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Abstract

Objective    To develop a few-shot learning (FSL) approach for classifying optical coherence tomography
(OCT) images in patients with inherited retinal disorders (IRDs).

Methods    In this study, an FSL model based on a student–teacher learning framework was designed to
classify  images.  2,317  images  from  189  participants  were  included.  Of  these,  1,126  images  revealed
IRDs, 533 were normal samples, and 658 were control samples.

Results    The FSL model achieved a total accuracy of 0.974–0.983, total sensitivity of 0.934–0.957, total
specificity of 0.984–0.990, and total F1 score of 0.935–0.957, which were superior to the total accuracy
of the baseline model of 0.943–0.954, total  sensitivity of 0.866–0.886, total  specificity of 0.962–0.971,
and  total  F1  score  of  0.859–0.885.  The  performance  of  most  subclassifications  also  exhibited
advantages.  Moreover,  the FSL model  had a higher area under curves (AUC) of  the receiver  operating
characteristic (ROC) curves in most subclassifications.

Conclusion     This  study  demonstrates  the  effective  use  of  the  FSL  model  for  the  classification  of  OCT
images  from  patients  with  IRDs,  normal,  and  control  participants  with  a  smaller  volume  of  data.  The
general principle and similar network architectures can also be applied to other retinal diseases with a
low prevalence.
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 INTRODUCTION

T he  incidence  of  visual  impairment  and
blindness  caused  by  inherited  retinal
diseases  (IRDs)  is  increasing  because  of

prolonged  life  expectancy.  A  recent  analysis  shows
approximately  5.5  million  people  worldwide  have
IRDs[1].  In  recent  years,  several  advancements  have
been  made  in  the  diagnosis  and  treatment  of  IRDs,
including  drug  and  gene  therapies[2-4].  Spectral-
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domain optical coherence tomography (SD-OCT) has
played  a  crucial  role  in  the  diagnosis,  progression
surveillance,  strategy  exploration,  and  response
assessment  of  treatment  in  patients  with  IRDs.
However,  in  some  cases,  the  recognition,
interpretation,  and comparison  of  minor  changes  in
IRDs,  as  shown by  OCT,  could  be  difficult  and  time-
consuming for retinal specialists.

Artificial  intelligence  technology  is  gaining
popularity  in  retinal  imaging  owing  to  its  enhanced
processing  power,  massive  data,  and  novel
algorithms[5].  Recently,  automated  image  analysis
has  been  successfully  applied  to  detect  changes  in
fundus and OCT images of  multiple retinal  diseases,
such  as  diabetic  retinopathy[6],  age-related  macular
degeneration  (AMD)[7],  and  glaucoma[8].  These
diseases are highly prevalent among populations and
enable  the  acquisition  of  large  volumes  of  training
data  for  traditional  machine  learning  (ML)
approaches, including deep learning (DL).

In  contrast,  for  rare  diseases  such  as  IRDs,
acquiring  a  large  volume  of  high-quality
representative  data  from  the  patient  cohort  is
challenging.  Furthermore,  the  datasets  require
accompanying  annotations  generated  by  specialists,
which  is  time-consuming.  The  scarcity  of  samples
and  laborious  work  hinder  the  application  of  image
classification.

Therefore,  researchers  have  imitated  the  fact
that  human  beings  can  learn  quickly  and  proposed
few-shot  learning  (FSL).  Unlike  traditional  networks,
FSL  aims  to  address  the  problem  of  data  limitation
when  learning  new  tasks.  This  avoids  the  problems
of  parameter  overfitting  and  a  low  model
generalization  performance.  This  shows  greater
adaptability  to  unknown  conditions  and  provides  a
reliable solution for areas where samples are scarce.

This study aimed to design a diagnosis FSL model
for  the classification of  OCT images  in  patients  with
IRDs  when  only  a  very  limited  number  of  samples
can be collected.

