Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Higher-Order Cheeger Inequality for Partitioning with Buffers

Konstantin Makarychev* Yury Makarychevl Liren Shan* Aravindan Vijayaraghavan®
Northwestern TTIC TTIC Northwestern

Abstract

We prove a new generalization of the higher-order Cheeger inequality for partitioning with buffers. Consider
a graph G = (V, E). The buffered expansion of a set S C V with a buffer B C V' \ S is the edge expansion of
S after removing all the edges from set S to its buffer B. An e-buffered k-partitioning is a partitioning of a
graph into disjoint components P; and buffers B;, in which the size of buffer B; for P; is small relative to the
size of P;: |B;| < ¢|P;|. The buffered expansion of a buffered partition is the maximum of buffered expansions
of the k sets P; with buffers B;. Let hlé’s be the buffered expansion of the optimal e-buffered k-partitioning,

then for every § > 0,
log k

ne® < 0s(1) - (

where A|(1445)k is the [(1 + §)k]-th smallest eigenvalue of the normalized Laplacian of G.

Our inequality is constructive and avoids the “square-root loss” that is present in the standard Cheeger
inequalities (even for k = 2). We also provide a complementary lower bound, and a novel generalization to the
setting with arbitrary vertex weights and edge costs. Moreover our result implies and generalizes the standard
higher-order Cheeger inequalities and another recent Cheeger-type inequality by Kwok, Lau, and Lee (2017)
involving robust vertex expansion.

) “AL+8)k]

" *The author was supported by the NSF Awards CCF-1955351, CCF-1934931, and ECCS-2216970.
TThe author was supported by the NSF Awards CCF-1955173, CCF-1934843, and ECCS-2216899.
fThe author was supported by the NSF Awards CCF-1955351, CCF-1934931, and ECCS-2216970.
$The author was supported by the NSF Awards CCF-1934931, CCF-2154100, and ECCS-2216970.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2236

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1 Introduction

Cheeger’s inequality is a fundamental result in spectral graph theory that relates the connectivity of a graph
to the eigenvalues of the Laplacian matrix associated with the graph. Consider an undirected d-regular graph
G = (V, E) on n vertices. Let Lg be the normalized Laplacian of the graph defined by Lg = I — %A, where A
is the adjacency matrix of the graph G. Let 0 = Ay < Ao < A3--- < A, < 2 be the eigenvalues of Lg. For every
vector z € RV with coordinates z(u) (where u € V),

(1.1) TLgz = % > (z(w) - 2(v)%

(u,v)EE

For aset S C V,let 6¢(S,V'\S) denote the number of edges in the graph crossing the cut (S, V'\ S). The Cheeger
constant or expansion of the graph G is

6= min $c(S), where ¢g(S) = s

is called the expansion of the cut S, V'\ S. Cheeger’s inequality by Alon and Milman [AMS85, Alo86, Che69] states
that

A
(1.2) 72 < he < v/2)s.

Similar inequalities also hold for graph partitioning into k parts [LRTV12, LGT14]. Here is a higher order Cheeger
inequality by Lee, Oveis-Gharan and Trevisan [LGT14] (see also the paper [LRTV12] by Louis, Raghavendra,
Tetali and Vempala): For every § > 0, !

Ak

(1.3) 5 < hg < 05(\/10g k) .)‘[(1+5)M’
where J\; is the i-th smallest eigenvalue of the normalized Laplacian Lg, and
he = i p).
parrtriltli%ns Erelz[ik}](¢G()
Pi,..,P, of V

The upper bounds in (1.2) and (1.3) are constructive, which means that there is a polynomial-time algorithm
that finds a partitioning P, ..., Py using a spectral embedding of GG, an embedding of the graph vertices into R
based on the first &' = [(1 + §) |k eigenvectors of the Laplacian. Similar spectral algorithms are commonly used
in practice [NJWO01, McS01]. We refer the reader to examples of applications of Cheeger’s inequality to spectral
clustering [KVV04, ST07, Spi07], image segmentation [SMO00], random sampling and approximate counting [SJ89].
Cheeger’s inequality is widely used in combinatorics and graph theory. Higher-order Cheeger inequalities also
have connections to the small-set expansion conjecture [RS10, RST12], an important problem in the area of
approximation algorithms.

The objective of abovementioned k-way graph partitioning algorithms is to find the Sparsest k-Partition
of the graph i.e., a partition Py,..., P, that minimizes the value of max;cy ¢c(P;). Together the lower and
upper bounds (1.3) give a bound on the cost of the algorithmic solution in terms of the optimal solution:

max;e(x) ¢a(P) < Os (\/ log k - th_é)kJ). This bound may be good for large values of thé)M but can also be

really bad for small values of hg(lw)m. In fact, the approximation factor of such k-way partitioning algorithm
may be as large as Q(n) even for k = 2. It can be so large because the upper bound is non-linear — it has a
“square-root loss”. To address this problem, several improved Cheeger inequalities under additional structural
assumptions on the graph G have been presented in the literature [KLL*13, KLL17].

In this work, we introduce a new type of graph partitioning — partitioning with buffers — and prove a higher-
order Cheeger inequality for them. Our inequality avoids the “square-root loss” and provides a constant bi-criteria
approximation algorithm for the problems (see below for details). While being a natural problem, in and of itself,

IThe upper bound on h’& in [LRTV12] is O(v/1og k)v/Ack where ¢ > 1 is an absolute constant.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2237

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

our results for buffered partitioning also imply the standard higher-order Cheeger inequality (1.3) and a Cheeger-
type inequality by Kwok, Lau, and Lee [KLL17] for robust vertex expansion (see Section 1.5). Finally, these
Cheeger inequalities can also be extended to a more general setting with arbitrary vertex weights and edge costs:
in contrast, we are not aware of such a generalization for the standard Cheeger inequalities i.e., without buffers.

1.1 Cheeger inequality for Buffered Partitions To simplify the exposition, we first present and discuss
the setting where G is a d-regular graph. Then, in Section 1.2, we consider non-regular graphs G with arbitrary
positive vertex weights and edge costs.

Multi-way Partitioning with Buffers. For every ¢ € [0, 1), an e-buffered k-partitioning of an undirected
graph G = (V, E) is a collection of subsets Py, Pa,..., P, CV and B, Bs,..., B, C V that satisfy the following
conditions:

1. All sets P; and B; are pairwise disjoint (i.e., ,NP; = @, BN B; = &, and P, N B; = & for all
i,j€{l,...,k});

2. Ui (PUB) =V;

3. Sets P; are nonemptys;

4. |B;| <¢|P| for all i € {1,...,k}.

We say that B; is the buffer for P;. We denote this buffered partition by (Py,...,Px || B1,...,Bk). Now we
define the buffered expansion of a set P with buffer B for d-regular graphs. Later, we will extend this definition
to graphs with arbitrary vertex weights and edge costs. The buffered expansion of a set P with buffer B

éc¢(P,V\ (PUB))

The definition is similar to that of the standard set expansion except we do not count edges from set S to its
buffer B. Define the cost ¢G(P,..., P || Bi,.-.,Bg) of a buffered partition:

(1.4) ¢G(P1, “ee ,Pk || Bl, ceey Bk) = ie?llaxk} ¢G(Pi || Bz)

See Figure 5 on page 38 for an illustration of the edges that contribute towards the expansion ¢g(FP; || B;).
The e-buffered expansion of the graph G = (V, E) is defined as the minimum value among all e-buffered partitions:

1.5 hFE = i Pi,...,P. || Bi,...,Bg).
() G E-buffereclinlgljpartition ¢G(b k H b k)
(P1yeees P || B1,...,Bi)
Our main result is a new Cheeger-type inequality that relates buffered expansion to the eigenvalues of the
Laplacian. We first state it for regular graphs. Consider a d-regular graph G. Let Lg be its normalized Laplacian
and 0 = A\; < Ay < --- <)\, be its eigenvalues.

THEOREM 1.1. For every ¢ € (0,1),

c(0)logk

k.e
(1.6) he® < =

“A(14+6)k] s

where ¢(8) is a function that depends only on 6. Furthermore, there is a randomized polynomial-time algorithm
that given G finds an e-buffered k-partitioning (P1,..., P || Bi,...,Bg) with ¢g(P1,...,Px || B1,-..,Br) <

(8)log k

A k)
Our algorithm in Theorem 1.1 uses the top | (1 + §)k| eigenvalues and eigenvectors of the Laplacian matrix Lg.
Note that these eigenvalues and eigenvectors can be approximated to the desired precision in polynomial time.
However, we ignore numerical/precision issues in this paper and in the remainder of this paper, assume that the
algorithm has the exact values of eigenvalues and eigenvectors. As in the standard Cheeger-type inequality (1.3),
we upper bound expansion for k-way partitioning in terms of Ay, where ¥’ = |[(1 4+ §)k| may be larger than k
(depending on the value of § > 0). However, for every fixed k, we can let 6 = 1/(k + 1) and get the following
result.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2238

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

COROLLARY 1.1. For every k, hé’g < 5.\, where ¢ depends only on k. Furthermore, there is a randomized
polynomial-time algorithm that given G finds an e-buffered k-partitioning

(Pla"'apk || Bl7-"aBk) withd)G(Pla"'aPk || Blaka)Sc?k)\k

Theorem 1.2 presented later is a novel generalization of Theorem 1.1 to graphs with vertex weights and edge
costs.
Approximation results The spectral graph partitioning algorithm provided by Theorem 1.1 can be seen

1
as an 05<7 log k:) -pseudo-approximation algorithm for the k-way sparsest partitioning problem. It finds an e-
€

buffered k-partitioning (Pi,..., P, B1,..., By) with the maximum expansion bounded by O s(log k) times the
cost of the true optimum solution of the non-buffered |(1 + §)k]-way partitioning problem. That is, the solution
produced by our algorithm has an approximation factor of O, s(logk) but (1) uses € buffers around each set
P;, and (2) has fewer sets than the true optimal solution. This pseudo-approximation algorithm also works
for non-regular graphs with vertex weights and edge costs. See Theorem C.1 for details. Applying this pseudo-
approximation algorithm recursively, we get an O(1/¢)-pseudo-approximation algorithm for the Buffered Balanced
Cut problem (see Theorem D.1) and an O(log2 k) pseudo-approximation algorithm for a buffered variant of the
balanced k-partitioning problem (see Corollary D.1).

Let us examine some applications of buffered partitioning and our techniques.

Applications Spectral algorithms are widely used across several application domains because they are very
fast and scalable in practice [PSL90, vLO7]. For example, a standard off-the-shelf package finds the first 100
eigenvectors of the Twitter graph [LM12] in less than half a minute. This graph has 81 thousand nodes and 1.3
million edges. In contrast, linear programming and semidefinite programming based methods do not scale well
and cannot handle such large graphs at the present time. This motivates the design of spectral algorithms for
graph partitioning with stronger guarantees. Our work demonstrates that one can achieve very good theoretical
guarantees for Buffered Sparsest k-Partitioning.

