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ABSTRACT
Multimodal medical image synthesis is an important task.
Previous efforts mainly focus on the task domain of med-
ical image synthesis using the complete source data and
have achieved great success. However, data collection with
completeness in real life might be prohibitive due to high
expenses or other difficulties, particularly in brain imaging
studies. In this paper, we address the challenging and im-
portant problem of medical image synthesis from incomplete
multimodal data sources. We propose to learn the modal-
wise representations and synthesize the targets accordingly.
Particularly, a surrogate sampler is derived to generate the
target representations from incomplete observations, based
on which an interpretable attention-redistribution network is
designed. The experimental results synthesizing PET images
from MRI images demonstrate that the proposed method can
solve different missing data scenarios and outperforms related
baselines consistently.

Index Terms— Multimodal, Neuroimaging, MRI, PET,
Generative Network

1. INTRODUCTION

Brain imaging techniques have been widely used for the diag-
nosis of complex brain disorders, such as Alzheimer’s disease
(AD) [1, 2]. Different imaging techniques have been devel-
oped, including T1-weighted structural magnetic resonance
imaging (T1), T2*-weighted MRI (T2), T1-weighted-Fluid-
Attenuated Inversion Recovery (Flair), perfusion-weighted
imaging (Perfusion), and positron emission tomography
(PET). Recently, the diagnosis of brain diseases (e.g. AD)
benefits from integrating complementary information from
multimodal brain imaging data [3–5]. However, in practice,
the multimodal benefits usually cannot be fully exploited for
brain disease diagnosis due to the missing data [6, 7]. The
reason for data incompleteness is three-fold. First, the scan-
ning time for each subject may be limited due to concerns
about the total duration of radioactive exposure and the cost
of scanning. Second, the data acquisition is dependent on
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Fig. 1: Prior works (task (a) and (b)) synthesize target modal-
ity from known modalities. We consider the challenging
heterogeneous image synthesis from incomplete multimodal
data (task (c)), where each subject may have different missing
data at various modalities, denoted by question marks.

the subjects’ availability and the progress of the subjects’ sta-
tus. For example, during different visits, a subject may have
different brain status, which makes the integration of multi-
modal data difficult even when they are available. And third,
although there are many efforts to provide multimodal brain
imaging data for research purposes, the data inconsistency is
still inevitable due to various data collection sites and devices.
For example, Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [8], a multi-site longitudinal study toward AD, has
been running since 2004, and PET data are not available
for more than half of early participants. Different scanning
standards also make the problem extremely challenging.

To address the problem of data incompleteness, conven-
tional methods either discard those subjects with missing data
modality or focus on imputing hand-crafted features extracted
from original data. Recently it has been shown that synthe-
sizing missing modality is potentially beneficial for the diag-
nosis of AD [9, 10]. However, previous works typically pre-
sume source modalities are completely available, including
generative adversarial networks [11–15] and variational auto-
encoders [16–19]. In real applications, it is often not the case.
Particularly, the modal incompleteness for different subjects
is typically heterogeneous. Therefore, previous methods are
not instantly applicable to this problem. Figure 1 illustrates
the comparison of previous tasks and ours. In this paper, we
address the challenging problem of synthesizing brain images
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Fig. 2: The pipeline for synthesizing the target modality from
incomplete multimodal source modality.

from data with randomly missing modalities. We propose a
new unified model to generate target modality from source
modalities with random missing patterns, and the experimen-
tal results demonstrate the proposed method outperforms re-
lated approaches.

2. METHODOLOGY

Notations. We use xi
j and yj to denote the ith source domain

and the target domain respectively, for the jth subject. Xsj

denotes the set of all source domain, and Xs̊j ⊆ Xsj denotes
the available domains. sj and s̊j are all modality and available
modality for the jth subject, respectively. zi

j and zi
t are the

representation of xi
j and yj . Zsj , Z s̊j and Zt are the sets.

Problem Formulation. Provided with incomplete data Xs̊,
our task is to generate yj with high fidelity. To this end, we
need to learn the distribution P (yj ,Xs̊), with which the gen-
eration task is to compute argminy Pθ (y|Xs̊). In our task, for
each individual, some data modalities might be missing ran-
domly. Although the data irregularity is frequently happening
in real-world applications, standard methods including Cycle-
GAN [12] typically fail to handle it since data completeness
are explicitly required. To address this problem, we propose a
new machine learning based multimodal medical image syn-
thesis method with three key components: (1) the represen-
tations Z s̊ are learned from the available source modalities
individually; (2) we estimate the target modality representa-
tion zt by integrating observed sources; (3) the synthesized
results are generated from zt. The detailed methodology ar-
chitecture is illustrated in Fig. 2.

