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Bayesian Active Learning for Sample Efficient 5G

Radio Map Reconstruction
Konstantinos D. Polyzos, Alireza Sadeghi, Wei Ye, Steven Sleder, Kodjo Houssou, Jeff Calder,

Zhi-Li Zhang, and Georgios B. Giannakis

Abstract—The advent of diverse frequency bands in 5G net-
works has promoted measurement studies focused on 5G signal
propagation, aiming to understand its pathloss, coverage, and
channel quality characteristics. Nonetheless, conducting a thor-
ough 5G measurement campaign is markedly laborious given the
large number of 5G measurement samples that must be collected.
To alleviate this burden, the present contribution leverages prin-
cipled active learning (AL) methods to prudently select only a few,
yet most informative locations to collect 5G measurements. The
core idea is to rely on a Gaussian Process (GP) model to efficiently
extrapolate 5G measurements throughout the coverage area.
Specifically, an ensemble (E) of GP models is adopted that not
only provides a rich learning function space, but also quantifies
uncertainty, and can offer accurate predictions. Building on this
EGP model, a suite of acquisition functions (AFs) are advocated
to query new locations on-the-fly. To account for realistic 5G
measurement campaigns, the proposed AFs are augmented with
a novel distance-based AL rule that selects informative samples,
while penalizing queries at long distances. Numerical tests on 5G
data generated by the Sionna simulator and on real urban and
suburban datasets, showcase the merits of the novel EGP-AL
approaches.

Index Terms—Active Learning, 5G measurement, Radio Map
Reconstruction

I. INTRODUCTION

The fifth-generation cellular network, commonly known as

5G, expands its spectrum resources across both the low/mid-

frequency bands (<6GHz) and the high-frequency bands

(>24GHz) [1]. This brings a remarkable improvement in

service quality and outperforms 4G, which mainly operates

within frequencies at or below 2GHz. In particular, major

5G operators like ATT and Verizon in the US have been

actively deploying C-band (3.7GHz) and mmWave (26GHz)

technologies, achieving impressive gigabits-per-second-level

throughput and millisecond-level latency [2]–[4].

Nevertheless, applying these frequency bands introduces

new characteristics to mobile networks. For instance, mmWave

has a much shorter wavelength (about 1∼12mm) [5], making

its propagation highly directional, easily blocked and reflected
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by obstacles. This can lead to complex signal strength be-

haviors in the real world beyond just distance-based depen-

dency [6], [7].

A plethora of wireless network-related tasks, such as net-

work/radio resource/base station planning, handover optimiza-

tion, quality of Service (QoS) management, etc., critically rely

on a better understanding of radio propagation characteristics

in the real world and require quantifying the signal coverage

quality of specific base stations. To gain such insight, a large

number of in-field measurements need to be conducted.

Obtaining these measurements is a laborious process, since

the collection of valid measurements entails a significant

amount of effort and the collected data may not even cover

all of the locations within the coverage area. The lack of

immediate feedback on data quality during in-field measure-

ments can further lead to many redundant and/or useless

measuring efforts. To cope with these challenges, existing

works [7]–[16] have attempted to reconstruct radio maps only

using limited measurements (see Sec. II). Albeit interesting,

these approaches still fail to fully address the aforementioned

practical issues.

The goal of this work is to improve the efficiency of

obtaining measurements for reconstructing 5G radio maps

by leveraging Bayesian-based active learning (AL) methods.

Building on a statistical model to capture the mapping of any

location within the coverage area to its corresponding received

signal strength (RSS) value, AL leverages a collection of

acquisition criteria (i.e., acquisition functions (AFs)) to select a

few highly informative locations to obtain RSS measurements.

We utilize the Gaussian Process (GP) for the underlying

statistical model, which is a well-motivated Bayesian model

that is able to effectively extrapolate and interpolate RSS

measurements in regions with limited or even no observed

data. Along with accurate RSS predictions at unobserved

locations, the GP model provides valuable information about

the confidence and reliability of predictions by offering a well-

quantifiable notion of uncertainty around each predicted RSS

value [17]. As GPs are non-parametric models by nature, they

do not require explicit assumptions about the functional form

or distribution of the data, making them applicable in complex

settings.

Nonetheless, their performance hinges on a pre-selected

kernel function to evaluate the pairwise similarity of dif-

ferent locations, which subsequently affects the covariance

of the corresponding RSS values. Apriori selection of the

kernel function is a nontrivial task, that may require domain-

knowledge as well. The use of a single pre-selected kernel
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in GP modeling confines the expressiveness of the sought

learning function for estimating RSS values. In addition,

the complexity of these methods significantly grows as the

number of available measurements increases. To cope with

expressiveness challenges of single kernel-based GP learning,

and to allow for scalable and online model updates, we will

rely on an ensemble of parametric approximants of GP models,

similarly as in [18] (see also Sec.II).

Contributions. Our contributions in this work can be summa-

rized in the following aspects:

• To the best of our knowledge, this is the first work that

formulates and implements Bayesian-AL for the 5G radio

map reconstruction problem using only a small number

of measurements.

