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Abstract

Objective To develop a few-shot learning (FSL) approach for classifying optical coherence tomography
(OCT) images in patients with inherited retinal disorders (IRDs).

Methods In this study, an FSL model based on a student—teacher learning framework was designed to
classify images. 2,317 images from 189 participants were included. Of these, 1,126 images revealed
IRDs, 533 were normal samples, and 658 were control samples.

Results The FSL model achieved a total accuracy of 0.974—0.983, total sensitivity of 0.934-0.957, total
specificity of 0.984—0.990, and total F1 score of 0.935-0.957, which were superior to the total accuracy
of the baseline model of 0.943-0.954, total sensitivity of 0.866—0.886, total specificity of 0.962—-0.971,
and total F1 score of 0.859-0.885. The performance of most subclassifications also exhibited
advantages. Moreover, the FSL model had a higher area under curves (AUC) of the receiver operating
characteristic (ROC) curves in most subclassifications.

Conclusion This study demonstrates the effective use of the FSL model for the classification of OCT
images from patients with IRDs, normal, and control participants with a smaller volume of data. The
general principle and similar network architectures can also be applied to other retinal diseases with a
low prevalence.
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INTRODUCTION prolonged life expectancy. A recent analysis shows
approximately 5.5 million people worldwide have
he incidence of visual impairment and IRDs™. In recent years, several advancements have
blindness caused by inherited retinal been made in the diagnosis and treatment of IRDs,
diseases (IRDs) is increasing because of including drug and gene therapies[2'4]. Spectral-
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domain optical coherence tomography (SD-OCT) has
played a crucial role in the diagnosis, progression
surveillance, strategy exploration, and response
assessment of treatment in patients with IRDs.
However, in some cases, the recognition,
interpretation, and comparison of minor changes in
IRDs, as shown by OCT, could be difficult and time-
consuming for retinal specialists.

Artificial intelligence technology is gaining
popularity in retinal imaging owing to its enhanced
processing power, massive data, and novel
algorithms[sl. Recently, automated image analysis
has been successfully applied to detect changes in
fundus and OCT images of multiple retinal diseases,
such as diabetic retinopathy[el, age-related macular
degeneration (AMD)m, and glaucomam. These
diseases are highly prevalent among populations and
enable the acquisition of large volumes of training
data for traditional machine learning (ML)
approaches, including deep learning (DL).

In contrast, for rare diseases such as IRDs,
acquiring a large volume of high-quality
representative data from the patient cohort is
challenging. Furthermore, the datasets require
accompanying annotations generated by specialists,
which is time-consuming. The scarcity of samples
and laborious work hinder the application of image
classification.

Therefore, researchers have imitated the fact
that human beings can learn quickly and proposed
few-shot learning (FSL). Unlike traditional networks,
FSL aims to address the problem of data limitation
when learning new tasks. This avoids the problems
of parameter overfitting and a low model
generalization performance. This shows greater
adaptability to unknown conditions and provides a
reliable solution for areas where samples are scarce.

This study aimed to design a diagnosis FSL model
for the classification of OCT images in patients with
IRDs when only a very limited number of samples
can be collected.

MATERIALS AND METHODS

Datasets

A publicly available dataset of OCT images from
the Cell dataset” and BOE dataset™” was selected as
the auxiliary dataset for training. The Cell dataset
contains four classifications, including choroidal
neovascularization (CNV), diabetic macular edema
(DME), drusen, and normal, which total 109,309
samples with two image resolutions, 1,536 x 496 and

1,024 x 496 pixels. The BOE dataset has 3,231
samples, including dry AMD, DME, and normal, with
three types of image resolution: 1,024 x 496, 768 x
496, and 512 x 496 pixels.

