
MIDGARD: Self-Consistency Using Minimum Description Length
for Structured Commonsense Reasoning

Inderjeet Nair and Lu Wang

University of Michigan, Ann Arbor, MI

{inair, wangluxy}@umich.edu

Abstract

We study the task of conducting structured rea-

soning as generating a reasoning graph from

natural language input using large language

models (LLMs). Previous approaches have ex-

plored various prompting schemes, yet they

suffer from error propagation due to the au-

toregressive nature and single-pass-based de-

coding, which lack error correction capability.

Additionally, relying solely on a single sam-

ple may result in the omission of true nodes

and edges. To counter this, we draw inspira-

tion from self-consistency (SC), which involves

sampling a diverse set of reasoning chains

and taking the majority vote as the final an-

swer. To tackle the substantial challenge of

applying SC on generated graphs, we propose

MIDGARD (MInimum Description length

Guided Aggregation of Reasoning in Directed

acyclic graph) that leverages Minimum De-

scription Length (MDL)-based formulation to

identify consistent properties among the dif-

ferent graph samples generated by an LLM.

This formulation helps reject properties that ap-

pear in only a few samples, which are likely to

be erroneous, while enabling the inclusion of

missing elements without compromising preci-

sion. Our method demonstrates superior perfor-

mance than comparisons across various struc-

tured reasoning tasks, including argument struc-

ture extraction, explanation graph generation,

inferring dependency relations among actions

for everyday tasks, and semantic graph genera-

tion from natural texts.

1 Introduction

While large language models (LLMs) have

showcased impressive performance in few-

shot/zero-shot scenarios across diverse reasoning

tasks (Brown et al., 2020; Chen et al., 2021; Rae

et al., 2022; Hoffmann et al., 2022; Chowdhery

et al., 2022), it is still challenging to apply these

models for structured commonsense reasoning

which involves generating task-specific reasoning

as a graph, such as extracting argument structures

from argumentative text (Stab and Gurevych, 2017;

Hua et al., 2019; Mayer et al., 2020; Hua and Wang,

2022; Qiao et al., 2022), generating structured

explanations that lay out commonsense knowledge

to connect an argument to a belief (Saha et al.,

2021), and inferring dependencies among events

for everyday activities (Sakaguchi et al., 2021).

There are two main challenges for struc-

tured reasoning tasks. (1) Style discrepancy:

Conventional approaches for structured response

generation represent the graphs as flattened

strings (Madaan and Yang, 2021; Madaan et al.,

2021; Sakaguchi et al., 2021; Saha et al., 2021),

leading to subpar performance due to output style

mismatch (Madaan et al., 2022). (2) Error prop-

agation: Any incorrect decisions made earlier in

the autoregressive decoding process can influence

later generation steps (Yao et al., 2023). Recently,

Madaan et al. (2022) propose COCOGEN to ad-

dress the issue of style mismatch in structured

reasoning tasks, by using programming scripts as

prompts for LLMs. It still suffers from error propa-

gation, since it generates variable declarations and

function calls in order to describe the nodes and

edges within the graph. Any error in these declara-

tions/calls can affect the subsequent generations.

To address these issues, we take inspiration from

the self-consistency (SC) (Wang et al., 2023b) strat-

egy that samples diverse reasoning paths and then

takes a majority vote as the final answer. The intu-

ition behind SC is that sampling distinct reasoning

chains leads to higher confidence in the correctness

of a consistent answer. Therefore, we hypothesize

that sampling diverse graphs from an LLM can

construct a more accurate aggregate graph and al-

leviate error propagation for structured reasoning

tasks as any errors made in one sample are less

likely to persist across all the generated graphs.

A crucial distinction between SC and our desider-

Objective: run errands during a break in
the rain

Action List:

0. Get into car and start.
1. Drive to errand location and complete.
2. Think of first errand needed to complete.
3. Leave house when rain stops.
4. Watch out window for rain to stop.
5. decided to run errands during a break in the rain
6. Run errands during a break in the rain

LLM (CoCoGen Prompting)

…

Greedy

Temperature Sampling

Figure 1: Comparison of MIDGARD with COCOGEN. In this example, our objective is to infer dependency

relations among items in the "Action List" to achieve the specified "Objective". COCOGEN uses greedy decoding

and exhibits errors in the output, e.g., "decided to run errands during a break in the rain" is not connected with

"Drive to errand location and complete". In contrast, our approach MIDGARD (within the orange rectangle)

aggregates relevant information across different samples, resulting in more accurate inference. For this example, our

algorithm improved the performance of greedy decoding from 66.7 to 85.7 in edge F1-score.

atum is that SC focuses exclusively on common-

sense reasoning tasks (Ling et al., 2017; Clark et al.,

2018; Cobbe et al., 2021; Patel et al., 2021; Geva

et al., 2021) with scalar answer spaces. In con-

trast, we aim to merge multiple graphs, each rep-

resenting a collection of unordered sets (nodes and

edges). It is unclear how to apply majority vote to

aggregate distinct sets of nodes and edges. In par-

ticular, it would be critical to filter out inaccurate

nodes and edges in our setup.

To achieve this, we propose MIDGARD1,

based on MInimum Description length Guided

Aggregation of Reasoning in Directed acyclic

graph. We employ the principle of minimum de-

scription length (MDL) (Rissanen, 1978) which

seeks to find the hypothesis with shortest descrip-

tion length of the observations. While MDL has

been implemented for model selection (Grünwald,

2005), causal structure learning (Lam and Bacchus,

1993, 1994), data clustering (Rissanen, 2000), and

dimensionality reduction (Bruni et al., 2022), to

the best of our knowledge, its use in automatically

merging graph samples has never been explored

before. Assuming that graph properties consistent

across multiple generated samples are more likely

to be accurate, we define the description length of

a graph sample as the weighted sum of the trans-

formations required to convert a hypothesis into

the given sample. By constructing a hypothesis

that minimizes the description length across all the

1Our code is publicly available at https://github.com/
launchnlp/MIDGARD.

generated samples, our solution encourages the in-

clusion of graph properties that were present in

many samples, while rejecting properties that were

only present in a few samples which are likely to

be erroneous. Figure 1 shows an example of how

our approach reduces errors compared to relying

solely on a single greedy generation. Empirical

results on four different structured reasoning tasks,

including argument structure extraction, structured

explanation construction, and goal-oriented script

generation and semantic graph generation, on eight

benchmarks show that MIDGARD can outperform

competitive baseline and model variants, demon-

strating its strong generalizability.

2 Background and Notations

In structured reasoning, a labeled data point is de-

noted as (T ,G), where T represents the input and

G is the task-specific graph output that captures the

necessary reasoning knowledge. For example, in

the task of argumentative structure extraction (Stab

and Gurevych, 2017), T can be an essay, and G
represents the associated argumentative structure.

To solve this task, we employ LLM in the

few-shot prompting mode where N labelled data-

points {Ti,Gi}
N
i=1 are fed as in-context prompt

to the model to infer the output for a test input

T . In accordance with the COCOGEN approach,

we construct the in-context prompt as follows:

p = T1 ⊕ Gc
1 · T2 ⊕ Gc

2 · . . . · TN ⊕ Gc
N where

Gc
i is a semantically equivalent representation of

Gi written in a generally purpose programming

language like Python and · (⊕) represents inter

(intra)-instance separator. Pc (·, T) represents the

generative distribution of the LLM for the prompt

p and T . While COCOGEN relies on a single

generation obtained from Pc (·, T), our approach

utilizes this to generate multiple graph samples

{G′
i}

T
i=1 ∼ Pc (·, T) and then aggregates them

into a single output G. Our novelty lies in the

development of a novel and generic aggregation

algorithm for the task of reasoning graph genera-

tion. This algorithm leads to significantly improved

performance across multiple tasks.

3 The MIDGARD Method

MIDGARD is based on the principle of minimum

description length (MDL), which succinctly cap-

tures the regularities in the given data by finding

the hypothesis with the shortest description length.

