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Abstract—Labeled data can be expensive to acquire in several
application domains, including medical imaging, robotics, com-
puter vision and wireless networks to list a few. To efficiently
train machine learning models under such high labeling costs,
active learning (AL) judiciously selects the most informative
data instances to label on-the-fly. This active sampling process
can benefit from a statistical function model, that is typically
captured by a Gaussian process (GP) with well-documented
merits especially in the regression task. While most GP-based
AL approaches rely on a single kernel function, the present
contribution advocates an ensemble of GP (EGP) models with
weights adapted to the labeled data collected incrementally.
Building on this novel EGP model, a suite of acquisition functions
emerges based on the uncertainty and disagreement rules. An
adaptively weighted ensemble of EGP-based acquisition functions
is advocated to further robustify performance. Extensive tests on
synthetic and real datasets in the regression task showcase the
merits of the proposed EGP-based approaches with respect to
the single GP-based AL alternatives.

Index Terms—Active learning, Gaussian processes, ensemble
learning

1. INTRODUCTION

Identifying machine learning models usually relies on a

sufficient number of labeled input-output data pairs, which

may not be feasible due to labeling costs or privacy concerns

in a number of application domains, including healthcare [11],

computer vision [15], robotics [43], graph signal processing

[1], and wireless networks [42]. To cope with sampling cost

constraints, active learning (AL) selects a set of most informa-

tive data to label incrementally [39], [45]. For instance, con-

sider the channel modeling task in wireless communications,

where the goal is to find the mapping from the environment

features to the channel impulse response. How to select the

few most representative input-output pairs to effectively and

efficiently learn such a mapping is of great importance for

subsequent tasks including beamforming, transmission, as well

as sensing. This selection process can benefit from a statistical

model for the learning function f(x) that maps each input

feature vector xτ to the output/label yτ [6]. Capable of

learning nonlinear functions with uncertainty quantification

in a sample-efficient fashion, Gaussian processes (GPs) are

widely adopted to model the aforementioned f in AL; see

e.g., [15], [19]. Given labeled samples {xτ , yτ}tτ=1 collected

in the set Lt, GP modeling yields a function posterior prob-

ability density function (pdf) p(f(x)|Lt). For regression, the

latter is Gaussian with mean and variance available in closed
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form, while the model uncertainty captured by the variance is

essential to guide the selection of subsequent instances to be

queried.

The expressiveness of GP models depends on how well the

chosen covariance (kernel) is adapted to the data at hand. Typ-

ically, GP-based AL approaches rely on a single kernel with

preselected form, which may exhibit limited expressiveness

for AL, where labeled data are collected incrementally. On

par with this online interactive operation, a key desideratum

is a more expressive function space to improve adaptation

to the labeled instances on-the-fly. Besides expressiveness of

the function model, the AL performance is critically affected

by the data acquisition rule. For regression, GP-AL typically

leverages the function variance to select the next instance to

be queried. Devising alternative acquisition rules for more ex-

pressive GP models is an open problem. Clearly, with multiple

acquisition rules available, devising a strategy to combine and

adapt them will be conducive to robust performance 1 across

tasks.

To address the aforementioned challenges, our contributions

here can be summarized in the following aspects.

c1) Relative to GP-based AL that relies on a single GP with

a preselected kernel, we introduce weighted ensembles

(E) of GPs for enhanced expressiveness with weights

capturing the contributions of individual GP models, and

adapting to labeled data collected online.

c2) Utilizing the advocated EGP model, we devise a suite

of acquisition functions (AFs), including novel weighted

ensembles of AFs that further robustify performance.

c3) Our thorough tests on synthetic and real data corroborate

the impressive merits of GP and AF ensembles.

2. RELATED WORKS

This section outlines the context of the present work.

Statistical models for AL. The performance of model-based

AL depends critically on the chosen statistical model. GPs are

widely used because they come with uncertainty quantification

and sample efficiency [15], [19], [35]. However, most of the

existing approaches operate in a batch mode and rely on a

preselected GP kernel with limited expressiveness, which may

fall short in characterizing the incrementally collected data in

AL. To that end, existing approaches aim to accommodate

online GP model updates and inference as new coming data

are processed in an online fashion [2], [26], [28], [41], [49].

Yet, they rely on a single GP model which may confine the

expressiveness of the sought function. Broadening the scope

1In the present work, the term ‘robustness’ refers to the consistency or
stability in the superior empirical performance of a certain method across
different scenarios.
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of a single GP, a mixture of GPs is viable by training each

GP component on a subset of labeled data [50]. This GP

mixture model can account for multi-modalities in the function

space but needs to be refitted per iteration using nontrivial

variational methods. On the other hand, the proposed EGP

model requires minimal refitting efforts and trains each GP on

the whole labeled set. Apart from GP mixtures, the work in

[35] considers a fully Bayesian approach and can be viewed as

an ensemble approach with infinite number of members since a

pdf is maintained for the hyperparameters of GPs. Although ef-

fective, it relies on Hamiltonian Monte Carlo (HMC) sampling

to approximate the posterior pdf of the hyperparameters which

can prove to be computationally challenging. To alleviate

this challenge, the work in [36] constructs a mixture of GPs

relying on different sets of parameters drawn from a prior pdf

with each set representing a GP. Besides GP-based statistical

models, Bayesian convolutional networks have been leveraged

for image data [9].

