries. This

6While Phang et al. (2022) introduce a new pre-trained
model, we only incorporate their proposed block attentions
into BART for a fair comparison.

7We only evaluate SummaC on GovReport, as the less
formal formats or the domains of other datasets degrade the
sentence-level NLI model of SummaC.



Model R-1 ↑ R-2 ↑ R-L ↑ SummaC ↑ Disco ↓ Ent Graph ↑ GPU Mem ↓

Se3 46.56 23.22 44.36 14.71 7.37 1.41 11.1
BlockAttn 57.46 26.78 54.82 20.43 5.91 2.05 25.6
Longformer 57.40 26.92 54.70 20.39 5.68 2.05 25.3
LongT5 54.21 24.87 51.06 13.34 4.81 1.56 25.4
Unlimiformer 56.35 25.94 53.83 6.05 5.36 1.96 27.0
Extract-Abstract 56.89 24.76 54.26 22.07 4.03 2.09 13.2
PageSum 56.80 23.26 54.11 6.82 3.04 1.88 24.9

AWESOME using External Memory Only

Compressive 56.30† 26.94† 53.77† 15.85 5.04† 2.04† 12.5

Attentive (Attn) 58.44∗ 27.71∗ 55.98∗ 18.98† 3.62† 1.98† 14.0
AWESOME using Global Salient Content Only

Text-concat (Txt) 56.65† 27.68∗ 54.11† 12.23 5.05† 2.09† 12.0

Key-value Vectors 55.02† 26.39† 52.41† 11.52 4.75† 1.75† 14.3

AWESOME (Attn + Txt) 58.76∗ 28.18∗ 56.05∗ 19.22† 3.86† 2.03† 14.8

Table 3: Results on GovReport. The best and second best results per metric are bolded and underlined. AWESOME

with attentive memory only and its full version that additionally uses salient content through text concatenation

obtain the highest ROUGE scores and are comparable or better on faithfulness (SummaC) and coherence (Disco &

Ent Graph) than base model Se3. ∗: our model is better than all comparisons with approximation randomization test

(p < 0.0005);  : our model is better than Se3 (p < 0.0005).

can also be demonstrated by the sample outputs in

Table 4. Summaries generated by Se3 tend to in-

troduce noun phrases without context, as Se3 fails

to plan at a global level. On faithfulness, AWE-

SOME with attentive memory improves SummaC

over Se3, while only augmenting AWESOME

with global salient content hurts faithfulness. In-

specting the model outputs, we find that using at-

tentive memory improves understanding concepts

of long-term dependencies, e.g., connecting a strat-

egy with its related information that appears earlier

in the report.

Of the two types of external memory mecha-

nisms, attentive memory outperforms compression-

based memory on all metrics except the entity

graph, which highlights the advantage of adaptively

updating the stored context. Meanwhile, directly

concatenating salient content with the input yields

higher ROUGE scores than injecting key-value

vectors into the attention calculation, though the

latter is less memory-intensive. We believe natu-

ral language-based augmentation better interleaves

with the document segment, echoing the findings

by prior work on using retrieval for question an-

swering (Wu et al., 2022b).

Importantly, under a strict GPU memory con-

straint, AWESOME with external memory mech-

anisms and global salient content augmentation

achieves the best ROUGE scores among all models,

while obtaining competitive results on other mea-

sures. Though efficient attention models and Page-

Sum can perform remarkably when given higher-

Se3: VA has taken a number of actions to address defi-
ciencies GAO found in wait-time measurement and im-
plementation of its scheduling policy. For wait-time mea-
surement, these actions included changes to the wait-time
measurement definitions, provision and documentation of
scheduler training, and improved oversight through audits,
all of which have been in a state of flux for the past 6
years. On July 12, 2019, VA provided GAO additional
updates on efforts to implement GAO’s related recom-
mendations.

AWESOME: GAO recommended that VA either clarify
its scheduling policy to better define the desired date, or
identify clearer wait-time measures that are not subject to
interpretation and prone to scheduler error. VA concurred
with the recommendation, which GAO has identified
as among those recommendations that warrant priority
attention. VA has taken a number of actions to address
GAO’s recommendations regarding deficiencies GAO
found in wait-time measurement and implementation of
its scheduling policy.

