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Abstract—Labeled data can be expensive to acquire in several
application domains, including medical imaging, robotics, com-
puter vision and wireless networks to list a few. To efficiently
train machine learning models under such high labeling costs,
active learning (AL) judiciously selects the most informative
data instances to label on-the-fly. This active sampling process
can benefit from a statistical function model, that is typically
captured by a Gaussian process (GP) with well-documented
merits especially in the regression task. While most GP-based
AL approaches rely on a single kernel function, the present
contribution advocates an ensemble of GP (EGP) models with
weights adapted to the labeled data collected incrementally.
Building on this novel EGP model, a suite of acquisition functions
emerges based on the uncertainty and disagreement rules. An
adaptively weighted ensemble of EGP-based acquisition functions
is advocated to further robustify performance. Extensive tests on
synthetic and real datasets in the regression task showcase the
merits of the proposed EGP-based approaches with respect to
the single GP-based AL alternatives.

Index Terms—Active learning, Gaussian processes, ensemble
learning

1. INTRODUCTION

Identifying machine learning models usually relies on a
sufficient number of labeled input-output data pairs, which
may not be feasible due to labeling costs or privacy concerns
in a number of application domains, including healthcare [11],
computer vision [15], robotics [43], graph signal processing
[1], and wireless networks [42]. To cope with sampling cost
constraints, active learning (AL) selects a set of most informa-
tive data to label incrementally [39], [45]. For instance, con-
sider the channel modeling task in wireless communications,
where the goal is to find the mapping from the environment
features to the channel impulse response. How to select the
few most representative input-output pairs to effectively and
efficiently learn such a mapping is of great importance for
subsequent tasks including beamforming, transmission, as well
as sensing. This selection process can benefit from a statistical
model for the learning function f(x) that maps each input
feature vector x, to the output/label y, [6]. Capable of
learning nonlinear functions with uncertainty quantification
in a sample-efficient fashion, Gaussian processes (GPs) are
widely adopted to model the aforementioned f in AL; see
e.g., [15], [19]. Given labeled samples {x,,y.}._; collected
in the set £;, GP modeling yields a function posterior prob-
ability density function (pdf) p(f(x)|L:). For regression, the
latter is Gaussian with mean and variance available in closed
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form, while the model uncertainty captured by the variance is
essential to guide the selection of subsequent instances to be
queried.

The expressiveness of GP models depends on how well the
chosen covariance (kernel) is adapted to the data at hand. Typ-
ically, GP-based AL approaches rely on a single kernel with
preselected form, which may exhibit limited expressiveness
for AL, where labeled data are collected incrementally. On
par with this online interactive operation, a key desideratum
is a more expressive function space to improve adaptation
to the labeled instances on-the-fly. Besides expressiveness of
the function model, the AL performance is critically affected
by the data acquisition rule. For regression, GP-AL typically
leverages the function variance to select the next instance to
be queried. Devising alternative acquisition rules for more ex-
pressive GP models is an open problem. Clearly, with multiple
acquisition rules available, devising a strategy to combine and
adapt them will be conducive to robust performance ' across
tasks.

To address the aforementioned challenges, our contributions
here can be summarized in the following aspects.

cl) Relative to GP-based AL that relies on a single GP with
a preselected kernel, we introduce weighted ensembles
(E) of GPs for enhanced expressiveness with weights
capturing the contributions of individual GP models, and
adapting to labeled data collected online.

Utilizing the advocated EGP model, we devise a suite
of acquisition functions (AFs), including novel weighted
ensembles of AFs that further robustify performance.
Our thorough tests on synthetic and real data corroborate
the impressive merits of GP and AF ensembles.

c2)

c3)

2. RELATED WORKS

This section outlines the context of the present work.
Statistical models for AL. The performance of model-based
AL depends critically on the chosen statistical model. GPs are
widely used because they come with uncertainty quantification
and sample efficiency [15], [19], [35]. However, most of the
existing approaches operate in a batch mode and rely on a
preselected GP kernel with limited expressiveness, which may
fall short in characterizing the incrementally collected data in
AL. To that end, existing approaches aim to accommodate
online GP model updates and inference as new coming data
are processed in an online fashion [2], [26], [28], [41], [49].
Yet, they rely on a single GP model which may confine the
expressiveness of the sought function. Broadening the scope

'In the present work, the term ‘robustness’ refers to the consistency or
stability in the superior empirical performance of a certain method across
different scenarios.



of a single GP, a mixture of GPs is viable by training each
GP component on a subset of labeled data [50]. This GP
mixture model can account for multi-modalities in the function
space but needs to be refitted per iteration using nontrivial
variational methods. On the other hand, the proposed EGP
model requires minimal refitting efforts and trains each GP on
the whole labeled set. Apart from GP mixtures, the work in
[35] considers a fully Bayesian approach and can be viewed as
an ensemble approach with infinite number of members since a
pdf is maintained for the hyperparameters of GPs. Although ef-
fective, it relies on Hamiltonian Monte Carlo (HMC) sampling
to approximate the posterior pdf of the hyperparameters which
can prove to be computationally challenging. To alleviate
this challenge, the work in [36] constructs a mixture of GPs
relying on different sets of parameters drawn from a prior pdf
with each set representing a GP. Besides GP-based statistical
models, Bayesian convolutional networks have been leveraged
for image data [9].