Acquisition rules for AL. The acquisition function (AF) also

plays a performance-critical role in AL. Different AFs have

been devised based on distinct selection criteria, learning tasks,

as well as whether or not a statistical model is capitalized on;

see e.g., [39]. In GP-AL settings, the quantifiable uncertainty

offered by the function posterior variance is leveraged to build

the variance [15], entropy [18], [30], and mutual information

[18] - based AFs. Inspired by the intuition that uncertainty

increases at instances far away from the labeled set, [22],

[31], [47] adopt AFs that rely on the distance of an instance

from the labeled set. Beyond statistical learning models for

the regression task, linear and nonlinear regression learning

models are coupled with the ‘Expected Model Change’ (EMC)

AF to select instances that cause the largest change on the

corresponding learning model [4]. In [3], the so-termed ‘Query

by Committee’ (QBC) AF is employed, which selects the

instance in which the committee members disagree the most.

Similar disagreement based criteria are presented in [13].

Albeit interesting, these approaches fall short in uncertainty

quantification which can effectively and efficiently guide the

AL process.

Selection of AFs. How to appropriately select the AF from

the available choices usually calls for domain expertise. It has

been shown empirically that no acquisition rule excels in all

tasks [12]. This motivates a strategy that can combine and

adapt candidate selection rules. [23] and [17] learn or/and se-

lect the acquisition rule in a data-driven fashion, but necessitate

additional training data to learn the acquisition rule offline with

possibly prohibitive complexity. On the contrary, the advocated

weighted ensemble of AFs method combines all candidate

AFs on-the-fly without need for a training phase. Ensemble

acquisition rule has also been leveraged in [12] by adapting

the multi-armed bandit framework with each arm representing

an acquisition rule. In spite of this similarity, the advocated

differs from [12] in the following three aspects i) it relies

on a small validation set to evaluate the performance of each

individual EGP-based AF, whereas the per-AF loss in [12] is

defined as the estimated test error; ii) rather than selecting a

subset of the AFs based on a certain rule in [12], it selects the

next query instance by optimizing a weighted combination of

all AFs; and iii) it updates the per-AF weight by knowing the

losses of all AFs, which is different from the bandit setting

in [12], where only losses of the selected AFs are revealed.

Part of this work is presented in [32] which accounts only for

graph-guided learning.

Kernel selection for GPs. Adaptively choosing the form of the

kernel from training data has been reported for conventional

GP learning; see, e.g., [7], [16], [27], [44]. These approaches

usually operate in a batch offline mode, and rely on a large

number of samples – what discourages their use for AL, where

data are not only acquired online, but are also scarce due to

the potentially high labeling cost. Recently, an online scalable

kernel selection approach has been introduced that combines a

set of GP experts in a Bayesian model averaging fashion [24].

Still, the focus is not on AL, which entails additional design

of the AF.

3. PRELIMINARIES

This section outlines the motivation and preliminaries for

the AL approach of interest.

Typical learning approaches boil down to estimating the

mapping f(·) that relates the d × 1 input feature vector

xτ to the output yτ (that is either a real number in re-

gression or it belongs to a finite alphabet in classification)

as xτ → f(xτ ) → yτ . This estimation task relies on a

sufficient number of labeled training samples {xτ , yτ}Tτ=1. In

several applications however, the input can be readily obtained

whereas the corresponding label can be expensive to acquire

due to sampling costs or privacy concerns. In healthcare

for instance, many labels describing the medical condition

of patients may not be revealed to preserve confidentiality.

Faced with this challenge, one can resort to the AL paradigm,

which judiciously and proactively selects the most informative

instances to label so that the sought mapping can be inferred

in a sample-efficient manner.

AL starts with a small-size set L0 := {(xτ , yτ )}0τ=−L0+1 of

labeled samples,2 and a larger collection of unlabeled features

U0 := {xu
τ }U0

τ=1 (L0 j U0). Given corresponding sets Lt and

Ut up to index t > 0, model-based AL entails a statistical

function model, namely the pdf p(f(x)|Lt). The latter is

utilized by the so-termed acquisition function (AF) ³(·) to

select the instance xt+1 from the corresponding unlabeled set

Ut, as [6]

xt+1 = argmax
x∈Ut

³(x;Lt) . (1)

Intuitively, ³ is chosen to guide exploration of the space f(·)
belongs to, which hinges on quantifying the uncertainty of

the belief model p(f(x)|Lt). Upon querying an oracle for

the associated label yt+1, the labeled set is then augmented

with the new pair and the feature vector is removed from

the unlabeled set, that is Lt+1 := Lt ∪ {(xt+1, yt+1)} and

Ut+1 := Ut \ {xt+1}. Apparently, the two critical choices are

the model for f , and the AF design for ³. Focusing on the

regression task, we will outline the GP-based model for f , and

the associated acquisition rules next.

2The negative instance index here is used for notational brevity as more
labeled data are included next.
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Algorithm 1 RFF-based EGP-AL.

1: Initialization: U0, L0, K;

2: for t = 0, . . . , T do

3: Obtain p(f(x)|Lt) via Ξt;

4: Select xt+1 based on one from (18)- (20), (22)-(23);

5: Query the oracle to obtain yt+1;

6: Lt+1:=Lt ∪ {(xt+1, yt+1)}, Ut+1:=Ut \ {xt+1};

7: end for

A. GP-based active learning

GPs estimate a nonparametric function model in a sample-

efficient manner, while also offering quantification of the

associated model uncertainty [33]. Sample efficiency justifies

their wide adoption in AL. The GP model postulates f as being

randomly drawn from a GP prior; that is f ∼ GP(0, »(x,x′))
with »(x,x′) being a positive-definite kernel function that

measures the pairwise similarity between two distinct inputs

x and x′. With ¦ denoting transposition, this means that

the random vector ft := [f(x1) . . . f(xt)]
¦ consisting of

the function evaluations at instances Xt := [x1 . . .xt]
¦

is

Gaussian distributed as p(ft|Xt) = N (ft;0t,Kt)(∀t), where

Kt denotes the t × t covariance matrix whose (i, j) entry is

[Kt]i,j = cov(f(xi), f(xj)) := »(xi,xj) [33].