SD-OCT images of the target dataset were
acquired using the Cirrus HD-OCT 5000 system (Carl
Zeiss Meditec Inc., Dublin, USA) and the Heidelberg
Spectralis system (Heidelberg Engineering,
Heidelberg, Germany). An OCT scan containing the
center of the fovea from each macular OCT was
selected as the input data. Images from the Cirrus
system were scanned at a length of 6 mm, and the
image resolution was 1,180 x 786 pixels. The images
from the Spectralis system were scanned at a length
of 6 or 9 mm, and the image resolution was 1,024 x
496 and 1,536 x 496 pixels, respectively.

Two certified retinal specialists graded all OCT
images in the clinical datasets separately. The
diagnosis of IRDs was based on both clinical and
genetic detections. The OCT images of IRDs were
classified into three types based on morphological
features: cone/cone-rod lesions, that is, disruption
of photoreceptor layers with thinned sensory retina
at the fovea; rod-cone lesions, that is, disruption of
photoreceptor layers with thinned sensory retina at
the areas outside the fovea with relatively preserved
structure at the fovea; and extensive lesions, that is,
extensive disruption of photoreceptor layers with
thinned sensory retina (Figure 1).

This study was conducted following the
principles of the Declaration of Helsinki. Approval
was granted by the Ethics Committee of the Beijing
Tongren Hospital, Capital Medical University.

Model Training

The proposed pipeline consisted of three parts:
data preprocessing, training the teacher model, and
training the student model. Data preprocessing
mainly includes image angle adjustments and
vertical pixel column movements. The teacher model
was first trained on the auxiliary OCT datasets with a
four-class classification designed to learn the
nuances of each disease and then transferred to the
target OCT dataset to classify the five target classes.
The student model was trained using the soft label
provided by the teacher model based on knowledge
distillation (KD)™ and the hard label from
annotation (Figure 2).

Image Preprocessing The original OCT images show
different angles, noise distribution, and size diversity
because of the acquisition machine and the patient.
This will distract the neural network from the focal
area and increase the training time due to useless
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data input during training. We used a random
inversion of the images in the process, which did not
destroy the hierarchical information of the OCT
images, and cropped the given images to a random
size and aspect ratio to increase the generalization
ability of the model. The experiments were all
preprocessed and resized to 224 x 224 pixels.

Teacher Model Training The ResNet-50, a
convolutional neural network (CNN) framework, was
chosen as the teacher model, which is the backbone
structure for absorbing and learning the information
from the auxiliary dataset, specifically the textures,

Figure 1. OCT images of three categories in
IRDs. (A) Cone/cone-rod lesions: disruption of
photoreceptor layers with thinned sensory
retina at the fovea. (B) Rod-cone lesions:
disruption of photoreceptor layers with
thinned sensory retina at the areas outside the
fovea with relatively preserved structure at the
fovea. (C) Extensive lesions: extensive
disruption of photoreceptor layers with
thinned sensory retina. IRDs: inherited retinal
disorders.

Transfer learnin
Auxiliary dataset 2 Teacher model | «—m—

patterns, and pixel distributions in the end-level
convolutional layers. After learning using the
same type of dataset, we froze the parameters of
the teacher model, except for the last fully
connected layer, to transfer the task to the target
domain.

KD and Student Model Training To overcome the
obstacles caused by the lack of training data, we
used the combination of KD and student-teacher
learning™ for knowledge transfer. ResNet-18 was
used as the student model to be trained from
scratch to adapt to the target data with a smaller
number of samples.

L(X§ W) =a-H(y,a(zs;T= 1)) +B

HolT=1),0@T=7)

where in Equation 1, @ and 8 control the balance of
the information coming from the two sources, which
generally add up to 1. H is the loss function, o is the
softmax function parameterized by the temperature
T, z, is the logits from the student network, and z; is
the logits from the teacher network. T denotes the
temperature of the adapted softmax function, and
each probability p; of class i in the batch is calculated
from logits z; as follows:

(2)

where T in Equation 2 increases, the probability
distribution of the output becomes “softer,” which
means that the differences among the probabilities
of each class decrease and more information will be
provided.