Acquisition rules for AL. The acquisition function (AF) also
plays a performance-critical role in AL. Different AFs have
been devised based on distinct selection criteria, learning tasks,
as well as whether or not a statistical model is capitalized on;
see e.g., [39]. In GP-AL settings, the quantifiable uncertainty
offered by the function posterior variance is leveraged to build
the variance [15], entropy [18], [30], and mutual information
[18] - based AFs. Inspired by the intuition that uncertainty
increases at instances far away from the labeled set, [22],
[31], [47] adopt AFs that rely on the distance of an instance
from the labeled set. Beyond statistical learning models for
the regression task, linear and nonlinear regression learning
models are coupled with the ‘Expected Model Change’ (EMC)
AF to select instances that cause the largest change on the
corresponding learning model [4]. In [3], the so-termed ‘Query
by Committee’ (QBC) AF is employed, which selects the
instance in which the committee members disagree the most.
Similar disagreement based criteria are presented in [13].
Albeit interesting, these approaches fall short in uncertainty
quantification which can effectively and efficiently guide the
AL process.

Selection of AFs. How to appropriately select the AF from
the available choices usually calls for domain expertise. It has
been shown empirically that no acquisition rule excels in all
tasks [12]. This motivates a strategy that can combine and
adapt candidate selection rules. [23] and [17] learn or/and se-
lect the acquisition rule in a data-driven fashion, but necessitate
additional training data to learn the acquisition rule offline with
possibly prohibitive complexity. On the contrary, the advocated
weighted ensemble of AFs method combines all candidate
AFs on-the-fly without need for a training phase. Ensemble
acquisition rule has also been leveraged in [12] by adapting
the multi-armed bandit framework with each arm representing
an acquisition rule. In spite of this similarity, the advocated
differs from [12] in the following three aspects i) it relies
on a small validation set to evaluate the performance of each
individual EGP-based AF, whereas the per-AF loss in [12] is
defined as the estimated test error; ii) rather than selecting a
subset of the AFs based on a certain rule in [12], it selects the
next query instance by optimizing a weighted combination of

all AFs; and iii) it updates the per-AF weight by knowing the
losses of all AFs, which is different from the bandit setting
in [12], where only losses of the selected AFs are revealed.
Part of this work is presented in [32] which accounts only for
graph-guided learning.

Kernel selection for GPs. Adaptively choosing the form of the
kernel from training data has been reported for conventional
GP learning; see, e.g., [7], [16], [27], [44]. These approaches
usually operate in a batch offline mode, and rely on a large
number of samples — what discourages their use for AL, where
data are not only acquired online, but are also scarce due to
the potentially high labeling cost. Recently, an online scalable
kernel selection approach has been introduced that combines a
set of GP experts in a Bayesian model averaging fashion [24].
Still, the focus is not on AL, which entails additional design
of the AF.

3. PRELIMINARIES

This section outlines the motivation and preliminaries for
the AL approach of interest.

Typical learning approaches boil down to estimating the
mapping f(-) that relates the d x 1 input feature vector
X, to the output gy, (that is either a real number in re-
gression or it belongs to a finite alphabet in classification)
as x;, — f(x;) — y,. This estimation task relies on a
sufficient number of labeled training samples {x,,y,}7_;. In
several applications however, the input can be readily obtained
whereas the corresponding label can be expensive to acquire
due to sampling costs or privacy concerns. In healthcare
for instance, many labels describing the medical condition
of patients may not be revealed to preserve confidentiality.
Faced with this challenge, one can resort to the AL paradigm,
which judiciously and proactively selects the most informative
instances to label so that the sought mapping can be inferred
in a sample-efficient manner.

AL starts with a small-size set Lo := {(x-,y-)}2__; | of
labeled samples,? and a larger collection of unlabeled features
Uy = {xg}gil (Lo < Up). Given corresponding sets £; and
U, up to index t > 0, model-based AL entails a statistical
function model, namely the pdf p(f(x)|L:). The latter is
utilized by the so-termed acquisition function (AF) a(-) to
select the instance x;1; from the corresponding unlabeled set
Uy, as [6]

Xpp1 = argmax «a(x; L) . (1)
xEU

Intuitively, « is chosen to guide exploration of the space f(-)
belongs to, which hinges on quantifying the uncertainty of
the belief model p(f(x)|L:). Upon querying an oracle for
the associated label y;y1, the labeled set is then augmented
with the new pair and the feature vector is removed from
the unlabeled set, that is L1 = £+ U {(X¢41,¥:+1)} and
Upt1 := Uy \ {Xt41}. Apparently, the two critical choices are
the model for f, and the AF design for a. Focusing on the
regression task, we will outline the GP-based model for f, and
the associated acquisition rules next.

>The negative instance index here is used for notational brevity as more
labeled data are included next.



Algorithm 1 RFF-based EGP-AL.