With yt := [y1 · · · yt]¦ denoting the (possibly noisy) output

data, it can be shown that in the regression task where the

per-datum likelihood can be expressed as p(yτ |f(xτ )) =
N (yτ ; f(xt), Ã

2
n), the posterior pdf of f(x) is [33]

p(f(x)|yt;Xt) = N (f(x);µt(x), Ã
2
t (x)) (2)

where

µt(x) = k¦
t (x)(Kt + Ã2

nIt)
−1yt (3a)

Ã2
t (x) =»(x,x)−k¦

t (x)(Kt+Ã2
nIt)

−1kt(x). (3b)

and kt(x) := [»(x1,x), . . . , »(xt,x)]
¦.

Note that the mean in (3a) is a point prediction of f(x),
while the variance in (3b) quantifies the associated uncertainty.

In the AL context, this uncertainty is used by the acquisition

function that selects the next query instance as

xt+1 = argmax
x∈Ut

Ã2
t (x) . (4)

It is worth mentioning that for a Gaussian pdf, (4) is tanta-

mount to maximizing the entropy [25].

The posterior mean and variance in (3) rely on all t instances

in Xt to form Kt, and the associated complexity for its

inversion is thus O(t3). Although this complexity can be

affordable in AL where t is small, it can be further reduced. In

addition, µt(x) and Ã2
t (x) require direct access to {xτ}tτ=1,

which may be discouraged due to privacy concerns as in e.g

medical records and financial statements. Further, GP-based

AL relies on a preselected kernel function, which may exhibit

limited expressiveness. These limitations can be ameliorated

through our novel ensemble approach that leverages also

random spectral features, as delineated next.

4. ENSEMBLE GPS FOR AL

The chosen function model affects critically the perfor-

mance of AL approaches. Unlike most existing works that

rely on a single GP with a preselected kernel, we advocate an

ensemble (E) of M GPs to enhance expressiveness. Each GP

has a distinct kernel function selected from a given dictionary

K := {»1, . . . , »M}, that is formed using kernels of different

types and with different hyperparameters. Specifically, each

GP m ∈ M := {1, . . . ,M} places a unique prior on f as

f |m ∼ GP(0, »m(x,x′)). The EGP prior of f(x) is then a

weighted ensemble of the individual GP priors as

f(x) ∼
M
∑

m=1

wm
0 GP(0, »m(x,x′)),

M
∑

m=1

wm
0 = 1 (5)

where wm
0 := Pr(i = m) is the prior probability that measures

the contribution of GP model m. With labeled data collected

on-the-fly, the sum-product rule allows one to express the

EGP-based function posterior pdf as

p(f(x)|Lt)=

M
∑

m=1

Pr(i=m|Lt)p(f(x)|i=m,Lt) (6)

which is a mixture of posterior GPs with weights wm
t :=

Pr(i = m|Lt) that signify the significance of the GP experts.

These weights thus enable online model adaptation.

To efficiently update this EGP function model across t, we

will leverage a parametric function approximant, formed by

the so-termed random features (RFFs), as outlined next.

A. RFF-based approximation per GP

The RFF approximation will be applied to each GP with

kernel »m in EGP (5). Here, we drop the superscript m in

»m for notational brevity. Consider a standardized ans shift-

invariant kernel »̄(x,x′) = »̄(x − x′) satisfying » = Ã2
θ »̄,

which can be expressed as the inverse Fourier transform of a

spectral density Ãκ̄(ζ) as [37]

»̄(x− x′) =

∫

Ãκ̄(ζ)e
jζ¦

(x−x
′)dζ = Eπκ̄

[

ejζ
¦

(x−x
′)
]

where
∫

Ãκ̄(ζ)dζ = 1, allowing Ãκ̄ to be deemed as

a pdf. Since »̄ is real, the last expectation is equal to

Eπκ̄

[

cos(ζ¦(x− x′))
]

; and after drawing a sufficient number

D of independent and identically distributed (i.i.d.) samples

{ζj}Dj=1 from Ãκ̄(ζ), kernel »̄ is approximated by3

ˇ̄»(x,x′) :=
1

D

D
∑

j=1

cos
(

ζ¦
j (x− x′)

)

. (7)

Defining the 2D×1 RFF vector as [21]

φζ(x) (8)

:=
1√
D

[

sin(ζ¦
1 x), cos(ζ

¦
1 x), . . . , sin(ζ

¦
Dx), cos(ζ¦

Dx)
]¦

3Here we don’t have a fully Bayesian treatment of the frequencies {ζi},
which would otherwise raise the issue of scalability. The notion of Bayesian
active learning refers to modeling the unknown function via a Bayesian
statistical model.
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the sample average (7) can be re-written as ˇ̄»(x,x′) =
φ¦
ζ (x)φζ(x

′). This allows the parametric linear function

f̌(x) = φ¦
ζ (x)θ, θ ∼ N (θ;02D, Ã2

θI2D) (9)

to have an approximate GP prior. To interpret this point,

we can see that the joint prior pdf for any number t of

function values f̌t := [f̌(x1), . . . , f̌(xt)] is given by the

p(f̌t|Xt) = N (f̌t;0t, K̃t), where K̃t = Ã2
θΦtΦ

¦
t (with

Φt := [φζ(x1), . . . ,φζ(xt)]
¦) is a low rank (2D) approx-

imant of the original kernel matrix Kt. Such an RFF-based

parametric function readily yields an efficient model update by

propagating the posterior pdf p(θ|yt;Xt) = N (θ; θ̂t,Σt) per

slot t in a recursive Bayes fashion. It is also worth stressing

that the model learning step does not require direct access to

xt, but relies only on the RFF vector φζ(xt), which can be

viewed as an encrypted version of xt. This may be appealing

if xt, which may e.g., comprise private medical data, cannot

be revealed during model learning.