• We advocate intuitive AL methods that leverage an en-

semble of GPs (EGPs) to enhance the model’s expres-

siveness when dealing with multi-modal and complex

data distributions. We then leverage parametric function

approximants of the GP models in the ensemble using

random features (RFs) to offer online and scalable model

updates. These are particularly appealing in AL settings

where new measurements are processed online.

• To allow for path-efficient acquisition of RSS mea-

surements in new locations, we combine a number of

well-motivated AFs with a novel path efficient rule that

penalizes querying far-distant locations at each iteration

of AL.

• We conduct thorough experiments on a total of six simu-

lated datasets with three scenarios and two radio frequen-

cies, and on two real urban and suburban datasets, to cor-

roborate the efficiency and effectiveness of the proposed

EGP-based AL in reconstructing 5G radio maps. Our

numerical tests show that our EGP-based AL approaches

achieve up to 54.8% improvement in terms of normalized

mean square error (NMSE) over the EGP model with

random sampling. In addition, compared to the EGP-

AL methods that do not impose any constraints on the

acquisition of new locations to measure, the EGP-based

AL approaches that consider the novel path efficient

rule, achieve up to 57.1% reduction in terms of required

cumulative traveling distance to obtain measurements.

The remainder of the paper is organized as follows. In Sec.

II related works are discussed. Active learning formulation for

5G radio map reconstruction is introduced in Sec. III, while

the advocated EGP-based AL approach with path-efficient

acquisition functions is presented in IV. Upon discussing

details about data generation in Sec. V, numerical tests on

simulated and real 5G datasets are provided in Sec. VI. Finally,

Sec. VII concludes the paper.

Notations. Scalars are denoted by lowercase, column vectors

by bold lowercase, matrices by bold uppercase, and sets by

calligraphic uppercase fonts. Superscripts ¦ and −1 denote

transpose and inverse respectively; while 1N stands for the

N × 1 all-ones vector; and N (x;µ,K) for the pdf of a

Gaussian random vector x with mean µ, and covariance matrix

K. The identity matrix will be represented by I , and the all-

zeros matrix by 0.

II. RELATED WORKS

Radio Map Reconstruction. Numerous approaches have been

proposed to reconstruct 5G radio maps, comprising both

non-parametric methods [8]–[10], [19], [20] and classical

parametric ones [11], [12], [21]. More recently, researchers

have explored deep learning-based approaches [7], [13]–[16],

[22] to enhance the accuracy of radio propagation modeling

and better capture its characteristics. However, these methods

primarily concentrate on interpolating or extrapolating unmea-

sured locations based on existing measured points, lacking the

ability to guide future sampling —a critical practical challenge.

In contrast, the novel active learning method adopted in this

paper effectively addresses this challenge by providing a

principled method to search for the most informative location

to query the next measurement.

Active Learning. AL methods can be broadly categorized into

parametric AL [23]–[25] and non-parametric ones [26]–[28].

Although most existing parametric approaches in the literature

excel at learning complex representations from data, they

are deterministic and hence fall short in inherently providing

uncertainty quantification. In addition, they are tailored solely

for classification tasks, and do not account for regression tasks,

such as the RSS prediction problem in this paper; see e.g

[29]. On the other hand, Bayesian non-parametric approaches

such as GPs, inherently offer uncertainty quantification, and

demonstrate superior sample efficiency [17], [27]. Existing

GP-based AL approaches typically rely on a single pre-

selected kernel, which limits their expressiveness when dealing

with data exhibiting multi-modal behavior. To cope with this

challenge, existing deep-learning based approaches aim to

learn the kernel with neural networks, but they typically

require a sufficient number of labels which are not available in

several AL settings; see e.g [30]. The proposed AL method in

this paper uses a more expressive statistical model that relies

on an ensemble of GP models with scalable online model

updates as in [31]. Finally, the proposed acquisition strategies

in the existing literature do not impose constraints on the data

to label, which discourages their application in the 5G map

reconstruction problem where the travelling cost of collecting

5G measurements should be minimized. A recent work [32]

has considered AL methods that choose query points nearby

previously queried ones, though the method is not applicable

to 5G signal reconstruction. To cope with this challenge,

this work incorporates a novel path efficient acquisition rule

into the AL process, where locations at long distances are

penalized.

III. PROBLEM STATEMENT

We now formulate the 5G active measurement problem (see

Fig.1) and then briefly discuss the limitations of AL when it

is directly applied in practice.

Active Learning for 5G Measurements. For a 5G coverage

area X ¢ R
2, we are interested in estimating the real-valued

received signal strength (RSS) y(x) ∈ R at any desired loca-

tion (or feature vector) x := [longitude, latitude] ∈
R

2; Let xi denote the i-th probed location with associated

scalar RSS value yi ∈ R. We postulate that there exists a
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Fig. 1: Accelerating 5G Measurements via Active Learning.

ground truth function f(x) : R2 → R which maps a desired

location x to its associated RSS through

y = f(x) + ν (1)

where ν ∼ N (ν; 0, σ2
noise) represents the observation noise.