 MATERIALS AND METHODS

 Datasets

A  publicly  available  dataset  of  OCT  images  from
the Cell dataset[9] and BOE dataset[10] was selected as
the  auxiliary  dataset  for  training.  The  Cell  dataset
contains  four  classifications,  including  choroidal
neovascularization  (CNV),  diabetic  macular  edema
(DME),  drusen,  and  normal,  which  total  109,309
samples with two image resolutions, 1,536 × 496 and

1,024  ×  496  pixels.  The  BOE  dataset  has  3,231
samples, including dry AMD, DME, and normal, with
three types  of  image resolution:  1,024 ×  496,  768 ×
496, and 512 × 496 pixels.

SD-OCT  images  of  the  target  dataset  were
acquired using the Cirrus HD-OCT 5000 system (Carl
Zeiss  Meditec  Inc.,  Dublin,  USA)  and  the  Heidelberg
Spectralis  system  (Heidelberg  Engineering,
Heidelberg,  Germany).  An  OCT  scan  containing  the
center  of  the  fovea  from  each  macular  OCT  was
selected  as  the  input  data.  Images  from  the  Cirrus
system were  scanned  at  a  length  of  6  mm,  and  the
image resolution was 1,180 × 786 pixels. The images
from the Spectralis system were scanned at a length
of 6 or 9 mm, and the image resolution was 1,024 ×
496 and 1,536 × 496 pixels, respectively.

Two  certified  retinal  specialists  graded  all  OCT
images  in  the  clinical  datasets  separately.  The
diagnosis  of  IRDs  was  based  on  both  clinical  and
genetic  detections.  The  OCT  images  of  IRDs  were
classified  into  three  types  based  on  morphological
features:  cone/cone-rod  lesions,  that  is,  disruption
of  photoreceptor layers  with thinned sensory retina
at  the  fovea;  rod-cone lesions,  that  is,  disruption  of
photoreceptor  layers  with thinned sensory retina at
the areas outside the fovea with relatively preserved
structure at the fovea; and extensive lesions, that is,
extensive  disruption  of  photoreceptor  layers  with
thinned sensory retina (Figure 1).

This  study  was  conducted  following  the
principles  of  the  Declaration  of  Helsinki.  Approval
was  granted by  the  Ethics  Committee  of  the  Beijing
Tongren Hospital, Capital Medical University.

 Model Training

The  proposed  pipeline  consisted  of  three  parts:
data preprocessing,  training the teacher model,  and
training  the  student  model.  Data  preprocessing
mainly  includes  image  angle  adjustments  and
vertical pixel column movements. The teacher model
was first trained on the auxiliary OCT datasets with a
four-class  classification  designed  to  learn  the
nuances of each disease and then transferred to the
target OCT dataset to classify the five target classes.
The  student  model  was  trained  using  the  soft  label
provided by the teacher model based on knowledge
distillation  (KD)[11] and  the  hard  label  from
annotation (Figure 2).
 Image Preprocessing　The original OCT images show
different angles, noise distribution, and size diversity
because of the acquisition machine and the patient.
This  will  distract  the  neural  network  from  the  focal
area  and  increase  the  training  time  due  to  useless
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data  input  during  training.  We  used  a  random
inversion of the images in the process, which did not
destroy  the  hierarchical  information  of  the  OCT
images,  and cropped the  given images  to  a  random
size  and  aspect  ratio  to  increase  the  generalization
ability  of  the  model.  The  experiments  were  all
preprocessed and resized to 224 × 224 pixels.
 Teacher  Model  Training　 The  ResNet-50,  a
convolutional neural network (CNN) framework, was
chosen as the teacher model, which is the backbone
structure for absorbing and learning the information
from  the  auxiliary  dataset,  specifically  the  textures,

patterns,  and  pixel  distributions  in  the  end-level
convolutional  layers.  After  learning  using  the
same  type  of  dataset,  we  froze  the  parameters  of
the  teacher  model,  except  for  the  last  fully
connected  layer,  to  transfer  the  task  to  the  target
domain.
 KD  and  Student  Model  Training　 To  overcome  the
obstacles  caused  by  the  lack  of  training  data,  we
used  the  combination  of  KD  and  student–teacher
learning[12] for  knowledge  transfer.  ResNet-18  was
used  as  the  student  model  to  be  trained  from
scratch  to  adapt  to  the  target  data  with  a  smaller
number of samples.

