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Abstract

Significant research has focused on speaker recognition (SR), determining which speaker is speaking in a segment
of audio. However, few experiments have investigated speaker recognition for very low-resource or endangered
languages. Furthermore, speaker recognition has the potential to support language documentation and revitalization
efforts, making recordings more accessible to researchers and communities. Since endangered language datasets
are too small to build competitive speaker representations from scratch, we investigate the application of large-scale
pre-built speaker recognition models to bridge this gap. This paper compares four speaker recognition models on
six diverse endangered language data sets. Comparisons contrast three recent neural network-based x-vector
models and an earlier baseline i-vector model. Experiments demonstrate significantly stronger performance for
some of the studied models. Further analysis highlights differences in effectiveness tied to the lengths of test audio
segments and amount of data used for speaker modeling.
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1. Introduction

Recent advances have led to substantial improve-
ments in many natural language and speech pro-
cessing tasks. However, such systems are largely
focused on and available for a few hundred, typ-
ically high-resource, languages. In contrast, a
significant language technology gap remains for
many of the world’s languages, which may be
lower-resource or endangered. At the same time,
there are significant efforts to document, research,
and revitalize these languages. Language tech-
nologies have potential to support these efforts.

Current speaker recognition (SR) models are de-
veloped on large datasets, such as VoxCeleb2 (Na-
grani et al., 2020), with over 2k hours of record-
ings, over 1M utterances from 6k speakers. In con-
trast, our endangered language datasets range
from 2 to 14.5 hours. The requirements for train-
ing data size and computational power preclude
building such models from scratch for endangered
languages. Fortunately, high-performing pre-built
models have been released and can potentially be
used to create good speaker representations for
endangered language data. However, a mismatch
remains between languages used to build the mod-
els and those we hope to apply them to.

This paper investigates the use of pre-built speaker
recognition systems for endangered language
data, which could support documentation efforts
by automatically enriching metadata or facilitate
access to recorded materials by community mem-
bers. Figure 1 depicts this process. For example,
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Figure 1: lllustration of speaker recognition

speaker recognition could allow community mem-
bers to automatically identify recordings from a par-
ticular speaker in an audio collection, even in the
absence of complete, manually created metadata.
Similarly, such tools could allow endangered lan-
guage archives to semi-automatically enrich meta-
data with speaker information for their deposits.
Also, a field linguist could use such a system to
identify speech from a particular consultant, and
exclude the researcher’s own speech, when prior-
itizing recordings for transcription.

This paper compares four speaker recognition
models on six diverse endangered language data
sets. Comparisons contrast three recent neu-
ral network-based x-vector models and an ear-
lier baseline i-vector model. Experiments demon-
strate significantly stronger performance for some
of the studied models. Further analysis highlights
differences in effectiveness tied to the lengths of
test audio segments and amount of speaker mod-
eling data.



2. Related Work

Speaker recognition (or speaker identification) has
long been an area of research interest. The NIST
Speaker Recognition Evaluation (SRE) (NIST,
2016) series has been active since 1996. The
data has included both telephone and microphone
speech and explored different training and test du-
ration configurations. While earlier iterations fo-
cused on English test data, with a mix of languages
in the training set, recent years have included test
data from Cantonese, Tagalog, and Arabic, as well
as audio-visual settings. The Odyssey workshops
have also promoted work on speaker recognition.
Other large speaker recognition data sets are now
available, such as “Speakers in the Wild” (McLaren
et al., 2016) or VoxCeleb (Nagrani et al., 2020),
which use YouTube interviews. Systems have also
been built for lower resource languages such as
Bengali (Das and Das, 2018) and Uyghur (Rozi
et al., 2015).

A range of models for speaker recognition have
been developed leveraging these resources and
evaluation programs. i-vector models (Verma and
Das, 2015), which dominated the field, have now
largely been supplanted by x-vector models. X-
vector models (Snyder et al., 2018) use neural net-
works pre-trained on large amounts of supervised
speaker identification data to create embedding
representations of new audio. A variety of modifi-
cations and improvements to the standard x-vector
model have been developed (Desplanques et al.,
2020; Li et al., 2020). In addition, enhancements
over simple cosine similarity between vectors have
been implemented, such as PLDA (Biswas et al.,
2014), though cosine remains a strong approach.
Endangered language data presents a number
of challenges for speaker recogntion. Documen-
tary linguistic data may have significant variation
in recording conditions, for instance due to back-
ground noise from public or outside settings. In
contrast, most speaker recogntion data has fo-
cused on telephone or wideband laboratory record-
ing settings, though datasets such as VoxCeleb
include YouTube videos in a wide range of set-
tings. Further, our endangered language datasets
were chosen for areal and typological diversity. Fi-
nally and crucially, documentary linguistic data is
typically much more limited in quantity, preclud-
ing techniques which rely on large amounts of in-
language training data.