Figure 3 illustrates the network architecture of the
model. The model was trained and tested using the
Python (version 3.10.7) programming language with
the PyTorch (version 1.8.1) library as the backend. The
computer used in this study was equipped with an
NVIDIA GeForce RTX 2070 8 GB graphics processing

Distilled
knowledge Target dataset
‘Student model ‘ CrossEntropy loss

Figure 2. Overview of the proposed method.
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unit, 32 GB random access memory, and an Intel Core
11th Gen Intel(R) Core(TM) i9-11900 @ 2.50GHz
central processing unit.

Evaluation Metrics

To fully evaluate the performance of the
proposed method, we used various evaluation
metrics, namely accuracy, sensitivity, specificity, and
F1 score, which are defined as follows:

TP+ TN

AcCUracy = oo T+ A + 7P )

Sensitivity = % (4)

Specificity = %, (5)

27p
1: _—
2TP + FN + FP

where TP, TN, FP, and FN denote true positives, true
negatives, false positives, and false negatives,
respectively, and are measured according to the
confusion matrix.

Receiver operating characteristic (ROC) curves
were also used to display the performance of the FSL
model for the classification of OCT images.
Heatmaps were used to show the regions of interest
(ROI) in the model.

The process was repeated three times with random
assignment of participants to the training and testing
sets to control for selection bias, given the relatively
small sample size. The metrics were calculated for each
training/testing process for each category.

RESULTS

Demographics and Characteristics of the Dataset

A total of 2,317 images from 189 participants
were included in this study as the target dataset, of
which 1,126 images of 79 participants were IRDs,
533 images of 43 participants were normal samples,
and 658 images of 67 participants were controls,
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Figure 3. Network architecture of the model. (A) Teacher model. (B) Student model.
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membrane, and retinal detachment (Table 1). The
images were randomly split in a 3:1 ratio into the
training and testing sets.

The Performance of the FSL Model

The FSL model achieved better performance than
the baseline model. The baseline model was adapted
from ResNet-18, which has the same structure as the
student model. The baseline model was added to
demonstrate that excluding the advantages of the
model performance itself, our proposed method is the
main contributor to improving the final results. In the
three testing sets, the FSL model achieved a total
accuracy ranging from 0.974 [95% confidence interval
(Cl) 0.968-0.979] to 0.983 (95% CI 0.978-0.987), total
sensitivity from 0.934 (95% Cl 0.911-0.952) to 0.957
(95% Cl 0.936—0.971), total specificity from 0.984 (95%
C10.978—-0.988) to 0.990 (95% C/ 0.984—0.993), and
total F1 score from 0.935 (95% C/ 0.913— 0.954) to
0.957 (95% CI 0.938— 0.972). The baseline model
achieved total accuracy ranging from 0.943 (95% CI
0.934-0.951) to 0.954 (95% CI 0.946— 0.961), total
sensitivity from 0.866 (95% C/ 0.835—0.892) to 0.886
(95% Cl 0.856—0.909), total specificity from 0.962 (95%
C10.954—-0.969) to 0.971 (95% CI 0.963-0.977), and
total F1 score from 0.859 (95% C/ 0.828- 0.885) to
0.885 (95% CI 0.857—0.909) (Table 2).

Comparison of the FSL Model with Retinal
Specialists

The performance of the FSL model was
compared with that of retinal specialists using ROC
curve plots. The AUCs of the FSL model were higher
for most sub-classifications (Figure 4).

Heatmaps

The heatmaps demonstrated that the FSL model

made the classification based on the correct lesion
for diagnosis (Figure 5).

DISCUSSION

This preliminary study demonstrates the
effective use of the FSL model for classifying OCT
images from patients with IRDs and normal and
control participants with a smaller volume of data.

Previous methods for diagnosing ocular diseases
such as AMD and DME through OCT images are
based on traditional ML methods such as principal
component analysis (PCA)[13'14], support vector
machine (SVM)“O’IS], and random forest™. Other
studies have focused on DL methods, including
improving  existing mature and pretrained
frameworks, such as Inception-v3[17'18], VGG-16[17'19],
PCANeth, GoogLeNetm'm, ResNetm’B], and
DenseNet”" to classify OCT images or unify multiple
networks to make the classification more robust for
diagnosing, for example, four-parallel-ResNet
system” and multi-stage network™".