Let zt and Z s̊ are the representations of target and
source domain respectively, the distribution P (yj ,Xs̊) =
Ezt,Z s̊

[Pθ (yj ,Xs̊, zt,Z s̊)]. Ezt,Z s̊
is taking expectation

over {zt,Z s̊}. Let Zs \ Z s̊ be the missing modalities, we
have (yj ,Xs̊, zt,Z s̊) = P (zt,Z s̊)P (y|zt)

∏
P
(
xi|zi

s

)
=

EZs\Z s̊
[P (zt,Zs)]P (y|zt)

∏
P
(
xi|zi

s

)
.
∏

P
(
xi|zi

s

)
is

the term for the representation learning from source, namely
step (1). P (y|zt) is the term describing the synthesizing,
namely step (3). Many established methods [16, 17] can
be exploited in the modelling of representation learning and
synthesizing, and data can be represented with lower dimen-

sion and simpler structure. We are interested in step (2), the
estimation of EZs\Z s̊

[P (zt,Zs)].
The key in solving step (2) is to estimate a joint distri-

bution of complete modality P (zt,Zs), based on which the
incomplete case P (zt,Z s̊) can be computed as marginal
distribution. With P (zt,Z s̊), zt can be inferred straight-
forwardly according to maximum likelihood. We presume
P (zt,Zs) is a zero-mean Gaussian distribution, with a
block-wise co-variance matrix Λz , where each block Λz1,z2

represents the co-variance between modality z1 and z2. To
learn P (zt,Zs), an intuitive option is to estimate its co-
variance matrix. However, {zt,Zs} is typically of high
dimension, making the estimation difficult and the compu-
tation expensive. Inspired by the reparameterization trick in
the variational auto-encoder, we propose a surrogate sample
method. For complete data {zt,Zs}, we consider a sampler,

zt =
∑
i∈S

W i
(
zi
s +Aiσi

)
∼ P (zt|Zs) , (1)

here σi is a modality-wise random perturbation in the rep-
resentation, W i and Ai are parameters related to the condi-
tional distribution P (zt|Zs). For simplicity we assume the
diagonals of Λz are identity matrices. It is easy to verify train-
ing W i is equivalent to evaluating co-variance matrix Λzi,zt ,
because mean of zt|Zs is µzt|Zs

=
∑

j∈S Λzi
s,zt

zi
s. Since

the sum of random variables needs to be adjusted to be consis-
tent with the co-variance of the surrogate sampler (1), Ai is a
scaling matrix Ai =

(
W i

)−1
(I −Λst)

1/2
Λ

−1/2
st Λi, where

I is identity matrix, Λi is the co-variance of introduced pertur-
bation, and Λst =

∑
i∈S Λzi

s,z
tΛ⊺

zi
s,z

t . One can verify the
choice of Ai by computing the co-variance of P (zt|Zs), i.e.,
Λzt|Zs

= I−Λst = E
((∑

i∈S Aiσi
) (∑

i∈S Aiσi
)⊺)

. Re-
garding incomplete modalities, we can first compute marginal
distribution Pθ

(
zt|Z s̊j

)
, then derive a similar sampler,

zt =
∑
i∈S̊

W i
(
zi
s + Ãiσi

)
+

∑
j∈S̊\S

W jÃjσj . (2)

Note that W i and Ai are determined by individual data. (2)
potentially uses different Ãi compared to (1), which can be
interpreted as follow: the sample in (1) is evenly dependent
on all modalities, but in (2), the sample is heavily based on
observed modalities. In other words, the dependence on the
missing modality is transferred to the present modality. In the
next part, we describe a deep network to model this transfer,
which is end-to-end trainable, and computationally efficient.
Integrating Incomplete Multimodal Data via Attention-
Redistribution. Representation learning has been well stud-
ied, and we utilize state-of-the-art auto-encoder in the encod-
ing of source modalities and reconstruction of target modality.
In this part, we are mainly interested in designing a feasible
sampling scheme w.r.t (2), a representation transformer from
the incomplete source domain to the target domain.
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According to to (2), W i can be formulated using a one-
layer network, and additionally, we need to estimate the mean
and perturbation for each modality and re-scale the perturba-
tion accordingly. The perturbation σi can be computed via
a neural network, similarly in variational auto-encoder. Let
all representations are m dimension vectors, Ãi ∈ Rm×m

is a large matrix which is prohibitive in computation [20].
To simply the computation, for each modality we compute
a scalar score ãi instead of the full matrix, indicating the im-
portance of the modality. Specifically, we first reparameterize
the modality-wise representation as z̃i