As mentioned earlier, the algorithms we present in this paper give an O; s(log k)-pseudo-approximation for
the Buffered Sparsest k-Partitioning problem, and a O(1/e)-pseudo-approximation for the Buffered Balanced
Cut problem (see Section D). For constant e, this corresponds to a constant factor approximation with buffers.
For comparison, the best known approximation guarantees for Balanced Cut or Sparsest k-Cut without buffers
incur logarithmic factors in the number of vertices n.? Similarly, the best known approximation for Sparsest
k-Partitioning is Os(v/lognlogk) [LM14]. The caveat is, of course, that our algorithm produces an e-buffered
partitioning but we compare its cost with the cost of the optimal non-buffered partitioning.

In applications of graph partitioning and clustering, relaxing the partitioning using buffers is often benign
and even natural. Let us consider the following application of graph partitioning. Suppose we have a graph whose
nodes represent user profiles in a social network (like the Twitter graph we mentioned earlier) and edges represent
connections between them (friends, followers, etc). We would like to assign these profiles to two machines so
that each machine is assigned about the same number of profiles and the number of separated connections is
minimized. These are common requirement for graph processing systems. In other words, we need to solve the
Balanced Cut problem for the given graph. If we run our algorithm on this graph, we will get two parts S, T
and buffer B. We can store S and T on the first and second machines, respectively, and replicate nodes in B on
both machines. This way we will separate only nodes located in S and T'. Partitioning with buffers can be useful
to obtain better solutions for several other applications such as resource allocation and scheduling, where graph
partitioning is used.

Moreover, in applications like community detection, it is common for the communities to have small
overlaps [YL14, YL12]. Vertices belonging to multiple communities may correspond to influential or well-connected
nodes, that would disproportionately affect the cost in a disjoint partition. While there has been much recent
interest in detecting overlapping communities, it is challenging to obtain algorithmic guarantees in the overlapping
setting (see [KBL16, OATT22] for different formulations and results on this problem); in particular, there are
very few theoretical results for spectral algorithms even in average-case models. An e-buffered partitioning with
sets S, T and buffer B can be viewed as two overlapping communities S’ = SU B and T/ = T U B with small
overlap |S N T| < emin{|S|, |T|}. Hence e-buffered partitions capture overlapping communities and allow us to

2For Balanced Cut without buffers, the best true approximation factor is O(logn) [AR04, Ric08], and the best pseudo-
approximation is O(y/logn) [ARV09].

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2239

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

reason about spectral methods even in the overlapping setting (see also footnote 6).

Finally, buffered partitioning is an interesting problem in its own right, it gives a common, versatile
generalization that captures important results in spectral graph theory including higher-order Cheeger inequalities
and robust vertex expansion as described in the next few sections.

1.2 Graphs with vertex weights and edge costs In the standard Cheeger inequality, the weight of every
vertex must be equal to the total weight of edges incident on it. For instance, in d-regular graphs, the weights of
all vertices are equal to d.® Surprisingly, we can generalize our variant of Cheeger’s inequality to vertex weighted
graphs. We show that the Cheeger inequality for buffered partitions also holds when graph G = (V, E,w, ¢) has
vertex weights w, > 0 and edge costs ¢, > 0. In that case, we define the non-normalized Laplacian ic for G as
follows. L¢ (u,u) is the total cost of all edges incident on u and ic;(u, V) = —cyy for (u,v) € Ej; all other entries
are zero. Then, for any vector z € R™, we have

(1.7) 2TLoz= Z Cuv(2(1) — 2(v))?.
(u,v)EE

Further, we define the weight matrix D,, as follows: D,,(u,u) = w, and D,,(u,v) =0 if u # v (D,, is a diagonal
matrix). Finally, we define the normalized Laplacian Lg = D, 1 Qing_ul/ % Note that

z(u) z(v) 2
T _
z' Lgz = Z cuv< 1/2_w1/2) .

(u,v)EE Wy

Denote the weight of a set of vertices A by w(A) = >, c4w,. We extend the definitions of éc(A, B),
oc(P || B), ¢c(Pr,..., Py || B1,...,Bx), and hlégE to graphs with vertex weights and edge costs:
5(P,V\ (PUB))
w(P)

ba(A,B)= > cw and (P B)=
uceAveB
(u,v)EE

Quantities ¢g(Py,..., Py || Bi,...,By) and hé’s are given by formulas (1.4) and (1.5), respectively. We say that
partition (Py,..., Py || Bi,..., By) is e-buffered if w(B;) < ew(P;) for every i € [k].

Note that the definitions of L¢g, ¢, ¢g, and hg’a are consistent with those for regular graphs with unit vertex
weights and unit edge costs. As a side note, we observe that the definition of Lg coincides with the definition
of the normalized Laplacian in the standard Cheeger inequality for non-regular graphs with edge costs. Note
that in that inequality, vertex weights are defined as w, = sz(u,v)e & Cuv- In contrast to the standard Cheeger
inequality, our variant holds for arbitrary vertex weights and edge costs.

THEOREM 1.2. Let G = (V, E,w,c) be a graph with positive weights w, > 0 and edge costs ¢y, > 0, € € [0,1),
0 €(0,1), and k > 2 be an integer. Assume that max, w, < ew(V)/(3k). Then

k(6) log k

ke
(1.8) het < =

‘A atok) (La),
where k(0) is a function that depends only on §. Furthermore, there is a randomized polynomial-time algorithm
that given G finds an e-buffered k-partitioning (P1,..., P || Bi1,...,Bg) with ¢g(P1,...,Px || B1,...,Br) <

OB 4ok (La)-

This new generalization with vertex weights and edge costs is crucial for the pseudoapproximation guarantees
for the buffered versions of Balanced Cut (Theorem D.1) and Balanced k-way partitioning (Theorem D.1) that
were mentioned earlier.

3 Admittedly, if vertex weights w,, and edge costs cyy are arbitrary, we can apply the standard Cheeger inequality as follows. First,

Ev:(u,u)EE Cuv . /
=l ==——. This ensures that wy, > 37, »er

let us rescale all w,, by letting w; = aw, where o = maxy,
loops (u,u) of cost cyy = Wy — Zm(u v)EE Cuv- After this step, w!, = Zv:(u v)€E Cuv and thus we can apply the standard Cheeger

cyv. Then, introduce
inequality. While this approach yields a Cheeger-type inequality, we lose a factor of v/« in the approximation guarantee for hg and
h’é; e.g., we get hg < v/a-+/2X2 when k = 2. Note that a can be arbitrarily large. Further, if w, < Y
vertex u, then o > 1.

vi(u,w)€ E Cuv €ven for a single
:(u,

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2240

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1.3 Buffered Cheeger’s inequality for k£ = 2 For k = 2, we provide an alternative slightly simpler variant
of buffered Cheeger’s inequality. We give a polynomial-time algorithm that partitions V into three disjoint sets:
parts S, T, and buffer B, satisfying SUT U B =V and |B| < emin(|S],|T|). The buffered expansion of S and
T, defined as 6(5,T)/ min(w(S), w(T)) is at most O(Az/¢€) (see Proposition 2.1 for details).

We provide a self-contained proof of this simpler result for & = 2 in Section 2. We remark that this
result coupled with Lemma 5.1 from this paper and Theorem 4.6 from the paper by Lee, Oveis-Gharan, and
Trevisan [LGT14] already yields weak versions of our main results (Theorems 1.1 and 1.2) where O(logk) is
replaced with O(log2 k). This extra logarithmic factor is a large loss in the context of graph partitioning problems,
and this is analogous to the weaker higher order Cheeger inequality obtained in [LGT14] by combining Theorem

1
4.6 of [LGT14] with the standard Cheeger inequality for k = 2.* To get a tight bound of O(g log k), we design

a new algorithm (see the next section for why our result is tight in both k and €). We give an overview of new
techniques in Section 1.7.

1.4 Our result generalizes higher-order Cheeger inequalities Our main result (Theorem 1.1) can be
seen as a generalization of Cheeger’s inequality (1.2) and the higher-order Cheeger inequalitiy (1.3). To obtain
these results, we apply Theorem 1.1 with € = /A |(144)x) log k. We find the largest set P, among Py, ..., P,. We
may assume that P, contains at least {2(dn) vertices (see Section B for the details). Then we include all buffers
in set P;; that is, we let P/ = P, U(J; B;. We obtain a non-buffered partition of G. Using that |B;| < ¢|P;| and
0(P;, B;) < d|B;| (since the graph is d-regular), we get for ¢ # ¢ (here k' = [(1 4 0)k]),

6(Pi, Bi) _ c(6)logk d - /Ay log k| Pi|

P) = ¢a(P; || B < A = (c(8) + 1)/ Ar log k.
¢c(Pi) = ¢a(P; || Bi) + aP;] o Togh T dP| (c(6) + 1)/ A log
We bound ¢ (P/) (the expansion of the updated set P/) as follows,

d|P| on-d

¢(Ptl) = \/ A log k.

Hence Theorem 1.1 provides an alternate proof of (1.3). Furthermore, this proof suggests that the factor of

1
O(-log k) in the upper bound of Theorem 1.1 cannot be improved. It also shows that our inverse dependence on
€
¢ is tight even for k = 2 (as otherwise we would be able to strengthen Cheeger’s inequality, which is known to be
tight).

1.5 Connection to Robust Expansion Theorem 1.1 also generalizes the Cheeger-type inequality by Kwok,
Lau, and Lee [KLL17] that gives a bound for Ay in terms of robust expansion [KLMO06]. Let n € (0,1). For S C V,
define

(1.9) N, (S) = min {|T| ST CV\S, 06(S,T) > (1—n)dc(S,V\ 5)}

Ny (S5)
|5

In other words, (b}?/ (S) is the vertex expansion of set S after we remove an 7 fraction of the edges leaving S in the

(1.10) ¢y () =

and (bX(G): min @Y (S)

sis|<|vi/2 "

optimal way (which minimizes the vertex expansion of S in the remaining graph). Quantity ¢} (S) is less sensitive
to additions of a small number of edges to graph G than the standard vertex expansion. For that reason, (;5)7/(5)
is called the robust vertex expansion of G. Kwok, Lau, and Lee [KLL17] proved the following result for n = 1/2.

THEOREM 1.3. (SEE THEOREM 1 IN [KLL17]) Ay = (hG ¢1/2())

The following generalization of Theorem 1.3 is an immediate corollary of Theorem 1.1 (see Appendix A for a
proof).

COROLLARY 1.2. For every n € (0,1) we have Ao = Q(n ~ha - gZ)X(G))

We remark that Theorem 1.3 is related to the case kK = 2 in Theorem 1.1.

