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Washington, DC, USA

harizanv@gwu. edu

Isomorphism is one of the most important equivalence relations between
two structures of the same kind. We present some recent results on
the maximal complexity of the isomorphism problem for computable
structures from a class K closed under isomorphism. Formally, the com-
putable isomorphism problem for K is the set of pairs of computable
indices for computable structures in K, which are isomorphic. For many
familiar classes, the computable isomorphism problem is complete at
some level of arithmetical hierarchy, such as for vector spaces over a
fixed infinite computable field or for algebraically closed fields of a fixed
established by Calvert. On the other hand, there are
classes of structures with Li-complete computable isomorphism prob-
lem, which is of maximal complexity. These classes contain isomorphic
computable structures that are not even hyperarithmetically isomor-
phic. For example, Friedman and Stanley established that fields of a
fixed characteristic have ¥}-complete computable isomorphism problem.
Recent examples of such classes include 2-step nilpotent groups, dis-
tributive lattices, and nilpotent rings. The method we use to establish
Y1-completeness is based on a uniform effective interpretation of com-
putable structures from a certain class into computable structures in K.

characteristic, as

*This chapter is dedicated to the memory of Zbyszek Oziewicz, a great friend
with an inquisite mind and passion for mathematics and science.
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1. Structures, Language, and Isomorphisms

While early computable structure theory focused on decidability or
undecidability of various important mathematical problems, modern
computable structure theory delves into fine computability-theoretic
classification of properties in mathematical structures. We apply
sophisticated and often unique methods of computability theory,
including various encoding techniques and syntactic descriptions
using computable language, to study various problems on mathemat-
ical structures. Isomorphism is one of the most important relations
between mathematical structures for the same language.

A structure A consists of a nonempty set A, called the domain
or the universe of the structure, with certain relations and opera-
tions (functions) on the domain, and possibly constants, which are
specific elements of the domain. Every relation and every function
has assigned length or arity. The names for relations, functions, and
constants are called relation symbols, function symbols, and con-
stant symbols, and they form the language L of the structure. The
language can be finite or infinite. First-order formulas are obtained
using the symbols in L, variables for elements, equality, negation (=),
disjunction (V), conjunction (A), existential quantifier (3) and uni-
versal quantifier (V) over element variables. Formulas in which all
variables are bound by quantifiers are called sentences. A sentence
is either true or false in a structure for the same language according
to natural interpretation of symbols. A theory is a consistent set of
sentences.

For example, (A, -, e) is a group if - is a binary operation and e
is a constant so that the group axioms are satisfied, i.e., sentences
expressing that - is associative, e is the identity element, and every
element has an inverse:

(Vz)(vy)(V2)[(z - y) -2 =z - (y - 2)],
Vz)lz:e=e:z =2,

(Vz)(Fy)z-y=y -z =e¢

N e

Let A and B be structures for the same language L, with
domains A and B, respectively. An isomorphism from A to B is

B e T T T—
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a bijection (one-to-one and onto function) f : A — B such that f
“preserves structure”. Say. % is a binary operation symbol, R is a
binary relation symbol, and ¢ is a constant symbol. Then for any
a,d € A, we have

f(a A d) = f(a) x5 Tld).
R*(a,d) & R5(f(a), f(d)),

f(cY)'=cP.

We have similar definitions for n-ary functions and relations.

A sequence of variables displayed after a formula contains a
subsequence of all free variables occurring in the formula. If f
is an isomorphism from .4 to B, then for every first-order for-
mula 6(z1,...,2r,) and every n-tuple ai,...,a, € A, we have that
ay,...,an satisfy @ in A if and only if f(a;),..., f(ay) satisfy @ in B.
Hence, if two structures are isomorphic, then they satisfy the same
first-order sentences, that is, they have the same first-order theory.
The converse is not true for infinite structures. By A = B we denote
that A and B are isomorphic. An automorphism of A4 is an isomor-
phism between A and itself. For more on isomorphism of structures.
see Ref. 7.

2. Computable Sets and Structures: Turing Degrees

We will focus on countable structures, that is, ones with countable
domains. If infinite, we can identify them with the set N of natural
numbers. A set A of natural numbers is computable if there is a
decision procedure for identifying its elements. That is, there is a
Turing machine that on every input a halts and outputs “ves” if
a € A and outputs “no” if a ¢ A.