1: Inmitialization: U, Ly, K;

2. fort=0,...,7T do

3: Obtain p(f(x)|L:) via By;
Select x;41 based on one from (18)- (20), (22)-(23);
Query the oracle to obtain 4 1;

Lip1:=Ly U{(Xet1,Yet1)} Uppri=
end for

U, \ {Xt+1};

A. GP-based active learning

GPs estimate a nonparametric function model in a sample-
efficient manner, while also offering quantification of the
associated model uncertainty [33]. Sample efficiency justifies
their wide adoption in AL. The GP model postulates f as being
randomly drawn from a GP prior; that is f ~ GP(0, k(x,x"))
with k(x,x’) being a positive-definite kernel function that
measures the pairwise similarity between two distinct inputs
x and x. With T denoting transposition, this means that
the random vector f; := [f(x1)...f(x;)]" consisting of
the function evaluations at instances X; := [xj.. .xt]T is
Gaussian distributed as p(f;|X;) = N (f;; 0+, K;)(V¢), where
K denotes the ¢ x t covariance matrix whose (i,j) entry is
(Koo = cov(f(x:), fx;)) = r(xs,x;) [33]

With y; := [y1---y:] " denoting the (possibly noisy) output
data, it can be shown that in the regression task where the
per-datum likelihood can be expressed as p(y.|f(x;)) =

N (yr; f(x¢),02), the posterior pdf of f(x) is [33]
p(f()|ye; Xe) = N (f (%); pe(x), 07 (x)) )
where
e (x) =k (x)(K¢ + 021) "y (3a)
02(x) =k(x,x) -k, (x)(K;+021;) 'k (x). (3b)

and k;(x) := [k(x1,X), ..., k(% x)] T
Note that the mean in (3a) is a point prediction of f(x),
while the variance in (3b) quantifies the associated uncertainty.
In the AL context, this uncertainty is used by the acquisition
function that selects the next query instance as
X1 = argmax o2 (x) . (@)
xXEUL
It is worth mentioning that for a Gaussian pdf, (4) is tanta-
mount to maximizing the entropy [25].

The posterior mean and variance in (3) rely on all ¢ instances
in X; to form K,, and the associated complexity for its
inversion is thus O(t3). Although this complexity can be
affordable in AL where ¢ is small, it can be further reduced. In
addition, p;(x) and o7 (x) require direct access to {x,}._,
which may be discouraged due to privacy concerns as in e.g
medical records and financial statements. Further, GP-based
AL relies on a preselected kernel function, which may exhibit
limited expressiveness. These limitations can be ameliorated
through our novel ensemble approach that leverages also
random spectral features, as delineated next.

4. ENSEMBLE GPS FOR AL

The chosen function model affects critically the perfor-
mance of AL approaches. Unlike most existing works that
rely on a single GP with a preselected kernel, we advocate an
ensemble (E) of M GPs to enhance expressiveness. Each GP
has a distinct kernel function selected from a given dictionary
K = {x!, kM3, that is formed using kernels of different
types and with different hyperparameters. Specifically, each
GP m € M := {1,..., M} places a unique prior on f as
flm ~ GP(0,k™(x,x’)). The EGP prior of f(x) is then a
weighted ensemble of the individual GP priors as

M M
X) ~ Z w'GP(0, k™ (x,x")), Z w=1 (5
m=1 m=1
where w{]’ := Pr(i = m) is the prior probability that measures

the contribution of GP model m. With labeled data collected
on-the-fly, the sum-product rule allows one to express the
EGP-based function posterior pdf as

x)|Ly)= ZPr i=m|L)p(f(x)|i=m,L:)  (6)
which is a mixture of posterior GPs with weights w;* :=
Pr(i = m|L;) that signify the significance of the GP experts.
These weights thus enable online model adaptation.

To efficiently update this EGP function model across t, we
will leverage a parametric function approximant, formed by
the so-termed random features (RFFs), as outlined next.

A. RFF-based approximation per GP

The RFF approximation will be applied to each GP with
kernel ™ in EGP (5). Here, we drop the superscript m in
k™ for notational brevity. Consider a standardized ans shift-
invariant kernel #(x,x’) = R(x — x/) satisfying k = o2F,
which can be expressed as the inverse Fourier transform of a
spectral density 7z(¢) as [37]

R(x —x) = / Q'S ¢ = By, [eﬂ‘ﬂxfx')]

where [7z({)d¢ = 1, allowing 7z to be deemed as
a pdf. Since & is real, the last expectation is equal to
E.. t[cos(c Tx—x ))d] ; and after drawing a sufficient number
Do independent and identically distributed (i.i.d.) samples
{¢; } > | from 75 (), kernel % is approximated by?

k(x = Zcoe( ; X—x’)) ) @)

Defining the 2D x 1 RFF vector as [21]
B¢ (x) ®)

k
- % [sin(¢] ), cos(¢T %), ., sin(¢ ), cos( )|

3Here we don’t have a fully Bayesian treatment of the frequencies {¢;},
which would otherwise raise the issue of scalability. The notion of Bayesian
active learning refers to modeling the unknown function via a Bayesian
statistical model.