In graph aggregation, MDL can be used as a self-

consistency strategy to merge multiple reasoning

graph samples into a single aggregate graph. The

core idea is to define a description length for each

graph sample, which is proportional to the number

of transformations required to convert a hypothesis

into the given sample. By minimizing the descrip-

tion length for samples {G′
i}

T
i=1, MDL encourages

the inclusion of graph properties that are common

across different samples. This means that proper-

ties that appear frequently in the generated samples

are more likely to be accurate and reflect the un-

derlying structure. Conversely, properties that are

only present in a few samples tend to be wrong.

In many structured reasoning tasks, the graphs

typically do not have singleton nodes. For exam-

ple, in argumentative structures of essays (Stab and

Gurevych, 2017), nodes are either supported or at-

tacked by other nodes, or they themselves support

or attack other nodes. We begin by defining the de-

scription length of a graph G′ based on the hypoth-

esis G when the graphs do not contain singleton

nodes in §3.1. Next, we derive the expression for

the expected description length in §3.2 assuming

that G′ is sampled from an LLM. Based on this, we

formulate an objective that aims to minimize the

expected description length of the sampled graphs

{G′
i}

T
i=1 ∼ Pc (·, T) in §3.3. We conclude this

section by proposing modifications to the objective

to address the scenario where the graph can have

singleton nodes in §3.4.

3.1 Defining Description Length

We define description length of G′ w.r.t. hypothe-

sis graph G as follows:

∆E(G
′,G, λ) = λ · a+ (1− λ) · d (1)

where a represents the number of new edges to

be added to G, and d is the number of edges to be

deleted from G to convert it to G’. We introduce the

hyperparameter λ, which can be interpreted as the

number of bits needed to describe a single addition,

when (1− λ) bits are needed to describe a single

deletion. The subscript E in Eq. 1 indicates that

only edge transformations are considered when cal-

culating the description length. Since these graphs

do not have isolated nodes and each node is associ-

ated with at least one edge, the description length

of G′ can be precisely captured using edge transfor-

mations alone.

The definition in Eq. 1 is inspired by the for-

mulation proposed by Lam and Bacchus (1994) ,

who applied it for refining causal graphs based on

new data but not for the task of graph aggregation.

While Lam and Bacchus (1994) assigned equal bit

requirements for describing a single addition and

deletion, our empirical results demonstrate the sig-

nificance of assuming different bit requirements to

achieve enhanced performance.

3.2 Expected Description Length

We denote the set of nodes and edges associated

with G as N(G) and E(G) respectively. Similarly,

we define N and E as the sets of all possible nodes

and edges, such that each edge (node) in G′ and G
belongs to E (N). Taking the expectation of Eq. 1

w.r.t. G′ ∼ Pc(,̇T)

EG′

[

∆E(G
′
,G, λ)

]

= λEG′ [a] + (1− λ)EG′ [d] (2)

EG′ [a] = EG′

[

∑

e∈E

1{e∈E(G′)} · (1− 1{e∈E(G)})

]

(3)

EG′ [d] = EG′

[

∑

e∈E

1{e/∈E(G′)} · 1{e∈E(G)}

]

(4)

(5)

After simplifying the above set of equations and

representing 1{e∈E(G)} by the binary variable xe,

we arrive at:

EG′

[

∆E(G
′
,G, λ)

]

=
∑

e∈E

((1− λ)− PG′(e)) ·xe+β (6)

where PG′(e) represents the probability of observ-

ing e ∈ E(G′) when G′ ∼ Pc (·, T) and β is a

constant that is independent from the hypothesis G.

For each edge e ∈ E, the desirability of adding e

to the hypothesis G is proportional to the difference

between PG′(e) and (1 − λ). As the probability

of e exceeds (1 − λ) by a larger extent, its desir-

ability to be included in the hypothesis increases as

higher probability suggests that the edge e would

be present in a significant number of samples, sug-

gesting it is a consistent property. Conversely, the

presence of (1 − λ) in each coefficient prevents

the inclusion of edges with probabilities lower than

(1− λ) in the aggregated graph.

3.3 Hypothesis Selection

We seek to find G that minimizes the expected

description length in Eq. 6. To estimate PG′(e),
we compute the fraction of graph samples from

Pc(·, T) that contains e as one of its edges. For-

mally, we wish to find the following:

argmin
G

∑

e∈E

(

(1− λ)−

∑T
i=1 1e∈E(G′

i
)

T

)

· xe (7)

In the absence of any additional constraints, identi-

fying the structure becomes trivial—one can sim-

ply set xe to 1 if its coefficient is negative, and 0
otherwise. However, in various tasks (Stab and

Gurevych, 2017; Saha et al., 2021; Sakaguchi et al.,

2021), the graphs need to be directed acyclic graphs

(DAG). Appendix B explains how to restrict the

search space to DAGs when optimizing Eq. 7.

3.4 Objective for Generic Graphs

Next, we propose suitable modifications to the ob-

jective to accommodate generic graphs that may

contain singleton nodes. While Eq. 1 defines the

description only in terms of edge transformations,

we define the description length for generic graphs

as follows:

∆(G′
,G, {λ1, λ2}) = ∆E(G

′
,G, λ1)+∆N(G′

,G, λ2) (8)

where ∆N uses the same form as Eq. 1 but cal-

culates the description length associated with the

addition and removal of nodes in order to transform

N(G) into N(G′). Redoing the steps described in

§3.2 and §3.3 yields the following objective:

argmin
G

∑

e∈E

(

(1− λ1)−

∑T
i=1 1e∈E(G′

i
)

T

)

· xe

+
∑

n∈N

(

(1− λ2)−

∑T
i=1 1n∈N(G′

i
)

T

)

· yn

(9)

1

2 3 4

5

1

2

3

4

1

2

3

4

1

2 3 4

6

Samples Generated By LLM

1

2 3 4

5 6

1.0
 - 0

.40

0.
75

 -
0.

40 1.0 - 0.40

0.25 - 0.40 0.5 - 0.40

0.25 - 0.40

0.25 - 0.40

0.2
5 -

 0.
40

0.25 - 0.40

0.25 - 0
.40

0.2
5 -

 0.
40

0.25 - 0.40

1.0 - 0.40

1.0 - 0.40 1.0 - 0.40 1.0 - 0.40

0.25 - 0.40 0.25 - 0.40

Output from MIDGARD after
applying objective for Generic

Graphs (1 - λ1 = 0.40, 1 - λ2 = 0.40)

Figure 2: Pictorial representation of Graph Aggrega-

tion. In the figure above, the probabilities of node/edge

existence in a randomly generated sample from an LLM

are estimated by the normalized frequency of their oc-

currence in the samples. The weight of an edge or

node on the right-hand side is determined by subtracting

(1− λ1) or (1− λ2) from this probability, respectively.

The optimization in Eq. 9 is equivalent to the selection

of the properties in the aggregated graph such that the

sum of weights is maximized. The bolded elements are

selected according to this maximization.

where yn is a binary variable denoting the presence

of n in N(G). Note that, an edge (n1, n2) can only

exist if both n1 and n2 are present in the graph. To

enforce this, we have the constraint: ∀n1, n2 ∈ N :
yn1 + yn2 − 2x(n1,n2) ≥ 0.

Refer Figure 2 for pictorial representation of

aggregation using the objective in Eq. 9.

4 Experiments and Analysis

We evaluate on three major tasks for reasoning

graph generation: Task 1-argument structure ex-

traction on ESSAYS (Stab and Gurevych, 2017),

ABSTRCT (Mayer et al., 2020), and CDCP (Park

and Cardie, 2018); Task 2-generating struc-

tured explanations on EXPLAGRAPHS (Saha

et al., 2021); Task 3-script planning on PRO-

SCRIPT (Sakaguchi et al., 2021); and Task 4-

semantic graph generation on KELM (Agarwal

et al., 2021), WEBNLG (Gardent et al., 2017), and

GENWIKI (Jin et al., 2020). Thereafter, we evalu-

ate how the performance of our approach changes

when using different numbers of samples generated

from the LLM. Additionally, we examine the ca-

pability of our approach in handling graphs with

varied complexities. Finally, we assess the influ-

ence of varying the number of few-shot examples

and examine how close our automatically chosen

hyperparameters are in comparison with the best

possible ones. We also analyze the influence of

varying the number of few-shot examples. Unless

stated otherwise, we generate T = 10 samples for

approaches utilizing multiple samples.