The characteristic function of A is defined as

1, ifae A;

calal s 0, ifaé¢A.

\

A function f : N® — N, where n > 1, is computable if
there is a Turing machine that on every input aq,..., an halts and
outputs its value f(ay,..., ap). Hence, a set A is computable if the
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characteristic function of A is computable. Clearly, the complement
of a computable set is computable. Sets are identified with unary
relations. Computable n-ary relations for n > 1 are defined simi-
larly. For example, the set of prime numbers is computable. All finite
sets are computable. All co-finite sets are computable. Addition and
multiplication on natural numbers are computable functions (oper-
ations). It can be shown that a function f : N2 — N defined by
fla,b) = 3(a® + 2ab+ b + 3a + b) is a computable bijection. Hence,
it algorithmically codes pairs of natural numbers by natural numbers.
Decidable problems are encoded by computable sets.

Since each Turing machine is a finite list of instructions, Turing
machines can be algorithmically enumerated, even without repetition
(i.e., one-to-one), as

Mo, My, Mo, ...

Hence, there are countably many computable functions and count-
ably many computable sets. Since there are uncountably many
subsets of natural numbers, there are uncountably many noncom-
putable sets.

We consider structures for computable languages. A computable
language is a countable language with algorithmically presented set
of symbols and their arities. A structure A with domain A for a com-
putable language L is a computable structure if A is a computable
set and its operations, relations, and constants are uniformly com-
putable. For a finite language L, we can just say that its operations
and relations are computable. For example, a group (G, *) is com-
putable if G is a computable set and * is a computable operation.
A structure (A, R) with a relation R is computable if A is a com-
putable set and R is a computable relation. Examples of familiar
computable structures include the ordered sets of natural numbers,
(N, <), the ordered sets of integers, (Z, <), the ordered sets of ratio-
nal numbers, (@, <), the additive group of integers, (Z, +), and the
field of rational numbers, (Q,+, ).

An ordinal is computable if it is the order type of some com-
putable well-ordering. Computable ordinals form a countable initial
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segment of the ordinals. There exists a least non-computable ordinal,
and it is easy to see that this must be a countable ordinal, i.e., the
order type of a countable well-ordering. We call this ordinal wf']",
in analogy to wy, the least uncountable ordinal. The CK stands for
Alonzo Church and Stephen Kleene.

The standard model of arithmetic, A" = (N, +, -, §,0), the nat-
ural numbers with addition, multiplication, successor function, and
zero, is computable. In particular, N satisfies the axioms of Peano
Arithmetic. A model not isomorphic to N, which satisfies all axioms
of Peano Arithmetic, is called a nonstandard model of Peano Arith-
metic. Nonstandard models have numbers that are larger than any
natural number. Skolem constructed a countable nonstandard model
of Peano Arithmetic. Tennenbaum showed that if M is a non-
standard model of Peano Arithmetic, then M is not computable
(see Ref. 1).

Turing machines augmented with oracles were introduced by
Turing. An oracle is a set that supplies membership information on
demand and the corresponding Turing machine computations per-
form finitely many non-mechanical steps since the oracle may not be
computable. Turing degrees of complexity were introduced by Post.
Let A and B be subsets of N. We say that A is Turing computable
from B if A can be computed by a Turing machine with oracle B.
We denote this by

A<y B or deg(A) <deg(B).

For example, if B is the complement of A, B = A, we can compute
whether n € A by asking B whether n € B. Hence, A < A. Sets A
and B have the same Turing degree, in symbols,

A=7r B or deg(A)=deg(B),

if A <y B and B <7 A. Thus, A and its complement A have the
same Turing degree. We say that A has a strictly smaller Turing
degree than B, in symbols A <7 B or deg(A) < deg(B), if A can
be computed by a Turing machine with oracle B, but not vice versa.
Two Turing degrees may be incomparable. There are uncountably
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many Turing degrees since each Turing degree has only countably
many sets.

We can show that two Turing degrees have the least upper
bound, i.e., supremum:

sup{deg(A), deg(B)} = deg(A & B) where
A®B={2k:ke€ A}U{2k+1:k € B}.