For the success of these algorithms, particularly
for tasks such as image recognition, most models are
overparameterized to extract the most salient
features and ensure generalization. However, the
performance of the models is heavily dependent on
the very large and high-quality labels of the training
datasets. Some studies have reported relevant
results. Fujinami-Yokokawa et al.”® used Inception-
v3 CNN"® to classify OCT images from patients with
three different IRDs and obtained a relatively high
accuracy. Shah et al.””! used a new CNN with a
simple architecture similar to LeNet™, which was
more effective than the VGG-19 CNN™in
differentiating normal OCT images from images of
patients with Stargardt disease. However, varying

Table 1. Composition of the target dataset

Cirrus system Spectralis system Total
Variables

Subjects Images Subjects Images Subjects Images
IRDs 41 739 38 387 79 1,126
Cone/cone-rod lesions 17 271 5 130 22 401
Rod-cone lesions 12 222 9 144 21 366
Extensive lesions 12 246 24 113 36 359
Normal 25 265 18 268 43 533
Control 35 311 32 347 67 658
Total 101 1,315 88 1,002 189 2,317

Note. IRDs: inherited retinal disorders.
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degrees of overfitting and reduced training accuracy
were observed. These are the disadvantages of large
DL algorithms for small sample data.

Traditional network frames and large-volume
data are no longer suitable for identifying rare

information (small samples) with prior knowledge
(unlabeled or weakly labeled samples, other datasets
and labels, other models, etc.) such that the model
can effectively learn information from small samples.
Recently, a few FSL methods, such as contrastive

diseases, such as IRDs, that belong to the small-
sample classification problem. Therefore, the
concept of FSL has been proposed to solve such

self-supervision learning
networks (GAN)[33], integrated frameworks
unsupervised probabilistic models™,

32 . .
B2 generative adversarial
134]