Table 4: Summary snippets generated by Se3 and AWE-

SOME. AWESOME’s summary is more coherent, with

natural transitions surrounding “GAO’s recommenda-

tion”, while Se3 abruptly introduces the topic.

capacity GPUs as in the original work, they gen-

erate less informative summaries when truncation

is required to comply with the memory constraint,

emphasizing the importance of studying memory-

efficient long document summarization models.

Furthermore, AWESOME only creates a small

GPU memory overhead of less than 4GB, enhanc-

ing the model performance efficiently.

On QMSum (Table 5), AWESOME with

attention-based memory outperforms all compar-

isons on ROUGE scores. While our models’ sum-



Model R-1 ↑ R-2 ↑ R-L ↑ Disco ↓ GPU ↓

Se3 29.28 10.51 25.93 0.77 8.1
BlockAttn 30.76 8.26 26.49 0.50 22.8
Longformer 29.18 7.82 24.94 3.07 26.5
LongT5 31.88 10.07 27.82 0.44 25.4
Unlimiformer 30.57 8.82 26.89 0.49 26.9
Extract-Abstract 17.63 5.65 16.02 4.02 10.3
PageSum 29.55 7.38 26.11 0.31 21.5

AWESOME

Attn Only 32.02† 12.02 28.16∗ 0.69 12.9

Attn + Txt 32.05† 10.53 28.31 0.63 13.3

Table 5: Results on meeting transcripts in QMSum.

Equipped with attentive memory only, AWESOME

achieves the better ROUGE scores than baselines.

Adding extracted salient content does not further boost

the performance, due to the low performance of the ex-

tractor on dialog data.

Model R-1 ↑ R-2 ↑ R-L ↑ Ent G ↑ GPU ↓

Se3 38.09 11.30 36.56 0.50 11.3
BlockAttn 32.01 8.99 30.90 1.61 25.7
Longformer 42.78 13.21 41.34 0.97 25.3
LongT5 42.03 12.67 40.76 1.03 25.4
Unlimiformer 35.17 11.98 34.28 1.33 27.0
Extract-Abstract 19.95 5.58 19.70 0.06 13.1

AWESOME

Attn Only 46.05† 13.09† 44.21† 0.81† 13.2

Attn + Txt 45.30† 12.63† 43.51† 0.90† 14.2

Table 6: Results on TV transcripts in SummScreen. We

report Ent Graph instead of DiscoScore, as DiscoScore

encounters errors when identifying focus. AWESOME

with the attentive memory obtains the best R1 and RL

scores, while the low accuracy of the extracted salient

content leads to performance drop of the summarizer.

maries are more coherent than the summaries by

Se3, as measured by DiscoScore, the differences

among all models are less pronounced compared

to the ones on GovReport. This is because QM-

Sum contains shorter summaries than GovReport

(69 vs. 553), thus involving fewer topic transitions.

We also find that the extractor performs poorly

on QMSum, leading to degraded ROUGE-2 re-

sult after augmenting our model with the extracted

salient content. Specifically, the F1 score of the

extractor on the test set is only 1.29, as opposed

to 27.85 on GovReport. This trend is similarly

observed on SummScreen (Table 6), where the

extract-then-abstract method performs poorly and

adding extracted content leads to performance drop

of AWESOME due to the low performance of the

extractor. Meanwhile, AWESOME with the atten-

tive memory is able to obtain the best ROUGE-1

and ROUGE-L scores.

Model R-1 ↑ R-2 ↑ R-L ↑ Disco ↓ GPU ↓

Se3 40.74 17.96 36.87 1.33 12.8
BlockAttn 49.12 21.69 44.40 1.77 25.7
Longformer 48.59 21.45 43.99 2.17 25.2
LongT5 48.25 20.74 43.41 0.97 25.5
Unlimiformer 47.78 20.58 43.22 1.22 26.8
Extract-Abstract 42.37 16.43 38.62 1.03 15.3
PageSum 46.01 18.77 41.55 0.88 26.2

AWESOME

Attn Only 42.51† 18.96† 38.56† 1.30 16.0

Attn + Txt 44.20† 18.89† 40.07† 1.32 16.5

Table 7: Results on arXiv papers. AWESOME variants

again outperform Se3. For 80% of the arXiv documents,

efficient attention models and PageSum can fully train

on their first halves, covering 90% of the salient content

that appear in the references (Huang et al., 2021), thus

the better ROUGE scores than models encoding smaller

segments.