For example, we can show that A <r A® B: for a given a we compute
2a and then ask oracle A @ B whether 2a belongs to it. The greatest
lower bound, i.e., infimum, may not exist. Hence, Turing degrees are
partially ordered, forming an upper semi-lattice. Computable sets
have Turing degree 0, which is the least Turing degree. For more on
Turing degrees, see Refs. 24 and 23.

In general, when measuring complexity of a structure A4, we
identify A with its atomic diagram D(A), the set of all atomic and
negations of atomic sentences allowing additional constants for ele-
ments of the domain. More precisely, if L is the language of A, then
L4 is the language L expanded by adding a constant symbol for
every a € A, and Ay = (A, a)ae4 is the corresponding expansion of
A to L 4. For example,

Qi * Qj = Ak, Qi * Q5 F A1, Gy < Ap, ...

are sentences in the atomic diagrams of the corresponding structures.

Formulas are effectively encoded with natural numbers, so D(A)
has a Turing degree, which is also considered to be the Turing degree
of A. A structure A is computable if its Turing degree is 0. Hence, .A
is computable if the characteristic function of D(A) is computable.
For more on computable structures, see Ref. 17.

3. Computably Enumerable Sets: The Halting Set

A set A of natural numbers is computably enumerable (abbreviated
by c.e.) if A is empty or there is a computable unary function f :
N — N such that A is the range of f. Hence, a nonempty c.e. set A
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can be enumerated as

ag = f(())al = f(l).(.'g = f(Q) e

Clearly, every computable set is c.e. since a decision algorithm for
identifying its elements can be transformed into an enumeration
algorithm. For an infinite c.e. set, a computable enumeration
ag,ay,as.... can be modified by crossing repetitions to be one-to-
one, i.e., without repetitions. However, a computable enumeration
may not be in the increasing (natural) order, so we cannot know at
any stage in advance whether a number that has not been enumer-
ated in A will later be enumerated or not. Computable infinite sets
are exactly those c.e. sets for which there is a computable enumera-
tion in the increasing order:

). S S <

It can be shown that a set A is c.e. if and only if there is a
computable binary relation R such that for every a,

a € A< (Ir)R(a. x).

A set A is c.e. if and only if A is the domain of some partial
computable function.

For each Turing machine M, (in the enumeration in the previous
section), we will denote the unary partial function it computes by e,

. . s n
and for n > 1, an n-ary partial function it computes by ,:2 ). Hence,

P0s L1 P2y -

is a computable enumeration of all unary partial computable func-
tions. For each partial computable function ¢ there are infinitely
many indices e such that ¢» = .. Two partial functions are equal if
they have the same domains and for each input in the domain they
output the same value. For ., we denote its domain by W,. Hence,
it follows that a set A is c.e. if and only if A = W, for some e. Hence,

Wo, W, Wa, ...

is a computable enumeration of all c.e. sets.
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For an oracle X, we can enumerate all partial X-computable
unary functions:

X e X X
P0:P1:P2 -+

as well as the corresponding X-c.e. sets.

There are c.e. sets with complements that are not c.e. These are
exactly the noncomputable c.e. sets. For example, the halting set H
is c.e., but not computable. The set H consists of all inputs e on
which the Turing machine with index e halts. That is,

H={e:e€ W} ={e: pele) halts (is defined)}
= {e : M, halts on input e}.

The set H is c.e. because it can be algorithmically enumerated by
the procedure that simultaneously runs

990(0)9 ‘Pl(l)» = (PE(E)? s

and enumerates those e for which o, (e) halts (converges), as soon as
the halting occurs. Here, simultaneously means that at each step we
add a new Turing machine and also run all activated machines for an
additional computational step. If the complement H were c.e., then
for some eg, we would have H = Weo- Then

EUEH{@EOEWEO = EDE-H—,

which is a contradiction.
We also denote H by @’ and call it the first Turing jump of @.
For a set X of natural numbers, the first jump of X is

X' = {e: pX(e) halts}.

The second jump of & is defined as H' = @” = {e : p?'(e) halts}.
This process can be iterated to obtain iterated halting sets @™ for
any natural number n > 1. Turing jumps can also be iterated through
the computable ordinals.