, and

B3 have been

problems[3°'3”. FSL combines limited supervision used for the segmentation and classification of
Table 2. Summary of model performance in the classification of OCT images
FSL model Baseline model
Variables Accuracy Sensitivity  Specificity F, Score Accuracy Sensitivity ~ Specificity F, Score
(95% CI) (95% CI) (95% Cl) (95% CI) (95% CI) (95% CI) (95% CI) (95% Cl)
Testl (n = 599) Testl (n = 599)
IRDs
Cone/cone-rod lesions 0.975 0.988 0.973 0.919 0.939 0.860 0.970 0.887
(0.958-0.985) (0.927-0.999) (0.954-0.984) (0.844-0.966) (0.916-0.957) (0.794-0.907) (0.947-0.983) (0.825-0.930)
Rod-cone lesions 0.992 0.984 0.994 0.981 0.934 0.586 0.994 0.723
(0.980-0.997 (0.939-0.997) (0.980-0.998) (0.939-0.997) (0.910-0.952) (0.476-0.689) (0.981-0.998) (0.597-0.816)
Extensive lesions 0.967 0.855 0.994 0.909 0.954 0.967 0.951 0.897
(0.948-0.979) (0.774-0.911) (0.980-0.998) (0.835-0.953) (0.934-0.969) (0.913-0.990) (0.927-0.968) (0.833-0.944)
Normal 0.995 0.990 0.996 0.984 0.966 0.933 0.972 0.892
(0.984-0.999) (0.935-0.999) (0.984-0.999) (0.935-0.999) (0.948-0.979) (0.854-0.972) (0.953-0.984) (0.807-0.944)
Control 0.987 0.971 0.993 0.977 0.944 0.947 0.943 0.883
(0.973-0.994) (0.930-0.989) (0.978-0.998) (0.937-0.993) (0.922-0.961) (0.889-0.976) (0.918-0.962) (0.818-0.931)
Total 0.983 0.957 0.990 0.957 0.948 0.872 0.967 0.870
(0.978-0.987) (0.936-0.971) (0.984-0.993) (0.938-0.972) (0.939-0.955) (0.842-0.897) (0.958-0.973) (0.840-0.896)
Test2 (n = 610) Test2 (n = 610)
IRDs
Cone/cone-rod lesions 0.967 0.954 0.970 0.912 0.943 0.804 0.973 0.835
(0.949-0.979) (0.890-0.983) (0.950-0.983) (0.839-0.954) (0.921-0.960) (0.713-0.872) (0.954-0.985) (0.746-0.894)
Rod-cone lesions 0.993 0.984 0.995 0.969 0.955 0.767 0.976 0.773
(0.982-0.998) (0.905-0.999) (0.983-0.999) (0.884-0.995) (0.934-0.970) (0.637-0.862) (0.958-0.986) (0.650-0.873)
Extensive lesions 0.967 0.839 0.990 0.886 0.948 0.864 0.967 0.860
(0.949-0.979 (0.745-0.904) (0.976-0.996) (0.796-0.941) (0.926-0.964) (0.782-0.919) (0.946-0.980) (0.809-0.938)
Normal 0.980 0.899 0.998 0.942 0.941 0.849 0.961 0.837
(0.965-0.989) (0.823-0.946) (0.987-0.999) (0.874-0.976) (0.919-0.958) (0.763-0.909) (0.939-0.975) (0.755-0.902)
Control 0.962 0.966 0.960 0.952 0.928 0.935 0.924 0.903
(0.943-0.975) (0.932-0.984) (0.933-0.977) (0.917-0.976) (0.904-0.947) (0.890-0.962) (0.892-0.948) (0.857-0.939)
Total 0.974 0.934 0.984 0.935 0.943 0.866 0.962 0.859
.968-0.979) (0.911-0.952) (0.978-0. .913-0.954) (0.934-0.951) (0.835-0. .954-0. .828-0.885
(0.968-0.979) (0.911-0.952) (0.978-0.988) (0.913-0.954) (0.934-0.951) (0.835-0.892) (0.954-0.969) (0.828-0.885)
Test3 (n =594) Test3 (n =594)
IRDs
Cone/cone-rod Lesions 0.988 0.987 0.988 0.957 0.958 0.816 0.992 0.882
(0.975-0.995) (0.922-0.999) (0.973-0.995) (0.888-0.990) (0.938-0.972) (0.730-0.880) (0.977-0.997) (0.805-0.937)
Rod-Cone Lesions 0.992 0.979 0.994 0.974 0.985 0.933 0.991 0.926
(0.979-0.997) (0.918-0.996) (0.981-0.998) (0.918-0.996) (0.970-0.993) (0.830-0.978) (0.977-0.997) (0.830-0.978)
Extensive Lesions 0.983 0.906 0.991 0.906 0.983 0.929 0.994 0.948
(0.968-0.991) (0.786-0.965) (0.977-0.997) (0.786-0.965) (0.968-0.991) (0.855-0.969) (0.981-0.998) (0.878-0.981)
Normal 0.980 0.899 0.997 0.942 0.941 0.827 0.976 0.868
(0.964-0.989) (0.823-0.946) (0.987-0.999) (0.876-0.976) (0.918-0.958) (0.752-0.884) (0.956-0.987) (0.799-0.921)
Control 0.968 0.957 0.973 0.949 0.902 0.934 0.888 0.854
0.950-0.980) (0.913-0.980) (0.951-0.986) (0.907-0.976) (0.875-0.925) (0.885-0.964) (0.853-0.916) (0.796-0.899
( )( )( )( ) ( )( )( )( )
Total 0.982 0.948 0.989 0.949 0.954 0.886 0.971 0.885

(0.977-0.987) (0.924-0.965) (0.984-0.993) (0.926—0.966)

(0.946-0.961) (0.856—0.909) (0.963-0.977) (0.857-0.909)

Note. IRDs: inherited retinal disorders; FSL: few-shot learning; C/: confidence interval.
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fundus images.