Having outlined the RFF-based approximation per GP, we

can proceed with updating our RFF-based EGP function

model, as labeled instances become available incrementally.

B. EGP parametric model updates

When kernels in the dictionary are shift-invariant, the RFF

vector φm
ζ (x) per GP m can be formed via (8) by first drawing

i.i.d. random vectors {ζm
j }Dj=1 from Ãm

κ̄ (ζ), which is the

spectral density of the standardized kernel »̄m. Let Ã2
θm be

the kernel magnitude, so that »m = Ã2
θm »̄m. The generative

model for the sought function and the noisy output y per GP

m are characterized by the 2D × 1 vector θm as

p(θm) = N (θm;02D, Ã2
θmI2D)

p(f(xτ )|i = m,θm) = ¶(f(xτ )− φm¦
ζ (xτ )θ

m)

p(yτ |θm,xτ ) = N (yτ ;φ
m¦
ζ (xτ )θ

m, Ã2
n) . (10)

This parametric form allows one to capture the function

posterior pdf per GP m via p(θm|Lt) = N (θm; θ̂
m

t ,Σm
t ),

which together with the weight wm
t , approximates the EGP

function posterior (6) via

p(f̌(x)|Lt) =

M
∑

m=1

wm
t N (f̌(x); µ̌m

t (x), (Ã̌m
t (x))2) (11)

with

µ̌m
t (x) = φm¦

ζ (x)θ̂
m

t (12a)

(Ã̌m
t (x))2 = φm¦

ζ (x)Σm
t φm

ζ (x) . (12b)

Next, we will see how RFF-based EGP propagates the function

model by updating across t the parameter set

Ξt := {wm
t , θ̂

m

t ,Σm
t ,m ∈ M} . (13)

Upon acquiring the newly labeled pair {xt+1, yt+1}, the

updated weight wm
t+1 := Pr(i = m|Lt+1) can be obtained per

GP m via Bayes’ rule as

wm
t+1 =

Pr(i = m|Lt)p(yt+1|xt+1, i = m,Lt)

p(yt+1|xt+1,Lt)
.

Since the per-model predictive likelihood is given by

p(yt+1|i=m,Lt,xt+1)=

∫

p(yt+1|θm,xt+1)p(θ
m|Lt)dθ

m

= N (yt+1; ŷ
m
t+1|t, (Ã

m
t+1|t)

2)

with

ŷmt+1|t = φm¦
ζ (xt+1)θ̂

m

t

(Ãm
t+1|t)

2 = φm¦
ζ (xt+1)Σ

m
t φm

ζ (xt+1) + Ã2
n

the updated weight can thus be expressed as

wm
t+1 =

wm
t N

(

yt+1; ŷ
m
t+1|t, (Ã

m
t+1|t)

2
)

∑M
m′=1 w

m′

t N
(

yt+1;ŷm
′

t+1|t, (Ã
m′

t+1|t)
2
) . (15)

Bayes’ rule further allows updating the posterior of θm as

p(θm|Lt+1) =
p(θm|Lt)p(yt+1|θm,xt+1)

p(yt+1|xt+1, i = m,Lt)

= N (θm; θ̂
m

t+1,Σ
m
t+1) (16)

where the mean θ̂
m

t+1 and covariance matrix Σm
t+1 are

θ̂
m

t+1= θ̂
m

t +(Ãm
t+1|t)

−2Σm
t φm

ζ (xt+1)(yt+1−ŷmt+1|t)

Σm
t+1=Σm

t −(Ãm
t+1|t)

−2Σm
t φm

ζ(xt+1)φ
m¦
ζ (xt+1)Σ

m
t .

Remark. While most of kernel functions in GPs induce

stationary functions, there are nonstatinary kernel functions,

that could be accommodated by our ensemble GP framework

by using a generalized random feature approximation; see

[34]. Further, the ensembling rule (c.f. (15)) that adaptively

weights the kernels also readily accommodates nonstationary

functions.

C. Acquisition rules for EGP-based AL

Using the EGP posterior in (11), we are ready to devise

AFs that select the next query point based on different rules.

1) Weighted variance: Motivated by (4), the first AF relies

on the uncertainty expressed by the variance. With GP expert

m forming the function posterior with variance (Ã̌m
t (x))2, a

weighted combination over all the M experts yields the AF

³wVar(x;Lt) :=

M
∑

m=1

wm
t (Ã̌m

t (x))2 . (18)

2) Weighted entropy: Relying alternatively on the entropy

as the uncertainty measure, one can take a weighted sum of

the entropy values given by the M GP experts, yielding

³wEnt(x;Lt) :=
1

2

M
∑

m=1

wm
t ln(2Ã(Ã̌m

t (x))2) . (19)

3) Query-by-Committee (QBC): Besides capturing uncer-

tainty by variance or entropy, an alternative disagreement-

based AF – QBC, has been reported for classification [40],

and regression using neural networks [20]. With the M GP

experts forming a committee, the novel EGP-based QBC rule



5

is (cf. (12a))

³QBC(x;Lt) :=

M
∑

m=1

wm
t (µ̌m

t (x)− µ̄t(x))
2 (20)

where µ̄t(x) is the consensus of the committee given by

µ̄t(x) =

M
∑

m=1

wm
t µ̌m

t (x) . (21)

Unlike previous QBC approaches that have equal weights per

committee member, the weights wm
t in (20) and (21) are

generally different across m.