An example of a non-computable structure is the linear order
A = (N, <) where

2n < 2n + 1 if n belongs to the halting set H, while
2n + 1 < 2n if n does not belong to H.
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If this order were computable, the halting set H would be com-
putable, which is a contradiction. Instead of H we can use any other
non-computable set. Note that A is isomorphic to the ordered set of
natural numbers, (N, <). For more on c.e. sets and iterated halting
sets, see Refs. 23 and 24.

If a structure A is computable, then the characteristic function
of its atomic diagram D(.A) is computable, hence it is, we for some e.
We call e a computable index for A and also denote A by A.. Clearly,
not all numbers e are indices for structures.

Definition 1. Let K be a family of structures closed under isomor-
phism. The index set of K, denoted by I(K), is the set of all com-
putable indices for members of K.

4. Arithmetical Hierarchy

We have the following classification of first-order formulas. The upper
subscript 0 signifies that the quantification is only over variables that
stand for individual elements. A formula is a $§ = IIJ formula if it
is quantifier-free. For n > 0, a formula is a R (e, respectively)
formula if it is equivalent to a formula in the prenex normal form
which begins with an existential (universal, respectively) quantifier
and has n alternations of quantifiers.

We also have a similar classification of sets of natural numbers
where II, and X0 sets (or relations) are levels in the arithmetical
hierarchy obtained from computable relations by applying existential
and universal quantifiers. Equivalently, a set A is arithmetical if it can
be obtained from a computable relation by finitely many projections
and complementations.

A set Ais Xf = IIJ if it is computable. Let n > 0. A set A is Fn
if there is a computable (n + 1)-ary relation R such that for every
a€ N,

a € Ae (3r1)(Vaa) - - - (Qrn)R(a, x1, 72, . .., T,)

where @ is 3 if n is an odd number, and R is V if n is an even number.
For example, a binary relation E(i,j) is £ if it is equivalent to

d2Vy32C(i, j, . y. z), where C'is a computable relation.
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M1 sets are defined similarly starting with the universal quantifier.
The existential quantifier here can be viewed as a projection. The
negation corresponds to complementation, and the universal quanti-
fier ¥V can be expressed using the existential quantifier and negation,
as =3-. The complement of a X9 set is a IIY set and vice versa. It
follows that £ sets coincide with c.e. sets and I19 sets coincide with
co-c.e. sets.

This hierarchy of sets of natural numbers is a proper hierarchy
since X0 sets are strictly contained in oIl .1 sets, and II9 sets are

strictly contained in II) ., sets. Clearly, every X3 set is also 19, |,

and every II)) set is also £0_ ;. Tt then follows that the union of all 3.
sets is the same as the union of all 1Y sets. A set is called arithmetical
if it belongs to this union; i.e., it is IT}), for some m (or Y for some
l). We say that a set is AJ if it is both £0 and II%. We have that A2
sets are strictly contained in II) (or £¥) sets. It can be shown that
AY sets are exactly the computable sets.

It can be proved that a relation is arithmetical if and only if
it is definable in the standard model of arithmetic N by a first-
order formula in the language of arithmetic, L = {+,-,5,0}. We
say that a set C' of natural numbers is definable in N if there is
a formula #(x) such that C consists of all natural numbers n that
satisfy € in N. It is not hard to show that a relation definable in
N by a quantifier-free formula is computable. It follows that a rela-
tion definable in A" by a £9 formula (I19 formula, respectively) is a
0 relation (IT9 relation, respectively). To prove his incompleteness
theorem, Godel established that all computable relations are defin-
able in NV, and hence all arithmetical relations are definable in A/
For any computable relation there are two natural defining formu-
las: one with a block of existential quantifiers followed by a formula
with only bounded quantifiers, Vo < y and 3z < y, and the other
one with a block of universal quantifiers followed by a formula with
only bounded quantifiers. A block of existential (universal) quanti-
fiers can be replaced by a single existential (universal) quantifier by
coding tuples of natural numbers by a single natural number. It fol-
lows from a lemma by Y. Matiyasevich in his proof of Hilbert’s Tenth
Problem that bounded quantifiers can be eliminated from the above
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formulas, so a computable set is definable in A both by a 2! and
a Iy formula (see Appendix A.7 in Ref. 1). Moreover, a set is X0
(IT;, respectively) if and only if it can be defined in A by 20 (119,
respectively) formula.