Model R-1 ↑ R-2 ↑ R-L ↑ Disco ↓ GPU ↓

Se3 40.78 10.16 39.77 10.46 11.5
BlockAttn 23.45 3.09 22.09 190.27 25.7
Longformer 20.20 2.45 18.55 204.48 25.3
LongT5 33.15 6.74 32.62 24.24 25.5
Unlimiformer 38.09 9.55 37.41 47.72 27.0

AWESOME (Attn) 41.11 10.63 40.20 10.36 24.0

Table 8: Results on novels in BookSum. AWESOME

with attentive memory in all layers achieves the best

performance on all metrics. Methods requiring external

extractors are not included due to the computational cost

of building extractive oracles for long novels.

On arXiv, models that use efficient attentions

obtain the higher ROUGE scores, because truncat-

ing arXiv documents has little effect on summary

generation—arXiv articles have the most uneven

distributions of salient content, where only about

10% of new salient bigrams are located in the sec-

ond halves of the documents (Huang et al., 2021).

Finally, experiments on BookSum show that the

divide-and-conquer method produces better sum-

maries for long novels, while our method can fur-

ther boost its performance (Table 8). However, we

find it necessary to incorporate external memory

into all layers, suggesting a more complex interac-

tion of external memory with the summarization

process for novel plots. Unlike other document

types tested, novel plots are typically sequential

with less redundancy, which reduces the necessity

of the memory mechanism.

Among all datasets, global salient content aug-

mentation performs better on datasets rich in

knowledge-dense factual statements, such as Gov-



Report and arXiv. We observe that the majority of

sentences extracted from GovReport and arXiv are

standalone statements comprehensible with little

to no contextual support. By contrast, sentences

extracted from other datasets typically demand in-

tegration with their original context for full clarity.

Our global salient content augmentation mecha-

nism leverages these extracted sentences without

their own context, which reduces its effectiveness

on datasets such as SummScreen and QMSum. We

will explore methods that allow contextualization

of global salient content in future work.

More experimental findings are presented in Ap-

pendix B. Notably, with the same input length,

AWESOME still achieve competitive performance

(Table 11), despite using less GPU memory and

running faster than most models (Figure 3).

Human Evaluation. We ask three fluent English

speakers that have extensive NLP data annotation

experience to examine the outputs by BlockAttn,

Se3, and AWESOME using attentive memory and

text concatenation for content augmentation on

GovReport. 25 GovReport documents are ran-

domly selected,8 each summarized by all three sys-

tems. Outputs from different systems are randomly

shuffled and displayed. For each summary sen-

tence, the annotators give binary labels on where

the sentence is coherent—it uses natural transi-

tions to logically connect with the previous content,

and does not contradict any prior statement. The

annotators also compare each summary sentence

with the document and check if it is faithful, i.e., it

can be verified and entailed from the document. We

further ask the annotators to rank the summaries

generated by the three systems based on their in-

formativeness—how well the summary captures

the salient content of the document.

As seen in Figure 2, AWESOME’s summaries

are rated by human judges to be more coherent,

faithful, and informative than Se3, again evidenc-

ing the importance of incorporating global con-

text. Though BlockAttn produces the most coher-

ent summaries, it has more faithfulness errors and

is less informative, due to document truncation un-

der a constrained memory.

6 Conclusion

We present AWESOME for summarizing long doc-

uments in a memory-constrained setting. Based

8We focus on GovReport, as its documents are well for-
matted and easier for annotators to follow.
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Figure 2: Percentages of system summary sentences

that are incoherent (Incoh.) and unfaithful (Unfaith.)

on GovReport, as rated by human. The average rank-

ings of the informativeness (Inf. Rank) of system out-

puts are also reported. Though summaries by Block-

Attn are more coherent, AWESOME generates more

faithful and informative outputs. Krippendorff’s α:

0.50/0.49/0.57.

on the divide-and-conquer strategy, AWESOME

uses two mechanisms to gather global context and

improve summary quality. First, external memo-

ries on the encoder and decoder are employed to

track previously read document content and the

corresponding summaries. Second, the encoder

is informed of global salient content predicted by

an extractor via text or representation concatena-

tion. On five summarization datasets, AWESOME

generates summaries with better informativeness,

faithfulness, and coherence than a baseline divide-

and-conquer system. Under the same memory con-

straint, AWESOME outperforms competitive mod-

els that leverage efficient attentions or dynamic ex-

traction to preserve global context, highlighting its

effectiveness in supplying global context.
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Limitations

AWESOME’s external memory mechanism is re-

stricted to operating solely from past segments to

the current segment. This means that the model

does not leverage the information contained in fu-

ture segments, which can be relevant for a com-

prehensive understanding of the current segment.