s = zi
s + ϵσi, here ϵ

is a small random number. And for missing modalities, we
let zi

s = 0 and σi = I . Then, we concatenate all source
representations Z̃k = [z̃1

s , z̃
2
s , . . . ]. For source modality i,

let the query vector be computed from the representations
qi = fq(z

i
s), and compute the key vectors Vi = fkZ̃k. Here,

both fq and fk are one layer neural network, and the input
and the ourput share the same size. The importance score ãi

can be computed as max(qiV
⊺
i ). At last, we have the trans-

formed representation zt =
∑

i∈S W i
(
ãiz̃i

s

)
.

Our definition of keys and queries are similar to the atten-
tion mechanism [21–23]. Similar to the self-attention mecha-
nism [24, 25], we can introduce multi-head attention into the
importance score computation, and take the average as the fi-
nal score. Specifically, the attention score here is interpreted
as the correlation between the source domain and the target
domain. And the correlation is estimated through computing
the available domains. Ideally, if all modalities are available,
the generation is dependent on all modalities. However, if
there is a missing modality, the attention will be distributed
to the available ones. That is the reason that we name the
proposed structure attention-redistribution.
Optimizing Objective. We design three loss terms for
the proposed method and optimize these objectives se-
quentially. Reconstruction Loss: to improve the repre-
sentation ability, the auto-encoder units are trained using
Lr =

∑
∥fm (xm)− xm∥2, here fm is the auto-encoder

for each modality, and m is the observed modality. Sam-
ple Loss: to keep the consistency of zt and z̃t, we exploit
the term Ls = logP (z|Xjs) ∝ ∥z̃t − zt∥22/σ2

t . Dis-
criminator Loss: the representation for all modals are pre-
sumed to be Gaussian, thus we introduce a per-modality
Ld = DJS (zm, z) , z ∼ N (0, λI), here DJS is Jenson-
Shannon divergence, z is a random variable, N (0, λI) is
Gaussian distribution with 0 mean and λI variance.

3. EXPERIMENTS

Data Description. Totally 264 subjects from ADNI were
included in this study. The subjects are selected to ensure the
available brain scanning is within 180 days for consistency
across different modalities. T1, T2, Perfusion, and Flair-
weighted MRI data were used to predict Pet data. Among
them, 205 subjects have complete data, 264 T1, 235 T2, 244
Flair, 264 Perfusion, and 252 Pet. All imaging data were
prepossessed using standard techniques [26] and registered to
the ICBM common space of T1. 20% of complete data are
chosen as the test set and the rest are used for training.
Experimental Setting. We use 2-D slices from each modal-
ity to train the model. We use ResNet as the encoder and a
deconvolution network as the decoder with embedding size
512. For the attention-redistribution block, we use eight head
and 1-D convolution for the query, key, and value computa-
tion. The model is trained for 200 epochs using Adam with
learning rate 0.001 and batch size 128.

3.1. Comparison with Baselines

The main purpose of the comparison is to demonstrate that the
proposed method attains competent performances on the dif-
ficult incomplete generation, compared to simple determinis-
tic generation using previous methods. We implemented Cy-
cleGAN and VAEGAN as baselines. Both methods cannot
solve the random missing problem. As such, for baselines,
we simplify the task into fixed modal generation. The eval-
uation of the proposed is based on the more challenging task
of an incomplete generation. We consider two scenarios for
training. In the first, the proposed model is trained on subjects
with complete source modalities. And in the second, the sub-
jects in training have missing source modalities. Five testing
scenarios are considered for testing to cover different miss-
ing severity, including using all source modalities, discarding
fixed modalities, and randomly discarding modalities. The
results are summarized in Table 1.

Regarding the proposed method, the performances of
Sce.0.a and Sce.0.b are similar, indicating that the model
performance is not affected by incomplete data, instead, it
improves by using all available data. The results under differ-
ent missing severity show the proposed method can benefit
from more observed data, meanwhile yield competent results
for high-level incompleteness. From baselines, it can be also
observed that different source modalities have distinct pre-
diction abilities for the target modality. For example, Pet syn-
thesized from Perfusion is relatively worse than other sources
particularly for VAEGAN, which is potentially caused by the
fuzzy structure of perfusion scanning. Meanwhile, T1, T2,
and Flair can yield decent predictions. In a multi-source situ-
ation, in general, the prediction is improved, for all methods.
Nevertheless, the proposed method can achieve the highest
performance compared to baselines. The model trained on all