Furthermore, a set is £ for n > 1 if and only if it is c.e. relative
to the iterated halting set H("~!). Here, H®) =4 @. A set is A?

if and only if it is computable in H"~Y. For more on arithmetical
hierarchy, see Refs. 23 and 24.

5. Index Sets of Structures and the Isomorphism
Problem

Given a set complexity class €, such as II3 or 29, we say that a set
X is €-complete if X isin €, and X is €-hard in the sense that every
set Y in € can be reduced to X. The reduction means that there is a
computable function f: N — N such that for every n € N, we have

iy & f(n) e X.

The reduction function f does not have to be one—one. it can be
many-one, so the above reduction is called m-reduction. For example,
we can show that the set H™ is £0-complete.

Recall that the indez set of K, denoted by I(K), is the set of all
computable indices for members of K.

Theorem 1 (Ref. 11). For the following classes K, the index set
I(K) is HS : linear orderings, Boolean algebras, equivalence structures,
abelian p-groups (for prime numbers p), vector spaces over the field
of rational numbers Q.

An equivalence structure (A4, ~) consists of a set A with a binary
relation ~ that is an equivalence relation, i.e., reflexive, symmetric,
and transitive.

An abelian p-group, where p is a prime number, is an abelian
group in which every non-zero element has order p™ for some m > 1.
Examples of such groups are Z(p"), the cyclic group of order p".
and Z(p>), the quasicyclic p-group, as well as their direct sums. We
can think of the group Z(p>) as the set of rationals in [0,1) of the
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form 5",; with addition modulo 1. Countable abelian p-groups were
classified up to isomorphism by Ulm.

The elementary diagram of A, denoted by D¢(A), is the set of
all first-order sentences of L4 that are true in .4,4. Henkin’s con-
struction of a model for a complete and decidable theory is effective
and produces a structure A with a computable domain such that
the elementary diagram of A is computable. A structure A is called
decidable if its elementary diagram D¢(A) is computable. Clearly,
every decidable structure is computable. Not every computable struc-
ture is decidable. For example, the standard model of arithmetic
N = (N,+,-,5,0) is computable but not decidable. For more on
computable and decidable structures, see Ref. 17.

Theorem 2 (Ref. 12). The index set of decidable structures is ¥3-
complete.

Definition 2. The computable isomorphism problem for K is the
set E(K) of pairs (4, j) € I(K) x I(K) such that A; & A;.

Theorem 3 (Ref. 2). For Q-vector spaces, where Q is the field of
rational numbers, E(K) is I13-complete.

In this result, Q can be replaced by any infinite computable field.

Theorem 4 (Ref. 4). For equivalence structures, E(K) is II}-
complete.

A field (F, +,) is algebraically closed if for every n > 1, we have
for every zp, z1, ..., Tn:

(Hy)(mn'yn + Tp-1 _yn—l a g G s e T O)V-T'n. =0.

Each field has a unique characteristic, either some prime p or 0.
Let F = (F,+,-) be a field. Then we use the notation:

pl =gey 1+ --- + 1, added p times.

A field F has characteristic p if we have pl = 0. A field F has
characteristic 0 if for all primes p, we have pl # 0.
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Theorem 5 (Ref. 2). For algebraically closed fields of a fized char-
acteristic, E(K) is I13-complete.

A group is torsion-free if all elements have infinite order, i.e., for
every n > 1, we have

z*x0 =p Rt =0,

Torsion-free abelian groups of finite rank n can be viewed as sub-
groups of Q".

Theorem 6 (Ref. 3). For torsion-free abelian groups of a fired
finite rank, E(K) is £3-complete.

For more on index sets of structures, see Refs. 5,6,11,13,16 and
21, and on the computable isomorphism problem with complexity in
the arithmetical hierarchy. see Refs. 11 and 14.

6. Computable Formulas

Scott Isomorphism Theorem states that for any countable structure
A, there is a L, sentence the countable models of which are exactly
the isomorphic copies of A. While L, formulas allow arbitrary
countable disjunctions and conjunctions, computable formulas allow
only c.e. conjunctions and disjunctions. Computable structures in
many familiar classes K can be described by a computable (infini-
tary) formula. We can use computable ordinals to classify computable
infinitary formulas in a fixed language.