To address this limitation, we have designed the

global salient content augmentation mechanism to

cover context from the future segments, yet more

advanced solutions can be explored in future work.

For example, on the encoder, making the external

memory bidirectional is a potential approach.



While being memory-efficient, the external

memory mechanism of AWESOME necessitates

a longer running time due to its recurrent nature.

The need for recurrent computations may lead to

increased processing requirements, which could

impact real-time applications or scenarios where

rapid responses are crucial. The running times of

different models are provided in Appendix B.4 for

reference. Although our model is slower than that

of LongT5 and Se3, it still outperforms several

other competitive models in terms of speed, and we

will investigate methods for reducing the running

time in future work.

The scope of our human evaluation is limited

due to practical considerations. Expanding the

scale of our human assessment would be highly

time-intensive, given the need for referring to long

documents. This limitation is a common challenge

encountered in annotating lengthy texts, and many

long document summarization studies opt to only

include automatic evaluations. However, we recog-

nize that increasing the number of samples in our

human evaluation could provide stronger empirical

support for the efficacy of our approach.

Ethical Considerations

We anticipate that one of the major use cases of

AWESOME is to allow ordinary users who have

computing devices with limited memory to quickly

understand government policies and other types

of long documents. However, we recognize that

the system generated summaries might not compre-

hensively cover the salient content that is essential

for correctly understanding the policies, causing

risks ranging from capital loss to legal liability.

Moreover, system summaries might contain state-

ments that cannot be verified through the document,

which further adds to the risks of real-world deploy-

ment. We suggest developers who intend to use our

model for real-world application carefully study the

outputs by our model before the actual deployment.
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A Divide-and-Conquer Architecture

We choose Se3 (Moro and Ragazzi, 2022) as our

base divide-and-conquer architecture because it can

be applied to any document-summary pair. In or-

der to create divide-and-conquer training data for

summarization, for each document-summary pair,

the document is first divided into segments (§A.1)

and each summary sentence is then assigned to a

document segment as part of the generation target

(§A.2).

A.1 Document Segmentation

The length of each document segment is between

512 and 768 tokens. During segmentation, the al-

gorithm loops through all document sentences, as

shown in Algorithm 1. A document sentence will

be added to the current segment if the segment con-

tains less than 512 tokens. The current segment will

be finalized if the current segment contains more

than 768 tokens or the current sentence is more

semantically similar to the next pseudo segment

than the current segment, where the next pseudo

segment is created by including future sentences

until reaching 512 tokens. To measure the simi-

larity between the current sentence and a segment,

we use the average cosine similarity between the

representation of the current sentence and represen-

tations of the sentences in the segment. Sentence

representations are obtained using Sentence Trans-

former (Reimers and Gurevych, 2019) with the

all-roberta-large-v1 model.

A.2 Target Assignment

For each sentence in the reference summary, we

calculate its ROUGE scores with the document

segments. The sentence will then be assigned to the

document segment with which yields the highest

ROUGE-1 and ROUGE-2 scores.

B Additional Results

B.1 Entity Graph Results

We show the entity graph scores on datasets other

than GovReport in Table 9.

B.2 Effects of Encoder Memory and Decoder

Memory

We conduct ablation studies on the usage of the en-

coder and decoder memories used by AWESOME.

As shown in Table 10, taking out the external mem-

ory from the decoder significantly affects summary



Algorithm 1: Document Segmentation

Data: Input document doc; Segment min,

max length lmin, lmax

1 segs ← [];
2 currSeg ← [];
3 foreach sent in doc do

4 if len(currSeg) < lmin then

5 currSeg ← currSeg + [sent];
6 end

7 else if len(currSeg) > lmax then

8 segs ← segs+ [currSeg];
9 currSeg ← [sent];

10 end

11 else

12 nextSeg ← pseudoSegment;

13 if sim(nextSeg, sent) >
sim(currSeg, sent) then

14 segs ← segs+ [currSeg];
15 currSeg ← [sent];

16 end

17 else

18 currSeg ← currSeg + [sent]
19 end

20 end

21 end

22 segs ← segs+ [currSeg];
23 return segs

Model QMSum arXiv BookSum

Se3 0.47 0.73 1.42
BlockAttn 0.56 0.92 2.64
Longformer 0.49 0.96 2.90
LongT5 0.30 0.76 1.98
Unlimiformer 0.59 0.94 2.69
Extract-Abstract 1.07 1.11 -
PageSum 0.54 0.91 -

AWESOME
Attn Only 0.47 0.80 1.33
Attn + Txt 0.56 0.99 -

Table 9: Results of the entity graph metric on experi-

mented datasets.