IThe stronger bound of Theorem 4.1 in [LGT14] avoids Theorem 4.6.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2241

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1.6 Lower Bounds We also prove a lower bound on hé’s, which is linear in Ag.
THEOREM 1.4. For every d-reqular graph G, integer k > 2, and € > 0, we have,
>\k — &

hk,5>)
G = 2

We remark that the additive dependence on ¢ in the above lower bound (Theorem 1.4) is unavoidable even when
k = 2.5 This is useful to derive a lower bound on the optimal buffered expansion hé’g; moreover in conjunction
with the upper bound (applied with a larger £’), one can also get a bicriteria approximation for buffered k-way
partitioning.%

1.7 Overview and Organization We start with proving a weaker version of our main result (Theorem 1.1)
for k = 2 in Section 2. This proof is significantly simpler than the general proof but nevertheless illustrates why
we get a linear dependence on A\ rather than a square-root dependence in our Cheeger-type inequality. In the
proof, we use the thresholding idea from the proof of the standard Cheeger inequality but add an extra twist
— use two thresholds instead of one. First, we compute the eigenvector u corresponding to the second smallest
eigenvalue Ay of the normalized Laplacian Lg of G. Let u(7) be the i-th coordinate of u. Recall that in the proof
of Cheeger’s inequality, we put each vertex i either in S or in 7', depending on whether u(i)? > 7 or u(i)? < 7
for an appropriately chosen threshold 7. To prove our inequality for & = 2, we use two thresholds 7 and (1 + ¢)7
and, loosely speaking (see Section 2 for the precise description), put i in T', B, S depending on whether u(i)? lies
in (—oo, 7], (1,(14+¢€)7), or [(1 4 €)T, 00), respectively.

In the subsequent sections, we prove the main result i.e., Theorem 1.1 for arbitrary k. Recall the definition
of the spectral embedding of graph G, which we use in our proof. Let x1,...,x) be the eigenvectors of Lg
corresponding to the k' = | (14 6)k] smallest eigenvalues. Note that the coordinates of vectors z; are indexed by
vertices u; denote the coordinate with index u by x;(u). The spectral embedding maps vertex u to vector @ € R
with coordinates 1 (u), ...,z (u). We compute the spectral embedding. And now our goal is to partition vectors
@ (so that the corresponding buffered partition satisfies the desired properties). To do so, we introduce a new
technical tool — orthogonal separators with buffers — for partitioning sets of vectors.

Given a set of unit vectors, the orthogonal separator procedure generates three (disjoint) random sets — set
X (called an orthogonal separator) and its two buffers Y and Z — such that

1. if w € X and v is close to u then v is in X UY U Z with high probability
2. if vectors u and v are far apart, then it is unlikely that both of them are in X
3. |Y],|Z| are at most £|X| in expectation

(See Theorems 3.1 and 3.2 for details.) Orthogonal separators with buffers provide a basic building block for
constructing buffered partitionings. We repeatedly apply the orthogonal separator procedure to normalized vectors
Y(a) = ﬁ and obtain subsets X; and their buffers Y;, Z;. Merging the obtained sets and filtering/thresholding
them based on the lengths of vectors u, we obtain a partial buffered partitioning. This partitioning has all the
desired properties except that it does not necessarily cover the entire vertex set V. We show the desired properties
of the partial buffered partitioning by using the properties of the orthogonal separator. We use item 1 to argue
that the buffered expansion of each set P; is small, item 2 to argue that the obtained sets are not too large and
thus there are at least k sets in the partitioning, and item 3 to argue that |B;| < | P;|.

Note that orthogonal separators with buffers generalize (non-buffered) orthogonal separators introduced by
Chlamtac, Makarychev, and Makarychev [CMMO06] and used in a number of SDP-based approximation algorithms
for graph partitioning problems. An analog of Theorem 3.2 for (non-buffered) orthogonal separators was first
proved by Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, and Schwartz [BFK*14] (see also [LM14]).

5For the tight example, consider two cliques on vertex sets A and B of size (1 + ¢)n/2 each, with overlap of |A N B| = en vertices

and with no edges between A\ B and B\ A. Some of the edges incident on AN B are resampled to ensure (approximate) regularity.
While hés =0, it is easy to show that A2 = Q(e).

6 Specifically, for any e € [0,1),6 € (0,1), and & > &, our algorithm given a graph G finds an &'-buffered k-partitioning
(P1,...,P; || B1,...,Bg) with ¢g(P1,...,Px || Bi,...,Br) < c¢(6)logk - (hgc(l-'—é)hE +¢)/e’, where ¢(6) > 0 is a constant that
only depends on §.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2242

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Our high level approach follows the paper by Louis and Makarychev [LM14]. However, our algorithm and its
analysis substantially differ from theirs because we need to use orthogonal separators with buffers and keep track
of the buffers between clusters. Also, our algorithm uses a spectral embedding while the algorithm by Louis and
Makarychev [LM14] uses an embedding obtained from an SDP relaxation, which imposes additional constraints
on vectors.

We prove some useful claims about the spectral embedding in Section 6. We define orthogonal separators
with buffers and present the main theorem about them (Theorem 3.2) in Section 3. We prove Theorem 3.2 in
Section 7. We show how to obtain a partial buffered clustering in Section 4. Finally, in Section 5, we show how
to obtain a true buffered partitioning.

The proof of the Cheeger inequality for graphs with arbitrary vertex weights and edge costs (Theorem 1.2)
is almost identical to that of Theorem 1.1. In order to simplify the exposition, we only present the proof of
Theorem 1.1. The same proof with minimal changes works in the general case. Instead of presenting essentially
the same proof again, we give a black box reduction from Theorem 1.1 to Theorem 1.2 in Appendix E. The
reduction however may significantly increase the running time of the algorithm. We stress that the algorithm
from Theorem 1.1 also works with weighted graphs.

The other sections and appendices are organized as follows. In Section A, we show that Theorem 1.1 implies
Corollary 1.2, which we discussed in Section 1.5. In Section B, we prove a technical claim about e-buffered
partitions. In Section C, we prove a lower bound on k¥ for unbuffered partitions of graphs G with vertex weights
and edge costs. Combining this lower bound with Theorem 1.2, we get a pseudo-approximation algorithm for
the Sparsest k-way Partitioning problem (Theorem C.1). In Section D, we present our pseudo-approximation
algorithm for the Buffered Balanced Cut problem. In Section F, we prove Theorem 1.4 (a lower bound on hg’e
discussed above). In Section G, we give a few useful estimates on the Gaussian distribution, which we use
throughout the paper.

Other related work. Clustering with vertex deletion and duplication has been studied in other context
as well. We refer the reader to the following recent results: Filtser and Le [FL21]|, Haeupler, Hershkowitz, and
Zuzic [HHZ21], Filtser [Fil22].

2 Warm up: Cheeger’s Inequality with a Buffer for k = 2

As a warmup, we provide a self-contained proof of a weaker version of Theorem 1.1 for k¥ = 2. Here, we will
consider cuts (S,T) with a common buffer B (instead of disjoint buffers for S and 7). Such cuts consist of three
disjoint sets S, T', and B that partition the set of vertices V into three groups. We will refer to such a partition as
(S,T || B). While there are many new ideas needed to obtain Theorem 1.1 in full generality, this simpler setting
already demonstrates how one can leverage buffers to obtain an improved upper bound.

PROPOSITION 2.1. Let ¢ € (0,1/4). Consider any graph G = (V, E) with positive vertex weights w, > 0 and
edge costs ¢y, > 0. Let g be the second smallest eigenvalue of Lg = D;l/QigD;l/Q, the normalized Laplacian
of G. Then, in polynomial time we can find three disjoint sets S, B,T with SUBUT =V, w(S) < w(T) and
w(B) < ew(S) such that

a(S,T | B) = lé,ff(;;) <41+ g)xg.

Proof. The proof follows the same general strategy as the standard proof of the Cheeger inequality. We show how
to find a distribution over (buffered) partitions (S, B, T) in the graph G, by thresholding the second eigenvector
of Lg, such that:

(I) E]6(S,T)| < (14 1/e)Ag-E[w(S)] and (II) E[w(B)] < eE[w(S)].

The first condition gives an upper bound on the expected number of (non-buffered) edges crossing the cut, while
the second condition gives a bound on the expected size of the buffer. A simple probabilistic argument (see
Lemma 2.1) allows us to conclude that there exists a single buffered threshold cut that simultaneously satisfies
both the properties (with some slack).

Consider the spectrum of matrix Lg = Dy, 1 21~/ng;1/ ?_ The first eigenvector of the non-normalized Laplacian
L¢ is the vector of all ones denoted by 1. Its eigenvalue is 0. In other words, Lel = 0. Consequently,

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2243

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LG(D}U/21) = D;1/2igl = 0. Hence, DY?1 is the first eigenvector of Lg. Let y be an eigenvector of Lg
corresponding to the second eigenvalue A\g = Ay of Lg. Then, y L D},,/ *1 and

(2.11) (y, Lay) = (y, D, *LaDy ?y) = Aclly|*.
Let v = Dy'/?y. Then, we have v L D, 1 (because (v, Dy,1) = (y, D}u/21> =0) and
(2.12) (v, Lav) = (D, ?y, La D, ?y) = Aallyll* = Al Do ?v]1*.

Step 1. Splitting the vector. For technical reasons, we need to split vector v into two vectors v4 and v_
such that the vertex weight of non-zero coordinates in each vector is at most w(V')/2,

w({i: v (@) >0} <w(V)/2; w({i:v-(i) >0}) <w(V)/2.

We do this by following a standard trick that is often used in the proof of Cheeger’s inequality. Let z denote the
smallest coordinate value in the vector v such that the total vertex weight of coordinates with a value greater
than z in vector v is at most w(V)/2, i.e.

w{i:v@) > z2}) <w(V)/2; w{i:v(E) < z}) <w(V)/2.
Then we shift the entire vector v by 2 and get v' = v — z1. Since Lel =0and v L D,1, we have

W', L'y = (v, Lav) — 22(v, La1) + 22(1, La1) ™ £ Mg || DY 0| < Ag|| DY 20|,

=0 =0

The last inequality holds because

|DLY/20'||? = ||DY/?0||? + 22| DY/?1||? — 22(DY/%v, DL/?1) = | DY/?0||? + 2% | DY/?1||> =22 (v, D,y 1) .
N—_—— N—_——

>0 =0

We now split the vector v’ into two vectors vy, v_ with disjoint supports as follows:

0y (i) = {v(i) -z iv@ 2z (i) = {0, if v(i) > 2

o, otherwise, v(i) — z, otherwise.

1/2
w

CLAIM 2.1. Foru=wv, oru=uv_, we have u # 0 and (u, Lau) < \g|| Dy “ul|?.