The computable Xy and Il formulas are the finitary quantifier-
free formulas.

A computable 11, formula, for a computable ordinal o is a c.e.
conjunction of formulas

Vay(z, 1),

where 1 is a computable ¥ 3 formula for some ordinal 3 < a.
A computable ¥ formula is a c.e. disjunction of formulas

3v6(7,7),

where 6 is a computable II, formula for some v < /3.
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Thus, a computable £, formula is of the form

\/ Fibi(z, 7).,
icl
where the index set I is c.e. and #;’s are quantifier-free formulas.
For example, a computable IIy sentence describing an abelian
p-group is the conjunction of the axioms for abelian groups and

Va:\/(;r'+:c+---+.r=0).
e
m p™ times

Computable structures satisfying the same computable sen-
tences are isomorphic. For more on computable formulas, see Ref. 1.

7. Hyperarithmetical Hierarchy

Arithmetical hierarchy can be extended to hyperarithmetical
hiearchy by extending the definition of £ and II9 sets to I1% and X9
sets for all computable ordinals a. A set is called hyperarithmetical
if it can be defined in the standard model of arithmetic by a com-
putable formula. A set is I12 (X0, respectively) if it is definable in
the standard model of arithmetic by a computable II, formula (Za
formula, respectively). Ash established that in a computable struc-
ture a computable infinitary ¥, formula defines a £9 relation, and
similarly a computable infinitary I, formula defines a 19 relation,
and this holds uniformly.

Hyperarithmetical sets are the same as Al sets. Here, the super-
script 1 indicates that there are function variables in addition to ele-
ment variables. A set or a unary relation X(z) is Al if it can be
expressed both in a ] form and in a I1} form.

A ¥} form for X (z) is

AfYyR(f,z,y), where R(f,z,y) is a computable relation.

Equivalently, this form allows only existential function quantifiers.
Here, a computable relation R is allowed to access f as an oracle.
A T} form for X(z) is

Vg3z5(g.x,z), where S(g,z,y) is a computable relation.

Equivalently, this form allows only universal function quantifiers.
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There is a version of compactness theorem due to Kreisel and
Barwise, which states that if I' is a I} set of computable sentences
such that every A{ subset of I' has a model, then I' has a model. As
a corollary we obtain that if T is a II} set of computable sentences,
and if every A} subset of I has a computable model, then T" has a
computable model. For more on hyperarithmetical sets, see Ref. 1.

Theorem 7 (Ref. 11). The following are equivalent for a class of
structures K closed under isomorphism.:

(i) There is a computable sentence the computable models of which
are exactly the computable structures in K;
(i) I(K) is hyperarithmetical.

The proof of (i) = (ii) uses that a relation defined in a com-
putable structure A by a computable ¥, (II,, respectively) formula
is 0 (I19, respectively), with uniformity. Proof of (ii) = (i) uses
Barwise-Kreisel compactness theorem.

Theorem 8 (Kleene, Spector). For the following classes K, the
index set I(K) is I1{-complete (hence not hyperarithmetical): well-
orderings, reduced abelian p-groups.

An abelian p-group is reduced if it has no divisible subgroup.

A computable structure A is computably categorical if for all
computable structures B isomorphic to A, there is a computable
isomorphism f from A onto B.

Theorem 9 (Ref. 9). The index set of computably categorical
structures is I1} -complete.

A computable structure A is relatively computably categorical if
for all structures B isomorphic to A, there is an isomorphism f from
A onto B, which is computable relative to the atomic diagram of B.

Theorem 10 (Ref. 8). The index set of relatively computably
categorical structures is £9-complete.
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Friedberg enumeration of computable structures in K modulo
isomorphism relation =, in symbols K®"P/ 2 is a sequence

Cﬂ!C]=C2=-"

of computable structures in K representing each isomorphism type
exactly once. That is, for every computable A in K, there is unique
n such that A = C,. The complexity of the enumeration is the

complexity of the sequence of computable indices for the structures
(Ca)2°.