4) Variance of GP mixtures: Rather than directly summing

per-GP weighted variances in (18), one can alternatively obtain

the variance based on the GP mixture of the function posterior

(cf. (11)) as

³GPM−Var(x;Lt)

:=

M
∑

m=1

wm
t ((Ã̌m

t (x))2 + (µ̌m
t (x)− µ̄t(x))

2 (22)

which, interestingly, is the sum of (18) and (20).

5) Entropy of GP mixtures: The last AF is given by the

entropy of the GP mixture in (11), which unfortunately, has

no analytic expression. Aiming at a tractable form, we will

resort to its analytic lower bound [14], which is expressed as

−
M
∑

m=1

wm
t

∫

N (f̌(x); µ̌m
t (x),(Ã̌m

t (x))2) log p(f̌(x)|Lt)df̌(x)

(a)

g −
M
∑

m=1

wm
t log

(

∫

N (f̌(x); µ̌m
t (x), (Ã̌m

t (x))2)

× p(f̌(x)|Lt)df̌(x)
)

where (a) holds due to Jensen’s inequality. Upon obtaining

the analytic expression for the term inside the logarithm, the

last AF is then given by

³GPM−Ent(x;Lt) := −
M
∑

m=1

wm
t log

(

M
∑

m′=1

wm′

t zm,m′

t

)

(23)

with zm,m′

accounting for the interaction of any two GP

models as

zm,m′

t :=

∫

N (f̌(x); µ̌m
t (x), (Ã̌m

t (x))2)

×N (f̌(x); µ̌m′

t (x), (Ã̌m′

t (x))2)df̌(x)

= N (µ̌m
t (x); µ̌m′

t (x), (Ã̌m
t (x))2 + (Ã̌m′

t (x))2) .

Based on our novel EGP-based AFs, implementation of the

proposed EGP-AL approach is summarized in Alg. 1. In the

diagram of Fig. 1 the AL process of the proposed EGP-AL

approach is illustrated. A discussion about the pros and cons

of these AFs is deferred to Sec. 1 of the supplementary file.

5. ENSEMBLE OF EGP-BASED AFS

So far, we have introduced a novel EGP-based function

model along with several choices for the AF. In the context of

Algorithm 2 EGP-MultiAFs for AL.

1: Initialization: L0, U0, V , K, D, Ã2
θ ;

2: ω0 = 1
K [1, . . . , 1]¦;

3: for t = 0, 1, . . . , T do

4: Obtain EGP Ξt based on Lt using (15)-(16);

5: for k = 1, . . . ,K do

6: Obtain instance x̃k
t+1 ∈ Ut by (24);

7: Obtain pseudo-label ỹkt+1 using Ξt via (25);

8: Using pseudo pair {x̃k
t+1, ỹ

k
t+1} obtain Ξ̃

k

t+1;

9: Obtain error ϵv,kt+1 on V via (27);

10: end for

11: Update per AF weight using (29);

12: Obtain xt+1 ∈ Ut by (30);

13: Query the oracle to obtain true label yt+1;

14: Lt+1 = Lt ∪ (xt+1, yt+1);

15: Ut+1 = Ut \ {xt+1};

16: end for

17: Output: LT , ΞT

Bayesian optimization though, it is known that no single AF

excels at all tasks [10]. Hence, combining candidate AFs can

intuitively offer robustness and improved performance. To this

end, we will rely on a validation set V := {(xv
τ , y

v
τ )}Vτ=1 to

evaluate the performance of different AFs. Similar to EGP,

each of the K candidate AFs will come with a weight

(probability) Ék
t ∈ [0, 1] to capture its contribution per slot

t, such that
∑K

k=1 É
k
t = 1.

Upon identifying the RFF-based EGP set Ξt in (13) using

the labeled set Lt at slot t, each AF k selects its query point

x̃k
t+1 at slot t+ 1 by optimizing the associated criterion as

x̃k
t+1 = argmax

x∈Ut

³k(x;Lt) . (24)

Upon obtaining x̃k
t+1, AF k constructs a ‘pseudo label’ ỹkt+1

using the EGP parameters in Ξt, as

ỹkt+1 =

M
∑

m=1

wm
t φm¦

ζ (x̃k
t+1)θ̂

m

t . (25)

This pseudo pair {x̃k
t+1, ỹ

k
t+1} allows one to leverage (15)–

(16) to find the updated EGP parameter vector as

Ξ̃
k

t+1 = {w̃m,k
t+1 , θ̃

m,k

t+1 , Σ̃
m,k

t+1 ,m ∈ M} (26)

based on which the loss per AF can be evaluated.

To find this loss, AF k capitalizes on Ξ̃
k

t+1 in order to obtain

the prediction error at the validation set

ϵv,kt+1 = V −1
V
∑

τ=1

(yvτ − ŷv,kτ |t+1)
2 (27)
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Fig. 1: Diagram of the AL process of the advocated EGP-based AL methods.

TABLE I: Additional experimental details

Dataset L0 size V size U0 size T size ¸

Ackley-5D 10 50 500 100 1

Branin 10 50 500 100 100

Currin exponential 10 50 500 100 100

Gramacy 10 50 500 100 100

Higdon 10 50 500 100 100

Diabetes 15 55 261 111 100

Robot pushing 3D 20 50 500 200 20

Robot pushing 4D 20 50 500 200 20

California housing 50 70 1000 1032 0.05

DeepMIMO 2feat 100 50 1000 2000 1

TABLE II: Analytical expression of all synthetic functions

Function Analytical expression

Ackley-5D −20e−0.2
√

(x2

1
+x2

2
+x2

3
+x2

4
+x2

5
)/5 − e(cos(2πx1)+cos(2πx2)+cos(2πx3)+cos(2πx4)+cos(2πx5))/5 + 20 + e1

Branin (x2 − 5.1/(4Ã2)x2
1 + 5x1/Ã − 6)2 + 10(1− 1/(8Ã))cos(x1) + 10

Currin exponential (1− e−1/(2x2))(2300x3
1 + 1900x2

1 + 2092x1 + 60)/(100x3
1 + 500x2

1 + 4x1 + 20)
Gramacy sin(10Ãx)/(2x) + (x− 1)4

Higdon sin(2Ãx/10) + 0.2sin(2Ãx/2.5)

where the predicted label per validation sample Ä is

ŷv,kτ |t+1 =

M
∑

m=1

w̃m,k
t+1φ

m¦
ζ (xv

τ )θ̃
m,k

t+1 . (28)