To efficiently learn an estimate f̂(x) at any desired x with

only few, but representative, measured RSS data, one can

rely on the active learning (AL) paradigm; see Fig. 1 for

an illustration. AL begins with a relatively small dataset of

labeled (measured) data Dn := {(xi, yi)}ni=1 (where n is

small). To judiciously update Dn and build an informative

training set, AL leverages an acquisition function (AF) α(·)
to search for the most informative query locations on-the-fly

while updating the underlying model f̂(·). The next query

location xn+1 is obtained by solving

xn+1 := argmin
x∈X

α(x;Dn). (2)

To obtain the RSS value y(xn+1) := yn+1 corresponding

to the queried location xn+1, a field-test1 can be carried

out. Upon obtaining yn+1, AL augments the training dataset

Dn+1 := Dn ∪ {(xn+1, yn+1)} and updates the estimate f̂(·)
on-the-fly. Having an updated f̂(·), the active learner can

predict the RSS at any desired (unmeasured) location x ∈ X .

Therefore, to learn f(·) in a sample-efficient manner with

AL, we aim to properly select a learning model for f(·) and

design AFs relying on the chosen model, to effectively guide

the acquisition of new query locations to measure in an online

manner.

Challenges Conventional AL methods rely on the ‘indepen-

dent data acquisition’ assumption, meaning that the active

learner can query measurements from any location within the

coverage area independently from the previous measurement

locations. This limits the applicability of conventional AL

in wireless communications, since there exist many practical

considerations that one needs to consider when querying a

new location, such as traveling cost and measurement runtime

complexity. For example, simply selecting a location that may

be informative but requires a much longer travel distance is not

cost-optimized, as the user may have to travel a prohibitively

long distance to take a sufficient number of measurements

and may repeatedly traverse the same regions within the

measurement area (see Sec. VI). In the ensuing sections, we

1One can obtain RSS measurements at different locations within X ,
using some off-the-shelf tools, such as Android-based API [33] running on
smartphones or more professional scanners [34].

provide principled methods to facilitate a path- and sample-

efficient data acquisition process.

IV. ACTIVE LEARNING WITH ENSEMBLES OF GPS

To effectively estimate the sought function f with well-

quantifiable uncertainty in a sample-efficient fashion, this work

specifically focuses on Gaussian processes (GPs). GPs belong

to the family of nonparametric Bayesian models, and will be

leveraged in this work to estimate unknown RSS values and

also guide the acquisition of new measurement locations, as

outlined next.

A. Gaussian Processes

We leverage GPs to probabilistically model f(x) for all

x ∈ X , and subsequently obtain a model over RSS values

{y(x), ∀x ∈ X}. To this aim, let us define a single GP-based

prior distribution over f(x) ∼ GP(µ(x), κ(x,x′)), with mean

µ(x) and a pre-specified kernel function κ(x,x′). Usually, for

notational simplicity it is assumed that µ(x) = 0, ∀x ∈ X .

This prior on f(x) implies that for any finite number n ∈
N

+ of samples, the random vector of function values fn :=
[f(x1) · · · f(xn)] at locations Xn := [x1, . . .xn]

¦ has a joint

Gaussian distribution; that is p(fn|Xn) = N (fn;0t,Kn),
where Kn represents the n× n covariance matrix with (i, j)-
th entry [Kn]i,j := cov (f(xi), f(xj)) = κ(xi,xj) [17].

The random vector fn is related to the (possibly) noisy

observations yn := [y(x1), . . . , y(xn)]
¦ through the batch

likelihood p(yn|fn;Xn) that is assumed to be factored as

p(yn|fn;Xn) =
∏n

n′=1 p(yn′ |f(xn′)). Capitalizing on the

GP prior and the batch likelihood, one can express the joint

probability density function (PDF) of the observation vector

yn and the function value f(x) at any unmeasured location x

as [
yn

f(x)

]
∼ N

(
0,

[
Kn + σ2

noiseIn k¦
n (x)

kn(x) κ(x,x)

])
, (3)

where kn(x) := [κ(x1,x), . . . , κ(xn,x)]. Leveraging this

joint Gaussian distribution in (3), and marginalizing this

distribution over f(x), it can be shown that the predictive

PDF of y(x) is [17]

p(y(x)|Dn,x) = N (y(x); ȳ(x)n+1|n, σ
2
n+1|n(x)), (4)

where

ȳ(x)n+1|n = k¦
n (x)

(
Kn + σ2

noiseIn

)−1
yn (5a)

σ2
n+1|n(x) = κ(x,x)− k¦

n (x)
(
Kn + σ2

noiseIn

)−1
kn(x)

+ σ2
noise. (5b)

with the notation n+ 1|n signifying that all n data samples

are employed to obtain the predictive PDF at the next (n+1)-
th location. The mean in (5a) provides a point estimate of the

RSS value of location x and the variance in (5b) quantifies

the associated uncertainty.

Although intuitive, the predictive PDF in (5) is subject to

certain limitations. Primarily, the predictive mean and variance

in equation (5) depend on a single pre-selected kernel function

which restricts the expressive capacity of the learned function.
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In addition, the mean and variance in (5a) and (5b) entail

O(n2) storage requirements and O(n3) computational com-

plexity due to the matrix inversion operation involved, which

may become computationally intractable when n is large. In

the subsequent sections, we will outline how to circumvent

these challenges.

B. Ensemble of Gaussian Processes

Instead of relying on a single kernel to estimate f(x), we

target a more expressive function space by utilizing a set of

kernels K := {κ1, . . . , κM} to form a mixture of GP models.