Theorem 11 (Ref. 11). Assume that I(K) is hyperarithmetical.
The following are equivalent:

(i) The computable isomorphism problem E(K) is hyperarith-
metical;
(i) There is a hyperarithmetical Friedberg enumeration of
Kcomp/ =%
(iii) There is a computable ordinal o such that any two computable
structures in K satisfying the same computable T, sentences
are isomorphic.

8. Xi-Complete Computable Isomorphism Problem

If I(K) is (no more complex than) hyperarithmetical, then the com-
putable isomorphism problem E(K) is ¥] at worst. In this section,
we will focus on those classes of structures for which we have »i-
completeness of the computable isomorphism problem.

Theorem 12 (Ref. 11). For graphs, abelian p-groups, and arbi-
trary structures with at least one relation of arity at least 2, E(K) is
E}—complete.

Theorem 13 (Ref. 15). For linear orderings, Boolean algebras,
trees, and fields of a fized characteristic 0 or p, E(K) is X1 -complete.

Theorem 14 (Ref. 10). For torsion-free abelian groups, E(K) is
X1-complete.

oo i S
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Theorem 15 (Ref. 18). For distributive lattices, nilpotent rings,
nilpotent semigroups, and 2-step nilpotent groups, E(K) is ¥i-
complete.

By A =,, B, we denote that there is a hvperarithmetical iso-
J hyp YE
morphism from A to B.

Theorem 16 (Ref. 18). In each of the following classes K with ¥1-
complete computable isomorphism problem, we have the following.

(i) There are computable structures A and B such that A = B but
A -'zhyp B.

(ii) There is a computable structure M with two finite tuples of
elements in the domain of the same length, @ and b, such that
(M,a) = (M, b) but (M, @) Znyp (M, b).

(iii) There exists a computable structure of Scott rank SR >
(i.e.. of high Scott rank).

K
o]

The Scott rank of A is < w{* if there is a computable ordi-
nal o such that the orbits (under automorphisms) of all tuples are
defined by computable II, formulas. Having Scott rank > w?"' is
the negation of the previous statement: there is some tuple the orbit
of which is not definable by any computable formula; or the orbits
of all tuples are definable by computable formulas, but there is no
computable bound on the complexity of these formulas.

The method we use in Ref. 18 for nilpotent groups, nilpotent
rings, and nilpotent semigroups, as well as for distributive lattices, is
based on uniform effective interpretations of computable binary rela-
tions or of fields into computable structures from the corresponding
algebraic classes. In general, when certain structures with particu-
larly interesting computability-theoretic properties are found, we ask
whether similar examples can be found in other classes of structures.
One approach is to encode the original structures into structures in
a given class in a way that is algorithmic enough to preserve desired
properties. This method was used by Hirschfeldt et al. in Ref. 19 to
transfer Turing degree spectra of structures and relations, as well as
computable dimensions and some other properties.
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To show that the computable isomorphism problem for nilpo-
tent groups is ¥}, we use transformation from fields to Heisenberg
groups. Mal'cev in Ref. 20 introduced such transformation from rings
to groups of 3 x 3 matrices. We assign to K, a countable infinite ring
with 1, the Heisenberg group G of 3 x 3 matrices:

Loc 0
h(a,b,c)=10 1 b |, wherea,b,ce€ K.
0+ 0l

We can show closure under matrix multiplication:
h(ao, by, co) - h(ay, by, c1) = h(ag + a1, by + by, co + ¢1 + aghy).
The identity is 1 = h(0,0,0), and the inverse is
(h(a,b,¢))"! = h(—a,—b,ab - ¢).
The commutator of two matrices, [ho, h1] = hg - hy - hy s hl_l. is
[h(a,b,¢), h(a1,b1,c1) = h(0,0, D),

apgp ap
bo bi|
The center, Z(Gx) = {g€ Gk : (VhE€ Gk)(g-h=h-g)}, is

where D =

TexQivg
h(0,0,c)=]10 1 0]:ceK
e

Furthermore, [Gx,Gk] = Z(Gk) and [Z(Gk),Gk] = {1}, 50 G is a
2-step nilpotent group.