Base LLMs. We evaluate our approach with (a)

gpt-3.5-turbo2, a general purpose instruction-

tuned LLM and (b) CODE-LLAMA (Roziere et al.,

2023), a code-LLM pretrained over general pur-

pose programming languages. The 16K context

length associated with these LLMs allows us to em-

ploy few-shot prompting for long sequence input-

output tasks such as argument structure extraction.

Comparisons. We first consider a GREEDY base-

line that represents each graph as a semantically

equivalent programming script and samples only

one generation from the LLM, which is decoded

greedily as done in COCOGEN.

Our main model, MIDGARD applies the ob-

jective described in §3.4. As the graphs in all the

considered tasks are directed acyclic in nature ex-

cept semantic graph generation, we additionally

incorporate the DAG constraints discussed in §3.3.

For semantic graph generation, we analyse the per-

formance of different variants without DAG con-

straints. We further compare with three variants of

MIDGARD: (a) MIDGARD W/O NODE TRNS:

We use the objective described in §3.3 along with

the DAG constraints. By excluding the term that

incorporates node transformations in this formu-

lation, we can evaluate its impact on the overall

performance. Specifically, this approach is im-

plemented by retaining only those edges that oc-

cur more than 1 − λ1 fraction of times while en-

suring there are no cycles. Thereafter, only the

nodes present in the retained edges are kept. (b)

MIDGARD (λ = 0.5): We apply the objective

proposed by Lam and Bacchus (1994) by assuming

equal description length of addition and deletion.

(c) MIDGARD W/O DAG constraints.

4.1 Task 1: Argument Structure Extraction

In this task, our goal is to analyze the argumen-

tative discourse structure of an input text. This

involves detecting and categorizing all argumenta-

tive components within the text and identifying the

relationships between them. An example of this

task is shown in Appendix D.1.

We assess the performance of our method on

the following datasets: (1) ESSAYS (Stab and

Gurevych, 2017), (2) ABSTRCT (Mayer et al.,

2020), (3) CDCP (Park and Cardie, 2018). For

2
https://openai.com/chatgpt (Version 0613)

more details on these details, please refer the ap-

pendix D.1.

To compute the performance of component iden-

tification, we use BIO scheme to label the token

sequences. Thereafter, we compute component

identification F1 score (C) by tallying the num-

ber of true positives (TP), false negatives (FN), and

false positives (FP) in the assigned token sequences

as specified by (Mayer et al., 2020). To assess the

performance of relation prediction, we compute

metrics denoted by R100 and R50. The R100 metric

computes the F1-score by considering a prediction

as true positive only if the head and tail components

(and the relation type) overlap exactly with that of

a ground truth edge. On the other hand, R50 con-

siders a predicted relation as correct if there is at

least a 50% token overlap between the head and tail

components of the prediction and a ground-truth

relation.

We observe from Table 1 that MIDGARD

achieves a consistent performance improvement

across component identification and relation pre-

diction for most of the datasets and LLM choices.

With just 10 samples, the component identification

performance of ESSAYS is elevated by ≈ 5% and

≈ 4%, using gpt-3.5-turbo and CODE-LLAMA

respectively. Our approach boosts the performance

for ABSTRCT for relation prediction by over 10%
when CODE-LLAMA is used.

MIDGARD consistently outperforms other ag-

gregation strategies, with MIDGARD W/O DAG

being only slightly inferior. This indicates that

MIDGARD W/O DAG can be used for argument

mining tasks without a significant decline in per-

formance, even without incorporating DAG con-

straints for graph combination. However, when it

comes to component identification, MIDGARD

W/O NODE TRNS yields poor results due to the

absence of the term describing node transforma-

tions. Table 1 also justifies why it is important to

have unequal description lengths for addition and

deletion.

In our analysis of the models’ errors, we ob-

served that LLMs excel in accurately identifying

specific components. However, they tend to miss

capturing all the components present in the data.

On the other hand, MIDGARD effectively assimi-

lates relevant components from multiple samples,

resulting in improved recall without compromis-

ing precision (refer Appendix E.1 for quantitative

results).

Furthermore, as shown in Table 2, our approach

Approach
ESSAYS ABSTRCT CDCP Macro Average

C R100 R50 C R100 R50 C R100 R50 C R100 R50

LLM: gpt-3.5-turbo

GREEDY 67.4 21.5 32.6 84.4 38.5 55.2 53.8 11.2 16.2 68.5 23.7 34.7

MIDGARD W/O NODE TRNS 65.8 23.5 35.4 83.4 41.1 58.0 48.5 12.4 18.2 65.9 25.7 37.2

MIDGARD (λ = 0.5) 65.8 21.8 31.3 83.6 40.5 55.9 54.4 10.7 14.9 57.9 24.3 34.0

MIDGARD W/O DAG 72.3 23.5 35.4 84.0 41.1 57.9 54.8 12.3 17.9 70.4 25.6 37.1

MIDGARD 72.3 23.5 35.4 84.0 41.1 58.0 54.8 12.4 18.2 70.4 25.7 37.2

LLM: CODE-LLAMA

GREEDY 56.3 9.1 21.4 64.2 18.3 25.5 41.9 7.0 9.4 54.1 11.5 18.8

MIDGARD W/O NODE TRNS 56.6 11.0 24.5 57 30.7 39.5 34.5 7.8 10.7 49.4 16.5 24.9

MIDGARD (λ = 0.5) 49.7 3.4 5.6 62.9 24.9 31.7 36.6 3.3 4.1 49.7 10.5 13.8

MIDGARD W/O DAG 60.3 10.9 24.4 63.4 30.8 39.7 42.5 7.2 9.7 55.6 16.3 24.6

MIDGARD 60.3 11.0 24.5 63.4 30.7 39.5 42.5 7.8 10.7 55.6 16.5 24.9

Table 1: Results for the argument structure extraction tasks. The results were averaged across 5 random seeds.

Green and Blue indicates best and second-best performance respectively.

Type of error
ESSAYS ABSTRCT CDCP

Grdy Ours Grdy Ours Grdy Ours

spurious edges included 528.2 469.0 200.2 182.0 441.6 411.2

true edges omitted 777.8 768.0 126.8 120.2 255.6 238.8

reversed edges 30.4 21.8 1.4 0.8 15.8 14.4

Table 2: Segregation of relation prediction errors

into distinct categories and assessing how effective

MIDGARD (Ours) is reducing various types of errors

more than GREEDY (Grdy) decoding. Performance av-

eraged over 5 random seeds.

is effective in reducing various types of errors

found in the inferred edges. We categorize errors

associated with relation prediction and calculate

the total count of distinct edge errors in the inferred

samples as compared to the ground truth data.

4.2 Task 2: Explanation Graph Generation

We use EXPLAGRAPHS (Saha et al., 2021) for this

task, where the goal is to predict whether a certain

argument supports or counters a belief while gener-

ating a commonsense explanation graph that explic-

itly conveys the reasoning behind the stance predic-

tion. We request the reader to refer Appendix D.2

for more details on prompt design and dataset.

We employ the following metrics recommended

by the authors of this task (Saha et al., 2021): (1)

Structural Accuracy (StCA) computes fraction of

graphs that are DAG and has 2 concepts from

the argument and belief. (2) Semantic Correct-

ness (SeCA) employs a learnt model to measure

the semantic correctness of the edges by checking

whether the implied stance from the graph matches

the ground truth. (3) G-BERTScore (G-BS) mea-

sures the BERTScore (Zhang et al., 2019) between

Approach
EXPLAGRAPH

StCA (↑) SeCA (↑) G-BS (↑) GED (↓)

LLM: gpt-3.5-turbo

GREEDY 23.7 7.6 18.6 84.0

MIDGARD W/O DAG 12.9 2.5 10.3 91.1

MIDGARD (λ = 0.5) 4.3 1.6 3.3 97.0

MIDGARD 30.3 17.7 22.4 82.1

LLM: CODE-LLAMA

GREEDY 36.6 12.4 28.4 75.6

MIDGARD W/O DAG 21.2 12.6 16.1 87.3

MIDGARD (λ = 0.5) 0.0 0.0 0.0 100.0

MIDGARD 39.4 20.2 29.7 76.4

Table 3: Results on EXPLAGRAPH. MIDGARD (λ =
0.5) resulted in none of the edges being included in the

final graph, as the estimated probabilities of all edges in

the samples are below 0.5.

the inferred and ground truth edges. (4) Graph Edit

Distance (GED) computes graph edits required to

transform the hypothesis to the ground truth. As

these evaluation metrics measure the accuracy of

the graph as a collection of edges, we do not ex-

periment with MIDGARD W/O NODE TRNS as

there would be no performance difference from

MIDGARD.