3. Data

The experiments below follow Levow et al. (2021)
in terms of data set and selection as well as
pre-processing. Six different languages stored
in the Endangered Language Archive, http://
elararchive.org, were chosen to provide typo-
logical and areal variety. Gold-standard speaker

segments for training and evaluation are de-
rived from the recordings and accompanying time-
aligned transcriptions in ELAN (Brugman and Rus-
sel, 2004) format. We note that this data is drawn
from diverse genres, including greetings, narrative
and ritual discourse, interviews, elicitations, folk-
tales, and cultural practices.

For each language, we provide information about
its language family, the 1ISO639-3 language codes
where available, location of the fieldwork, as well
as overall statistics about recording and turns
lengths in the experimental data.

Cicipu (ISO639-3:awc) is a Niger-Congo family
language, and the material for this deposit was col-
lected in Nigeria (McGill, 2012). 3.3 hours of audio
form the experimental data set, with an average
turn length of 1.9 seconds, with a standard devia-
tion of 1.3 seconds.

Effutu (ISO639-3:awu) (Agyeman, 2016) is a
Niger-Congo family language, with data collected
in Ghana. 2.0 hours of recordings form the experi-
mental data set, with mean turn length of 3.4 sec-
onds, and standard deviation of 11.1s.

Mocho’ (ISO639-3:mhc) (Pérez Gonzilez,
2018) is a Mayan family language, and the data
for this deposit recorded in Mexico. 4.3 hours
of recordings are available in the experimental
data set, with an average turn length of 2.0s (1.5s
standard deviation).

Upper Napo Kichwa (Grzech, 2018) (U. N.
Kichwa in tables.) is a Quechuan family language,
and the material for this deposit was collected in
Ecuador. The resulting experimental data set in-
cludes 10 hours of audio, with mean turn duration
of 2.9s and standard deviation of 4.6s.

Toratan (ISO639-3:rth)  (Jukes, nd) is an Aus-
tronesian language, and the material for this de-
posit was collected in Indonesia. 14.5 hours of au-
dio are included in the experimental data; mean
turn length is 2.1s, and standard deviation 2.2s.

Ulwa (1SO639-3:yla) (Barlow, 2018) is a Keram
family language, with data collected in Papua New
Guinea The experimental dataset includes 3.2
hours of audio, with mean turn length of 3.6s and
standard deviation of 5.1s.

4. Speaker Recognition Models

All approaches share a comparable overall archi-
tecture. They employ a pre-trained model that cre-
ates vector representations from new input audio.
These models are trained on large-scale external
speech datasets, distinct from the current endan-
gered language data. Representations of audio
samples are then compared. The details of the
different models are presented below.


http://elararchive.org
http://elararchive.org

4.1. Kaldi Language # Known | # Seg | # Files | Total
This approach is based on the sre08 (v1) recipe in | S;)krs gpkrs = Ig(s)tg
the Kaldi (Povey et al., 2011) speech processing Eff ? 15 5 4 514
toolkit. Following the baseline system presented M u# , 8 5 2 1576
in (Levow et al., 2021), this approach builds a 0;\3] ?(_ h ]

strong i-vector model, using data from a subset U. ;. ichwa | 69 ° 7 6768
of the Fisher corpus (Cieri, Christopher, et al., Toratan 18 7 9 8686
2004), NIST SRE 2005 (NIST Multimodal Informa- | J/Wa 6 6 4 654

tion Group, 2011c) and 2006 (NIST Multimodal
Information Group, 2011a) training datasets, and
NIST SRE 2005 test data (NIST Multimodal Infor-
mation Group, 2011b). This represents a subset
of the full sre08 recipe and was chosen due to re-
source limitations. This data enables the creation
of the Gaussian Mixture Models (GMM) for the Uni-
versal Background Model (UBM) which support i-
vector extraction.