Proof. Vectors Di)/ 2v+ and D}U/ u_ are orthogonal because their supports are disjoint (note: Di)/ ?isa diagonal

matrix). All coordinates of D}U/ 2v+ are non-negative, and all coordinates of D}U/ 2u_ are non-positive. Thus,

1D v |2 + || Do 0|2 = || Do (vs +v2) > = | D/ *0'||? and

(W', Lav'y = (vy, Lauy) + (v_, Lav_) + 2(v_, Lgvy) > (vy, Lgvy) + (v_, Lau_).
—_—

>0

The last inequality holds because all off diagonal entries in L are non-positive; v (i)v_(j) < 0 for all i # j; and
vy (i)v—(i) = 0. We have

(v4, Lagvy) + (v, Lgv-) < (', Lav') < AclIDy/*V'|? = Aa(IDy/*v |1* + 1D/ *v-|).
Thus, for u = vy or u = v_ the desired inequality holds. 0

Let u be as above. We assume without loss of generality that ||ulec = max, |u(i)] = 1 (if |lulje # 1, we
divide u by ||u||so). Next, we show that there exists an e-buffered partition with small expansion by thresholding
on this vector u.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2244

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Step 2. Random Thresholding with Buffers. Pick a random threshold ¢ € [0, 1] uniformly distributed
in [0, 1] and define sets S, T, and buffer B as follows:

(2.13) S={i: (')2>t}
(2.14) T ={i:u(i)® <t +a>}
(2.15) B= V\SuT {i:t/a+e) <u(i)® <t}

Note that BUS = {i : u(i)? > t/(1+¢)}. Since ¢ is picked uniformly from [0, 1] and ||ull = 1, we have

Zwl Pr{i e S} = sz = | DY ul?,
and
(2.16) E[w(BUS)] = Z w; - min((1 + &)|u(i)|?,1) < (14 ¢)|| DL/ ?u?.

Thus, E[w(B)] < ¢ Di/*ul|? = £ E[w(S)], as stated in Equation (IT).

By our choice of z, the weight of vertices with positive values in u is at most w(V')/2. Since S contains a
subset of vertices with positive values in u, we have w(S) < w(V)/2.

Note that for every edge (i,j) from S to T, we have u(i)? > t > t/(1 +¢) > u(j)?. Thus, for all edges
(i,5) € 6(S,T), we have: (a)i € S,j € T if u(i)?> > u(j)? and (b) i € T,j € S if u(i)?> < u(j)?. Now consider an
edge (i,7) € E with u(i)? > u(j)?. The probability that (i,5) € 6(S,T) equals

Pr{(i,j) € (S, T)} =Pr{i € S;j € T} = Pr{t <w(i)® & t > (1+¢e)u(4)*}
= max{u(i)? — (1 +&)u(4)?,0}.

To bound the right side, we use the following simple claim.

CLAIM 2.2. For all € > 0 and all real numbers a and b, we have
—(L+e)b* < (1+Y/e)(a—b)*
Proof. If b = 0, then the inequality holds. Assume, that b # 0. Divide both sides by b? and denote A = a/b. We
need to show that (14 1/e)(A —1)? = (A* — (1 +¢)) > 0. Write,
(L+ o)A = 1) = (A2 = (142)) = Yed? = 2(1+ Vo)A + (VE + 1/y5)?
= (Yve = (Ve +1/va))?
o
Hence from the above Claim 2.2, we have
Pr{i € S5 € T} < (1+1/2)(u(i) — u(5))*.

By linearity of expectation,

BISS.T)< (141 3 epluli) —uli) "2 (1+ Vo), Low) <

(i,4)EE
u(i)?>u(j)?

< L+ Ye)AalIDy*ul® < (1 +1/e)Aa - Elw(S))-
We bounded (u, Lgu) using Claim 2.1 (cf. Equation (2.12)). Thus, this distribution over buffered partitions

(S, T || B) satisfies Equation (I). Since (I) and (II) both hold, we can use Lemma 2.1 (see below) to conclude that
there exists a cut (S,T) with buffer B for which

16(5,7)| < 2(1 4 Ye)hg - w(S), and w(B) < 2e - w(S).

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2245

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

For this cut (S, 7) with buffer B, we have

By (2.13) and (2.14), we have SC{i:u@?>0and T D {i:u()? =0} Thus w(T) < w({i su(i)? > 0}) <
w(V)/2 and w(T) > w({i : u(i)? = 0}) = w(V) —w({i : u(i)®> > 0}) > w(V)/2. Therefore, w(T) < w(S). We
conclude that

5(S, 1) _ 16(S,T
| (JA)| S | (JA)| <2(1+1/5))\G
w(T) w(S
We obtain the desired result for ¢’ = 2¢. To finish the proof, it remains to show Lemma 2.1.
|
LEMMA 2.1. For anym > 2, consider m arbitrary jointly distributed non-negative random variables X1, ..., Xpm—1

and Y. Suppose that for everyi=1,...,m — 1, E[X;] < o; E[Z]. Then,

(2.17) Pr{X; < (m—-1)o;Y, Vie[m—1]}>0.
Proof. Consider a new random variable Z = Ez_ll (mi({')ai. By the linearity of expectation, we have
m—1
1 R
E[Y] > = E[Z].
Y1z g Y P —pi

i=1

This implies that Pr{Y > Z} > 0; otherwise we would have E[Y] < E[Z]. If Y > Z, then we have for every
i=1,....m—1, X; < (m—1)a;Y. Therefore, inequality (2.17) holds. |

3 Orthogonal Separators with Buffers

In this section, we introduce orthogonal separators with buffers. We will prove Theorems 3.1, 3.2, and 3.3 in
Section 7. In these theorems, we provide randomized procedures to generate orthogonal separators with buffers
in a set of unit vectors U in R?. In the next section, we will use the procedure in Theorem 3.3 to create a partial
partitioning. We first use spectral embedding to map each vertex v € V to a vector @ € R¥. We will run this
procedure on normalized vectors ¢ (@) = @/||u|| for all vertices u € V. We first give the definition of the orthogonal
separator with one buffer.

DEFINITION 3.1. Consider a finite set U of unit vectors in RY. A distribution over two disjoint subsets of U
is an m-orthogonal separator with an e-buffer, distortion D, separation radius R, and probability scale o if the
following conditions hold for two subsets X, Y C U chosen according to this distribution:

1. Forallu e U, Pr{u € X} = a.
2. ForallueU, PriueY} <ca.
3. For all u,v € U with | —v|| > R, Pr{ive X |ue X} < L.
4. Forallu,p €U, Pr{v ¢ XUY |ue€ X} <D|ua— o>
We call X an orthogonal separator and Y its buffer.

In this definition, conditions 1 and 2 restrict the size of an orthogonal separator and its buffer respectively.
Condition 3 requires that for every pair of vectors w,v € U, if u,v are almost orthogonal, then vectors u,v are
separated by X with high probability. Condition 4 upper bounds the probability that vectors u,v are separated
by the orthogonal separator X with a buffer Y. In the following theorem, we show there exists such an orthogonal
separator with one buffer. The construction of the orthogonal separator with one buffer and its proof is in
Section 7.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2246

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

THEOREM 3.1. There exists a randomized polynomial-time procedure that given a finite set U of unit vectors in
R? and positive parameters ¢ € (0,1),m > 3, R € (0,2), returns an m-orthogonal separator with an e-buffer with
distortion D = Ogr(Y/= logm), separation radius R, and probability scale o > Or(1/poly(m)).

In the above theorem, we show that if vectors @ and v are far apart, then they are both contained in X with
a small probability. Suppose that every point @ has a certain weight or measure p(a). We now show that by
slightly altering the distribution of X and Y, we can guarantee that the measure of every X is not much larger
than the measure of the heaviest ball of radius R (see item 3 below for details).

DEFINITION 3.2. Consider a finite set U of unit vectors in R equipped with a measure p. A distribution over
two disjoint subsets of U is an d-orthogonal separator with an e-buffer, distortion D, separation radius R, and
probability scale o if the following conditions hold for two subsets X, Y C U chosen according to this distribution:

1. Forallue U, Pr{ue X} = a.

2. ForallueU, PriueY} <ca.

3. mingex p(X \ Ball(a, R)) < ou(U) (always).

4. Forallu,v e U, Pr{v ¢ XUY |ue€ X} <Dla—u|>

THEOREM 3.2. There exists a randomized procedure that given a finite set U of unit vectors in R® equipped with
a measure p and positive parameters € € (0,1),d < 2/3, R € (0,2), returns an J-orthogonal separator with an
e-buffer with distortion D = Or(1/e log1/s), separation radius R, and probability scale o > Og(1/poly(m)).

By using the orthogonal separator with one buffer above, we can find a buffered partitioning of the graph
with buffered expansion in Theorem 1.1, but buffers B; may overlap. To get disjoint buffers as in Theorem 1.1,
we use the orthogonal separator with two buffers defined as follows.

DEFINITION 3.3. Consider a finite set U of unit vectors in R? equipped with a measure p. A distribution over
three disjoint subsets of U is an d-orthogonal separator with two e-buffers, distortion D, separation radius R, and
probability scale a if the following conditions hold for three disjoint subsets X,Y,Z C U chosen according to this
distribution:

1. ForallueU, Pr{u € X} = a.
ForallueU,Pr{ueY} <ea and Pr{u € Z} < ca.
mingex p(X \ Ball(@, R)) < du(U) (always).

™ e

For allu,v e U, Pr{v ¢ XUY |u€ X} <Dlu—10|? and
Pr{iv ¢ XUYUZ|ue XUY}<Dlu-|>

In the following theorem, we slightly modify the procedure above to get orthogonal separators with two
buffers.

THEOREM 3.3. There exists a randomized procedure that given a finite set U of unit vectors in R?* equipped with
a measure {1 and positive parameters € € (0,1),6 < 2/3, R € (0,2), returns an §-orthogonal separator with two
e-buffers with distortion D = Og(Y/e log1/s), separation radius R, and probability scale o > Og(1/poly(m)).

4 Partial Partitioning Algorithm

In this section, we give an algorithm for finding a partial e-buffered partitioning (Pi, B1),..., (P, By) of G.
This partitioning satisfies all the properties of the partitioning from Theorem 1.1 except the union of sets P; does
not necessarily cover the entire vertex set of G. For notational convenience, we will use k£ to denote the index of
the eigenvalue that we compare the cost to. Eventually this theorem will be applied with k = (1+ O(6))k, where
k is the desired number of clusters (which we denoted by & in Theorem 1.1). We obtain this partial partitioning
using the Partial Partitioning Algorithm which consists of Steps 1, 2, 3, and 4 provided in Figures 1, 2, 3, and 4.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2247

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

The Partial Partitioning Algorithm generates this partial partitioning (Py, Bi),...,(Py, By) with &' >
(1—20)k and partitions the uncovered vertices V\U, ¢ FiUB; into disjoint subsets A}, A7 for i € [k] and R, R)p.
We prove that these subsets P;, B;, A;, A7 for i € [k'] and Ry, R} satisfy six properties given in Theorem 4.1
(see below). The first three properties show subsets P;, B; forms a partial e-buffered partitioning. In Section 5,
we show how to transform this partial partitioning with &’ clusters into a true buffered partitioning of G with k
clusters. We combine those additional sets A}, A7, R», Ry to get a true buffered partitioning. The properties 4,

5, and 6 in Theorem 4.1 are used in Section 5.