We observe from Table 3 that MIDGARD im-

proves the performance of single generation based

technique by a significant margin for both LLMs.

Unlike the argument structure extraction task, the

performance is significantly worse when not using

the DAG constraints.

4.3 Task 3: Script Planning

Unlike the previous two tasks which emphasize on

constructing the complete graph from scratch, we

investigate whether our approach can be used for

Figure 3: Results for script planning on PROSCRIPT.

inferring relations between nodes that are already

known. To examine this, we use PROSCRIPT (Sak-

aguchi et al., 2021), which involves generating a

graph for achieving a high-level goal, with each

node representing an action and edges indicating

dependency relations among actions. In our setup,

we provide the set of actions and the goal to the

LLM as input and prompt it to generate the se-

quence of edges that capture the dependencies

among the input actions. More details about this

task is presented in Appendix D.3.

To compare the performance between different

approaches, we use F1-score (F1) between the in-

ferred edge set and the ground truth. From Figure 3,

we can see that MIDGARD significantly improves

the performance over the greedy single-generation

based approach. The figure also demonstrates the

importance of having DAG constraints.

4.4 Task 4: Semantic Graph Generation

The goal of this task is to extract the semantic graph

from an input natural language text as a list of

edges. Each edge in the graph consists of a subject,

a property, and the type of property (Han et al.,

2023). An example of this task is shown in Ap-

pendix D.4.

To gauge the efficacy of our model for such

a task, we consider following datasets: (1)

KELM (Agarwal et al., 2021), (2) WEBNLG (Gar-

dent et al., 2017) and (3) GENWIKI (Jin et al.,

2020). For more details on these datasets, we re-

quest the reader to refer Appendix D.4

We use the following metrics to assess the quan-

titative performance as suggested by Han et al.

(2023): (1) Triple-Match F1 (T-F1) finds the macro-

averaged F1 between the edge triples present in the

inference and the ground truth graph edge triples.

(2) Graph Match F1 (G-F1) measures the perfor-

mance as the number of graphs which exactly

matches the ground truth graph in terms of F1 score.

Finally, as defined in the §4.2, we also use (3) G-

BERTScore (G-BS) (Zhang et al., 2019) and (4)

Graph Edit Distance (GED).

From the Table 7, we can observe that while

our approach outperforms or achieves competi-

tive performance compared to the baseline, the

performance improvement is not significant for

gpt-3.5-turbo. Upon closer examination of the

outputs generated using temperature sampling, we

have noticed a lack of variability when compared to

the structured commonsense reasoning tasks men-

tioned in the main script. This limited variabil-

ity hinders the opportunity to improve upon each

sample, resulting in a less significant performance

boost than expected.

4.5 Further Analyses

Impact of increasing sample size. To analyze the

impact of varying the number of samples gener-

ated from the LLM, we evaluate the performance

of MIDGARD on the argument structure extrac-

tion task as it would allow us to examine the trend

on both node identification and edge prediction.

We only show the analysis for the ESSAYS dataset

from the argument structure extraction task due

to limited space. Please refer to the appendix for

additional plots and similar analysis.

(a) Component Identification (b) Relation Prediction

Figure 4: Performance of MIDGARD in comparison

with GREEDY on ESSAYS when the number of samples

from the LLM is varied. Results averaged over 5 differ-

ent random seeds.

From Fig. 4a and Fig. 4b, we see that the perfor-

mance increases only marginally emphasizing that

returns diminish with increasing the number of sam-

ples. Similar trend is observed for other datasets

belonging to the same task (refer Appendix E.2).

However, for EXPLAGRAPHS, we observe that the

performance steadily increases with the number of

samples indicating that having more and diverse

explanation graphs is helpful towards improving

the final aggregated structure as shown in Figure 5.

Efficacy of MIDGARD for different graph com-

plexities. We compare the performance between

Approach
KELM WEBNLG GENWIKI

T-F1(↑) G-F1(↑) G-BS(↑) GED(↓) T-F1(↑) G-F1(↑) G-BS(↑) GED(↓) T-F1(↑) G-F1(↑) G-BS(↑) GED(↓)

LLM: gpt-3.5-turbo

GREEDY 46.9 22.8 84.0 8.7 29.1 15.0 83.6 10.4 23.7 6.5 82.5 11.9

MIDGARD (λ = 0.5) 47.0 22.0 83.2 8.9 27.8 13.2 82.4 10.7 24.0 7.0 82.4 11.6

MIDGARD 47.4 22.8 83.5 8.8 29.3 15.0 83.7 10.4 24.3 7.2 83.4 11.5

LLM: CODE-LLAMA

GREEDY 37.9 20.0 63.2 14.1 24.8 6.0 66.4 14.2 12.1 2.0 53.6 17.6

MIDGARD (λ = 0.5) 8.8 4.0 45.0 19.8 23.0 6.0 67.3 14.6 7.1 2.0 54.9 18.2

MIDGARD 37.9 12.0 67.7 13.5 26.5 6.0 77.7 12.2 9.7 4.0 58.7 17.3

Table 4: Results for Semantic Graph Generation. In each of our method variants, we did not apply DAG constraints,

as they are not necessary for this task unlike the previous experiments.

Bin # Samples Avg. # Nodes Avg. # Edges Avg. Degree
GREEDY MIDGARD
C R50 C R50

ESSAYS

[5, 10) 3 8.0 7.0 0.88 64.7 23.8 64.7 36.2
[10, 15) 28 11.2 10.2 0.91 66.2 33.5 70.2 34.8
[15, 20) 33 15.6 14.6 0.94 68.5 32.5 73.0 36.4
[20, 25) 14 20.6 19.6 0.95 65.7 32.0 75.5 35.5
[25, 30) 2 26.0 25.0 0.96 58.3 36.1 70.0 31.2

ABSTRCT

[2, 4) 5 2.8 1.4 0.47 79.4 58.2 77.6 59.6
[4, 6) 41 4.6 2.7 0.58 83.4 59.8 83.5 63.1
[6, 8) 36 6.5 3.6 0.56 88.6 57.9 87.6 59.9
[8, 10) 14 8.4 4.0 0.47 83.8 47.0 84.5 48.3
[10, 12) 3 10.3 7.0 0.68 70.1 39.6 68.5 50.5

CDCP

[2, 7) 96 3.9 1.2 0.26 52.1 20.2 52.4 22.3
[7, 12) 33 8.3 3.2 0.39 56.0 21.7 56.9 23.8
[12, 17) 13 13.9 3.9 0.27 55.7 8.1 54.9 11.5
[17, 22) 3 19.0 7.7 0.40 59.7 10.4 64.4 7.7
[22, 27) 2 23.0 4.5 0.20 52.6 1.1 55.8 1.0

Table 5: Component and Relation identification performance for GREEDY and MIDGARD for different graph

complexities when gpt-3.5-turbo is used. The results are averaged for 5 seeds.

Figure 5: Performance of MIDGARD in comparison

with GREEDY on EXPLAGRAPHS.

MIDGARD and the GREEDY approach on argu-

ment structure extraction across various graph com-

plexities. We specifically select argument structure

extraction for this analysis because it enables us to

evaluate the influence of graph complexity on both

node and edge identification performance.

In this analysis, we bin the graphs based on the

number of nodes and compute the average com-

plexity metrics such as number of nodes and edges

and degree for the graphs belonging to each bin.

The higher these metrics are, the more complex the

corresponding graph is. For each method, we em-

ploy gpt-3.5-turbo for generating samples. We

observe that our approach provided consistent im-

provements across different complexities as shown

in Table 5.