the sample average (7) can be re-written as k(x,x') =
¢E(X)¢C (x'). This allows the parametric linear function

fx) = (x)8, 8 ~N(8;0:p,051p)  (9)

to have an approximate GP prior. To interpret this point,
we can see that the joint prior pdf for any number ¢ of

function values f, = [f(xl) ..,f(xf)] is given by the
p(ft|Xt) = N(ft,Ot,Kt) where Kt = 0'9@ @ (Wlth
B, = [pr(x1),.- .,¢C(Xt)] ) is a low rank (2D) approx-

imant of the original kernel matrix K;. Such an RFF-based
parametric function readily yields an efficient model update by
propagating the posterior pdf p(0|y:; X¢) = N'(6; 6, %) per
slot ¢ in a recursive Bayes fashion. It is also worth stressing
that the model learning step does not require direct access to
x;, but relies only on the RFF vector qbc(xt), which can be
viewed as an encrypted version of x;. This may be appealing
if x;, which may e.g., comprise private medical data, cannot
be revealed during model learning.

Having outlined the RFF-based approximation per GP, we
can proceed with updating our RFF-based EGP function
model, as labeled instances become available incrementally.

B. EGP parametric model updates

When kernels in the dictionary are shift-invariant, the RFF
vector ¢ZL( x) per GP m can be formed via (8) by first drawing

iid. random vectors {¢}'}F., from 77"(¢), which is the
spectral density of the standard1zed kernel k™. Let ng be
the kernel magnitude, so that K™ = o3, &™. The generative
model for the sought function and the noisy output y per GP
m are characterized by the 2D x 1 vector 8™ as

p(0™) =N (0";0:p,05m12p)
P(f(xe)li = m, 0™) = 6(F(x,) — ¢ (x:)0™)
p(y-10™,%x;) = N(yr; ¢? (X.,-)em,o‘i) .

This parametric form allows one to capture the functlon
posterior pdf per GP m via p(8™|L;) = N (670, =),
which together with the weight wy*, approximates the EGP
function posterior (6) via

(10)

x)|Lr) = Zwl”/\f )i (%), (67" (%)) (1)

with
iy (x) = ¢F T (x)0; (12a)
(&7" (x))2 = ¢¢ (OB GF (x) (12b)

Next, we will see how RFF-based EGP propagates the function
model by updating across ¢ the parameter set

Et = {w;nvé:l7 E;n7m € M} . (13)

Upon acquiring the newly labeled pair {xXti1,ys+1}, the
updated weight w{’} ; := Pr(i = m|L;;1) can be obtained per
GP m via Bayes’ rule as

m

~ Pr(i = m|L)p(yer1|xe41,1 = m, Ly)
Wip1 = ’

p(yt+1 |Xt+1a ﬁt)

Since the per-model predictive likelihood is given by

P(essli=m, Lo, xes1)= /p<yt+1|0”z xee1)p(O7] L) dO™

= N(yt+1§ Z)ﬁ-l\tv (Uﬁut)Q)

with
Wi = ¢z”<xt+1>él”
(072 110)? ¢C (xe41) B D¢ (Xe41) + 0

the updated weight can thus be expressed as
m wzrme (yt+1; Qm_”ta (Uﬁl\t)Q)
wt+1 - M ’ P ’ ’
Zm':1 wy N(yt-&-l;ytn.lg.”ta (O'th,_l\tV)
Bayes’ rule further allows updating the posterior of 8™ as

(0" [L)p(yi110™,xt41)
P(Yer1|xeq1,7 =m, L)

= N(6™: 6"

m
t+1> 2t+1)

5)

p(0"|Le41) =

(16)
A MM

where the mean 6, , and covariance matrix X"}, are

0,11=0; +0711,) PSS (k1) (Y1~ i)
B =E - 01) T O (e ) B¢ Txe41) 37

Remark. While most of kernel functions in GPs induce
stationary functions, there are nonstatinary kernel functions,
that could be accommodated by our ensemble GP framework
by using a generalized random feature approximation; see
[34]. Further, the ensembling rule (c.f. (15)) that adaptively
weights the kernels also readily accommodates nonstationary
functions.

C. Acquisition rules for EGP-based AL

Using the EGP posterior in (11), we are ready to devise

AFs that select the next query point based on different rules.

1) Weighted variance: Motivated by (4), the first AF relies
on the uncertainty expressed by the variance. With GP expert
m forming the function posterior with variance (57"(x))?, a

weighted combination over all the M experts yields the AF

"V (x; Ly) g wy (57" (

m=1

(18)

2) Weighted entropy: Relying alternatively on the entropy
as the uncertainty measure, one can take a weighted sum of
the entropy values given by the M GP experts, yielding

VB (x; L) = Z w™ In(27(57(x))?) . (19)

3) Query-by-Committee (QBC): Besides capturing uncer-
tainty by variance or entropy, an alternative disagreement-
based AF — QBC, has been reported for classification [40],
and regression using neural networks [20]. With the M GP
experts forming a committee, the novel EGP-based QBC rule



is (cf. (12a))

aQBC(x; L) = Zwt g (

m=1

—m(x)* Q0

where [i;(x) is the consensus of the committee given by

Zwt 7" (

m=1

2y

Unlike previous QBC approaches that have equal weights per
committee member, the weights w;* in (20) and (21) are
generally different across m.