Table 1: For the proposed modality, Sce.0.a: trained and tested both on complete data; Sce.0.b: trained on full data, tested on
complete data; Sce.1.a: trained on full data, tested on discarded T1; Sce.1.b: trained on full data, tested on discarded T1 and
perfusion; Sce.2.a: trained on full data, tested on random discard one modality; Sce.2.b: trained on full data, tested on random
discard two modalities.

model metrics SSIM PSNR MSE

CycleGAN

T1 0.6960± 0.0789 21.5113± 1.0688 0.0091± 0.0036
T2 0.6543± 0.1197 21.1860± 0.9028 0.0078± 0.0016

Flair 0.6968± 0.0777 22.2292± 0.9390 0.0061± 0.0013
Perfusion 0.3412± 0.2507 16.5147± 6.1676 0.2057± 0.2603
T1 + Flair 0.7261± 0.0202 22.1737± 1.8330 0.0067± 0.0031

T2 + Perfusion 0.6465± 0.1473 20.0400± 1.7807 0.0107± 0.0041
All 0.7395± 0.0238 22.3542± 1.7640 0.0052± 0.0013

VAEGAN

T1 0.6123± 0.1136 21.7730± 1.9694 0.0073± 0.0032
T2 0.6812± 0.0780 21.1647± 0.9858 0.0078± 0.0018

Flair 0.6603± 0.1528 22.2167± 1.4206 0.0064± 0.0021
Perfusion 0.4359± 0.1943 21.9777± 0.8825 0.0163± 0.0034
T1 + Flair 0.7072± 0.0880 21.8273± 0.9465 0.0067± 0.0015

T2 + Perfusion 0.5580± 0.1417 22.2876± 0.8006 0.0096± 0.0018
All 0.6780± 0.1050 22.0836± 1.4341 0.0066± 0.0022

Proposed

Sce.0.a 0.8001± 0.0300 23.4038± 2.2272 0.0053± 0.0021
Sce.0.b 0.8004± 0.0292 24.0629± 1.9586 0.0049± 0.0027
Sce.1.a 0.7855± 0.0274 22.6806± 1.7987 0.0062± 0.0035
Sce.1.b 0.7540± 0.0247 22.8832± 1.6017 0.0059± 0.0019
Sce.2.a 0.7716± 0.0268 22.8814± 1.6906 0.0048± 0.0018
Sce.2.b 0.7691± 0.0267 22.5484± 1.9522 0.0063± 0.0016

Table 2: Results of variants of the proposed structure. Time
is in second/epoch. The variants include: n-head, refers to
transformers with different number of headers; shared, refers
to using one auto-encoder for all modalities; joint, refers to
jointly training of transformer and auto-encoder.

Variant SSIM PSNR MSE Time

1-head 0.7794 22.8970 0.0074 284
4-head 0.7915 23.5318 0.0068 328

16-head 0.7965 23.9324 0.0049 511
shared 0.7880 22.2601 0.0078 156
joint 0.7961 22.6811 0.0054 397

data is also slightly better than the model on complete data.
The inference from incomplete data also demonstrates decent
results. For example, one can compare the results of Sce.2.a
of the proposed method and T1+FLAIR in CycleGAN. To
sum up, the proposed method outperforms the related base-
lines with similar observed data and is flexible to different
scenarios by avoiding training additional models. Given
that here are s(s−1)

2 combinations of missing patterns with s
source modalities, the proposed method has better scalabil-
ity, as the generation based on available source modalities is
feasible within a single model.

Ablation Study We studied the number of heads in the
attention-redistribution block. From Table 2, we found
that increasing the number of heads can improve the per-

formances, though may consume more computation and
memory resources. We choose eight heads as a balance of
computation burden and performances. Through the experi-
ments, we also found that the model size can be reduced at
the cost of moderate performance degeneration. At last, se-
quentially training transformer and auto-encoder can slightly
improve the performance, compared to joint training. Em-
pirically, the sequential training of auto-encoder, transformer,
and discriminator improves the performances. Besides, if we
jointly optimize the reconstruction loss and the transformer
loss, additional hyper-parameters shall be introduced to bal-
ance the weighted summation. Instead, the hyper-parameter
is not necessary for the sequential training, which simplifies
the tuning of the model.

4. CONCLUSION

In this paper, we studied the challenging problem of medical
image synthesis from incomplete multimodal data sources.
We proposed a surrogate sampler method to infer the target
representation from incomplete source representations and
designed a multi-head attention-redistribution network for
efficient computation. We conducted extensive experiments
on synthesizing PET images from MRI images, and the re-
sults demonstrated that the proposed new method consistently
outperforms the related approaches in various settings.
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