Find a spectral embedding for graph G:
e Let Lg be the normalized Laplacian matrix for G.

e Find the top k eigenvalues of Lg and corresponding orthogonal unit eigenvectors z1, ...,z € RY.
Denote coordinate u € V of z; by z;(u).

e Embed each vertex u € V into k-dimensional vector u defined as follows: the i-th coodinate of @ is

Figure 1: Step 1 of the Partial Partitioning Algorithm. At this step, the algorithm maps vertices of G into vectors
using the standard spectral embedding.

Let R = +/%/6, 6’ = 9/2k, and T = 2/aln 1/s.
Set g =@ and 'y = @.
Fort=1,...,T:

e Sample an orthogonal separator X; with buffers Y;, Z; using Theorem 3.3 with parameters ¢, R,
and ¢’. For convenience, we assume that X;, Y;, and Z; contain not vectors but the corresponding
vertices of G.

o Let P, = X3\ (Ujo; Xi UYiU Z;) and & = 5, U P,
o Let Et = (Xt U Yt) \ (Et UFt_l) and Ft = Ft—l U Et.

e Let Rp =V \ (U, X; UY;UZ) and Rg =V \ (S UT7 U Rp).

Figure 2: Step 2 of the Partial Partitioning Algorithm. At this step, the algorithm finds a crude partial partitioning
{(Pt, Bt)}t of V.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2248

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Let R = Rp and Ry = Rp.
Fort=1,---,T:

e Find r; that minimizes ¢ (P; || B:) subject to the constraints |Bi| < Cf1(0)e| P, |AY| < 10e| Py,
8(A}, P,U By) < Cla0)/e - A\ logk - d|Py| , and d¢(P: U By, (27 U Rp) \ P;) < Cia(9)/e Ay logk - d| P
where

= {ue Bl 2)

Bi={u€B:|[al® 2 re/(L+e)} U{ue P: ||al® € [re/(1 +¢),r]}

Ay ={ue P |al® <re/(1+¢)%)

Al ={ue P |lul’ € (r/(L+ €)% m/(1 +€))}
Note that it suffices to consider r in {||@||? : w € P,UB;}. If no such r; exists, we let P, = @, B; = @,
A, =g, and A = @

e If no such r; exists, then add P, to R, and add B; to R’;. Otherwise, add Br \ B, to R;.

Figure 3: Step 3 of the Partial Partitioning Algorithm. At this step, the algorithm refines the crude partial
partitioning {(P:, B¢)}: of V and obtains sets {(P;, By, A}, AY)}+.

Fort=1,---,T:
e Discard all sets P, By, A}, A} if P, = &, or

11(0)
da(Py || By) > — A log k,

where C/;(9) is some function that depends only on § (see Theorem 4.1).

o If sets P, By, A}, A} are discarded, then add P, to R/, and add B, to Rl.

Figure 4: Step 4 of the Partial Partitioning Algorithm. At this step, the algorithm discards all sets (P, B;) that
do not satisfy the conditions of Theorem 4.1.

THEOREM 4.1. The Partial Partitioning Algorithm is a polynomial-time randomized algorithm that given a d-
/

regular graph G = (V, E), natural k > 1, and positive parameters €,6 € (0,1/80), finds subsets R, Ry and
P;,B;, A;, AV of V for i € [K'] with k' > (1 — 20)k such that

1. All sets P, B;, A, AY and R'p, Ry are disjoint and all sets P; are nonempty, and

kl
RpURpU| JPUB UAUA! =V;

=1
2. |B;| < Cy1(8) el By forallie {1,...,k'}; and
1
3. ¢a(P; || B:) < 04%@ M logk, for all i € K],

4. |AY) < 10e|Py|, for alli € [K'];
5. |R| < 16en;

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2249

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2 i 5
6‘4_?1() M logk - d|Py|, for all i € [K'].

6. S8 | 0a(AL, PV By) + 66(Rp, P, U B;) <

Remark: We will assume that ¢ < §. If that is not the case, we can replace € with ¢/ = § and hide the additional
factor of /&’ in the bound on ¢ (P; || B;) and Zflzl dc (A%, Py U B;) + 6g(Rp, P; U B;) in the constant CY 4 (6).
We will also assume that 6 > 1/(3k): indeed if § < 1/(3k), we can increase it to 1/(3k) and we will still have
E' > [(1—-2/(3k))k] = k, as for the original value of 4.

Proof. Our algorithm consists of four steps. First, we embed the vertex set V into a k dimensional space using
the standard spectral embedding (see Section 6 for details). We denote the image of vertex u by @. We also let
Y(u) = /i (that is, ¢ (i) is the normalized @) and p(u) = ||a|? (note: 4 # 0 by Claim 6.1). At the second step,
we obtain a crude partial partitioning ﬁl, e ﬁk,, with buffers El, e Eku using a new technical tool, which we
introduced in Section 3. We call this tool orthogonal separators with buffers (see Theorem 3.3). Finally, we refine
the crude partitioning at the third step and discard some sets at the fourth step. We get subsets P;, B;, A;, A
for i € [K'] and two extra subsets R, R%z. We provide the pseudocode for Steps 1, 2, 3 and 4 in Figures 1, 2, 3,
and 4. We now analyze our algorithm.

Before we proceed to the proof, we set some notation. Let Ball(u, R) be the ball of radius R around u in the

metric p(u,v) = [[v(@) — ()]
Ball(u, R) = {v eV : [[¢¥(a) —4(@)| < R}.
We define measure p on V as follows: for every S C V,

p(S) = p(u).

ues

Step 1: Spectral Embedding. In Section 6, we remind the reader the standard definition of a spectral
embedding of G into R*¥. We then prove two claims about this embedding. First, we note that u(V) = k. This is
a known fact (see e.g., [LRTV12]). Then, in Lemma 6.1, we show that for R < 1/+/2, for any vertex u € V,

1

(4.18) p(Ball(u, R)) < 1o

We will use this bound with R = 4/%/6.

Step 2: Crude Partial Partitioning. We now analyze the second step of the algorithm described in Figure 2.
Let {(P;, B;)}_, be the crude partial partitioning obtained at this step. Define function

a2, if ue P,,v¢ P,U B, for some t;
(4.19) n(u,v) = { Ye ||lu— 3|2, ifue P, ve P U B for some t;
0, otherwise.

Later, we will use the following sum as an estimate of the size of the edge boundary of set F;:

(4.20) nP)="> o).

ueﬁt; veV;
s.t.(u,v)EE

Note that function 7(u, v) is not symmetric. If u and v are in P, then the sum above includes both terms 7(u,v)
and n(v, u). Depending on the argument, we will use 1 to denote the cost of an edge as in Equation (4.19) or the
cost of all edges incident on vertices in P, as in Equation (4.20).

Note that sets .ﬁt, Et are contained in X; UY; U Z; \ ¥;_1, where X4, Y, Z; are orthogonal separator and its
two buffers and ¥; 1 are vertices covered by previous E for ¢ < t. We define another cost function as follows:

(4.21) i, v) = {||17,||27 if ue P,UB,v ¢ (X, UY,UZ)\ Sy for some i;

0, otherwise.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2250

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

We will use this cost function to bound the total cost of edges from each part in the partial partitioning P; and B;
to the uncovered part Rz and R’. The cost of all edges incident on vertices in P, U By for function 7 is denoted
as

(4.22) i(P, U By) = S di(u).
wePUBy; veV;
s.t.(u,v)EE

We prove the following lemma for all sets generated after Step 2.

LEMMA 4.1. The crude partial partitioning {(E, Et)}thl and subsets Rp, Rp obtained at Step 2 of the algorithm
satisfies the following properties:

1. wW(P) <146 for all t;

2 LS Blu(P)] > 1~ 55;
9.+ S BB < de;

1 e
4- 7 23:1 E[n(FR)] < ?‘5 - Apdlog k;
J. 23;1 E |§t| + E|Rp| < 4den;

L L= C
0. 7 Z?:l E[f(P; U By)] < ?5 - Apdlog k.

Here, the expectation is taken over the random decisions made by the algorithm at Step 2 (all other steps of the
algorithm are deterministic).

Proof. We will use Theorem 3.3 to analyze Step 2 of the algorithm. We first show item (1). Observe that P, C X,
and for every u € Xy, X; = Ball(u, R) U (X; \ Ball(u, R)). Thus,

u(By) < p(Ball(u, R)) + (X, \ Ball(u, R)).
By Lemma 6.1 (see Equation (4.18)), pu(Ball(u, R)) < 1/(1 —4§/3) < 1+ §/2 for all u. By Theorem 3.3,

) ou(V)y 6
< = —.
min w(X: \ Ball(u, R)) < ok 5

Thus, u(P) < 1+ 6.
We now prove item (2). Consider a vertex u. Observe that if u gets assigned to set X, at iteration ¢, then
it remains in the set ¥y in the future iterations ¢ > ¢. That is, ¥; C X441. Let ¢ = (J,, X; UY; U Z;. Then,

similarly, we have Z; C Zy41. If w is not in =, then at step (¢ + 1), it is assigned to P;41 with probability at least
a/2 and to E4y1 \ Piy1 with probability at most 2e« (see Theorem 3.3). Thus,

a/2 1

P by E b > = .
HueBifue t}_a/2+25a 1+44e

Also,
1-(1—a(l+2) >Pr{uecz}>1-(1-a/2).

Therefore (since T' = [2/alnl/s] and ¢ < § < 1/48),

C(1—a/2)T _
L-(-a/2) 120 oy

42 P Sl >
(4.23) Hu€¥ry 2 — 2> 752

Item (2) follows from the bound above because sets P, are disjoint and X7 = UtT:1 P,.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2251

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

We then prove items (3) and (5). Note that the remaining parts Rp = V\Zr and Rp = V\ (RpUXUT'r) =

Zr \ (X7 UTr). Since all sets B; are disjoint and ' = UL_; By, we upper bound probabilities Pr{u € I'r} and
Pr{u € Tt URg}. Since Rp = 27 \ (X7 UT'7), we have 't U Rp = ZE¢ \ . Similar to bound (4.23), we have
4e

1+4¢

(4.24) Pr{uelr} <Pr{ue 't URp} <Pr{uc=r\ X} < (1= (1= a1 +20)7) < 4e,
where the last inequality is due to Pr{u € E¢\ 37 | u € 27} < 4e/(1+4e) and Pr{u € 27} < 1—(1—a(1+2¢))7T.
Then, item (3) follows from Pr{u € T'r} < 4¢ and item (5) follows from Pr{u € '+ U Rp} < 4e.