The set K constitutes a diverse collection of kernels with

different hyper-parameters. Each κm ∈ K induces a unique

GP prior m over the function f(x) ∼ GP (0, κm(x,x′)).
Constructing a weighted combination of these GP mod-

els yields a mixture of GP priors over f(x), as f(x) ∼∑M

m=1 w
m
n GP(0, κ(x,x′)), subject to

∑M

m=1 w
m
n = 1. The

per-model weight wm
n signifies the contribution of m-th kernel

in the GP prior over f(x). Using this mixture of GP priors,

the posterior distribution of f(x) can be obtained by

p (f(x) |Dn) =

M∑

m=1

wm
n p (f(x)|Dn, κ = κm) , (6)

with wm
n ∝ Pr(κ = κm)Pr(Dn|κ = κm), where Pr(Dn|κ =

κm) represents the marginal likelihood of data Dn for the

m-th GP. For any desired location x ∈ X , each GP

induces a Gaussian predictive PDF p(y(x)|Dn,m,x) =
N (y(x); ȳm

n+1|n(x), σ
m
n+1|n(x)) to estimate the corresponding

RSS value. By appropriately updating the mean and variance

for each GP (c.f., (5a) and (5b)) and adjusting the weights

{wm
n }Mm=1 for all GP models, one can obtain [18] the predic-

tive PDF of y(x)

p(y(x)|Dn,x) =

M∑

m=1

wm
n N (y(x); ȳmn+1|n(x), (σ

m
n+1|n(x))

2).

(7)

Although more expressive compared to (4), the predictive

PDF in (7) still requires large computational complexity; i.e

O(Mn3).

C. Random Feature-based EGPs

To bypass this cubic complexity, one can employ parametric

approximants to the non-parametric models using the so-called

random features (RF) [35]. The main idea of the RF-based

approximation is to rely on a shift-invariant kernel κ̄(x,x′) =
κ̄(x− x′), normalized as κ̄ = κ/σ2

θ , and express it via the

inverse Fourier transformation of its power spectral density

πκ(ζ) [35]; that is

κ̄(x− x′) := Eπκ

[
ejζ

¦(x−x
′)dζ

]
(8)

=

∫
πκ(ζ)e

jζ¦(x−x
′)dζ

where
∫
πκ(ζ)dζ = 1, so that it can be thought of as a PDF.

Since the values of κ are always real, it holds that κ̄(x−x′) :=

Eπκ

[
cos(ζ¦(x− x′))

]
. Leveraging this new representation,

one can approximate the kernel by drawing a sufficiently large

number of i.i.d samples {ζi}Di=1 from πκ(ζ) yielding

ˆ̄κ(x− x′) :=
1

D

D∑

i=1

cos(ζ¦
i (x− x′)) = φζ(x)

¦φζ(x
′), (9)

where the random feature vector φζ(·) ∈ R
2D×1 is defined as

φζ(x) :=
1√
D

[
sin(ζ¦

1 x), cos(ζ
¦
1 x), . . . , cos(ζ

¦
Dx)

]
. (10)

Relying on the RF vector φζ(·), a linear and parametric

approximant of the sought function can be obtained as [35]

f̌(x) = θ¦φζ(x), θ ∼ N (θ;02D, σ
2
θI2D). (11)

This parametric model over f̌(x) enables the propagation

of the posterior p(θ|Dn) = N (θ; θ̂n,Σn) using a recursive

Bayesian iteration, which can be updated as new data arrive

on-the-fly, as will be shown next.

D. Ensemble of Parametric GPs

To allow for reduced complexity and online model updates

that are particularly appealing in the AL setting, we consider

an ensemble of parametric GPs. Each GP model m, relies

on a shift-invariant and normalized kernel κ̄m = κm/σ2
θm to

construct its RF vector φm
ζ (·) by drawing i.i.d random vec-

tors {ζm
j }Dj=1 from its corresponding power spectral density

πκ̄m(ζ). Similar to (11), each learner m forms a generative

parametric model as

p(θm) = N (θm;02D, σ
2
θmI2D) (12)

p(f(x)|κ = κ̄m,θm) = δ(f(x)− φm
ζ (x)¦θm) (13)

p(y(x)|θm,x) = N (y(x);φm
ζ (x)¦θm, σ2

noise). (14)

This generative model allows model m to form the posterior

PDF p(θm|Dn) = N (θm; θ̂
m

n ,Σ
m
n ) using available data Dn,

and the advocated parametric EGP model combines them with

the weights {wm
n }Mm=1 to form the ensemble predictive PDF

over the target y(x), for all x ∈ X . This predictive PDF not

only offers an estimate of the RSS value at location x, but

will further guide the design of a set of acquisition functions

to find the next locations to obtain measurements, as will be

discussed in the next subsection.