4) Variance of GP mixtures: Rather than directly summing
per-GP weighted variances in (18), one can alternatively obtain
the variance based on the GP mixture of the function posterior
(cf. (11)) as

aGPM—Var (X; »Ct)

M
=Y w7 (x)? + (A (%) - (%) (22)

which, interestingly, is the sum of (18) and (20).

5) Entropy of GP mixtures: The last AF is given by the
entropy of the GP mixture in (11), which unfortunately, has
no analytic expression. Aiming at a tractable form, we will
resort to its analytic lower bound [14], which is expressed as

M
> [N o)
s

M
(>) — Z wy" log /N ); B (
% p(f(x)|L)df(x))

where (a) holds due to Jensen’s inequality. Upon obtaining
the analytic expression for the term inside the logarithm, the
last AF is then given by

QCGPM=Ent(y. py . Z w?log(Z w2 ,m,>

m’/=1
(23)

),(7" (x))*) log p(f (%) |Ce)df (x)

x), (77"(x))%)

!
m,m

with z
models as

mr /Nf (%), (67 (x))?)
N i (), (677 (x))2)
:Nwmmm(wwmw> ()%

Based on our novel EGP-based AFs, implementation of the
proposed EGP-AL approach is summarized in Alg. 1. In the
diagram of Fig. 1 the AL process of the proposed EGP-AL
approach is illustrated. A discussion about the pros and cons
of these AFs is deferred to Sec. 1 of the supplementary file.

accounting for the interaction of any two GP

df (x)
+ (6"

5. ENSEMBLE OF EGP-BASED AFs

So far, we have introduced a novel EGP-based function
model along with several choices for the AF. In the context of

Algorithm 2 EGP-MultiAFs for AL.

1: Initialization: Lo, U, V, K, D, 03;
2wy =+[1,...,1]T;

3: fort =0,1,...,7 do

4: Obtain EGP E,; based on £; using (15)-(16);
for k=1,...,K do

Obtain instance X}, | € U; by (24);

Nw

Obtain pseudo-label fng using =, via (25);

. . - - .=k
Using pseudo palr {xfﬂ,yfﬂ} obtain B, {;

®

Obtain error €, +1 on YV via (27);
10 end for
11: Update per AF weight using (29);
12: Obtain x;y1 € U; by (30);

13: Query the oracle to obtain true label y;y1;
14: £t+1 = Et @] (Xt+17 yt+1);

15: U1 =U \{xp11 1

16: end for

17: Output: L, Er

Bayesian optimization though, it is known that no single AF
excels at all tasks [10]. Hence, combining candidate AFs can
intuitively offer robustness and improved performance. To this
end, we will rely on a validation set V := {(x%,y%)}Y_; to
evaluate the performance of different AFs. Similar to EGP,
each of the K candidate AFs will come with a weight
(probability) w;k( € [0,1] to capture its contribution per slot
t, such that >, wy = 1.

Upon identitfying the RFF-based EGP set =; in (13) using
the labeled set £, at slot ¢, each AF k selects its query point
xF "1 at slot ¢ + 1 by optimizing the associated criterion as

%5, | =argmax o (x; L) . (24)

xXEU,

Upon obtaining X}, ,, AF k constructs a ‘pseudo label’ g, 4
using the EGP parameters in =, as

-
Z w:anbm t+1)

m=1

yt+1 (25)

This pseudo pair {X},, 75, ,} allows one to leverage (15)-
(16) to find the updated EGP parameter vector as

=k ~ m,k

B = {wt+1 ; 0t+1 Xy, m € M} (26)

based on which the loss per AF can be evaluated.

. . =k . .
To find this loss, AF k capitalizes on E,, ; in order to obtain
the prediction error at the validation set
v,k -1 Av k 2
€41 = Z yr —

T|t+1 @7
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Function (AF)
a(x; L)

Uy

Fig. 1: Diagram of the AL process of the advocated EGP-based AL methods.

TABLE I: Additional experimental details

Dataset \ Lo size \ V size \ Uy size \ T size \ n

Ackley-5D 10 50 500 100 1
Branin 10 50 500 100 100
Currin exponential 10 50 500 100 100
Gramacy 10 50 500 100 100
Higdon 10 50 500 100 100
Diabetes 15 55 261 111 100
Robot pushing 3D 20 50 500 200 20
Robot pushing 4D 20 50 500 200 20
California housing 50 70 1000 1032 | 0.05

DeepMIMO_2feat 100 50 1000 2000 1

TABLE II: Analytical expression of all synthetic functions

Function \ Analytical expression
Ackley-5D 7206—0.2\/(zf+w§+z§+wi+z§)/5 _ p(cos(2may)+eos(2mw2)+cos(2mas) +cos(2mwa)+eos(2mws)) /5 +20+4e!
Branin (w2 —5.1/(47%)z} + 51 /7 — 6)* + 10(1 — 1/(8))cos(x1) + 10
Currin exponential (1 — e~ 1/2))(230023 + 190027 + 20921 + 60) /(100273 + 50027 + 42, + 20)
Gramacy sin(107x)/(2z) + (z — 1)4
Higdon sin(27x/10) + 0.2sin(27wx/2.5)

where the predicted label per validation sample T is

Z

Having available the prediction error over the validation set
per AF k, the associated weight can then be updated as

~m,

A k k
i x7)0 11 -

T\t+1

~m,k

wyyr g (28)

k

N wfexp(—nefH)
-

T e wF exp(—

where 7 denotes the learning rate. Here, the weight update
rule is similar to that in EGP (cf. (15)), and belongs to
the exponential weight update in online learning with expert
advice; see e.g., [5].