We now prove the item (4). Consider an edge (u,v). We bound the probability of the event {n(u,v) = [|u||*}.
If 5(u,v) = ||a||?, then u € Py, and v ¢ P, U B, for some ¢. We first assume that v ¢ %y UTy with ¢/ < ¢ — 1
or, in other words, v ¢ ¥;_; UT;_;. Then, u € X; \ Z4—1 and v ¢ X; UY; for some t (otherwise, if v was
in (X; UY:) \ X4—1 UT:_1, v would also be in P, or Et) If v € Py UBy and u € P, with ¢/ < t, then
v e (Xt/ U }/t/) \ (Et’—l @] rt’—l) and u ¢ Xy UYy U Zy for some t'. Write,

T
(4.25) Pr{n(u,v) = [a]*} <> Pr{ue X;\Z, 1 and v ¢ X; UY;}
t=1
(%)
T
(4.26) +) Pri{ve (X,UY)\ (S UTy1) and u ¢ X, UY, U Z4} .

t=1

()

We upper bound the first term. Two events {u € X;; v ¢ X, UY;} and {u ¢ E;_1} are independent for every ¢.
Thus,

]~

() <> Pr{ueX;andv ¢ X, UY,}-Pr{u¢ 21}

~
I
=

I
E

Pr{vé¢ X, UY; |ue X} -Pr{ue X;}-Pr{u¢ Z1}

~
I
—

Pr{v§§XtUY}|u€Xt}-Pr{u€Xt\Et,1}.

Il
[M]=

~
Il
-

By Theorem 3.3,
Pr{v ¢ X, UY, | u€ X} <D|v(a) - ()|
where D = O(1/e log#/s) = Os(1/c log k). Observe that events {u € X; \ Z4_1} for t € {1,...,T} are mutually

exclusive. Thus,

(+) < De(@) = (@) Y Pr{ue X\ S} <D (a) — ()]
t=1

<1
The same bound holds for (xx) in Equation (4.26). We now bound E[n(u,v)]:

E [n(u,v)] = Pr {nu,v) = Jal|*} - llal}2 + Pr {n(u,v) = Ve - o]} - 1/elja — o]
< 2D ||y (a) = $(@)|* - ||all® + ella — o>
By Claim 4.1 (see below), E [n(u,v)] < 8D||a — v]|? + Vz||u — 9]|* = Os(Y/=log k) ||u — o[>
CLAM 4.1. Consider two vertices u,v € V' and the corresponding nonzero vectors u,v. We have

1)1 - [l (@) — $(@)|* < 4fla - o]*.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2252

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Remark: This is a known inequality. See e.g., [CMMO06] and [LGT14].
Proof. Write,
_ _ . _ u I
- (@) — o) = ||~ o] = = T o]
Il ol

131l

We now use the relazed triangle inequality for squared Euclidean distance ||z — z||? < 2||z — y||? + 2|y — 2||*. We
have

)) [-
Jal® - (@) — v < 2= ol + 2o - 125 o] < aga— ol
Here, we used that v and ‘” ‘\ll v are collinear vectors and, thus,
lall = w Jall o
— Jlall| = [lall - l19]l| < la - o]
e e | |

|

We can now finish the proof of Lemma 4.1,

T
SB(P) =1 Y (w0 + Bly(o,u)] = Os(ylogh) 1 32 a0l

(u,v)EE (u,v)EE

| =

By Claim 6.2, the right hand side is upper bounded by Os(1/clog k) dA.
Finally, we prove item (6). Similar to the analysis of item (4), for any edge (u,v), we bound the probability

that 7(u,v) = ||@||2. If f(u,v) = ||@||?, then we have u € P, U By and v & (X; UY; U Z;) \ 24— for some t. We
also first assume that when w is contained in P; U By, vertex v is not contained in ¥;_;. Then, we must have
v ¢ X, UY; U Z;. If v is covered by P; for some t before u is covered, then we must have u ¢ X; UY; (otherwise

u is contained in ﬁt U ét) Thus, we have

T
Pr{ij(u,v) = [[ul’} <> Pr{uc (X, UY;)) \ i1 andv ¢ X, UY; U Z}
t=1

T
+ ZPr{U € X\ Et—1 and u ¢ X; UY:}.
t=1

By Theorem 3.3, we have Pr{7j(u,v) = ||u]|*} < 2D |j1) (@) — ¥(v)||?. By Claim 6.2, we get

T
Z (P, U By)] = Z E[i(u,v)] + E[fi(v,u)] = O5(1/<log k) d\p.

(u v)EE

w\r—‘

|

By item (5) in Lemma 4.1 and Markov’s inequality, we have |Rp| + 2/, | B;| < 16en holds with probability
at least 3/4. In the following analysis, we assume this always holds.

Steps 3 & 4. Our algorithm (the Partial Partitioning Algorithm) refines the crude partial partitioning {P;, B;}7_,
at Step 3 and obtains a set of tuples {(P;, By, A}, A7)} ,. Then, it removes some of the sets (P, By, A}, A}) from
the partial partitioning at Step 4. In the analysis of the algorithm, it will be more convenient for us to identify
those sets (P, Bt) that remain in the solution first and only then find their refinements (Py, By, A}, AY). Let

(4.27) 7= { P+ @, w(B;) < C% ep(P;), and max{n(B,),7(P, U B;)} < C¥ /e - Mpdlogk u(ﬁ,-)},

where C§ = 192/6 and C§ = 48Cs/6. We will now prove that Pr{|Z| > (1 — 20)|k|} > 1/2. In the next section,
we show that for each ¢ € Z, the tuple (P;, B;, A}, A) satisfies all constraints at Step 3 and 4. Thus, all sets

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2253

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(P;, Bi, AL, AY) with ¢ € T remain in the solution after Step 4 and, consequently, the algorithm succeeds with
probability at least 1/4 (We assume |Rp| + ZZ;I |B:| < 16en at Step 2, which holds with probability at least
3/4).

Lemma 4.1 gives us upper bounds on the expected values of k — ", w(P,), Dot w(By), Ztn(ﬁt), and
>+ 7(P; U By). These four random variables are non-negative. Thus, by Markov’s inequality, with probability at
least 1/2, the following four inequalities hold simultaneously:

u(P) > 1 - 405;

| =
M=

o~
Il
N

1(By) < 32¢;

| =
™=

“
Il
-

n(P,) < 8Cs/= A\pdlog k.

x| =
B

~
Il
=

el

T
> " i(P, U By) < 8Cs/ Adlog k.
t=1

Denote the event that all above inequalities hold by £. We know that Pr(€) > 1/2. Let us assume that £ occurs.
Since § < 1/80, we have

pu(By) < 64e Z (P,);
t=1

]~

~
Il
=

T
n(Py) < 16Cs/e Adloghk > pu(Py);

1 t=1

[M]=

t

T
Z (P, U B;) < 16Cs /<)\kdlongu P,).

t=1

Let w; = pu(P;) / Zthl 1(P;). We rewrite the inequalities above as follows:

T
wBi) _
z_; (R)
T
Z (PZ) < 16Cs /e A\pdlog k;

U(}%

)
Zw, UfZ) < 16C5 /2 \pdlog k.

1

In the expressions above, we ignore the terms with w; = 0. Note that), w; = 1. Suppose that we pick ¢ in
{1 T} randomly with probability w;. Then, the above inequalities give bounds on the expected values of

(B)/u() and 1(P;)/u(P;). By Markov’s inequality,
zlzgj{z €T} = 1135}{ (B;) < C% ep(P;) and max{n(P;),7(P; U B;)} < C¥ e \pdlog k (P,)} >1-4,

where C§ = 192/ and C§ = 48Cj5/d. Therefore, Y, ., w; > 1 — 6. We have

SoulP) = (=8> u(B) = (1 - o)k

i€l

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2254

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

We now recall that ,u(é) < 1+ 4. Consequently,

1-9

Il > ——
||_1+5

k> (1—26)k.

We just showed that if event £ occurs, then |Z| > (1 — 2d)k and Pr(€) > 1/2. Hence, Pr{|Z| > (1 — 20)k} > 1/2.

Step 3: Refined Partial Partitioning. At Step 3 of the algorithm, we refine the crude partitioning obtained
at Step 2. To this end, we pick a threshold r; € (0, 1) for every pair (P;, B;) with i € Z. We define the refined
partitioning sets to be

° Pz-:{uelgizu(u)zm},

o Bi={u€B;:p(u)>r/1+e)}U{ueP:puu)efr/(1+e),r)}
o Al ={ueP;:pu)<r/(1+e)?},

o Al ={ueP:pu)e (ri/(1+e)?r/(1+e)}

The threshold r; must satisfy five conditions: (1) |B;| < C4,(0)e|Pi|; (2) da(P; || Bi) < Cila(9)/e Mg logk;
(3) |A;/| < 108‘3‘, and (4) 5@(A;»,Pi @] Bl) < C"L'_l(é)/g A logk - d|P2|, (5) (SG(Pl U Bi,(ET @] Rp) \ ﬁl) <
CiL1(0)/e A\logk - d|P;|. At Step 4, we drop sets (P, B;, A5, AY) for which we could not find such threshold.
We now show that for every ¢ € Z such threshold r; exists (set Z is defined in Equation (4.27)). We use the

probabilistic method.

LEMMA 4.2. Consider i € Z. Suppose, we select elements in sets P; and B; using a random threshold r;, which
is uniformly distributed in (0,1). Then

2. E, _6G(P¢,V\(PiuBi))} < %\ logk - dE,, |P);

All < 2¢Ey,

Fi;

4. Eq, _5G(A§,Pz' UBi)i| < %Ak logk - dE,,

p.

5. By, [0(PUB:, (SrURp)\ P)| < %Ay logh - dE,, | Pi.
Proof. Denote
B ={ueB;:puu)>ri/(14+¢)}and B/ = {ue P;: p(u) € [ri/(1+¢),m:)}.
Then, B; = B, U B). Write,

E,,

Pl=3_ Pr{uc P} = Pr{r; < p(w)} = p(F).
ueP; ueP;

Here, we used that pu(u) <1 for all u (see Claim 6.1). Similarly, E|B}| < (1 + &)u(B;). Then,

B|BY| = 3 Pr{u(i) € [re/(1 +€).rd} = 3 Pr{r € [ui). (1 + ()]} < en(P.

ueP; ueﬁi

Thus, using the definition of set Z, we get

E|B;| <E|Bj| + E|B}| = (1 +e)u(B:) + ep(P;) < (1 +¢)Cs + Dep(P;) = 2C5 e E|Py.

This proves the first claim of Lemma 4.2.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2255

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

We assign all vertices u € P; with p(u) € (r;/(1+¢)2,7:/(1 +¢)) to set A7. Then, we have

B|47| = Y Pr{u(i) € (/1 +Pr/(1+€) | =

u€eP;

= 3 Pr{n e [+, (1 +u6)]} = 3 (e +)) < 2:u(Py).