We will further assume that K is a field and denote it by F.
Then if

ag 0 Bt o
b() # 0 s We Nhave 1n F
[h(ag, bo, cp), h(a1,b1,¢1)] = 1 & Ja ((m) iy (ao)) .
bl bo
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Now, we choose two non-commuting matrices in Gp; for example,

Tl B i () 0)
wo = h(1,0,0) =} 0 1,045 wn=h0;1,00=]0-1 1
020054 g5 1

for which D = 1. We can show that F can be interpreted into Gp.
Namely, we can define in Z(Gp) field operations of addition and
multiplication, & and ©, so that

d — h(0,0,0) is a field isomorphism between F and Z(GF).

Since the definition of ® depends on the pair wq.w;, we will also
denote it by ®ygw,. Let z = h(0,0,a), y = h(0,0,5). Then define
the addition as

T@®y=2x-y, sincezxz-y=h(00,a+7A).
Let z = h(0,0,7v). We define multiplication by the formula
T Ouoywr ¥ = 2 € '/ ([2, wo] = [, w1] = 1 A [z', w1]
= Muwoyl=y A z=[2,y]) (¥

It can be shown that a3 = v if and only if formula (*) holds. (We
can also use any other non-commuting pair as wq, wy.)

It follows that if Fy and Fy are fields such that Gp, & Gp,,
then Fy = Fi. Since the computable isomorphism problem for fields
is ¥1-complete, it follows that the computable isomorphism problem
for Heisenberg groups is £|-complete.

We will now sketch the proof that the computable isomor-
phism problem for distributive lattices is ¥i-complete. The result
also follows from X{-completeness of the computable isomorphism
of Boolean algebras, but here we give a substantially different proof
using an idea of Rabin and Scott in Ref. 22.

We reduce the structures with a single binary relation (N, R) to
distributive lattices Lr. Let R be a given infinite binary relation on
N, which is irreflexive. Assume that the domain of R > 3 elements.
Fix disjoint sets A = {a; : 1 € N} and B = {b; : i € N}. Partition B
into uniformly computable infinite sets B, , for x # y, such that
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{:Evy} = {zft} = BJ"-L’ = B.;
2y E{2 =% Doy TRt = 1.

Define a lattice that is a subset of the power set of A U B,
Lr € P(AU B), with respect to the set-theoretic C,N,U (hence a
distributive one) such that it is generated by the following elements:

all one-element sets {x} for x € AU B,
set A,
sets Uzy = der{az,ay} UB;, for all z,y with R(z,y).

It is the sets U, , that encode the relation R. Every element of £ can
be represented as the union of finitely many one-element sets, finitely
many U, ,’s, and possibly A. By omitting one-element sets that are
contained in other sets, we obtain the canonical representation of the
elements.

From a computable R, we can build a computable lattice L. To
show that Lr, = Lk, = (N, Ry) = (N, R;). we establish that R can
be defined in Li by some formula ¥g(z,y). Since the computable
isomorphism problem for structures with a single binary relation is
¥1-complete, it follows that the computable isomorphism problem
for distributive lattices is ¥{-complete.

Next, effectively transform a structure with a computable binary
relation into a structure with another computable binary relation R
satisfying a certain combinatorial condition so that the isomorphism
is preserved. We will then transform R into a commutative ring
Apg. Fix distinct elements a, b, ¢y, c1,co,.... The ring elements will
be formal linear expressions of the following form:

ma + nb+ Y, zic; for m,n, z; € Z, where the index set I is a
finite set of natural numbers, and Z is the set of integers.

We set

(Vz)(a-z2=0Ab-2=0)
b i Blidd)
and circg=4qa ifi=j

0 otherwise.
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Thus, we encode R into the multiplication - in the ring. It is not hard
to show that for all z,y, z, we have

(T 2=z (y-2)=0.

This implies associativity of - and nilpotency of the ring Ar. We
show how we can interpret R in Apg. so that

Apr, = Ag, = (N, Rp) & (N, Ry).

This implies that the computable isomorphism problem for nilpotent
rings is X{-complete.

We have presented several natural classes of structures for which
the computable isomorphism problem is ¥{-complete. This is the
most complicated situation when there is no simpler way to deter-
mine whether two computable structures are isomorphic than by
searching through a set of functions between the domains of two
structures, which are bijections and homomorphisms. As a corollary,
we obtain that in these classes there are pairs of isomorphic struc-
tures with no easy isomorphisms from the computability-theoretic
perspective.
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