Having available the prediction error over the validation set

per AF k, the associated weight can then be updated as

Ék
t+1 =

Ék
t exp(−¸ϵv,kt+1)

∑K
k′=1 É

k′

t exp(−¸ϵv,k
′

t+1)
(29)

where ¸ denotes the learning rate. Here, the weight update

rule is similar to that in EGP (cf. (15)), and belongs to

the exponential weight update in online learning with expert

advice; see e.g., [5].

Given the updated weights, the next query point is identified

by maximizing the weighted ensemble of AFs as

xt+1 = argmax
x∈Ut

K
∑

k=1

Ék
t+1³

k(x;Lt) . (30)

Upon querying the oracle for the label yt+1 of instance xt+1,

the labeled and unlabeled sets are updated, thus completing

one iteration of the novel “EGP-MultiAFs” approach, that is

implemented as listed in Alg. 2.

Computational complexity of EGP-MultiAFs. Per AL itera-

tion, the computational complexity of EGP-MultiAF emanates

from updating the EGP model and optimizing the AF. Leverag-

ing the random feature (RF) approximation per GP, the former

incurs complexity O((2D)2M) , where M is the number of

GPs in the EGP, and D is the number of spectral features

in the RFF vector (cf. Eq.(8)). For the latter in the pool-

based AL, the major computation originates from the steps

in (24)-(27), and (30), which respectively, incur complexity

O((2DM)2|Ut|), O(5(2D)M), O((2D)2M), O(2DM |V|)
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Fig. 2: NMSE and NPLL versus iterations for Ackley5D, Currin exponential, Branin, Gramacy and Higdon functions

and O((2DM)2|Ut|), where |V| and |Ut| are the cardinalities

of the fixed validation set and the unlabeled set per-iteration.

Complexity of AF optimization step in (24) and (30) is dom-

inated by the EGP-GPM-Ent approach. Considering only the

dominating factors, the overall complexity of EGP-MultiAFs

is O((2DM)2|Ut|).

6. NUMERICAL TESTS

In this section, the performance of the proposed EGP-

based AL models will be compared against several benchmark

synthetic functions, and it will be tested with real datasets

ranging from biomedical to robotic based ones. Based on the

novel EGP model, the innovative acquisition criteria to be

tested are the ones described in (18) - (23) and (30), which

henceforth will be abbreviated as “EGP-wVar,” “EGP-wEnt,”

“EGP-QBC,” “EGP-GPM-Var,” “EGP-GPM-Ent,” and “EGP-

multiAFs,” respectively. The competing baselines are (i) “GP-

var” – a single GP model coupled with the maximum variance

(entropy) AF in (4) that has been extensively used in AL;

see e.g., [15], [31], [38], (ii) “GP-dist” – a single GP model

together with the maximum distance-based AF as in [31], (iii)

“EGP-dist” – the EGP model with the same AF, and (iv)

“EGP-random” – the EGP model with random sampling. For

all approaches, a few initially labeled data collected in L0 are

utilized to obtain the kernel hyperparameters per GP expert by

maximizing the marginal likelihood using the sklearn package.

The RFF-based GP approximate models rely on D = 50 RFFs.

For EGP-based approaches, the kernel dictionary K consists

of radial basis functions (RBFs) with lengthscales {10c}6c=−4.

For the EGP-multiAFs approach, each ³k(x;Lt) in (30) is

divided by its maximum value so that to range between 0 and

1.

The performance of the competing methods is evaluated on

a held-out test set T e := (xe
τ , y

e
τ )

T e

τ=1 (superscript e stands for

evaluation) using two metrics. The first performance metric is

the normalized mean-square error (NMSE) that for iteration t,
is given by

NMSEt :=
1

T e

T e

∑

τ=1

(ŷeτ |t − yeτ )
2/Ã2

y

where ŷeτ |t denotes the point prediction of test instance Ä , and

Ã2
y := E∥ye

T e − E{ye
T e}∥2, where ye

T e := [ye1 . . . y
e
T e ]¦. A

second metric used to assess the associated uncertainty is the

negative predictive log-likelihood (NPLL)

NPLLt := − log p(ye
T e |Lt,XT e)

where the matrix XT e := [xe
1 . . .x

e
T e ]¦ collects the feature

vectors of all T e test instances. All methods are tested over 10

realizations, and their average performance is reported along

with the corresponding standard deviation. More details about

the experimental set up can be found in Table 1.

A. Synthetic functions

The tests here are run for known synthetic functions, in-

cluding Ackley5D, Currin exponential, Branin, Gramacy and

Higdon; see Table 2 for their analytic expression. Fig. 2

demonstrates that all EGP-based approaches with a single AF

outperform the single GP-based baselines in the Currin expo-

nential and Gramacy functions, in terms of NMSE and most

have superior performance in the remaining three datasets.