- (29)
)

M€ 1

Given the updated weights, the next query point is identified

by maximizing the weighted ensemble of AFs as
K

X¢p1 = arg max E wyy ok (x; Ly)
xEU =1

(30)

Upon querying the oracle for the label y,; of instance x4 1,
the labeled and unlabeled sets are updated, thus completing
one iteration of the novel “EGP-MultiAFs” approach, that is
implemented as listed in Alg. 2.

Computational complexity of EGP-MultiAFs. Per AL itera-
tion, the computational complexity of EGP-MultiAF emanates
from updating the EGP model and optimizing the AF. Leverag-
ing the random feature (RF) approximation per GP, the former
incurs complexity O((2D)2M) , where M is the number of
GPs in the EGP, and D is the number of spectral features
in the RFF vector (cf. Eq.(8)). For the latter in the pool-
based AL, the major computation originates from the steps
in (24)-(27), and (30), which respectively, incur complexity
O((2DM)2|Uy]), O(5(2D)M), O((2D)>*M), O(2DM|V|)
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and O((2DM)?|U;|), where |V| and |i4;| are the cardinalities
of the fixed validation set and the unlabeled set per-iteration.
Complexity of AF optimization step in (24) and (30) is dom-
inated by the EGP-GPM-Ent approach. Considering only the
dominating factors, the overall complexity of EGP-MultiAFs
is O((2DM)2|Uy)).

6. NUMERICAL TESTS

In this section, the performance of the proposed EGP-
based AL models will be compared against several benchmark
synthetic functions, and it will be tested with real datasets
ranging from biomedical to robotic based ones. Based on the
novel EGP model, the innovative acquisition criteria to be
tested are the ones described in (18) - (23) and (30), which
henceforth will be abbreviated as “EGP-wVar,” “EGP-wEnt,”
“EGP-QBC,” “EGP-GPM-Var,” “EGP-GPM-Ent,” and “EGP-
multiAFs,” respectively. The competing baselines are (i) “GP-
var” — a single GP model coupled with the maximum variance
(entropy) AF in (4) that has been extensively used in AL;
see e.g., [15], [31], [38], (ii) “GP-dist” — a single GP model
together with the maximum distance-based AF as in [31], (iii)
“EGP-dist” — the EGP model with the same AF, and (iv)
“EGP-random” — the EGP model with random sampling. For
all approaches, a few initially labeled data collected in L are
utilized to obtain the kernel hyperparameters per GP expert by
maximizing the marginal likelihood using the sklearn package.
The RFF-based GP approximate models rely on D = 50 RFFs.
For EGP-based approaches, the kernel dictionary K consists
of radial basis functions (RBFs) with lengthscales {10¢ S:_ 4
For the EGP-multiAFs approach, each o*(x;L;) in (30) is
divided by its maximum value so that to range between 0 and
1.

The performance of the competing methods is evaluated on
a held-out test set 7¢ := (x¢,y¢)T", (superscript ¢ stands for
evaluation) using two metrics. The first performance metric is
the normalized mean-square error (NMSE) that for iteration ¢,
is given by

1 —
NMSE; := > (@ — i) o

T=1

where Qil , denotes the point prediction of test instance 7, and
o7 = E|y$. — E{y$.}||?, where y$. := [y ... y5]T. A
second metric used to assess the associated uncertainty is the
negative predictive log-likelihood (NPLL)

‘Ct7 XT")

NPLL; := —log p(y5e

where the matrix Xze = [x§...x5.]" collects the feature
vectors of all T test instances. All methods are tested over 10
realizations, and their average performance is reported along
with the corresponding standard deviation. More details about
the experimental set up can be found in Table 1.

A. Synthetic functions

The tests here are run for known synthetic functions, in-
cluding Ackley5D, Currin exponential, Branin, Gramacy and
Higdon; see Table 2 for their analytic expression. Fig. 2
demonstrates that all EGP-based approaches with a single AF
outperform the single GP-based baselines in the Currin expo-
nential and Gramacy functions, in terms of NMSE and most
have superior performance in the remaining three datasets.
Further, all single AF EGP-based approaches achieve lower
NMSE than the EGP-Dist baseline in all synthetic datasets
and most of them outperform the EGP-Random baseline in
four out of five datasets. In addition, all EGP-based methods
enjoy the lowest NPLL in four out of five datasets compared
to the single GP-based AL approaches, which corroborates
the merits of having an ensemble of GPs and using them in
the corresponding acquisition criteria. Further exploiting an
ensemble of AFs in the adaptive EGP-multiAFs approach,
significantly improves the prediction performance, and also
effectively quantifies the prediction uncertainty, thus rendering
it the best performing approach over all datasets.