We now show how the EGP model parameters will be

updated as a newly acquired measurement at a new location

indexed by n + 1 is obtained. Each model m leverages the

learned posterior p(θm|Dn) to find the predictive PDF of y(x)
at any desired target location x as

p(y(x)|κ =κ̄m,Dn,x)

=

∫
p(y(x)|θm,x)p(θm|Dn)dθ

m

= N (y(x); ˆ̄ymn+1|n(x), (σ
m
n+1|n(x)))

2, (15)

with mean and variance given by

ˆ̄ymn+1|n(x) = φm
ζ (x)¦θ̂

m

n (16a)

(σm
n+1|n(x))

2 = φm
ζ (x)¦Σm

n φm
ζ (x) + σ2

noise . (16b)
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To estimate the RSS value y(x), the EGP model forms a

Gaussian mixture (GM) model by combining all M predictive

PDFs to form the ensemble predictive PDF

p(y(x)|Dn,x) =

M∑

m=1

wm
n N (y(x); ˆ̄ymn+1|n(x), (σ

m
n+1|n)

2(x)).

(17)

Having this Gaussian mixture model over y(x), one can obtain

an estimate of the RSS value along with the corresponding

uncertainty, by considering the minimum mean-square error

(MMSE) estimator of y(x) along with the variance of the

estimator; that is

ŷn+1|n(x) =
M∑

m=1

wm
n
ˆ̄ymn+1|n(x) (18a)

σ2
n+1|n(x) =

M∑

m=1

wm
n

[
(σm

n+1|n(x))
2

+ (ŷn+1|n(x)− ˆ̄ymn+1|n(x))
2

]
. (18b)

where “n + 1|n” denotes that only the measurement from

location n is needed to predict y at the next location n+ 1.

Leveraging the learned PDF in (17) along with the mean and

variance in (18), one can find the next query location xn+1 to

obtain the RSS measurement yn+1 by minimizing the AFs as

will be elaborated in the next subsection IV-E. Upon obtaining

xn+1 and yn+1, one can update the EGP model parameters.

Specifically, each model m uses Bayes’ rule along with (16)

to update its weight wm
n as

wm
n+1 =

wm
n N (yn+1; ˆ̄y

m
n+1|n, (σ

m
n+1|n)

2)
∑M

m′=1 w
m′

n N (yn+1; ˆ̄ym
′

n+1|n, (σ
m′

n+1|n)
2)
, (19)

and its posterior PDF as

p(θm|Dn+1) =
p(θm|Dn)p(yn+1|θm,xn+1)

p(yn+1|θm,Dn,xn+1)

= N (θm; θ̂
m

n+1,Σ
m
n+1), (20)

where

θ̂
m

n+1 = θ̂
m

n +
Σm

n φm
ζ (xn+1)(yn+1 − ˆ̄ym

n+1|n)

(σm
n+1|n)

2
(21a)

Σm
n+1 = Σm

n − Σm
n φm

ζ (xn+1)φ
m
ζ (xn+1)

¦Σm
n

(σm
n+1|n)

2
. (21b)

The required complexity of updating the model parameters

in (21) is O(M((2D)2 + 2Dn))), which is smaller than the

O(Mn3) complexity of the original EGP-based model.

E. Acquisition functions for EGP-based active learning.

This section introduces a number of EGP-based AFs, which

depend on the learned predictive PDF p(y(x)|Dn) in (17), to

guide the acquisition process; that is to find the next most

informative location within the coverage area, i.e., xn+1 ∈ X ,

and obtain its associated RSS measurement yn+1.

1) Weighted variance: To exploit the uncertainty of each

GP model, we leverage the variance of all GP models’ pos-

terior PDFs and combine them to form the weighted variance

AF as

αwVar(x;Dn) :=

M∑

m=1

wm
n (σm

n+1|n(x))
2. (22)

The intuition is that locations with high uncertainty can

be informative for the training dataset. Although αwVar(·)
well captures the uncertainty of each GP model, it ignores

the information offered by the predicted means (c.f. (16a)),

motivating the next AF.

2) Query-by-committee: Considering M GP models as

members of a committee, the Query-by-committee (QBC) AF

chooses the next location to be measured where the committee

members exhibit the most disagreement; that is

αQBC(x;Dn) :=

M∑

m=1

wm
n

(
ˆ̄ymn+1|n(x)− ȳn(x)

)
, (23)

where ˆ̄ym
n+1|n(x) represents the estimated mean of RSS values

at location x by learner m (c.f., (16a)), and ȳn(x) :=∑M

m=1 w
m
n
ˆ̄ym
n+1|n(x) denotes the weighted mean of the com-

mittee. Note that only the predictive means are used in

αQBC(·) and the predictive variances are not considered.

3) Variance of GP mixture: To simultaneously account for

the means and variances associated with each GP model’s

predictive PDF, the variance of GP mixture AF combines the

the per-learner uncertainty in (22) and committee disagreement

in ((23) (c.f., (18b)) as

αGPM−var(x,Dn) := σ2
n+1|n(x). (24)

4) Weighted entropy: Relying on the entropy as an alter-

native measure of the associated uncertainty, one can form an

AF using a weighted combination of the entropies associated

with the predictive PDFs of all learners as

αwEnt(x;Dn) :=
M∑

m=1

wm
n log ((σm

n+1|n(x))
2). (25)

5) Entropy of GP mixtures: Instead of employing the

entropies of individual GP models independently as in (25),

we can leverage the entropy of the learned GP-mixture. While

an analytical closed-form expression for this entropy does not

exist, we leverage a closed-form lower bound; see e.g [31]. To

this aim, let us first define the entropy of the learned function

f̂(x) at any location x

H(f̂(x)|Dn)

:= −
∫ ∞

−∞

M∑

m=1

wm
n N (f̂(x)|ˆ̄ymn+1|n(x), (σ

m
n+1|n(x))

2)

× log(p(f̂(x)|Dn)) df̂(x) (26)

where the integration here is taken over all the random function

values that f̂(x) can take at any desired, but fixed x ∈ X .
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(a) Scenario-1: Open Space. (b) Scenario-2: Reflection & Blockage. (c) Scenario-3: Urban Canyon.