Further, all single AF EGP-based approaches achieve lower

NMSE than the EGP-Dist baseline in all synthetic datasets

and most of them outperform the EGP-Random baseline in

four out of five datasets. In addition, all EGP-based methods

enjoy the lowest NPLL in four out of five datasets compared

to the single GP-based AL approaches, which corroborates

the merits of having an ensemble of GPs and using them in

the corresponding acquisition criteria. Further exploiting an

ensemble of AFs in the adaptive EGP-multiAFs approach,

significantly improves the prediction performance, and also

effectively quantifies the prediction uncertainty, thus rendering

it the best performing approach over all datasets.

B. Real datasets

All approaches here are tested on California housing

[29] and Diabetes [8] real datasets. The latter deals with

real medical data that are well motivated for AL because

of the scarcity of labeled instances emanating from medical

confidentiality. The description of the datasets is given below.
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Fig. 3: NMSE (top) and NPLL (bottom) versus iterations for California housing and Diabetes datasets.

Fig. 4: NMSE (top) and NPLL (bottom) versus iterations for Robot Pushing 3D and 4D tasks.

Fig. 5: Sensitivity analysis for ¸, |V| of the EGP-MultiAFs approach in the Robot Pushing 3D dataset.
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Fig. 6: AF weights of the EGP-MultiAFs approach in the

Branin dataset.

California housing dataset. This dataset considers 8 features

of districts in California, including not only demographic and

location data, but also more general features such as average

number of rooms and bedrooms per household, based on

which a regression task is formed where the target variable

is the median house price in these districts.

Diabetes dataset. This dataset considers 10 characteristics of

diabetes patients, including age, sex, body mass index, average

blood pressure, and six blood-related measurements. The target

variable measures the disease progression in a single year.

It is evident in Fig. 3 that all EGP-based approaches

markedly outperform the GP-Var, GP-Dist and GP-Random

baselines in terms of NMSE and NPLL in the California

housing and Diabetes datasets, showcasing the significance of

adopting the EGP model to estimate the learning function,

along with the corresponding AFs. In addition, all advocated

EGP-based approaches outperform the EGP-Dist and EGP-

Random baselines in terms of NMSE in the California housing

and Diabetes datasets (except the EGP-QBC in the latter

one), with the EGP-MultiAFs consistently being the best-

performing method. It is worth mentioning that although most

of the proposed EGP-based approaches are comparable in

terms of prediction error in the California housing dataset,

EGP-multiAFs outperforms all other methods in terms of

NPLL. This illustrates the significance of properly adjusting

AF weights in an online adaptive fashion.

C. Robotic tasks

The next experiments focus on a practical robotic task,

where a robot pushes an object to a specific location [46].

Specifically, given as input the robot location (rxτ , r
y
τ ) and

pushing duration tpτ at slot Ä , the object ends up in a location

oτ := (oxτ , o
y
τ ). We form a regression task where the goal per

slot Ä is to map the 3×1 feature vector xτ := [rxτ , r
y
τ , t

p
τ ]

¦ to

the target variable yτ := ||oτ −d||2, with d := [dx, dy] denot-

ing a pre-defined position vector, yielding the Robot pushing

3D dataset. This is of practical interest in various robotic

problems such as obstacle avoidance, where yτ is desired to

be greater than a pre-defined threshold yth. Augmenting the

feature vector xτ with an additional pushing angle rθτ , yields

the Robot pushing 4D dataset.

Fig. 4 depicts the NMSE and NPLL at each iteration

of all competing AL approaches for the Robot pushing 3D

and 4D tasks respectively. It is evident that all EGP-based

approaches enjoy lower NMSE and NPLL compared to the

single GP based AL counterparts and the EGP-Dist, EGP-

random baselines in both datasets, with the EGP-MultiAFs

consistently being the best-performing one. This implies that

in these practical robotic tasks, the function expressiveness

offered by the advocated EGP model and the ensuing inno-

vative acquisition criteria considerably improve the prediction

performance providing also quantifiable prediction uncertainty.

D. Wireless communication tasks

The last experiments emphasize on a practical signal pro-

cessing setting where given a small number of 5G signal

measurements in different locations, the goal is to estimate

5G signal values at unmeasured locations. Specifically, the

input feature vector xτ at location Ä comprises the longitude

and latitude of the location and the target variable yτ to be

estimated is the filtered beam reference signal received power

[dBm] at this location. Details about the DeepMIMO dataset

that was considered in our experimental setting can be found

at [48]. Fig. 7 illustrates the NMSE and NPLL performance

of all methods at each iteration of the AL process. It can

be clearly seen that all advocated EGP-based AL approaches

enjoy lower NMSE and (all except one) lower NPLL compared

to the single GP-based counterparts, with the ‘EGP-MultiAFs’

approach being the best-performing one in this task too.

E. Additional experimental results

Additional ablation studies are presented here to further

demonstrate the performance of the proposed EGP-MultiAFs

approach.

Sensitivity analysis. In this ablation study, the aim is to

gauge how sensitive the performance is to the size of the

validation set V and the acquisition step size ¸. The NMSE and

NPLL performance of the advocated EGP-MultiAFs approach

is assessed on the Robot pushing 3D for different values of

|V| and ¸. It is evident in Fig. 5 that when |V| is too small,

the performance of EGP-MultiAFs is worse compared to that

of a sufficiently larger validation set, which is as expected.

The choice of ¸ is also critical since it can lead to very

good performance without the need for the validation set

size to be the largest possible; see e.g the Robot pushing

3D dataset, where the performance of EGP-MultiAFs with

¸ = 20, |V| = 30 is comparable with that of ¸ = 80, |V| = 50
in terms of both NMSE and NPLL, as depicted in Fig. 5.