4.2. Pyannote

We employed the pyannote (Bredin et al., 2020;
Coria et al., 2020) embedding model from Hugging
Face'. This embedding uses a standard x-vector
TDNN (Time Delay Neural Network) (Snyder et al.,
2018) enhanced with trainable SincNet features re-
placing filterbank features. TDNN approaches ap-
ply statistic pooling to create fixed dimension rep-
resentations from variable length input audio. The
model is trained on the VoxCeleb dataset (Nagrani
et al., 2020). It achieves a 2.8% Equal Error Rate
(EER) on the standard VoxCeleb 1 test set.

4.3. SpeechBrain (xvec)

We also applied the SpeechBrain x-vector
model (Ravanelli et al., 2021) from Hugging Face?
to create x-vector embeddings. This model also
employs a pre-trained TDNN-based model. This
model was trained on the VoxCeleb 1 and 2
training datasets, and reaches an EER of 3.2%
on the VoxCeleb 1 test set.

4.4. SpeechBrain (ECAPA)

Finally, we compared the above models to the
SpeechBrain ECAPA-TDNN pre-trained model, us-
ing the implementation on Hugging Face®. ECAPA
(Emphasized Channel Attention, Propagation, and
Aggregation) (Desplanques et al., 2020) incorpo-
rates improvements to the basic TDNN architec-
ture with factors such as frame-level attention and
more effective exploitation of hierarchical features.
This model was also trained on VoxCeleb 1 and 2,
achieving an EER of 0.8%.

https://huggingface.co/pyannote/embedding

2https://huggingface.co/speechbrain/spkrec-xvect-
voxceleb

Shttps://huggingface.co/speechbrain/spkrec-ecapa-
voxceleb

Table 1: Statistics of evaluation data

For all the neural models, we used default settings
for the pre-trained models with no additional train-
ing or parameter tuning.

5. Experiments & Findings

We follow the basic structure of the NIST Speaker
Recognition Evaluation (SRE) tasks. A set of
known speakers are enrolled by providing one or
more instances of their recorded speech. During
evaluation, an unseen audio segment is presented
along with a known speaker identity. In a “target”
pair, that known speaker’s speech is present in the
new audio sample; in a “non-target” pair, it is not.
The system must assign a score to each speaker-
segment pair. Equal Error Rate, computed based
on that score and gold-standard target/non-target
label, provides a single figure of merit, balancing
between false alarms and misses.

We leveraged the data pre-processing and train-
ing/test splits for each of the six endangered lan-
guage data sets from (Levow et al., 2021). The
evaluation data is evenly split between target and
non-target instances, and all test segments are
drawn from held-out recording session files. Statis-
tics of the data are shown in Table 5*.

We applied all three new neural network models
to that data, and compare to the results for the
baseline i-vector model reported in (Levow et al.,
2021). In each of the neural x-vector models, we
extracted an embedding for each audio segment.
We evaluated two configurations. In one set of
experiments, we used those embeddings directly,
computing the representation for a known speaker
as the average of the individual training sample
x-vectors and scoring each speaker-segment pair
with cosine distance computed using scipy cdist
function. In the second set, we applied (in-domain
adapted) ADT PLDA 5 with hyperparameters tuned
on a small development set to create the segment
representations, again averaging to create known
speaker models, and scoring with likelihood ratio.

4 Due to model constraints, test segments were a
minimum of 0.75 secs.
Shttps://github.com/RaviSoji/plda/
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Kaldi | Pyan | SB SB
(xvec) | (ECAPA)

Cicipu 26.0 | 12.97 | 17.83 | 5.98
Effutu 42.0 | 21.7 | 32.29 | 15.56
Mocho’ 115 | 8.375 | 12.30 | 9.39

U. N. Kichwa | 49.2 | 40.25 | 46.69 | 42.17
Toratan 27.3 | 19.52 | 30.43 | 16.96
Ulwa 19.9 | 15.36 | 19.87 | 11.62
With PLDA

Cicipu 11.41 | 18.57 | 7.87
Effutu 18.97 | 29.96 | 7.74
Mocho 7.42 7.23 8.12

U. N. Kichwa 37.77 | 45.5 38.06
Toratan 19.19 | 25.12 | 6.19
Ulwa 8.10 13.76 | 9.39

Table 2: Equal Error Rates (EER) for Pyan-

note), SpeechBrain (SB) (xvec), and SpeechBrain
(SB) (ECAPA) compared to a baseline Kaldi sys-
tem for six endangered language data sets. X-
vector&cosine above; x-vector&PLDA&likelihood
ratio below. Lower scores are better; best results
for each language/block are in bold.