Additional analysis. The impact of varying

the number of few-shot examples on argument

structure extraction performance for GREEDY

and MIDGARD is provided in Appendix E.3.

MIDGARD consistently improves the perfor-

mance across different number of few-shot ex-

amples. We compare our method and GREEDY

against a popular decoding technique called NU-

CLEUS Sampling (Holtzman et al., 2020) in the Ap-

pendix E.4 and find that it results in poorer perfor-

mance. We demonstrate that our approach works

with gpt-4 for the ESSAYS dataset in Appendix

E.5. In Appendix E.6, we assess the impact of

varying the hyperparameters {λ1, λ2} on the final

performance and compare it with that of automati-

cally estimated hyperparameters (refer Appendix

C.3). Figure 15 shows that while our automatic

hyperparameter search reaches near optimal per-

formance for component identification, there is a

scope for improvement in relation prediction.

5 Related Works

Sampling based approaches using LLMs. A

common strategy to address many NLP and com-

monsense reasoning tasks involves sampling mul-

tiple solution trajectories LLMs and employing

either a post-hoc strategy (Fu et al., 2023; Liu et al.,

2023; Wang et al., 2023a) or a trained reranker for

sample selection (Cobbe et al., 2021; Li et al., 2023;

Ni et al., 2023). However, post-hoc approaches re-

lying on LLM evaluation can be prone to position

bias (Wang et al., 2023a; Zheng et al., 2023) and

difficulty in judging response correctness (Huang

et al., 2023; Gou et al., 2023). Training-based

sampling requires additional labeled data for task-

specific reranking models. The self-consistency

framework is limited to problems with scalar an-

swer spaces due to its reliance on majority vot-

ing (Ling et al., 2017; Clark et al., 2018; Cobbe

et al., 2021; Patel et al., 2021; Geva et al., 2021).

Moreover, existing approaches lack integration of

information from different samples, potentially

leading to suboptimal solutions. In contrast, our

MDL-based formulation assimilates relevant infor-

mation from diverse structured responses without

fine-tuning. By examining consistent properties

across samples, we construct an aggregate graph

that leverages the strengths of each sample.

LLMs for commonsense reasoning. LLMs have

been applied to various domains, including arith-

metic reasoning (He-Yueya et al., 2023), genera-

tion of mathematical proofs (Welleck et al., 2022),

symbolic reasoning (Wei et al., 2022), and logical

reasoning (Srivastava et al., 2022). While prompt-

ing strategies (Wei et al., 2022; Zhou et al., 2022;

Yao et al., 2022; Wang et al., 2023b; Yao et al.,

2023; Madaan et al., 2023) have been proposed

to improve performance across these tasks, adapt-

ing them to structured commonsense reasoning,

which involves generating complex graph struc-

tures, presents unique challenges (Madaan et al.,

2022). Additionally, tasks within structured com-

monsense reasoning often require adherence to

specific constraints (Saha et al., 2021; Sakaguchi

et al., 2021), such as directed acyclicity, which

are difficult to ensure solely through existing strate-

gies. Our approach is independent of the prompting

methodology and allows for flexible incorporation

of task-specific constraints during inference.

6 Conclusion

We proposed a novel approach for enhancing

the performance of structured reasoning problems

which involve generating task-specific graphs. Tak-

ing inspiration from self-consistency, we sample

multiple graphs from the LLM and devise a mech-

anism to construct aggregated graph. Through rig-

orous experimentation, we have demonstrated the

effectiveness of our approach across various struc-

tured commonsense reasoning tasks.

Limitations

• Due to our approach’s reliance on generat-

ing multiple samples, it can be computation-

ally demanding and may require a significant

amount of time, particularly without batched

inference. As a result, practitioners using en-

terprise LLMs may incur substantially higher

costs compared to methods that involve single

generation. This factor makes our approach

less desirable in situations where there are

constraints on compute budget or limited ma-

chinery resources.

• For datasets consisting of graphs with a small

number of nodes and edges, applying ILP

does not result in significant computational

overhead. However, it is important to ac-

knowledge that the time complexity of ILP

solvers grows exponentially with the complex-

ity of the problem. Therefore, modifications

are necessary when applying our approach

to settings with a large number of edges and

nodes. Additionally, as the graph size in-

creases, it becomes increasingly challenging

to utilize LLMs effectively in generating the

graph structure. The limited context length

of the LLMs poses a challenge for applying

them to commonsense reasoning tasks involv-

ing larger graphs. This limitation arises from

the difficulty of accommodating multiple in-

context learning examples within the given

context length.

Ethics Statement

While our methodology attempts to derive struc-

tured representations from the input data only, due

to the issue of hallucination, the LLMs are not

immune to generating biased, insensitive or un-

truthful content. Hence, we urge practitioners and

researchers to exercise caution when applying our

framework, especially for sensitive applications

like politics, finance, and healthcare.

Acknowledgements

This work is supported in part through National

Science Foundation under grant 2302564. We are

grateful for the resources and services provided by

Advanced Research Computing (ARC), a division

of Information and Technology Services (ITS) at

the University of Michigan, Ann Arbor. Addition-

ally, we thank the members of the LAUNCH group

at the University of Michigan for their discussions

and suggestions.

References

Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami
Al-Rfou. 2021. Knowledge graph based synthetic
corpus generation for knowledge-enhanced language
model pre-training. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3554–3565, Online.
Association for Computational Linguistics.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
Dbpedia: A nucleus for a web of open data. In The
Semantic Web, pages 722–735, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Vittoria Bruni, Maria Lucia Cardinali, and Domenico
Vitulano. 2022. A short review on minimum descrip-
tion length: An application to dimension reduction
in pca. Entropy, 24(2):269.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large

language models trained on code. arXiv preprint
arXiv:2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2023. Gptscore: Evaluate as you desire. arXiv
preprint arXiv:2302.04166.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In
Proceedings of the 10th International Conference on
Natural Language Generation, pages 124–133, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the
Association for Computational Linguistics, 9:346–
361.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong
Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
2023. Critic: Large language models can self-correct
with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738.

Peter Grünwald. 2005. Minimum description length
tutorial. Advances in minimum description length:
Theory and applications, 5:1–80.

Jiuzhou Han, Nigel Collier, Wray Buntine, and Ehsan
Shareghi. 2023. Pive: Prompting with iterative verifi-
cation improving graph-based generative capability
of llms. arXiv preprint arXiv:2305.12392.

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and
Noah D Goodman. 2023. Solving math word prob-
lems by combining language models with symbolic
solvers. arXiv preprint arXiv:2304.09102.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Xinyu Hua, Mitko Nikolov, Nikhil Badugu, and
Lu Wang. 2019. Argument mining for understanding
peer reviews. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 2131–2137, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Xinyu Hua and Lu Wang. 2022. Efficient argument
structure extraction with transfer learning and ac-
tive learning. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 423–
437, Dublin, Ireland. Association for Computational
Linguistics.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023. Large language
models cannot self-correct reasoning yet. arXiv
preprint arXiv:2310.01798.

Zhijing Jin, Qipeng Guo, Xipeng Qiu, and Zheng
Zhang. 2020. GenWiki: A dataset of 1.3 mil-
lion content-sharing text and graphs for unsuper-
vised graph-to-text generation. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 2398–2409, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Wai Lam and Fahiem Bacchus. 1993. Using causal
information and local measures to learn bayesian
networks. In Uncertainty in Artificial Intelligence,
pages 243–250. Elsevier.

Wai Lam and Fahiem Bacchus. 1994. Using new
data to refine a bayesian network. In Uncertainty
Proceedings 1994, pages 383–390. Elsevier.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5315–5333,
Toronto, Canada. Association for Computational Lin-
guistics.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale gen-
eration: Learning to solve and explain algebraic
word problems. In Proceedings of the 55th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 158–
167, Vancouver, Canada. Association for Compu-
tational Linguistics.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. Gpteval:
Nlg evaluation using gpt-4 with better human align-
ment. arXiv preprint arXiv:2303.16634.