L(x;W) =α ⋅ H (y, σ (zs; T = 1)) + β
⋅ H (σ (zt; T = τ) , σ (zs; T = τ))

(1)

βwhere in Equation 1, α and  control the balance of
the information coming from the two sources, which
generally add up to 1. H is the loss function, σ is the
softmax function parameterized by the temperature
T, zs is the logits from the student network, and zt is
the  logits  from  the  teacher  network.  τ  denotes  the
temperature  of  the  adapted  softmax  function,  and
each probability pi of class i in the batch is calculated
from logits zi as follows:

pi =

exp ( zi
T
)

∑j exp (
zj
T
)

(2)

where T in  Equation  2  increases,  the  probability
distribution  of  the  output  becomes “softer,” which
means  that  the  differences  among  the  probabilities
of each class decrease and more information will be
provided.

Figure 3 illustrates the network architecture of the
model.  The  model  was  trained  and  tested  using  the
Python  (version  3.10.7)  programming  language  with
the PyTorch (version 1.8.1) library as the backend. The
computer  used  in  this  study  was  equipped  with  an
NVIDIA  GeForce  RTX  2070  8  GB  graphics  processing

 

A

B

C

Figure 1. OCT  images  of  three  categories  in
IRDs.  (A)  Cone/cone-rod  lesions:  disruption  of
photoreceptor  layers  with  thinned  sensory
retina  at  the  fovea.  (B)  Rod-cone  lesions:
disruption  of  photoreceptor  layers  with
thinned sensory retina at the areas outside the
fovea with relatively preserved structure at the
fovea.  (C)  Extensive  lesions:  extensive
disruption  of  photoreceptor  layers  with
thinned  sensory  retina.  IRDs:  inherited  retinal
disorders.

 

Auxiliary dataset Teacher model

Dis�lled
knowledge

Student model

Transfer learning
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Figure 2. Overview of the proposed method.
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unit, 32 GB random access memory, and an Intel Core
11th  Gen  Intel(R)  Core(TM)  i9-11900  @  2.50GHz
central processing unit.

 Evaluation Metrics

To  fully  evaluate  the  performance  of  the
proposed  method,  we  used  various  evaluation
metrics, namely accuracy, sensitivity, specificity, and
F1 score, which are defined as follows:

Accuracy = TP + TN
TP + TN + FN + FP (3)

SensiƟvity = TP
TP + FN (4)

Specificity = TN
TN + FP (5)

F1 =

2TP
2TP + FN + FP

(6)

where TP, TN, FP, and FN denote true positives, true
negatives,  false  positives,  and  false  negatives,
respectively,  and  are  measured  according  to  the
confusion matrix.

Receiver  operating  characteristic  (ROC)  curves
were also used to display the performance of the FSL
model  for  the  classification  of  OCT  images.
Heatmaps were used to show the regions of interest
(ROI) in the model.

The process was repeated three times with random
assignment  of  participants  to  the  training  and  testing
sets  to  control  for  selection  bias,  given  the  relatively
small sample size. The metrics were calculated for each
training/testing process for each category.

 RESULTS

 Demographics and Characteristics of the Dataset

A  total  of  2,317  images  from  189  participants
were included in this study as the target dataset,  of
which  1,126  images  of  79  participants  were  IRDs,
533 images of 43 participants were normal samples,
and  658  images  of  67  participants  were  controls,
including  CNV,  DME,  macular  hole,  epiretinal
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Figure 3. Network architecture of the model. (A) Teacher model. (B) Student model.
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membrane,  and  retinal  detachment  (Table  1).  The
images  were  randomly  split  in  a  3:1  ratio  into  the
training and testing sets.