Model R-2 ↑ R-L ↑ SC ↑ Disco ↓ GPU ↓

AWESOME (Attn) 27.71 55.98 18.98 3.62 14.0
w/o Dec Mem 27.63 54.60 12.99 4.50 13.0
w/o Dec & Enc Mem 23.22 44.36 14.71 7.37 11.1

Table 10: Effects of encoder and decoder memories

on AWESOME on GovReport. SC: SummaC. Both

types of memories contribute to the summary coherence,

while the decoder memory is more important for faith-

fulness and the encoder memory advances the summary

informativeness more significantly.

faithfulness and coherence, while the informative-

ness measures remain comparable. This indicates

that the information from past summary segments

tracked by the decoder memory is crucial for pro-

ducing coherent transitions. Furthermore, the de-

coder memory mechanism may also store infor-

mation relevant to the key topics or entities, which

promotes the understanding of their mentions in the

current summary segment and boosts faithfulness.

The encoder memory allows comparing content in

the current segment versus its past context, which is

crucial for salience estimation. Therefore, remov-

ing encoder memory results in a more significant

drop in ROUGE scores.

B.3 Performance w/ the Constrained Input

Length

Besides experiments with constrained GPU mem-

ory, we also examine model performance when

training with the same input length (16384 tokens)

on GovReport. Gradient checkpointing is allowed

when the model is using more than 48GB of GPU

memory. Results are reported in Table 11. With

shorter training data, AWESOME remains compet-

itive on summary informativeness and coherence,

while maintaining a low GPU memory usage.



Model R-1 ↑ R-2 ↑ R-L ↑ Ent Prec ↑ SummaC ↑ Disco ↓ Ent Graph ↑ GPU Mem ↓

BlockAttn 57.69 26.92 55.00 97.86 23.98 4.61 2.06 48.0+
Longformer 57.61 26.88 54.93 97.80 23.42 5.95 2.05 48.0+
LongT5 55.23 25.54 52.57 96.57 17.52 4.49 1.76 48.0+
PageSum 59.36 26.59 56.44 88.87 2.25 2.43 1.87 48.0+

AWESOME 58.69 28.07 55.99 97.76 19.42 3.82 2.01 14.8

Table 11: Results on GovReport when models are trained with up to 16384 tokens. The best and second best results

per metric are bolded and underlined. When more than 48GB of GPU memory is required, gradient checkpointing

is enabled. AWESOME achieves comparable informativeness and coherence, while using much less GPU memory.
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Figure 3: Running time (batch per second) of each

model. A higher number of batches processed per sec-

ond indicates a faster running speed. All models use

a batch size of 1 and the input is truncated to 16384

tokens.

B.4 Running Time

We compare the model running time on GovRe-

port (Figure 3). The input document is truncated

to 16384 tokens and each model is separately train

for 1000 steps with a batch size of 1. No other

computation-heavy program is running at the same

time. While AWESOME take longer time to com-

plete training than Se3, it is still the third fastest

model.

B.5 Redundancy Evaluation

We measure the unique n-gram ratios of summaries

generated by different models on GovReport. The

unique n-gram ratio is calculated by dividing the

count of unique n-grams by the total number of

n-grams (Peyrard et al., 2017; Xiao and Carenini,

2020), and a lower unique n-gram ratio indicates

a higher level of redundancy. As shown in Ta-

ble 12, the redundancy of summaries generated by

our models is comparable to that of other compar-

isons. While LongT5 and PageSum have the lowest

redundancy, they have lower informativeness and

faithfulness as rated by other metrics.

Model Unigram Bigram Trigram

Se3 38.56 79.34 91.35
BlockAttn 38.10 77.48 89.61
Longformer 36.79 76.56 88.51
LongT5 44.21 85.10 95.71
Unlimiformer 36.29 75.09 89.82
Extract-Abstract 34.80 76.26 91.24
PageSum 40.44 86.51 99.04

AWESOME
Attn Only 38.06 78.76 90.98
Attn + Txt 37.19 77.97 90.39

Table 12: Unique n-gram ratios of summaries generated

by different models on GovReport. Redundancy of

summaries generated by AWESOME is comparable to

that of other models.