Aman Madaan, Dheeraj Rajagopal, Niket Tandon, Yim-
ing Yang, and Eduard Hovy. 2021. Could you give
me a hint ? generating inference graphs for de-
feasible reasoning. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 5138–5147, Online. Association for Computa-
tional Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Aman Madaan and Yiming Yang. 2021. Neural lan-
guage modeling for contextualized temporal graph
generation. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 864–881, Online. Association
for Computational Linguistics.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,
and Graham Neubig. 2022. Language models of code
are few-shot commonsense learners. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 1384–1403,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Tobias Mayer, Elena Cabrio, and Serena Villata. 2020.
Transformer-based argument mining for healthcare
applications. In ECAI 2020, pages 2108–2115. IOS
Press.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoy-
anov, Wen-tau Yih, Sida Wang, and Xi Victoria
Lin. 2023. Lever: Learning to verify language-to-
code generation with execution. In International

Conference on Machine Learning, pages 26106–
26128. PMLR.

Joonsuk Park and Claire Cardie. 2018. A corpus of
eRulemaking user comments for measuring evalua-
bility of arguments. In Proceedings of the Eleventh
International Conference on Language Resources
and Evaluation (LREC 2018), Miyazaki, Japan. Eu-
ropean Language Resources Association (ELRA).

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen,
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang,
and Huajun Chen. 2022. Reasoning with lan-
guage model prompting: A survey. arXiv preprint
arXiv:2212.09597.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Mari-
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo-
hannes Welbl, Sumanth Dathathri, Saffron Huang,
Jonathan Uesato, John Mellor, Irina Higgins, Anto-
nia Creswell, Nat McAleese, Amy Wu, Erich Elsen,
Siddhant Jayakumar, Elena Buchatskaya, David Bud-
den, Esme Sutherland, Karen Simonyan, Michela Pa-
ganini, Laurent Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena
Gribovskaya, Domenic Donato, Angeliki Lazaridou,
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim-
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot-
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,
Daniel Toyama, Cyprien de Masson d’Autume, Yujia
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,
Aidan Clark, Diego de Las Casas, Aurelia Guy,
Chris Jones, James Bradbury, Matthew Johnson,
Blake Hechtman, Laura Weidinger, Iason Gabriel,
William Isaac, Ed Lockhart, Simon Osindero, Laura
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub,
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko-
ray Kavukcuoglu, and Geoffrey Irving. 2022. Scaling
language models: Methods, analysis insights from
training gopher.

J. Rissanen. 1978. Modeling by shortest data descrip-
tion. Automatica, 14(5):465–471.

Jorma Rissanen. 2000. Mdl denoising. IEEE
Transactions on Information Theory, 46(7):2537–
2543.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Swarnadeep Saha, Prateek Yadav, Lisa Bauer, and Mohit
Bansal. 2021. ExplaGraphs: An explanation graph
generation task for structured commonsense reason-
ing. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 7716–7740, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan
Le Bras, Niket Tandon, Peter Clark, and Yejin Choi.
2021. proScript: Partially ordered scripts generation.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2138–2149, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Christian Stab and Iryna Gurevych. 2017. Pars-
ing argumentation structures in persuasive essays.
Computational Linguistics, 43(3):619–659.

Jiaan Wang, Yunlong Liang, Fandong Meng, Haoxiang
Shi, Zhixu Li, Jinan Xu, Jianfeng Qu, and Jie Zhou.
2023a. Is chatgpt a good nlg evaluator? a preliminary
study. arXiv preprint arXiv:2303.04048.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits
reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–
24837.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh
Hajishirzi, and Yejin Choi. 2022. Naturalprover:
Grounded mathematical proof generation with lan-
guage models. Advances in Neural Information
Processing Systems, 35:4913–4927.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and
Minlie Huang. 2023. On large language models’ se-
lection bias in multi-choice questions. arXiv preprint
arXiv:2309.03882.

Denny Zhou, Nathanael Schärli, Le Hou, Jason
Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Claire Cui, Olivier Bousquet, Quoc V
Le, et al. 2022. Least-to-most prompting enables
complex reasoning in large language models. In
The Eleventh International Conference on Learning
Representations.

A Minimum Description Length Principle

The principle of Minimum Description Length

(MDL) aims to find a model that can efficiently

represent a dataset using the fewest bits, while also

minimizing model complexity. In simpler terms, it

seeks to find the least complex model that can effec-

tively capture the regularities in a given dataset us-

ing the least amount of bits. Let’s denote the dataset

that needs to be represented as D, and the model

as H ∈ H. We represent the description length of

D when using H as L(D|H), which quantifies the

number of bits required to describe D using H . Ad-

ditionally, let’s define L(H) as the complexity of

the model. Formally, MDL aims to find the optimal

solution for:

H∗ = arg min
H∈H

L(D|H) + L(H) (10)

To explain what each of these terms corresponds

to in our approach, let’s consider the objective for

graphs that do not have singleton nodes in §3.3,

while adhering to the constraint that the sought-

after graph is a Directed Acyclic Graph (DAG). In

this scenario, the hypothesis family H encompasses

all graphs with nodes and edges in N and E, respec-

tively. The dataset in our case consists of samples

derived from the LLM, which can be denoted as

D = {G′}Ti=1. The formulation of L(D|H) takes

the form of Equation 1. Lastly, we define the com-

plexity of the model L(H) as 0 if H is a DAG, and

∞ otherwise.

B Restricting hypothesis selection to

DAGs

To describe the strategy to restrict hypothesis se-

lection to DAGs, we can express E as the set

{(n1, n2) |n1 ∈ N, n2 ∈ N} where n1(n2) rep-

resents the head (tail) of the edge (n1, n2). We

formulate objective 7 as an Integer Linear Program-

ming (ILP) problem by introducing one more bi-

nary variable be for each edge e ∈ E. be is set as 1
if there exists a path from the head of e to its tail.

Under ILP, we optimize 7 subject to the following

constraints:

∀e ∈ E : xe − be ≤ 0
(11)

∀n1, n2, n3 ∈ N : b(n1,n3) − b(n1,n2)

− b(n2,n3) ≥ −1 (12)

∀n ∈ N : b(n,n) = 0
(13)

The constraint represented by 11 ensures that

there is a path between two nodes if they are di-

rectly connected by an edge. 12 enforces the re-

quirement that a path must exist between two nodes

if there is a path from the first node to a third node,

and this third node is connected to the second node.

Lastly, 13 prevents any cycles from occurring in

the graph.

C Implementation Details

In this section, we begin by explaining the construc-

tion of N and E based on the samples {G′
i}

T
i=1 ∼

Pc (·, T). Thereafter, we describe how the hyper-

parameters λ1 and λ2 are set.

C.1 Constructing N and E

To build N, we iterate through the samples {G′
i}

T
i=1.

It is important to note that each node in G′
i consists

of two primary properties: content and type. For

example, in argument structure extraction (Stab

and Gurevych, 2017), a node represents an argu-

mentative component with content indicating its

value and type indicating its category, such as

premise/claim.

When we are iterating over the nodes in⋃T
i=1N(G′

i), we have two choices: append it as

a new node or merge it with some other node

present in N. To keep track of the historical merg-

ing of nodes with n ∈ N, we maintain two lists:

content_list and type_list. These lists store

the content and type properties of the nodes that

have been merged with n over time, respectively.

Moreover, content_list property can also be

used to decide whether a new node has to merged.

If the Jaccard similarity between the set of tokens

in the content of the new node and the set of to-

kens in an element of content_list for n exceeds

a pre-defined threshold, we add the content and

type properties of the new node to the respective

lists associated with n. Finally, the sentence from

the content_list with the highest Jaccard simi-

larity to the rest of the elements, and the mode of

the type_list of n, are chosen as its content and

type, respectively. The number of samples con-

taining n is simply the length of its content_list

which can be used to estimate PG′(n).

Similarly, we initialize E = {(n1, n2) |n1, n2 ∈
N}. Just like before, each edge in any sample is

linked to a specific type property that character-

izes the attribute associated with it. For example, in

argument structure extraction, the type of an edge

can be defined as attack or support, indicating the

relationship between the head and the tail of the

edge. As before, we associate type_list property

to each e ∈ E, which records the observed type

property for that edge across all the samples it ap-

pears in. Finally, the type of each edge is the mode

of its type_list property.