 The Performance of the FSL Model

The  FSL  model  achieved  better  performance  than
the  baseline  model.  The  baseline  model  was  adapted
from  ResNet-18,  which  has  the  same  structure  as  the
student  model.  The  baseline  model  was  added  to
demonstrate  that  excluding  the  advantages  of  the
model performance itself, our proposed method is the
main  contributor  to  improving  the  final  results.  In  the
three  testing  sets,  the  FSL  model  achieved  a  total
accuracy  ranging  from  0.974  [95% confidence  interval
(CI)  0.968–0.979]  to  0.983 (95% CI  0.978–0.987),  total
sensitivity  from  0.934  (95% CI  0.911– 0.952)  to  0.957
(95% CI 0.936–0.971), total specificity from 0.984 (95%
CI 0.978– 0.988)  to  0.990  (95% CI  0.984– 0.993),  and
total  F1  score  from  0.935  (95% CI  0.913– 0.954)  to
0.957  (95% CI  0.938– 0.972).  The  baseline  model
achieved  total  accuracy  ranging  from  0.943  (95% CI
0.934–0.951)  to  0.954  (95% CI  0.946– 0.961),  total
sensitivity  from  0.866  (95% CI  0.835– 0.892)  to  0.886
(95% CI 0.856–0.909), total specificity from 0.962 (95%
CI 0.954– 0.969)  to  0.971  (95% CI  0.963– 0.977),  and
total  F1  score  from  0.859  (95% CI  0.828– 0.885)  to
0.885 (95% CI 0.857–0.909) (Table 2).

 Comparison  of  the  FSL  Model  with  Retinal
Specialists

The  performance  of  the  FSL  model  was
compared  with  that  of  retinal  specialists  using  ROC
curve plots. The AUCs of the FSL model were higher
for most sub-classifications (Figure 4).

 Heatmaps

The heatmaps demonstrated that the FSL model

made  the  classification  based  on  the  correct  lesion
for diagnosis (Figure 5).

 DISCUSSION

This  preliminary  study  demonstrates  the
effective  use  of  the  FSL  model  for  classifying  OCT
images  from  patients  with  IRDs  and  normal  and
control participants with a smaller volume of data.

Previous methods for diagnosing ocular diseases
such  as  AMD  and  DME  through  OCT  images  are
based  on  traditional  ML  methods  such  as  principal
component  analysis  (PCA)[13,14],  support  vector
machine  (SVM)[10,15],  and  random  forest[16].  Other
studies  have  focused  on  DL  methods,  including
improving  existing  mature  and  pretrained
frameworks,  such  as  Inception-v3[17,18],  VGG-16[17,19],
PCANet[20],  GoogLeNet[21,22],  ResNet[21,23],  and
DenseNet[21] to classify OCT images or unify multiple
networks to make the classification more robust for
diagnosing,  for  example,  four-parallel-ResNet
system[23] and multi-stage network[24].

For  the  success  of  these  algorithms,  particularly
for tasks such as image recognition, most models are
overparameterized  to  extract  the  most  salient
features  and  ensure  generalization.  However,  the
performance of the models is  heavily dependent on
the very large and high-quality labels of the training
datasets.  Some  studies  have  reported  relevant
results.  Fujinami-Yokokawa  et  al.[25] used  Inception-
v3 CNN[26] to classify OCT images from patients with
three  different  IRDs  and  obtained  a  relatively  high
accuracy.  Shah  et  al.[27] used  a  new  CNN  with  a
simple  architecture  similar  to  LeNet[28],  which  was
more  effective  than  the  VGG-19  CNN[29] in
differentiating  normal  OCT  images  from  images  of
patients  with  Stargardt  disease.  However,  varying

Table 1. Composition of the target dataset

Variables
Cirrus system Spectralis system Total

Subjects Images Subjects Images Subjects Images

IRDs 41 739 38 387 79 1,126

Cone/cone-rod lesions 17 271 5 130 22 401

Rod-cone lesions 12 222 9 144 21 366

Extensive lesions 12 246 24 113 36 359

Normal 25 265 18 268 43 533

Control 35 311 32 347 67 658

Total 101 1,315 88 1,002 189 2,317

　　Note. IRDs: inherited retinal disorders.
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degrees of overfitting and reduced training accuracy
were observed. These are the disadvantages of large
DL algorithms for small sample data.