Fig. 2: Radio coverage maps of diverse scenarios rendered with Blender (top) and Sionna ray-tracing simulator at 3.7GHz

(bottom left) and 26GHz (bottom right).

Using Jensen’s inequality yields a lower bound for the entropy

H(f̂(x)|Dn) at any location x ∈ X as follows

H(f̂(x)|Dn) g

−
M∑

m=1

wm
n log

(∫ ∞

−∞

N (f̂(x)|ˆ̄ymn+1|n(x), (σ
m
n+1|n(x))

2)

× p(f̂(x)|Dn) df̂(x)
)
. (27)

The term inside the logarithm in (27) admits a closed-form

expression and hence the lower-bound can be expressed ana-

lytically as

αGPM−Ent(x;Dn) :=

M∑

m=1

log

(
M∑

m′=1

wm′

n ψm,m′

n

)
, (28)

where ψm,m′

n captures the intra-GP interactions and is given

by

ψm,m′

n :=

∫ ∞

−∞

N (f̂(x)|ˆ̄ymn+1|n(x), (σ
m
n+1|n(x))

2)

×N (f̂(x)|ˆ̄ym′

n+1|n(x), (σ̂
m′

n+1|n(x))
2)df̂(x)

= N (ˆ̄ymn+1|n; ˆ̄y
m′

n+1|n, (σ
m
n+1|n)

2 + (σm′

n+1|n)
2). (29)

While these AFs cover a diverse range of important ideas

within AL, they impose no constraints on the spatial locations

of the next query point, which can lead to prohibitively long

travelling distances required to collect the necessary measure-

ments dictated by the AFs. To address this limitation, we will

couple these EGP-based AFs with a minimum distance-based

criterion, described in the next subsection.

F. Path efficient EGP-based AFs

To allow for efficient and cost-effective data acquisition

strategies, thereby enhancing the practical feasibility and eco-

nomic viability of acquiring measurements and reconstructing

5G radio maps, we consider AFs with the following form

α(x,Dn) :=

{
αEGP(x,Dn) w.p. ε

αEGP(x,Dn) c(x,xn−1) w.p. 1− ε
(30)

TABLE I: Simulation configurations.

Parameters Descriptions

D
a

ta

Scenario OpenSpace Reflection UrbanCanyon

3.7GHz Samples 780.5K 841.7K 47.9K

26GHz Samples 779.8K 744.5K 41.3K

A
n

te
n

n
a

C
o

n
fi

g
s Rx Pattern Isotropic

Tx Pattern TR 38.901

Tx Power 24.0 dB

Ray Interactions 9

Clipping Range (0.0, 160.0] dB

Cell Size 5m x 5m

(a) Urban Canyon. (b) Suburban.

Fig. 3: Radio coverage maps for real RSS measurements.

Green color represents strong RSS, while red poor RSS.

where c(x,xn−1) := 1
λ+dist(x,xn−1)

is a distance-penalizing

function with λ being a hyperparameter to be tuned, αEGP(·)
is one of the above EGP-based AFs, and ε > 0 is a small

hyperparameter.2 With a small probability 0 < ε < 1 our

novel AF in (30) allows exploring X while adhering to the

EGP-based AF αEGP(x,Dn). With a much larger probability

1 − ε our AF is strongly encouraged to select points nearby

the most recently obtained measurement xn by penalizing

far distant points via the path-cost function c(x,xn−1). This

allows the AF to explicitly acknowledge that obtaining mea-

surements from diverse locations in 5G scenarios can be

costly and resource-intensive, while still allowing a user-

controlled degree of exploration through the parameter ε. This

is crucial in several AL applications including the 5G radiomap

reconstruction that this paper focuses on.

2The abbreviation w.p. stands for with probability.
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Fig. 4: NMSE vs iteration for 3.7GHz mid-band data under (a) open space; (b) reflect scenarios; and (c) urban canyon.

Fig. 5: NMSE vs iteration for 26GHz high-band data under (a) open space; (b) reflect scenarios; and (c) urban canyon.

Fig. 6: NMSE vs iteration for the real (a) urban and (b) suburban datasets.

V. DATASET GENERATION

We now introduce the dataset utilized for evaluation, which

comprises simulated and real measurements. The simulated

dataset replicates three distinct scenes: open space, reflection

& blockage, and urban canyon. Meanwhile, the real measure-

ments consist of two scenes: suburban and urban canyons.