C.2 Constructing Optimal Aggregate Graph

After constructing N and E, we apply an appro-

priate formulation of the objective in §3 to get the

optimal values of xe(∀e ∈ E) and yn(∀n ∈ N).
Thereafter, we return the hypothesis G where

N(G) = {n | yn = 1, n ∈ N} and E(G) =
{e |xe = 1, e ∈ E}. If singleton nodes are ab-

sent, we only retain nodes that are present as a

head or tail in E(G).

C.3 Hyperparameter selection

To automatically select appropriate values for the

hyperparameters {λ1, λ2}, we utilize k-fold cross

validation using the few-shot examples. In each

fold, the held-out set comprises a single data point,

while the training set consists of k − 1 data points.

C.4 Generating graphs from LLMs

For each dataset, the graph structure is encoded as

a programming script following the guidelines of

COCOGEN (refer appendix D.1). Multiple samples

are generated from the LLM using a temperature

of 0.9. To address the randomness in sampling few-

shot examples and temperature sampling, we use 5

different random seeds.

Figure 6: Relations between the argumentative compo-

nents of the example introduced in §D.1

.

Once the LLM generates the graph as a program-

ming script, we obtain the corresponding graph G′,

a parser is needed to process this output. During

sampling from the LLM, we assume that the tex-

tual response can be parsed into the corresponding

graph using a task-specific rule-based parser.

D Additional information on considered

tasks

D.1 Task 1: Argument Structure Extraction -

Additional Information on task, prompt

design and datasets

In this section, we show an example of this task and

describe the prompt used for our experiments. The

example for demonstrating this task is taken from

one of the paragraphs in a datapoint belonging to

the ESSAYS dataset.

First, [cloning will be beneficial for

many people who are in need of organ

transplants]Claim 1. [
::::::

Cloned
:::::::

organs
::::

will

:::::

match
:::::::::

perfectly
::

to
::::

the
:::::

blood
::::::

group
::::

and

:::::

tissue
:::

of
::::::::

patients]Premise 1 since [
::::

they

:::

can
:::

be
::::::

raised
::::::

from
:::::::

cloned
:::::

stem
:::::

cells

::

of
::::

the
::::::::

patients]Premise 2. In addition,

[
:

it
::::::::

shortens
:::

the
:::::::

healing
::::::::

process]Premise 3.

Usually [
:

it
:::

is
::::::

very
::::

rare
::::

to
:::::

find
:::

an

::::::::::

appropriate
:::::

organ
::::::

donor]Premise 4 and [
::

by

:::::

using
:::::::

cloning
::

in
::::::

order
::

to
:::::

raise
::::::::

required

::::::

organs
:::

the
:::::::

waiting
::::

time
::::

can
::

be
:::::::::

shortened

::::::::::::

tremendously]Premise 5.

Table 6: An example text with annotated argumentative

components.

The example in Table 6 shows the different argu-

mentative components in a text along with their cat-

egories. The objective of argument structure extrac-

Figure 7: Programming script prompt used for argument

structure extraction

tion entails not only the identification of different

argumentative components but also the prediction

of support or attack relations between them. The

argumentative relations between the components is

shown in Figure 6. The equivalent programming

script representation of the aforementioned struc-

ture is shown in Figure 7.

Now, we provide some information on the

datasets used to evaluate various approaches. We

considered the following 3 datasets. (1) ES-

SAYS (Stab and Gurevych, 2017) that consists of

essays obtained from essaysforum.com. Each ar-

gumentative component within the essays is labeled

at a sub-sentence level as either a premise, claim,

or major claim. The relationships between these

components are labeled as either attack or support.

Test split consisting of 80 datapoints is used for

evaluation. We randomly select 7 data points from

the training split in the few-shot prompt. (2) AB-

STRCT (Mayer et al., 2020) is constructed by an-

notating the argumentative structure in the abstracts

of PubMed articles on Randomized Controlled

Trial of diseases. For our few-shot set, we ran-

domly choose 11 data points from the training split.

The dataset includes three test splits: two from ho-

mogeneous data sources and one constructed by

collecting data points from various sources, includ-

ing the homogeneous ones. We focus on evaluating

the performance of our model on the test split cu-

rated from various sources, which consists of 100
data points. (3) CDCP (Park and Cardie, 2018) is

obtained from a public forum where argumentative

texts regarding proposed rules on Consumer Debt

Collection Practices (CDCP) are annotated with

argumentative components and the corresponding

support relations. From the training set, we ran-

domly select 7 data points as our few-shot prompt.

We then assess the performance of our model on

the test split, which consists of 150 data points.

D.2 Task 2: Explanation Graph Generation:

Additional information on prompt design

and datasets

As we are focusing on the task of generating the

commonsense structure, we assume that the stance

is provided and prompt the model to generate the

structure only as done in Madaan et al. (2022).

We use the same prompt scheme as employed by

COCOGEN in representing a graph as a program-

ming script by directly adopting their implementa-

tion3.

In this implementation, 30 few-shot instances

were used to prompt the LLM and the approach

was evaluated over the development split consisting

of 396 datapoints. An example explanation task

for this task is shown in Figure 8 for the following

belief, argument and stance:

Belief: Factory farming should not be

banned.

Argument: Factory farming feeds mil-

lions.

Stance: Support

Factory
Farming Millions

Necessary Food

Banned

causes
desiresHas context

Not desires

Has context

Figure 8: Explanation graph for the example shown in

the Appendix D.2.

D.3 Task 3: Script Planning: Additional

information on task, prompt design and

datasets

The input in PROSCRIPT (Sakaguchi et al., 2021)

specifies the high-level goal to be achieved and

the intermediate steps required to achieve the goal.

The task involves inferring a sequence of depen-

dency relationships among these steps, where each

directed arrow indicates that the step at the arrow’s

head must be executed before the step at the tail.

3
github.com/reasoning-machines/CoCoGen

Figure 9: Script Planning for the goal "bake a cake".

The steps shown in the figure are also provided as part

of the input. The model has to predict directed relations

between the steps that captures the temporal relations

among them.

We utilize this dataset to evaluate the ability of vari-

ous algorithms to automatically determine the order

of operations needed to achieve the specified goal.

We used 15 few-shot instances for prompting and

assessed the performance of various approaches

over 100 samples from the development dataset.

An example of this datapoint is shown in Figure 9.

D.4 Task 4: Semantic Graph Generation:

Additional information on task, prompt

design and datasets

Input Text: While pop rock can trace its

stylistic roots back to rock music, Reg-

gae music evolved out of different musical

genre, known as ska. Interestingly, the Train

song, Mermaid, belongs to the genre of pop

rock, but is also considered to be of the reg-

gae genre as well

Semantic Structure: ("MERMAID TRAIN

SONG", "GENRE", "POP ROCK"), ("MER-

MAID TRAIN SONG", "GENRE", "REG-

GAE"), ("POP ROCK", "STYLISTIC ORI-

GIN", "ROCK MUSIC"), ("REGGAE",

"STYLISTIC ORIGIN", "SKA")

Table 7: An example for Semantic Graph Generation.

The goal of this task is to extract the semantic

graph from an input graph, which is represented as

a list of edges. Each edge in the graph consists of a

subject, a property, and the type of property. (Han

et al., 2023). An example of this task is shown in

7.

To gauge the efficacy of our model for such

a task, we consider following datasets: (1)

KELM (Agarwal et al., 2021): This is a large scale

synthetic dataset where each datapoint consists of a

sentence in natural language and the corresponding

semantic structure in the form of linearized Knowl-

edge Graph (KG). Most of the graphs in this dataset

contains at most 6 edges. (2) WEBNLG (Gardent

et al., 2017): The datapoints in this dataset were cu-

rated by sampling triples from the DBpedia (Auer

et al., 2007). The sentences describing their re-

spective graphs were crafted using a wide range of

lexicalization patterns. (3) GENWIKI (Jin et al.,

2020): Unlike previous datasets, this one does not

provide paired datapoints that map a natural lan-

guage sentence to its corresponding semantic graph

representation. However, a technique formulated

by Han et al. (2023) allows for the synthesis of

pairwise annotated datasets, which we utilize in

our assessments.