Traditional  network  frames  and  large-volume
data  are  no  longer  suitable  for  identifying  rare
diseases,  such  as  IRDs,  that  belong  to  the  small-
sample  classification  problem.  Therefore,  the
concept  of  FSL  has  been  proposed  to  solve  such
problems[30,31].  FSL  combines  limited  supervision

information  (small  samples)  with  prior  knowledge
(unlabeled or weakly labeled samples, other datasets
and  labels,  other  models,  etc.)  such  that  the  model
can effectively learn information from small samples.
Recently,  a  few  FSL  methods,  such  as  contrastive
self-supervision  learning[32],  generative  adversarial
networks  (GAN)[33],  integrated  frameworks[34],  and
unsupervised  probabilistic  models[35],  have  been
used  for  the  segmentation  and  classification  of

Table 2. Summary of model performance in the classification of OCT images

Variables
FSL model Baseline model

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

F1 Score
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

F1 Score
(95% CI)

Test1 (n = 599) Test1 (n = 599)

IRDs

Cone/cone-rod lesions 0.975
(0.958–0.985)

0.988
(0.927–0.999)

0.973
(0.954–0.984)

0.919
(0.844–0.966)

0.939
(0.916–0.957)

0.860
(0.794–0.907)

0.970
(0.947–0.983)

0.887
(0.825–0.930)

Rod-cone lesions 0.992
(0.980–0.997

0.984
(0.939–0.997)

0.994
(0.980–0.998)

0.981
(0.939–0.997)

0.934
(0.910–0.952)

0.586
(0.476–0.689)

0.994
(0.981–0.998)

0.723
(0.597–0.816)

Extensive lesions 0.967
(0.948–0.979)

0.855
(0.774–0.911)

0.994
(0.980–0.998)

0.909
(0.835–0.953)

0.954
(0.934–0.969)

0.967
(0.913–0.990)

0.951
(0.927–0.968)

0.897
(0.833–0.944)

Normal 0.995
(0.984–0.999)

0.990
(0.935–0.999)

0.996
(0.984–0.999)

0.984
(0.935–0.999)

0.966
(0.948–0.979)

0.933
(0.854–0.972)

0.972
(0.953–0.984)

0.892
(0.807–0.944)

Control 0.987
(0.973–0.994)

0.971
(0.930–0.989)

0.993
(0.978–0.998)

0.977
(0.937–0.993)

0.944
(0.922–0.961)

0.947
(0.889–0.976)

0.943
(0.918–0.962)

0.883
(0.818–0.931)

Total 0.983
(0.978–0.987)

0.957
(0.936–0.971)

0.990
(0.984–0.993)

0.957
(0.938–0.972)

0.948
(0.939–0.955)

0.872
(0.842–0.897)

0.967
(0.958–0.973)

0.870
(0.840–0.896)

Test2 (n = 610) Test2 (n = 610)

IRDs

Cone/cone-rod lesions 0.967
(0.949–0.979)

0.954
(0.890–0.983)

0.970
(0.950–0.983)

0.912
(0.839–0.954)

0.943
(0.921–0.960)

0.804
(0.713–0.872)

0.973
(0.954–0.985)

0.835
(0.746–0.894)

Rod-cone lesions 0.993
(0.982–0.998)

0.984
(0.905–0.999)

0.995
(0.983–0.999)

0.969
(0.884–0.995)

0.955
(0.934–0.970)

0.767
(0.637–0.862)

0.976
(0.958–0.986)

0.773
(0.650–0.873)

Extensive lesions 0.967
(0.949–0.979

0.839
(0.745–0.904)

0.990
(0.976–0.996)

0.886
(0.796–0.941)

0.948
(0.926–0.964)

0.864
(0.782–0.919)

0.967
(0.946–0.980)

0.860
(0.809–0.938)

Normal 0.980
(0.965–0.989)

0.899
(0.823–0.946)

0.998
(0.987–0.999)

0.942
(0.874–0.976)

0.941
(0.919–0.958)

0.849
(0.763–0.909)

0.961
(0.939–0.975)

0.837
(0.755–0.902)

Control 0.962
(0.943–0.975)

0.966
(0.932–0.984)

0.960
(0.933–0.977)

0.952
(0.917–0.976)

0.928
(0.904–0.947)

0.935
(0.890–0.962)

0.924
(0.892–0.948)

0.903
(0.857–0.939)

Total 0.974
(0.968–0.979)