This is the first time that FSL has been used to
classify OCT images of IRDs. Our model is based on a
student-teacher learning framework, an appealing
paradigm for semi-supervised learning in medical
image classification. The images were normalized
using conventional preprocessing to reduce the
effect of noise on the model during training. The
teacher model is designed to adapt to the target
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these soft targets are used in combination with one-
hot encoded labels (hard targets) to train the
student model. KD refers to a method that helps the
training process of a smaller student network under
the supervision of a larger teacher network. Unlike
other compression methods, KD can downsize a
network regardless of the structural difference
between the teacher and student networks'”. With
this framework, the student model could increase
the training speed, prevent overfitting, result in
more generalized models, and maintain a relatively
simple structure simultaneously.

Our FSL model attained higher total accuracy,
sensitivity, specificity, and F1 score than the baseline
model and achieved better performance for most
subclassifications. The differences in the sensitivity
and F1 scores between the two models were more
apparent. Higher sensitivity demonstrated that the
model could achieve better classification results.
Moreover, the F1 score is the harmonic mean of

images and
corresponding heatmaps. (A) Example of

Figure 5. Representative OCT

cone/cone-rod lesions of IRDs and its
corresponding superimposed heatmap. (B)
Example of rod-cone lesions of IRDs and its
corresponding superimposed heatmap. (C)
Example of extensive lesions of IRDs and its
corresponding superimposed heatmap. (D)
Example of normal and its corresponding
superimposed heatmap. (E) Example of control
and its corresponding superimposed heatmap.
IRDs: inherited retinal disorders.

precision and recall, indicating the robust
performance of the model. In addition, an
interesting phenomenon exists, in which the
specificity of both models was greater than the
sensitivity, suggesting that the classification of
models tended to be conservative. This may also be
more secure for potential clinical applications. The
ROC analysis also showed that the FSL model had
higher AUCs for most subclassifications. The
heatmaps demonstrated that the regions highlighted
with warmer colors represented areas more critical
for final class determination. The ROls were precisely
captured by the FSL model, and the results were
compatible with the judgment of the retinal
specialist. In this study, we trained and tested OCT
images from different devices and sizes, and proved
that the model had good generalizability. In
summary, our FSL model could perform comparably
to the advanced large teacher model and in a
fraction of the time, making ideal candidates run in
clinical settings where the runtime is important, and
computing resources are often limited.

Several recent studies have reported that the
combination of multiple modalities and imaging
techniques can improve diagnostic performance. Yoo
et al.B® designed an algorithm based on the
combination of fundus photographs and OCT
images, which increased the diagnostic accuracy of
AMD compared with the data alone. Miri et al.B%
used complementary information from fundus
photographs and OCT volumes to segment the optic
disc and cup boundaries. Fundus and OCT images are
recognized as the most influential biomarkers of
retinal diseases. However, previous studies have
paid little attention to the function of a diagnostic
model that combines the fundus with OCT images.
Images from different devices can provide unique
and complementary information. Our study needs to
adopt a multimodal process to combine various
types of imaging for a more precise performance in
the future.

This study had some limitations. The clinical
datasets included only patients with a sample size,
which led to the existence of a potential similarity in
the case of multiple images from the same patient.
Future research, including genetic data with
sufficient patient numbers to represent the
significant phenotypic and genetic heterogeneity of
IRDs, may help with phenotype—genotype
correlation. Second, the cross-sectional study could
not identify the sequence of intraretinal structural
changes in the transitional zone over time, and
misclassification due to disease progression may
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occur. Incorporating temporal data into the model
may allow the leading disease front to be
automatically identified and monitored.

In this preliminary study, we demonstrated the
potential of the FSL model to differentiate OCT
images of IRDs from healthy individuals and patients
with other common macular diseases. Furthermore,
the model can also distinguish between different
types of IRDs using a dataset smaller than that
traditionally used. In real-life clinical settings, the
general principle demonstrated in this study and
similar network architectures can be applied to other
retinal diseases with a low prevalence.
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