B.6 Abstractiveness Evaluation

We measure the density of model outputs on Gov-

Report. The density quantifies how well the word

sequence of a summary can be described as a series

of extractions (Grusky et al., 2018). A lower den-

sity indicates a higher abstractivenss. Compared

to Se3 (Table 13), summaries generated by our

models are more extractive, while they are more

abstractive than summaries generated by BlockAttn

and Longformer.

C Dataset Details

C.1 Statistics

We conduct experiments on five long document

summarization datasets with diverse genres. Gov-

Report (Huang et al., 2021) contains long reports

and their summaries written by government re-

search agencies. QMSum (Zhong et al., 2021)

is a query-focused long meeting transcript sum-

marization dataset, with summary-worthy content

spread over the documents. We prepend the query

to all segments. We further use a screenplay sum-

marization dataset, SummScreen (Chen et al.,

2022), which contains the transcripts of TV se-

ries. The TMS subset, with more samples and



Model Density

Se3 65.94
BlockAttn 125.46
Longformer 113.97
LongT5 67.02
Unlimiformer 42.06
Extract-Abstract 32.88
PageSum 28.40

AWESOME
Attn Only 82.18
Attn + Txt 88.67

Table 13: Densities of summaries generated by different

models on GovReport. AWESOME produces sum-

maries with higher abstractiveness than BlockAttn and

Longformer.

Dataset
Model Gov arXiv QMSum SumScrn Book

Se3 50x 50x 50x 50x 50x

Ext-Abs † 1x (∞) 1x (∞) 1x (∞) 1x (∞) -
BlockAttn 6x 6x 8x 6x 6x
Longformer 8x 8x 8x 8x 8x
LongT5 6x 6x 6x 6x 6x
Unlimiformer 2x 2x 2x 2x 2x
PageSum 3x 5x 2x - -
AWESOME 50x 50x 50x 50x 50x

Table 14: Truncation thresholds (multiply by 1024) used

by each model on different datasets to comply with the

memory constraint during training.  : For the extract-

then-abstract model, the abstractor has a maximum input

length of 1024, while the extractor can consume all

sentences in the document.

longer summaries, is selected. Moreover, we exper-

iment with the scientific papers and their abstracts

from arXiv (Cohan et al., 2018). Finally, we test

our models on summarizing full novels in Book-

Sum (Kryscinski et al., 2022). For all datasets, we

use the official train/dev/test splits if their original

data files are released.

For GovReport9, QMSum10, and Summ-

Screen (Chen et al., 2022), we use the data released

by the original papers. For arXiv, we use the ver-

sion provided by Huggingface Datasets.11 As the

original data files for BookSum are not released

due to summary copyright, we use the version re-

produced by Unlimiformer (Bertsch et al., 2023).

C.2 Input Truncation

In our main experiments, we employ a GPU mem-

ory constraint of 27GB. As some baseline models

9
https://gov-report-data.github.io/

10
https://github.com/Yale-LILY/QMSum

11
https://huggingface.co/datasets/scientific_

papers

require the input length to be a multiplier of 1024,

setting a constraint of 24GB, a more common num-

ber, would lead to further truncation and significant

performance drop.

To fit models into our memory constraint, we

truncate the model inputs. The truncation thresh-

olds used by each model on different datasets are

shown in Table 14. Although Se3 and AWESOME

theoretically maintain a consistent GPU memory

consumption during training regardless of the num-

ber of input tokens processed, we have chosen to

restrict the maximum number of input tokens in a

training sample to 51200 for reasonable training

time.

D Implementation Details

Baselines. BlockAttn and Longformer use block-

wise attentions (Phang et al., 2022) and sliding-

window attentions (Beltagy et al., 2020), where

a global token can attend to and be attended

by all tokens, while other tokens can only at-

tend to tokens in the same block or window.

LongT5 (Guo et al., 2022) is a sliding-window

attention model pre-trained on long sequences, and

Unlimiformer (Bertsch et al., 2023) extends BART

by selecting input tokens to be attended to via KNN

searching. For the extract-then-abstract approach,

we use the same extractor as in the global salient

content augmentation of our model, and the abstrac-

tor takes as input oracle extracted sentences during

training. Lastly, PageSum (Liu et al., 2022) synthe-

sizes the output representations given by different

document segments with dynamic weights.