Simulated Dataset. Following [36], we employ Blender [37]

and Sionna [38] to produce radio maps and use them as ground

truth for the evaluation. Blender is an open-source software

that can create different 3D environments. We utilize its Open

Street Map (OSM) and Mitsuba plugins to load the real-world

map and render the digital scenes. Subsequently, these scenes

are imported into Sionna, an open-source link-level ray-tracing

simulator that is compatible with the 3GPP channel models,

to generate radio coverage maps that we sample from.

The upper panel of Fig. 2 depicts the loaded digital scenes,

illustrating three distinct scenarios: (1) a large open space

with the line-of-sight propagation of radio signals; (2) a more

complex wall scenario featuring multiple walls to demon-

strate reflection, diffraction, and signal blockage; and (3) a

highly complex downtown urban canyon, where the signals

are reflected and obstructed by the surrounding buildings. The

lower panel of Fig. 2 shows the simulated radio coverage

maps. We also investigate the propagation characteristics of

different frequency radio waves across 3.7GHz (mid-band) and

26GHz (high-band) in light of commercial 5G networks. For

each scenario-frequency pair, we place the transmitter (Tx) at

the center location with a directional antenna oriented at the

negative y-axis. The map is divided into sets of cells, each con-

taining a receiver (Rx) with an omnidirectional antenna, gen-

erating a total of N unique samples of the form [x, y,RSS].
To determine the RSS value, rays are fired from a Tx at the

origin and are allowed to interact with the environment, i.e.,

reflect, diffract, etc., up to a bounded number of times. The

RSS is aggregated from per intersecting rays [38], clipped to

a range. For specific configuration parameters of our dataset,

we refer the reader to Table I.

Real Measurement Dataset. In addition to simulated datasets,
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Fig. 7: NMSE vs cumulative distance for 3.7GHz mid-band data under (a) open space; (b) urban canyon; and (c) reflect

datasets.

Fig. 8: NMSE vs cumulative distance 26GHz high-band data under (a) high-band open space; (b) high-band urban canyon;

and (c) high-band reflect datasets.

we have gathered real RSS radio measurements from urban

and suburban environments. Specifically, we used a smart-

phone as an Rx, which was connected to a commercial

5G network by running the “iperf3” application to maintain

active connection. The phone is also connected to a laptop

equipped with the professional software XCAL [34] to read

RSS measurements from the phone’s chipset-level diagnostics.

This enabled us to collect a total of 27k data samples from

an urban area of size 0.8 km2, and 18k data samples from

a suburban area of size 1.0 km2. Similar to the simulated

data, each real data sample is represented by [x, y,RSS]. The

visualization of the collected real radio RSS map is depicted

in Fig. 3.

VI. EVALUATION

In this section, we evaluate the performance of our EGP-

based AL methods on the simulated 5G mid-band, high-band

and real urban and suburban datasets described above. We

will first quantify the advantages of the advocated EGP-based

AL approaches over random sampling with EGPs and then

highlight the benefits of our novel path-aware method. We

will also conduct an in-depth study with visualized results to

demonstrate the efficacy of those AL algorithms in the 5G

measurement problem.

A. Experiment Settings

We denote the advocated EGP-based AL methods that em-

ploy the AFs in (22)-(28) as ‘EGP-WVar’, ‘EGP-QBC’, ‘EGP-

GM-Var’, ‘EGP-Went’, and ‘EGP-GM-Ent’ respectively. We

also implement the ‘EGP-Random’ baseline for comparison,

which relies on the EGP model as well but randomly selects

new locations to query at each time slot. For all competing

approaches, 100 initial labeled (measured) data samples are

considered for training, and at each iteration of the AL process,

one sample is queried from an unlabeled set consisting of

700 available unmeasured locations. Their performance is

evaluated on a test set T := {(xtest
n′ , ytest

n′ )}N test

n′=1 consisting

of N test = 5000 test locations. As a figure of merit the

normalized mean squared error (NMSE) is used, which is

expressed as NMSEn := 1
N test

∑N test

n′=1(ŷ
test
n′|n−ytest

n′ )2/σ2
y , where

ŷtest
n′|n represents the point estimate of the RSS value of test

location n′ upon having processed location n, and σ2
y :=

E∥ytest
N test − E{ytest

N test}∥2, where ytest
N test := [ytest

1 . . . ytest
N test ]¦.

For each method, the EGP model consists of 11 GP learners,

each capitalizing on a distinct radial basis function (RBF)

kernel with characteristic length scale chosen from the set

{10c}6c=−4. The kernel hyperparameters of each GP learner are

obtained by maximizing the marginal log-likelihood utilizing

the sklearn Python package. To allow for scalability and online

model updates, D = 50 RFs are employed to yield the RF-
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Fig. 9: NMSE vs cumulative distance for the real (a) urban and (b) suburban datasets.

(a) (b) (c)

Fig. 10: Trajectory of the queried locations from the EGP-GM-Ent method for (a) ε = 1; (b) ε = 0.3; and ε = 0 in the

mid-band open space dataset.

based parametric and approximate GP models in the ensemble.

B. Performance of AL in the 5G Measurement Problem

Effectiveness of EGP-based AFs. To demonstrate the signif-

icance of the EGP-based AFs, we first compare them with the

‘EGP-Random’ baseline. To this end, the path-cost function

c(x,xn−1) is not taken into account; that is ε = 1 in (30).