E Additional Analysis

E.1 Precision / Recall analysis for Argument

structure extraction

In order to empirically demonstrate the effective-

ness of our algorithm in reducing errors, we com-

pute the precision and recall in component and

relation identification for argument structure ex-

traction. This analysis not only allows us to assess

the efficacy of our approach in filtering out false

properties, but also in capturing genuine properties

from multiple samples that would have otherwise

been overlooked if only a single sample was relied

upon. Instead of using the F1-scores of the met-

rics C and R50 defined in §4.1, we compute the

precision and recall of these metrics under same

definition. Specifically, the precision and recall

along component identification is denoted by C(P)

and C(R). A consistent notation is used for relation

identification as well.

From the Table 8, MIDGARD consistently im-

proves the recall for component and relation identi-

fication across all datasets as it relies on multiple

samples to formulate the final hypothesis, effec-

tively addressing the issue of omitting true prop-

erties that would arise if relied on a single sample

alone. Moreover, utilizing the consistencies among

the samples leads to improved precision for relation

identification, thereby helping reduce the number

Approach
ESSAYS ABSTRCT CDCP

C(P) C(R) R50(P) R50(R) C(P) C(R) R50(P) R50(R) C(P) C(R) R50(P) R50(R)

GREEDY 77.7 59.6 37.4 28.9 86.9 81.9 50.1 61.4 55.0 52.6 13.4 21.0

MIDGARD 74.0 70.7 40.5 31.9 86.0 82.1 53.7 63.3 55.9 53.7 14.4 25.9

Table 8: Component and Relation Identification precision and recall for MIDGARD and GREEDY. P and R within

the parentheses represent precision and recall respectively.

of spurious samples. While the precision for com-

ponent identification is slightly impacted, adjusting

the value of λ1 allows us to achieve higher preci-

sion at the cost of slightly reduced recall.

E.2 Impact of increasing the number of

samples for other argument structure

extraction tasks

(a) Component Identification (b) Relation Prediction

Figure 10: Performance of MIDGARD in compari-

son with GREEDY for the ABSTRCT Dataset when the

number of samples from the LLM is varied. Results

averaged over 5 different random seeds.

(a) Component Identification (b) Relation Prediction

Figure 11: Performance of MIDGARD in comparison

with GREEDY for the CDCP Dataset when the number

of samples from the LLM is varied. Results averaged

over 5 different random seeds.

E.3 Impact of changing the number of

few-shot examples for argument structure

extraction

We assess the effectiveness of our approach for

different numbers of few-shot instances (N ∈

(a) Component Identification (b) Relation Prediction

Figure 12: Performance of MIDGARD in comparison

with GREEDY for the ESSAYS Dataset when the number

of few shot examples (N) is varied. Results averaged

over 5 different random seeds.

{3, 5, 7, 9}) in the context of argument structure ex-

traction when 10 samples are used from the LLM.

As shown in Figure 12, MIDGARD consistently

enhances the performance of GREEDY approach

across different numbers of few shot examples. The

plots for ABSTRCT and CDCP are shown in Fig-

ure 13 and Figure 14 respectively.

(a) Component Identification (b) Relation Prediction

Figure 13: Performance of MIDGARD in compari-

son with GREEDY for the ABSTRCT Dataset when the

number of few shot examples (N) is varied. Results

averaged over 5 different random seeds.

(a) Component Identification (b) Relation Prediction

Figure 14: Performance of MIDGARD in comparison

with GREEDY for the CDCP Dataset when the number

of few shot examples (N) is varied. Results averaged

over 5 different random seeds.

E.4 Comparison with Nucleus Sampling

While our evaluations considered GREEDY decod-

ing, we also compare against the NUCLEUS decod-

ing (Holtzman et al., 2020), a popular technique

to combat neural text degeneration, for the task

of argument structure extraction in ESSAYS. As

shown in the Table 9, the application of NUCLEUS

decoding degrades the performance significantly

for both the considered LLMs.

Approach C R100 R50

LLM: gpt-35-turbo

GREEDY 67.4 21.5 32.6

NUCLEUS 64.1 19.2 31.2

MIDGARD 72.3 23.5 35.4

LLM: CODE-LLAMA

GREEDY 56.3 9.3 21.4

NUCLEUS 48.0 6.7 16.7

MIDGARD 60.3 11.0 24.5

Table 9: Comparison of different approaches on gpt-35-

turbo and Code-LLAMA models.

E.5 Performance for gpt-4

Due to the prohibitive expense associated with

gpt-4, we were limited in assessing its perfor-

mance across all tasks. However, we have success-

fully evaluated its capabilities on the Argument

Structure Extraction task using a selective subset

of 20 data points from the Essays Dataset. This

specific evaluation thoroughly addresses both the

identification of components (node evaluation) and

the prediction of relations (edge evaluation), of-

fering a more comprehensive analysis compared

to other tasks. For the Essays dataset, which in-

(a) Component Identification (b) Relation Prediction

Figure 15: Assessing the performance of our algorithm

for different values of {λ1, λ2} and comparing it with

that of automatically estimated hyperparameters. Re-

sults averaged over 5 different random seeds.

cludes 80 test data points, the estimated cost for

GPT-4 analysis across 5 random instances of few-

shot training examples could exceed $1000. Given

that other argument structure extraction datasets

comprise over 80 test points, the expected infer-

ence costs would significantly increase. The results

for the ESSAYS dataset are tabulated in Table 10.

Approach C R100 R50

LLM: gpt-4

GREEDY 77.1 30.7 40.9

MIDGARD 78.1 32.9 42.8

Table 10: Comparison of different approaches imple-

mented on gpt-4 for ESSAYS Dataset

E.6 Hyperparameters

In this experiment, we vary λ1, λ2 ∈
{0.0, 0.1, 0.2, . . . , 1.0} and compute the per-

formance of component identification and relation

prediction on ESSAYS, and compare with that

of hyperparameters automatically estimated (see

Appendix C.3 for more details). Specifically,

when varying λ1, we set λ2 to 1 in order to

include all nodes in the hypothesis and focus

solely on studying the influence of λ1 on relation

prediction. An analogous step is repeated to study

the influence of λ2 on component identification.

In Figure 15, we observe that the automatically

estimated hyperparameter (λ2) for component iden-

tification is near optimal performance. However,

there is room for improvement in selecting λ1. Ad-

ditionally, we find that the optimal values for both

hyperparameters are above 0.5, suggesting that the

description length of insertion is greater than that

of deletion, as discussed in Section 3.2.

F Intuitive explanation for having

unequal description lengths with

addition versus deletion

To define a single deletion, it requires ∝
log2(|E(G)|) to specify the edge to be deleted from

G. On the other hand, to describe the edge to be

added one needs to spend ∝ log2(|E|) bits. Clearly,

log2(|E|) ≥ log2(|E(G)|) as E ⊇ E(G).

	Introduction
	Background and Notations
	The MIDGARD Method
	Defining Description Length
	Expected Description Length
	Hypothesis Selection
	Objective for Generic Graphs

	Experiments and Analysis
	Task 1: Argument Structure Extraction
	Task 2: Explanation Graph Generation
	Task 3: Script Planning
	Task 4: Semantic Graph Generation
	Further Analyses

	Related Works
	Conclusion
	Minimum Description Length Principle
	Restricting hypothesis selection to DAGs
	Implementation Details
	Constructing N and E
	Constructing Optimal Aggregate Graph
	Hyperparameter selection
	Generating graphs from LLMs

	Additional information on considered tasks
	Task 1: Argument Structure Extraction - Additional Information on task, prompt design and datasets
	Task 2: Explanation Graph Generation: Additional information on prompt design and datasets
	Task 3: Script Planning: Additional information on task, prompt design and datasets
	Task 4: Semantic Graph Generation: Additional information on task, prompt design and datasets

	Additional Analysis
	Precision / Recall analysis for Argument structure extraction
	Impact of increasing the number of samples for other argument structure extraction tasks
	Impact of changing the number of few-shot examples for argument structure extraction
	Comparison with Nucleus Sampling
	Performance for gpt-4
	Hyperparameters

	Intuitive explanation for having unequal description lengths with addition versus deletion