EGP-MultiAFs acquisition weights. In this ablation study,

the goal is to demonstrate the role of the acquisition weights

{Ék}Kk=1 of the EGP-MultiAFs approach. Specifically, the

acquisition weights of a single run are plotted as a function

of the AL iteration index on the Branin dataset in Fig. 6,

where it is evident that the weights of the GPM-Var and GPM-

Ent AFs get larger values as more data are actively collected,

which is intuitive since these AFs eventually enjoy the lowest
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Fig. 7: NMSE (left) and NPLL (right) versus iterations for DeepMIMO 2feat dataset

Fig. 8: CPU running time of all approaches in the robot

pushing 3D and robot pushing 4D tasks.

NMSE compared to the other acquisition criteria. Therefore,

the corresponding acquisition weights are properly adjusted as

new data arrive on-the-fly.

CPU runtime. In this study, the runtime of all competing

AL methods is assessed. For demonstration purposes, Fig.

8 illustrates the running time of all approaches in the robot

pushing 3D and robot pushing 4D tasks. As expected, the

EGP-based methods with a single pre-selected acquisition

criterion require a small amount of extra runtime compared

to the single GP counterparts since at each iteration the

parameters of M GP models in the ensemble are updated.

In addition, the EGP-MultiAFs approach requires the largest

CPU runtime since an extra step is needed to adaptively learn

the proper AF as new data are processed in an online fashion.

Nonetheless, with the cost of some extra runtime, the advo-

cated EGP-based AL approaches have superior performance

over competing alternatives in most datasets, with the EGP-

MultiAFs consistently being the best-performing one in terms

of both NMSE and NPLL. It is also worth noticing that the

reported runtime does not take into account the runtime needed

to obtain a label.

Role of the parameters M,D, Ã2
n. In this ablation study

the aim is to assess the role of the number of models M ,

the number of features D and the noise variance Ã2
n. Fig. 9

depicts the performance of the ‘EGP-MultiAFs’, ‘EGP-QBC’

and ‘EGP-wEnt’ approaches on the robot pushing 4D task. It

can be clearly seen that when the number M of GP models in

the ensemble is small, the prediction performance deteriorates.

When the number of spectral features D is not sufficiently

large, then the RFF approximation leads to larger prediction

error. As expected, when the noise variance increases, the

prediction error in all approaches also increases.

7. DISCUSSION

Building on our novel EGP model, we have put forth

five acquisition functions (AFs), that can be categorized

into disagreement- and uncertainty-based ones. The former

category derives from the so-termed “Query-by-Committee”

(QBC) criterion in Sec.4.3.3, where each GP expert is a

committee member, and the instance to be queried is the one

that the committee members disagree the most. Albeit effective

in several test cases (see e.g Ackley5D and Robot pushing

4D datasets in Fig. 1), this criterion does not account for the

quantifiable uncertainty offered by the predictive variance of

each GP expert, which can be of utmost importance for guiding

the AL process in many cases; see, e.g., the Diabetes dataset

in Fig. 2.

This uncertainty can be measured either directly by the vari-

ance or by the entropy. The “weighted variance” acquisition

criterion in Sec.4.3.1 is given by a weighted combination of the

predictive variances of all GP experts in the EGP model, which

is intuitive because the variance of GP experts with larger

weights should also weigh more in the acquisition step of the

AL procedure. Although intuitive and simple, this approach

considers only the predictive variance of the GP experts and

does not account for the posterior mean of GP experts or any

other interaction between the experts that may improve the

prediction performance; see e.g the Ackley 5D dataset in Fig.

1. Combining the merits of the aforementioned approaches, we

advocate the “variance of GP mixtures” criterion, which is the

variance of the GP mixture in the EGP model given by the sum

of the QBC and ”weighted variance” criteria. The combination

of these criteria in the “variance of GP mixtures”, can signif-

icantly improve the prediction performance as corroborated

in the Currin exponential, Diabetes, and Robot Pushing 3D

datasets in Figs. 1-3.
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Fig. 9: NMSE versus iteration of ‘EGP-MultiAFs’, ‘EGP-QBC’ and ‘EGP-wEnt’ methods for different values of M,D, Ã2
n

on the robot pushing 4D task.

Relying alternatively on entropy as the uncertainty measure,

we advocate the “weighted entropy” criterion in Sec.4.3.2,

which is a weighted sum of the entropy values of the Gaussian

predictive pdf of all GP experts in the EGP model. Although

the maximum entropy criterion coincides with the maximum

variance in the single GP case, this no longer holds for the

EGP model. Adopting the ‘weighted entropy’ as an alternative

uncertainty-based criterion to the ‘weighted variance’ one, can

prove to be useful in several cases such as the Diabetes and

Robot pushing 4D datasets in Figs. 2-3. Further allowing for

interactions among individual GP models, one can develop an

entropy measure based on the GP mixture pdf. Although this

cannot be expressed in closed form, maximizing its analytic

lower bound is tractable and yields the “Entropy of GP

mixtures” criterion in Sec.4.3.5. Empirically, it is shown in

Figs. 1-3 that neither the entropy-based nor the variance-based

uncertainty criteria are always the best performing across all

datasets, which is expected and well motivates the novel EGP-

MultiAFs approach.

8. CONCLUSIONS AND FUTURE DIRECTIONS

This work advocated a weighted ensemble of GPs as the

statistical model in AL. By adapting the weights of individual

GPs, the EGP model selects the appropriate kernel on-the-fly

as new labeled data are included incrementally. Building on

the novel EGP model, several AFs have been devised based

on different criteria. Combining the candidate EGP-based AFs

with weights being adjusted in an adaptive manner, further

robustifies the AL performance. Tests on synthetic functions

and real datasets showcase the merits of weighted ensembles

of GPs and AFs in AL. Our future work includes development

of EGP-based AFs for the classification task and theoretical

analyses of the resultant approaches.
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