B. Real datasets

All approaches here are tested on California housing
[29] and Diabetes [8] real datasets. The latter deals with
real medical data that are well motivated for AL because
of the scarcity of labeled instances emanating from medical
confidentiality. The description of the datasets is given below.
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Fig. 6: AF weights of the EGP-MultiAFs approach in the
Branin dataset.

California housing dataset. This dataset considers 8 features
of districts in California, including not only demographic and
location data, but also more general features such as average
number of rooms and bedrooms per household, based on
which a regression task is formed where the target variable
is the median house price in these districts.

Diabetes dataset. This dataset considers 10 characteristics of
diabetes patients, including age, sex, body mass index, average
blood pressure, and six blood-related measurements. The target
variable measures the disease progression in a single year.

It is evident in Fig. 3 that all EGP-based approaches
markedly outperform the GP-Var, GP-Dist and GP-Random
baselines in terms of NMSE and NPLL in the California
housing and Diabetes datasets, showcasing the significance of
adopting the EGP model to estimate the learning function,
along with the corresponding AFs. In addition, all advocated
EGP-based approaches outperform the EGP-Dist and EGP-
Random baselines in terms of NMSE in the California housing
and Diabetes datasets (except the EGP-QBC in the latter
one), with the EGP-MultiAFs consistently being the best-
performing method. It is worth mentioning that although most
of the proposed EGP-based approaches are comparable in
terms of prediction error in the California housing dataset,
EGP-multiAFs outperforms all other methods in terms of
NPLL. This illustrates the significance of properly adjusting
AF weights in an online adaptive fashion.

C. Robotic tasks

The next experiments focus on a practical robotic task,
where a robot pushes an object to a specific location [46].
Specifically, given as input the robot location (rZ,r¥) and
pushing duration ¢? at slot 7, the object ends up in a location
o, := (0%, 0¥). We form a regression task where the goal per
slot 7 is to map the 3 x 1 feature vector X, := [rZ,r¥,t]T to
the target variable y, := ||o, —d||2, with d := [d®, d¥] denot-
ing a pre-defined position vector, yielding the Robot pushing
3D dataset. This is of practical interest in various robotic
problems such as obstacle avoidance, where y. is desired to

be greater than a pre-defined threshold 4. Augmenting the

feature vector x, with an additional pushing angle r?, yields
the Robot pushing 4D dataset.

Fig. 4 depicts the NMSE and NPLL at each iteration
of all competing AL approaches for the Robot pushing 3D
and 4D tasks respectively. It is evident that all EGP-based
approaches enjoy lower NMSE and NPLL compared to the
single GP based AL counterparts and the EGP-Dist, EGP-
random baselines in both datasets, with the EGP-MultiAFs
consistently being the best-performing one. This implies that
in these practical robotic tasks, the function expressiveness
offered by the advocated EGP model and the ensuing inno-
vative acquisition criteria considerably improve the prediction
performance providing also quantifiable prediction uncertainty.

D. Wireless communication tasks

The last experiments emphasize on a practical signal pro-
cessing setting where given a small number of 5G signal
measurements in different locations, the goal is to estimate
5G signal values at unmeasured locations. Specifically, the
input feature vector x,. at location 7 comprises the longitude
and latitude of the location and the target variable y, to be
estimated is the filtered beam reference signal received power
[dBm] at this location. Details about the DeepMIMO dataset
that was considered in our experimental setting can be found
at [48]. Fig. 7 illustrates the NMSE and NPLL performance
of all methods at each iteration of the AL process. It can
be clearly seen that all advocated EGP-based AL approaches
enjoy lower NMSE and (all except one) lower NPLL compared
to the single GP-based counterparts, with the ‘EGP-MultiAFs’
approach being the best-performing one in this task too.

E. Additional experimental results

Additional ablation studies are presented here to further
demonstrate the performance of the proposed EGP-MultiAFs
approach.

Sensitivity analysis. In this ablation study, the aim is to
gauge how sensitive the performance is to the size of the
validation set V and the acquisition step size 1. The NMSE and
NPLL performance of the advocated EGP-MultiAFs approach
is assessed on the Robot pushing 3D for different values of
|V| and 7. It is evident in Fig. 5 that when |V] is too small,
the performance of EGP-MultiAFs is worse compared to that
of a sufficiently larger validation set, which is as expected.
The choice of 7 is also critical since it can lead to very
good performance without the need for the validation set
size to be the largest possible; see e.g the Robot pushing
3D dataset, where the performance of EGP-MultiAFs with
n = 20,|V| = 30 is comparable with that of n = 80, |V| = 50
in terms of both NMSE and NPLL, as depicted in Fig. 5.

EGP-MultiAFs acquisition weights. In this ablation study,
the goal is to demonstrate the role of the acquisition weights
{wi}E_, of the EGP-MultiAFs approach. Specifically, the
acquisition weights of a single run are plotted as a function
of the AL iteration index on the Branin dataset in Fig. 6,
where it is evident that the weights of the GPM-Var and GPM-
Ent AFs get larger values as more data are actively collected,
which is intuitive since these AFs eventually enjoy the lowest
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NMSE compared to the other acquisition criteria. Therefore,
the corresponding acquisition weights are properly adjusted as
new data arrive on-the-fly.