Figs. 4, 5 and 6 illustrate the average NMSE performance

of all competing approaches over 10 independent runs along

with the corresponding highlighted standard deviation, on the

mid-band, high-band and real urban and suburban datasets,

respectively, for 70 iterations of the AL process; that is 70
queried locations that are measured. It is evident that in all

mid-band, in almost all high-band and in all real datasets, the

advocated EGP-based AL methods markedly outperform the

‘EGP-Random’ baseline that does not rely on AL, achieving

up to 54.8% improvement. This showcases the significance of

judiciously selecting the few, but most informative, locations to

measure so as to accurately predict the RSS values in unknown

locations. Although effective, these AFs by themselves do not

impose constraints on the traveling distance needed to collect

the necessary measurements, which may limit their application

in settings with restricted travel budgets.

Path-aware AF. We now show the importance of adopting

the novel path-cost related AF in (30) that allows for accurate

RSS estimates with less required traveling distance. Regarding

the exploration-exploitation parameter ε in (30), we set ε =
0.3, meaning that our method selects a location to query not

far away with probability 0.7 or selects any location without

any path constraint with probability 0.3, allowing for further

exploration.

In Figs. 7, 8 and 9, the average NMSE performance along

with the corresponding standard deviation are reported, with

respect to the cumulative traveling distance for 70 iterations of

the AL process. It can be clearly seen that in both simulated

mid-band and high-band, and real urban and suburban datasets,

all EGP-AL methods that use (30) with ε = 0.3 have

comparable or even lower NMSE compared to the EGP-

AL counterparts that do not consider any path constraint

(ε = 1), while at the same time requiring significantly less

traveling distance (up to 57.1% reduction in terms of required

cumulative traveling distance).

C. In-depth Results Study

Sampling Trajectory. To further demonstrate the efficiency of

the advocated method, Figs. 10 and 11 depict the trajectories

of the queried locations obtained by the ‘EGP-GM-Ent’ and

‘EGP-GM-Var’ AFs for the mid-band and high-band open

space datasets, respectively, for ε ∈ {0, 0.3, 1}3. As expected,

in both datasets the corresponding required traveling distance

significantly reduces as the value of ε decreases. Interest-

ingly, in the mid-band open space dataset, the EGP-GM-Ent

approaches with ε = 1 and ε = 0.3 query very similar

measurement locations; however, the latter entails much less

traveling cost, as shown in Fig. 10.

3Trajectories of other AL methods and datasets are omitted due to space
limitations.
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(a) (b) (c)

Fig. 11: Trajectory of the queried locations from the EGP-GM-Var method for (a) ε = 1; (b) ε = 0.3; and ε = 0 in the

high-band open space dataset.

(a) (b) (c)
Fig. 12: NMSE vs cumulative distance of the EGP-GM-Ent method for different values of ε for (a) mid-band open space

dataset; (b) high-band open space dataset; and (c) uncertainty quantification performance of EGP-GM-Var on the High-band

open space dataset (RSS values are in dB).

Hyper-Parameter Sensitivity. Fig. 12a illustrates the NMSE

performance of the ‘EGP-GM-Ent’ methods with ε = 1, 0.3, 0
respectively for a fixed cumulative distance budget, where it

can be seen that the latter two can query more locations and

thus achieve superior NMSE performance compared to the

ε = 1 case. Similarly, Fig. 12b depicts the NMSE performance

of the EGP-GM-Var approach for different values of ε and a

given distance budget for the high-band OpenSpace dataset. It

is evident that the case of ε = 0.3 enjoys substantially lower

NMSE compared to the ε = 0 and ε = 1 cases whereas the

AL methods with ε = 0 and ε = 1 have similar performance.

This emanates from the fact that although the approach with

ε = 0 queries many more locations compared to ε = 1, for

a distance budget of 5.2km, these locations are only from

two clusters and are not from different regions of the radio

map as shown in Fig. 11c. This showcases the importance of

small but non-zero values of ε that do not so heavily penalize

distant locations but instead allow for further exploration that

yields improved prediction performance without the need for

large traveling costs. Finally, to evaluate the well-quantifiable

uncertainty offered by the advocated EGP-AL methods, Fig.

12c shows the predicted RSS values of the EGP-GM-Var

(ε = 0.3) method on some test locations of the high-band

OpenSpace dataset along with σ-confidence intervals, where

it is intuitive that the ground truth RSS values fall inside these

intervals.

VII. CONCLUSIONS

This work contributes novel Bayesian AL approaches for

sample- and path-efficient 5G radio measurement problems.

The advocated AL approaches judiciously select only a few

representative locations to collect RSS measurements. To ef-

fectively estimate the sought function that predicts RSS values

across the coverage area, an ensemble of GPs is utilized. This

EGP model not only provides accurate RSS predictions with

quantifiable uncertainty, but also offers a suite of pertinent

AFs to guide the acquisition of new locations to measure. To

further accommodate real-world 5G measurement campaigns,

where traveling distances to collect RSS measurements might

be limited, these AFs are coupled with a novel path-efficient

rule that penalizes queries at long distances. Numerical tests on

three simulated scenarios with two different radio frequencies,

showcase the significance of the proposed AL methods in the

5G radio map reconstruction task.
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