0.934
(0.911–0.952)

0.984
(0.978–0.988)

0.935
(0.913–0.954)

0.943
(0.934–0.951)

0.866
(0.835–0.892)

0.962
(0.954–0.969)

0.859
(0.828–0.885)

Test3 (n = 594) Test3 (n = 594)

IRDs

Cone/cone-rod Lesions 0.988
(0.975–0.995)

0.987
(0.922–0.999)

0.988
(0.973–0.995)

0.957
(0.888–0.990)

0.958
(0.938–0.972)

0.816
(0.730–0.880)

0.992
(0.977–0.997)

0.882
(0.805–0.937)

Rod-Cone Lesions 0.992
(0.979–0.997)

0.979
(0.918–0.996)

0.994
(0.981–0.998)

0.974
(0.918–0.996)

0.985
(0.970–0.993)

0.933
(0.830–0.978)

0.991
(0.977–0.997)

0.926
(0.830–0.978)

Extensive Lesions 0.983
(0.968–0.991)

0.906
(0.786–0.965)

0.991
(0.977–0.997)

0.906
(0.786–0.965)

0.983
(0.968–0.991)

0.929
(0.855–0.969)

0.994
(0.981–0.998)

0.948
(0.878–0.981)

Normal 0.980
(0.964–0.989)

0.899
(0.823–0.946)

0.997
(0.987–0.999)

0.942
(0.876–0.976)

0.941
(0.918–0.958)

0.827
(0.752–0.884)

0.976
(0.956–0.987)

0.868
(0.799–0.921)

Control 0.968
(0.950–0.980)

0.957
(0.913–0.980)

0.973
(0.951–0.986)

0.949
(0.907–0.976)

0.902
(0.875–0.925)

0.934
(0.885–0.964)

0.888
(0.853–0.916)

0.854
(0.796–0.899)

Total 0.982
(0.977–0.987)

0.948
(0.924–0.965)

0.989
(0.984–0.993)

0.949
(0.926–0.966)

0.954
(0.946–0.961)

0.886
(0.856–0.909)

0.971
(0.963–0.977)

0.885
(0.857–0.909)

　　Note. IRDs: inherited retinal disorders; FSL: few-shot learning; CI: confidence interval.
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fundus images.
This  is  the  first  time  that  FSL  has  been  used  to

classify OCT images of IRDs. Our model is based on a
student–teacher  learning  framework,  an  appealing
paradigm  for  semi-supervised  learning  in  medical
image  classification.  The  images  were  normalized
using  conventional  preprocessing  to  reduce  the
effect  of  noise  on  the  model  during  training.  The
teacher  model  is  designed  to  adapt  to  the  target
dataset based on TL[36],  an approach to increase the

performance  of  DL  classifiers,  in  which  a  large
multiclass image classifier is  pretrained on a natural
image  dataset  and  then  retrained  on  the  smaller
medical  imaging  dataset  of  interest.  The  resulting
model  has fewer parameters to be trained than the
original  model  and  is “fine-tuned” for  the  medical
imaging task. In the process from the teacher model
to  the  student  model,  the  KD  method[11] that  we
chose  was  soft-target  training  in  which  the  teacher
generates  soft  labels[37] for  the  training  data,  and
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Figure 4. ROC curves for FSL model and baseline model compared with retinal specialists. (A–C) Test1–3
of FSL model. (D–F) Test1–3 of baseline model. IRDs: inherited retinal disorders; FSL: few-shot learning;
AUC: area under curve; CI: confidence interval.
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these soft targets are used in combination with one-
hot  encoded  labels  (hard  targets)  to  train  the
student model. KD refers to a method that helps the
training process of a smaller student network under
the  supervision  of  a  larger  teacher  network.  Unlike
other  compression  methods,  KD  can  downsize  a
network  regardless  of  the  structural  difference
between the teacher and student networks[12].  With
this  framework,  the  student  model  could  increase
the  training  speed,  prevent  overfitting,  result  in
more  generalized  models,  and  maintain  a  relatively
simple structure simultaneously.