Since pu(P;) = E,, |P;|, we get the third claim.
To show claims 2 and 4 of Lemma 4.2, we bound the expected number of edges from set P; to set V'\ (P,UDB;),
and the expected number of edges from set A; to set P; U B;.

CLAM 4.2. Consider an edge (u,v) € E with u € P,. We have

Pr{u € P;; v ¢ P,UB;} < 2n(u,v),
and

Pr{ue A}; v e P,UB;} < 2n(u,v).
Proof. Consider two cases. If v € 151 U féh then

Pr{ue P, v¢ P,UB;} = Pr{u(u) > r; and pu(v) <r;/(1+¢)}
<Pr{r € [(1+e)u(v), p(u)] }
<) — (1 + (o).
By Claim 2.2,
plu) = (1 +e)u) = [[al® = 1 +e)llol* < (1 +) (llall - lo])* < 2(llall - [|o])? /e

Using the triangle inequality ||@| — ||7|| < ||@ — ||, we conclude that

Pr{u € P;, v ¢ P, UB;} < 2n(u,v).
Similarly, we have

Pr{u € A} and v € P, U B;} = Pr{u(u) <r;/(1+¢)? and p(v) > r;/(1 +¢)}
<Pr{r € [(1+¢)2u(), (L+¢e)p)]}
< (1 +e)(u(v) = A+ e)u(w) < 2(|all - [o])?/e.

Therefore, we have

Pr{ue A], v e P,UB;} < 2n(u,v).

If v ¢ P;UB;, then Pr{ue A}, ve P,UB;} =0, and
Pr{u € P;, v € P,U B;} = Pr{u € P;} = ||u|]* = n(u,v).
]

By Claim 4.2, the expected number of edges from set P; to set V'\ (P,UB;) is at most 2(P;). Also, the expected

number of edges from set A} to set P;UB; is at most 2n(P;). In other words, E [6¢(P;, V \ (P;UB;))] < 2n(P;) and

E [0¢ (A}, P; U B;| < 2n(P;). Using the definition of set Z (see (4.27)), we get the claims 2 and 4 of Lemma 4.2.
Finally, we prove claim 5 of Lemma 4.2. We have for any edge (u,v) with v € P; U B;,

Pr{u € P;UB;,v e (SpURp)\ P} <Pr{ue P,UB;} = (1+¢)|al? < 27(u,v).

Thus, the expected number of edges from P; U B; to (X7 U Rp) \]51 is at most Qﬁ(ﬁi U El) By the definition of
set T (see (4.27)), we get the conclusion. 0

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2256

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Using Lemma 2.1 with six random variables, we conclude that there exists r; € (0,1) such that inequalities
(1) |Bi| < 10C5 ¢|P;|, (2) 6c(P;, V \ (P U B;)) <5C5/e \plogk - d|P;|, (3) |AY| < 10e|P;|, (4) dc (A}, P, U B;) <
5C5 /e A logk - d| Py, and (5) 6¢(P; U B;, (57U Rp) \ P,) < 5C§ /e A log k - d| P;| hold simultaneously. The second
inequality is equivalent to ¢(P; || B;) < 5C5/e Mg logk. In this theorem, we use the following functions C} ; and
CYq: Cp1(8) = 10C5 and CY(6) = 5C§. Combining the inequalities (4) and (5), we get the property (6) in
Theorem 4.1. In the Partial Partitioning Algorithm, all sets P;, B;, A}, AY for i € [k'] and Ry, R’» are disjoint
and cover the entire graph. Since all tuples (P;, B;, A}, AY) with P, = & are discarded at Step 4, all sets P;
returned by the Partial Partitioning Algorithm are nonempty. Note that Ry C Rp U U;il B,. Since we assume
|Rp| + S, |Bi| < 16en at Step 2 (This condition holds with probability at least 3/4), we have |R]3| < 16en.
This finishes the proof of Theorem 4.1.]

5 From Disjoint Sets to Partitioning

We now show how to use the partial partitioning given by the Partial Partitioning Algorithm in Section 4 to
obtain a true e-buffered partitioning. We prove the following lemma.

LEMMA 5.1. Consider a d-regular graph G. Let {(P;, B, A}, A{)}icp) and Rp, Ry be a partial e-buffered
partitioning of G given by the Partial Partitioning Algorithm. Then, for every k € {1,--- k'} and ¢’ =
(K'—k+1)/k', we can convert this partial partitioning into a true 54¢/s'-buffered partitioning Py, ..., P,, Bi,..., B,
of G such that

4C71(8) logk

ba(Ply.. P B, BY) < =4

Ak

Proof. Let us sort all pairs (P;, B;, A}, AY) by size and assume |P;| < --- < |Py|. Now, we generate the true
buffered partitioning of the graph. The true buffered partitioning (P/, B) contains the pairs (P;, B;) for i € [k—1]
in the partial partitioning and a pair of new sets (Py, By,). Specifically, we let P/ = P; and B} = B; for i € [k —1]

and
K’ K’ K’ K’

Pi=RpulJAjulJP; B,=RzpulJAjul]B;
j=1 j=k j=1 j=k
We can think of each set A} is the buffer for the set A] for i € [k'], and the set R’; is the buffer for the set Rp.
We also combine these sets and buffers with the largest k¥’ — k + 1 pairs (P;, B;) for i = k,k+1,--- , k" in the
partial partitioning, respectively.
By Theorem 4.1, all sets P;, B;, A, A} and R, Ry are disjoint and cover the entire graph. Also, all sets P,

and R/p are nonempty. Thus, all sets P/ are disjoint and nonempty, and Ule P/UB] =V. Also, for all i € [k—1],
we have |B;| < ¢|P;| and

1
(5.29) 66(P. B) = 66(P. B < T2y 1ogk

It remains to verify that the last pair of sets P, and By, satisfy the required conditions. By items 4 and 5 of
Theorem 4.1, we have

K’ K K’
B < [Rp|+ Y _|AJ|+) |B;| < 16en+ 112 Y |P;| < 27en.

J=1 Jj=1 Jj=1

Since |Py| < -+ < |Pyr|, we have Zf:ll |P;| < k=1/k’ Ziil |P;|. Thus, we have

k' k—1
|Pil = VI =R =D |AY |+ |Bi[= Y _ || >
=1 =1

kl

k—1

> (155) (W1 1l = S 101+ 1B | > 00— 270) > 2
=1

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2257

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Hence, we have |By,| < 54¢/s'| P/|.
We now bound the buffered expansion of this last part. By items (3) and (6) of Theorem 4.1, we have

Zfz_ll da (P}, P U B;)

da(Py, || By) <

dIF]
_ X X 06(A5 PU B + d6(Rp, P U Bi) + 305, 0a(P;, Pi U By)
- d-§'n/2
_ 2014(8)/e Awlogh - T [Pl + 305, 0a(Py, V\ (P U B)))
- d-d'n/2

1 /
< w - A\ log k.

This concludes the proof of Lemma 5.1.]

We now prove the main result of the paper, Theorem 1.1.

Proof. [Proof of Theorem 1.1] Let k = [(1 + 6)k| and § = min{(1-1/vI+3)/2,1/80}. Let k' = [(1 — 26)k] and
8" = (k' —k+1)/k'. We first use the Partial Partitioning Algorithm from Section 4 with parameters k, & = £8' /54,
and & to obtain a partial &-buffered partitioning (P, By, AL AY), ..., (P, B, A}, Ajl). By Theorem 4.1, the
buffered expansion of each set P; with buffer set B; is at most Ci1(d)/z A; log k. Then, we apply Lemma 5.1 to
transform this partial partitioning into a true k partitioning. Since k' = [(1 — 25)/%], we have k' > /1 + 6k — 1.
Then, we have & > 1 —1/y/1+ 5. By Lemma 5.1, the expansion of this e-buffered k partitioning is at most

c(®)/e Aj log k, where ¢(8) = 4Ci1(6)/s" is a function that only depends on 4. 0

6 Spectral Embedding

Consider a d-regular graph G. Let Lg be its normalized Laplacian. Let x1,...,x, be an orthonormal eigenbasis
for Lg and A; be the eigenvalue of z;. Without loss of generality, we assume that A\; < --- < \,. Note that
A1 = 0, so we may assume that x; = 1/y/n. Define an k x n matrix U = (x1,...,2;)7; that is, the (i,u) entry of

U equals U(i,u) = x;(u) where ¢ € [k] and u € V. Rows of U are indexed by integers from 1 to k and columns
by vertices u € V of the graph (to simplify notation, we may assume that V' = [n]). Note that UUT = I, since
vectors 1, ..., xy are orthonormal. Let {e,},cy be the standard orthonormal basis in RVY.

We are ready to define the spectral embedding of G. Let @ be the column of U indexed by vertex u. The
spectral embedding maps vertex u to vector .

Define ¢ (u) = u;/[|us]|. For a subset of vertices S C V, let pu(S) = 3,5 [|al|* be the measure of set S. Now
we will state and prove basic properties of the spectral embedding.

CLAIM 6.1. For allu € V, we have 0 < ||u| < 1.

Proof. Since x1 = 1//n, for all v € V, we have @(1) = 1/y/n and ||@|| > 1/4/n > 0. Further,

k k k

lal® =Y a()? =Y xi(w)? =) (wie.)’ < Z<%6u>2 = lleul* =1.

i=1 i=1 i=1
|

CLAIM 6.2. We have

1. E:uEVHﬂHQ =k
2. Y uen 18— 0] < kdxy

Proof. Note that the (u,v) entry of matrix UTU equals (i,?), since U has columns @ for u € V.

1. We have, Y-, .y lu]|? = tr(UTU) = tx(UUT) = tr Iy, = k, as required.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2258

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2. We have,

Yo la-v*=) Z@ @) = Z Y leitu) = i)

(u,v)EE (u,v)EE i=1 i=1 (u,v)eE
by (1.1 b b
YEV a3 2l Lox, = d > A < dk,

i=1 i=1

where we used that A\; < --- < Ag in the last inequality. 0

We show that the spectral embedding vectors {¢(7)} satisfy the following spreading property. It is a variant
of Lemma 3.2 from the paper by Lee, Oveis-Gharan and Trevisan [LGT14].

LEMMA 6.1. Assume that we are given a parameter R € [0, 1/\/5] For every vertex u, consider the ball of radius
R around u, Ball(u, R) = {v : ||¢»(@) — ()| < R}. Then p(Ball(u, R)) < 1/(1 — 2R?) for every u.