Extractor. The extractor first uses a

RoBERTa (Liu et al., 2019) to encode each

sentence and takes the average of the final layer’s

outputs as the sentence representation. It then

applies a self-attention on top of all sentence

representations. The resulting representations

are converted to extraction scores after applying

a multi-layer perception with one hidden layer.

The extractor is trained with oracle extractive

labels that are constructed by greedily searching

for document sentences that maximize the sum

of ROUGE-1 and ROUGE-2 scores, compared

against the reference summary. We do not compute

ROUGE-L as in DYLE (Mao et al., 2022), because

finding the longest common subsequence is

computationally expensive and does not yield

performance gain.



Training Parameters. We train all models with

a maximum learning rate of 5× 10−5, except that

LongT5 is trained with a maximum learning rate

of 1 × 10−4. We use a running batch size of 1
and apply gradient accumulation to achieve an ef-

fective batch size of 8. The numbers of training

epochs are 3, 9, 6, 2, 10 on GovReport, QMSum,

SummScreen, arXiv, and BookSum, with warmup

steps of 300, 100, 300, 1000, and 40. Due to the

computational cost of training long document sum-

marization, each model is trained for a single run.

Model Size. AWESOME is based on

BART-large12 and has 708 millions of parameters.

Computing Infrastructure. All experiments are

conducted on RTX A6000 GPUs.

Evaluation Metrics. For ROUGE (Lin, 2004),

we use the Python implementation by Google.13

The official code for DiscoScore (Zhao et al., 2022)

is used14, which also provides an implementation

of the Ent Graph metric (Guinaudeau and Strube,

2013). We implement the entity precision mea-

sure ourselves and run the official code for Sum-

maC (Laban et al., 2022).15 All metrics used are

open-source and can be distributed for research

purposes.

Usage of AI Assistants. The authors use Copilot

to assist coding. ChatGPT is used to fix grammati-

cal errors during writing.

E Human Evaluation Details

The three annotators in our human evaluation

are all US college students and they have taken

undergraduate-level or graduate-level natural lan-

guage processing courses. Before starting the anno-

tation, the goal of the annotation is explained and

the instruction is presented to the annotators. The

annotators are fairly compensated ($12/hr). Fig-

ure 4 shows the detailed instruction for evaluation

on GovReport.

12https://huggingface.co/facebook/bart-large
13
https://pypi.org/project/rouge-score/

14
https://github.com/AIPHES/DiscoScore

15
https://github.com/tingofurro/summac



Instructions

During this task, you will be given a report and three different summaries for the report. Additionally, the reference summary will be

provided for comparison. You will evaluate the quality of each of the three summaries by three axes: coherence, faithfulness, and

informativeness.

For coherence and faithfulness, you are asked to provide binary 0/1 labels for each sentence. For informativeness, you also need to rank

the six summaries from 1 (best) to 3 (worse). Ties are allowed.

Coherence
For each summary sentence, please indicate whether the sentence is coherent. You should consider both local and global coherence.

Local: the sentence is logically connected with the previous sentence (i.e., no abrupt change of subject and show clear discourse

relation) and language-wise using natural transitions.

Global: the sentence does not contradict all prior statements and discourse cues. Examples of globally incoherent sentences include:

Contradicting statements, such as arguing against government intervention in the market but then advocating for it.

Disrupting the established order of discussion, such as discussing topic Z before topics X and Y, while the order has been set to

X, Y, Z by a prior sentence.

Omitting a point that should be discussed per a prior sentence.

Faithfulness
For each summary sentence, please indicate whether the sentence is faithful to the report. A sentence is faithful if its content can be

verified by the report. You can also compare the sentence with the reference summary to determine whether the sentence is faithful.

Here are some examples of faithfulness errors:

Attributing an abbreviation or acronym to the wrong full name, or vice versa.

Describing an action or policy as being completed or established when it has not, or describing it as not having been completed

or established when it has.

Making a statement that does not appear in the document.

Informativeness
Compare the system summaries against the reference, and rank summaries from most informative to least informative.

If the summaries contain information outside the reference, it doesn't count.

A summary can be long but only contain information not covered in the reference, and won't be ranked higher

Figure 4: Human evaluation instruction for evaluation on GovReport.
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