5.1. Overall Findings

The EER values for each model applied to each of
the six endangered language data sets appear in
Table 2. The best overall effectiveness was found
for the Pyannote and SpeechBrain ECAPA models,
in both configurations, with the best performance
for each language being reached by one of these
two models (shown in bold in Table 2), except for
Mocho’ PLDA. The Kaldi i-vector and SpeechBrain
(xvec) models did not perform as strongly, with
the Kaldi model having the weakest average EER
scores. With cosine, all pairwise system differ-
ences were significant by Wilcoxon test (p < 0.05),
except for Kaldi vs. SpeechBrain (xvec) and Pyan-
note vs. SpeechBrain (ECAPA). With PLDA, al-
though numerically better - sometimes substan-
tially - in all but three cases, only the improvement
for Pyannote reached significance (p < 0.05), and
cross-model differences did not reach significance.
The difference between best and worst models
reached a factor of four for some languages. It is
also important to note that there were large differ-
ences between languages as well as across mod-
els. The Upper Napo Kichwa data set was chal-
lenging for all models with EERs near or above
40%. In contrast, the EER for the best perform-
ing data set overall, Mocho’, had 75% lower EER.
Finally, all EERs remain substantially higher than
for the same models on the VoxCeleb test set.

5.2. Analysis

To better understand the source of the variations in
data set and model performance, we conduct fur-
ther analysis. In particular, we focus on two factors
relating to sample size: (1) duration of test audio
segments and (2) amount of data used train known
speaker representations.

Audio segment length has been used as a con-
trastive factor in prior NIST SRE tasks (NIST,
2016), and can impact tasks such as language
identification (Styles et al., 2023). We also note
that the annotated speaker segments for the en-
dangered language data sets average only 2-5
seconds. To assess the impact of test audio seg-
ment duration, we broke down results by length
into 0.5s bins, using the threshold associated with
EER to compute accuracy. We focus on the
“target” instances, where the new segment and
speaker representation should have high similarity.
For each of the models, we find a highly significant
correlation® of accuracy with segment duration,
ranging from correlation of 0.69 (p < 0.0001) for
SpeechBrain (xvec) to 0.22 (p < 0.01) for ECAPA,
both with and without PLDA.

We also observe in our data sets that there is
substantial variation in the amount of enroliment
training data for the known speaker models. One
speaker has only a single instance of roughly 1
second, while another reaches almost 11000 in-
stances for a total of more than 5 hours. Here we
compute the total duration of enroliment training
data for each speaker. We then check the corre-
lation of the target and non-target accuracies for
each speaker. We find a significant negative corre-
lation of amount of speaker data with non-target ac-
curacy, under all models. In other words, speakers
modeled with less total audio data are less likely
to be mistakenly matched to a new audio segment.
Possibly, larger amounts of modeling data can cap-
ture too much within-speaker variation, making it
harder to exclude incorrect matches. This obser-
vation suggests the need for alternate strategies
to incorporate speaker modeling audio data.

6. Conclusion & Future Work

This paper has investigated the effectiveness of
three pre-built neural x-vector models and a base-
line i-vector model for speaker recognition on six
endangered language datasets. Experimental re-
sults indicate better effectiveness for the Speech-
Brain (ECAPA) and Pyannote models, while high-
lighting substantial variation across data sets.
Analysis showed the impact of test segment dura-
tion and amount of speaker modeling data.

These experiments highlight the need for better
modeling of short segments and integration of

6Correlation is computed with scipy.stats.spearmanr



speaker enrollment data. Future work will also ex-
plore approaches to fine-tune existing models to
better match the endangered language data.
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8. Ethical Considerations

Speech is intrinsically personally identifying infor-
mation. Speaker names are anonymized during
data set preprocessing, but speaker recognition
links audio to speaker identities. Thus models of
these speakers could possibly be linked to non-
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Web. Furthermore, work risks “dual use” where
models designed to support research or commu-
nity access could instead be exploited for harmful
purposes, such as spoofing.
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