CPU runtime. In this study, the runtime of all competing
AL methods is assessed. For demonstration purposes, Fig.
8 illustrates the running time of all approaches in the robot
pushing 3D and robot pushing 4D tasks. As expected, the
EGP-based methods with a single pre-selected acquisition
criterion require a small amount of extra runtime compared
to the single GP counterparts since at each iteration the
parameters of M GP models in the ensemble are updated.
In addition, the EGP-MultiAFs approach requires the largest
CPU runtime since an extra step is needed to adaptively learn
the proper AF as new data are processed in an online fashion.
Nonetheless, with the cost of some extra runtime, the advo-
cated EGP-based AL approaches have superior performance
over competing alternatives in most datasets, with the EGP-
MultiAFs consistently being the best-performing one in terms
of both NMSE and NPLL. It is also worth noticing that the
reported runtime does not take into account the runtime needed
to obtain a label.

Role of the parameters M, D,o2. In this ablation study
the aim is to assess the role of the number of models M,

the number of features D and the noise variance o2. Fig. 9
depicts the performance of the ‘EGP-MultiAFs’, ‘EGP-QBC’
and ‘EGP-wEnt’ approaches on the robot pushing 4D task. It
can be clearly seen that when the number M of GP models in
the ensemble is small, the prediction performance deteriorates.
When the number of spectral features D is not sufficiently
large, then the RFF approximation leads to larger prediction
error. As expected, when the noise variance increases, the
prediction error in all approaches also increases.

7. DISCUSSION

Building on our novel EGP model, we have put forth
five acquisition functions (AFs), that can be categorized
into disagreement- and uncertainty-based ones. The former
category derives from the so-termed “Query-by-Committee”
(QBC) criterion in Sec.4.3.3, where each GP expert is a
committee member, and the instance to be queried is the one
that the committee members disagree the most. Albeit effective
in several test cases (see e.g Ackley5SD and Robot pushing
4D datasets in Fig. 1), this criterion does not account for the
quantifiable uncertainty offered by the predictive variance of
each GP expert, which can be of utmost importance for guiding
the AL process in many cases; see, €.g., the Diabetes dataset
in Fig. 2.

This uncertainty can be measured either directly by the vari-
ance or by the entropy. The “weighted variance” acquisition
criterion in Sec.4.3.1 is given by a weighted combination of the
predictive variances of all GP experts in the EGP model, which
is intuitive because the variance of GP experts with larger
weights should also weigh more in the acquisition step of the
AL procedure. Although intuitive and simple, this approach
considers only the predictive variance of the GP experts and
does not account for the posterior mean of GP experts or any
other interaction between the experts that may improve the
prediction performance; see e.g the Ackley 5D dataset in Fig.
1. Combining the merits of the aforementioned approaches, we
advocate the “variance of GP mixtures” criterion, which is the
variance of the GP mixture in the EGP model given by the sum
of the QBC and “weighted variance” criteria. The combination
of these criteria in the “variance of GP mixtures”, can signif-
icantly improve the prediction performance as corroborated
in the Currin exponential, Diabetes, and Robot Pushing 3D
datasets in Figs. 1-3.
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on the robot pushing 4D task.

Relying alternatively on entropy as the uncertainty measure,
we advocate the “weighted entropy” criterion in Sec.4.3.2,
which is a weighted sum of the entropy values of the Gaussian
predictive pdf of all GP experts in the EGP model. Although
the maximum entropy criterion coincides with the maximum
variance in the single GP case, this no longer holds for the
EGP model. Adopting the ‘weighted entropy’ as an alternative
uncertainty-based criterion to the ‘weighted variance’ one, can
prove to be useful in several cases such as the Diabetes and
Robot pushing 4D datasets in Figs. 2-3. Further allowing for
interactions among individual GP models, one can develop an
entropy measure based on the GP mixture pdf. Although this
cannot be expressed in closed form, maximizing its analytic
lower bound is tractable and yields the “Entropy of GP
mixtures” criterion in Sec.4.3.5. Empirically, it is shown in
Figs. 1-3 that neither the entropy-based nor the variance-based
uncertainty criteria are always the best performing across all
datasets, which is expected and well motivates the novel EGP-
MultiAFs approach.

8. CONCLUSIONS AND FUTURE DIRECTIONS

This work advocated a weighted ensemble of GPs as the
statistical model in AL. By adapting the weights of individual
GPs, the EGP model selects the appropriate kernel on-the-fly
as new labeled data are included incrementally. Building on
the novel EGP model, several AFs have been devised based
on different criteria. Combining the candidate EGP-based AFs
with weights being adjusted in an adaptive manner, further
robustifies the AL performance. Tests on synthetic functions
and real datasets showcase the merits of weighted ensembles
of GPs and AFs in AL. Our future work includes development
of EGP-based AFs for the classification task and theoretical
analyses of the resultant approaches.
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