Our  FSL  model  attained  higher  total  accuracy,
sensitivity, specificity, and F1 score than the baseline
model  and  achieved  better  performance  for  most
subclassifications.  The  differences  in  the  sensitivity
and  F1  scores  between  the  two  models  were  more
apparent.  Higher  sensitivity  demonstrated  that  the
model  could  achieve  better  classification  results.
Moreover,  the  F1  score  is  the  harmonic  mean  of

precision  and  recall,  indicating  the  robust
performance  of  the  model.  In  addition,  an
interesting  phenomenon  exists,  in  which  the
specificity  of  both  models  was  greater  than  the
sensitivity,  suggesting  that  the  classification  of
models tended to be conservative. This may also be
more  secure  for  potential  clinical  applications.  The
ROC  analysis  also  showed  that  the  FSL  model  had
higher  AUCs  for  most  subclassifications.  The
heatmaps demonstrated that the regions highlighted
with  warmer  colors  represented  areas  more  critical
for final class determination. The ROIs were precisely
captured  by  the  FSL  model,  and  the  results  were
compatible  with  the  judgment  of  the  retinal
specialist.  In  this  study,  we  trained  and  tested  OCT
images from different devices and sizes, and proved
that  the  model  had  good  generalizability.  In
summary, our FSL model could perform comparably
to  the  advanced  large  teacher  model  and  in  a
fraction  of  the  time,  making  ideal  candidates  run  in
clinical settings where the runtime is important, and
computing resources are often limited.

Several  recent  studies  have  reported  that  the
combination  of  multiple  modalities  and  imaging
techniques can improve diagnostic performance. Yoo
et  al.[38] designed  an  algorithm  based  on  the
combination  of  fundus  photographs  and  OCT
images,  which  increased  the  diagnostic  accuracy  of
AMD  compared  with  the  data  alone.  Miri  et  al.[39]

used  complementary  information  from  fundus
photographs and OCT volumes to segment the optic
disc and cup boundaries. Fundus and OCT images are
recognized  as  the  most  influential  biomarkers  of
retinal  diseases.  However,  previous  studies  have
paid  little  attention  to  the  function  of  a  diagnostic
model  that  combines  the  fundus  with  OCT  images.
Images  from  different  devices  can  provide  unique
and complementary information. Our study needs to
adopt  a  multimodal  process  to  combine  various
types  of  imaging for  a  more precise  performance in
the future.

This  study  had  some  limitations.  The  clinical
datasets  included  only  patients  with  a  sample  size,
which led to the existence of a potential similarity in
the  case  of  multiple  images  from the  same  patient.
Future  research,  including  genetic  data  with
sufficient  patient  numbers  to  represent  the
significant  phenotypic  and  genetic  heterogeneity  of
IRDs,  may  help  with  phenotype–genotype
correlation.  Second,  the  cross-sectional  study  could
not  identify  the  sequence  of  intraretinal  structural
changes  in  the  transitional  zone  over  time,  and
misclassification  due  to  disease  progression  may

 

A

B
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D

E

Figure 5. Representative  OCT  images  and
corresponding  heatmaps.  (A)  Example  of
cone/cone-rod  lesions  of  IRDs  and  its
corresponding  superimposed  heatmap.  (B)
Example  of  rod-cone  lesions  of  IRDs  and  its
corresponding  superimposed  heatmap.  (C)
Example  of  extensive  lesions  of  IRDs  and  its
corresponding  superimposed  heatmap.  (D)
Example  of  normal  and  its  corresponding
superimposed heatmap. (E) Example of control
and its corresponding superimposed heatmap.
IRDs: inherited retinal disorders.
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occur.  Incorporating  temporal  data  into  the  model
may  allow  the  leading  disease  front  to  be
automatically identified and monitored.

In  this  preliminary  study,  we  demonstrated  the
potential  of  the  FSL  model  to  differentiate  OCT
images of IRDs from healthy individuals and patients
with other common macular diseases.  Furthermore,
the  model  can  also  distinguish  between  different
types  of  IRDs  using  a  dataset  smaller  than  that
traditionally  used.  In  real-life  clinical  settings,  the
general  principle  demonstrated  in  this  study  and
similar network architectures can be applied to other
retinal diseases with a low prevalence.
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