Proof. Consider a vertex u € V and C = Ball(u, R). Let a,, = ||7]| for v € C. Then, o = a,¥(0) for v € C. We
have, ;(C) = Y, cc a2. By the definition of C, |[¢ (@) — ¢(v)|| < R for v € C and hence [|¢(v) — ¥ (w)| < 2R for
all pairs v,w € C. Therefore,

(6.29) (D), d(@)) =1 — 9@ =v@IF) ope g anvwec

\}

Write,
1
_ E 2 _ § 2 2
/”L(C) - Ay = Z Cl2 Ay Aoy -

By inequality (6.29),

Ay Ay

Thus,

< ZveC a? v eC 1—-2R?
For any vertex v € V, let e, € RV be the standard basis vector where e,(v) = 1 and e, (u) = 0 for all u # v. Let

EvGC Gy €y

V Z’UGC al% .

For any standard basis vector e,, we have Ue, = v. Therefore,

z =

Uz = g ayV
\% UEC UUEC

and
T(UTU)z

n(C) < T—2r)

We prove that ||Uz||? = 2T (UTU)z < 1. To this end, note that z is a unit vector and ||Uz||? < 0ynae(U)? =
Tmaz(UT)2, where 0p4.(U) and 0pa.(UT) are the largest singular values of U and U”, respectively (here, we
used the definition of singular values and the fact that matrices U and U” have the same non-zero singular values).
Since UUT = I, all singular values of UT are equal to 1. We conclude that ||Uz|? < 1.

0

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2259

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

7 Orthogonal Separators with Buffers — Proofs

In this section, we show the algorithm that generates orthogonal separators with buffers. We prove Theorem 3.1,
Theorem 3.2, and Theorem 3.3.

THEOREM 3.1 . There exists a randomized polynomial-time procedure that given a finite set U of unit vectors in
R? and positive parameters ¢ € (0,1),m > 3, R € (0,2), returns an m-orthogonal separator with an e-buffer with
distortion D = Og(1/= logm), separation radius R, and probability scale o > Or(1/poly(m)).

For two disjoint random sets X, Y C U chosen from this orthogonal separator distribution, we have the
following properties:

1. Forallu e U, Pr{u € X} = a; (for some « that depends on m and R).
2. ForallueU, Pr{ueY} <ca.

3. For allu,v € U with |[u—v|| >R, Pr{ve X |ue X} <L

4. Forallu,5 €U, Pr{v ¢ XUY |u € X} <D|u—0|? where D= Og(1/- logm).

Proof. We use the following procedure to generate orthogonal separators with buffers. We sample a d-dimensional
Gaussian vector g ~ N (0,1;). For every vector @ in U, we let g, = (u,g) be the projection of vector % on the
direction g. For a standard gaussian random variable Z ~ N(0,1), we use ®(t) = Pr{Z > t} to denote the
probability that Z > t. We pick a threshold ¢ such that ®(t) = a for some « that we will specify later; our choice
of a will guarantee that ¢ < 1. Let ¢’ = ¢/(e(t + 1/t)). Then, we construct the orthogonal separator X and the
buffer Y as follows:

X={u:g, >t} Y=A{u:t—¢ < g, <t}

Now we show that this procedure satisfies the required properties.
1. For every vector 4 € U, we have

Pr{z € X} =Pr{g, >t} = ®(¢t) = a.

2. For every vector w € U, we have

Pr{iueY}=Pr{t—¢ <g, <t} < ez &<

e'e é ce t

= —6_7 S

N eV2m(t+ 1/t) e

S
]

where the third inequality is due to Lemma G.1.
3. For every u,v € U, we have

Pr{ze X, € X} =Pr{gy > t,90 >t} <Pr{(gu + gv)/2 > t}.

We know that gy, g, are both random Gaussian variables from A(0,1). Thus, we have (g, + g,)/2 is also a
Gaussian variable with variance

|z — o]

Var [m’} — EE[(gu 49,2 = %(2 e =1 2

2 4

where the second equality is due to E[g,g,] = (4, ?) and the third equality used @, ¥ are unit vectors. Thus for
every 4,7 € U with ||@ — 7|| > R, we have Var [(9« +90)/2] <1 — R?/1. From Lemma G.2 we get that there exists
a constant C such that

V11— R?/4

{20 (grta) <o

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2260

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Since ®(t) = a, we have
_ _ Gu + Gu %_1
Pr{u € X,0€ X} <Pr{==" >t <a-C(Cta)Vi-r/t .

By Lemma G.1, we have t = ©(y/log1/a). Then we can find some « > 1/poly(m) (for a fixed R) that depends
on m and R such that Pr{az € X,9 € X} < a/m. Since Pr{a € X} = «, we have

Pr{z’;eXWeX}g%.
4. For every u,v € U, we have
Pr{ue X,0¢ XUY}=Pr{g, >t,g, <t—¢'}.
Since g is a standard Gaussian random vector, we have g, and g, are jointly Gaussian random variables with

distribution (0, 1). Since ¢ < 1 and ¢ = O(y/logm), we have ¢’ = £/(e(t +1/t)) < t. Using Lemma G.3 on gy, g,
with parameters i = 1/a and & = €/, we get

i —o|* < aDlla - 3%,

Pr{gu Ztvgv St_gl}§0<

Viogm
e'm
where D = Or(Y/elogm). O

THEOREM 3.2 . There exists a randomized procedure that given a finite set U of unit vectors in R¢ equipped with
a measure p and positive parameters € € (0,1),d < 2/3, R € (0,2), returns an J-orthogonal separator with an
e-buffer with distortion D = Or(/s log1/s), separation radius R, and probability scale oo > Opr(1/poly(m)).

For two disjoint random sets X,Y C U chosen from this orthogonal separator distribution, we have the
following properties:

1. Forallu e U, Pr{u € X} € [0/2,q].

2. ForalluecU,Pr{uecY} <ea.

3. mingex p(X \ Ball(a, R)) < ou(U) (always).

4. Forallu,v €U, Pr{v ¢ XUY |u € X} <Dlu—9|? where D= Or(1/c log/s).

Proof. We first run the algorithm from Theorem 3.1 with m = 2/5 and obtain sets X’ and Y. If set X' satisfies
the third condition: mingex/ (X’ \ Ball(@, R)) < du(U), we return sets (X,Y) = (X', Y”’). Otherwise, we return
empty sets, (X,Y) = (&,9). By Theorem 3.1, Pr{a € X} < a and Pr{u € Y} < e« for all w € X. Also,
condition (3) always holds (because if X’ does not satisfy it, we return @). We now lower bound Pr{a € X}:

Pr{iue X} =Pr{ue X'} —Pr{u € X' and X = &}
Priue X'} -1-Pr{X=0|ue X'}
=a(l-Pr{X=0|ueX'}).

If X =@, then
u(X'\ Ball(a, R)) > min p(X'\ Ball(s,) > u(U).
veX’

Thus,
Pr{X=0|aec X} <Pr {M(X’ \ Ball(@, R)) > du(U) | € X’}.

However, by item (3) of Theorem 3.1,

E [M(X’ \ Ball(@, R)) | @ € X’] < % = w

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2261

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

By Markov’s inequality,
Pr{iX=0|ue X'} <

| =

Therefore, Pr{a € X} > a(1 — 1/2) = /2. Finally,

Pr{v ¢ XUY and @ € X}

Pr{o ¢ XUY |u€ X} =

Pr{u € X}
Pring X'UY and u e X'} Pr{uc X'}
N Pr{z € X'} Pr{z € X}

<2Pr{v ¢ X'UY'|ue X'} <2D|a—v|>
O

THEOREM 3.3 . There exists a randomized procedure that given a finite set U of unit vectors in R¢ equipped with
a measure p and positive parameters € € (0,1),8 < 2/3, R € (0,2), returns an §-orthogonal separator with two
e-buffers with distortion D = Og(Y/e log1/s), separation radius R, and probability scale o > Og(1/poly(m)).

For three disjoint random sets X,Y,Z C U chosen from this orthogonal separator distribution, we have the
following properties:

1. Forallue U, Pr{u € X} € [a/2,q].
ForalluecU,Pr{ucY} <ea, and Pr{u € Z} <ca.

mingex p(X \ Ball(a, R)) < éu(U) (always).

RN

For allu,v e U, Pr{v ¢ XUY |u€ X} <Dlu—10|? and
Pr{iv ¢ XUYUZ|ue XUY} <Dlu—0|? where D= Or(1/c log1/s).

Proof. We modify the algorithm in Theorem 3.1 to generate three disjoint sets X', Y, Z’ as follows. We sample
a d-dimensional Gaussian vector g ~ N(0,1;). For every vector @ in U, we let g, = (i, g) be the projection of
vector @ on the direction g. We use ®(¢) to denote the probability that a standard gaussian random variable is
at least t. We pick a threshold t such that ®(t) = « for some « that we will specify later; our choice of a will
guarantee that ¢ < 1. Let ¢’ = ¢/(e(t + 1/t)). Then, we construct the orthogonal separator X’ and two buffers

Y', Z' as follows:
X ={u:g, >t} Y={u:t—¢ <g, <t} Z=A{u:t-2'<g,<t—¢}.

If set X' satisfies the third condition: mingex u(X’\Ball(@, R)) < du(U), we return sets (X,Y, Z) = (X', Y', Z').
Otherwise, we return empty sets, (X,Y,7) = (9,9, 9).

By the similar analysis in Theorem 3.1, we have for all @ € U, it holds that Pr{t € X} < «, Pr{a € Y} < eq,
and Pr{@ € Z} < ea. By Theorem 3.2, we have for all @ € U, Pr{z € X} > «/2 and condition (3) always holds.
Then, we show that condition (4) holds. The first part of condition (4) is the same as Theorem 3.2. Note that
a < ®(t—¢') < (1+¢)a. Using Lemma G.3 on g,, g, with parameters 1 = 1/®(t — ¢’) and € = €', we have

Viogm

e'm

Pr{gy > o <t —c'} < 0() Jla - o]? < oDla - o,

where D = Og(1/clogm). O

References

[Alo86] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83-96, 1986.
[AMS85] Noga Alon and Vitali D Milman. A1, Isoperimetric inequalities for graphs, and superconcentrators. Journal of
Combinatorial Theory, Series B, 38(1):73-88, 1985.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2262

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[AR04] Konstantin Andreev and Harald Récke. Balanced graph partitioning. In Proceedings of the Symposium on
Parallelism in Algorithms and Architectures, pages 120-124, 2004.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and graph partitioning.
Journal of the ACM (JACM), 56(2):1-37, 2009

[BFK'14] Nikhil Bansal, Uriel Feige, Robert Krauthgamer, Konstantin Makarychev, Viswanath Nagarajan, Joseph Seffi
Naor, and Roy Schwartz. Min-max graph partitioning and small set expansion. SIAM Journal on Computing,
43(2):872-904, 2014.

[Che69] Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian. In Proceedings of the Princeton conference
in honor of Professor S. Bochner, pages 195-199, 1969.

[CMMO06] Eden Chlamtac, Konstantin Makarychev, and Yury Makarychev. How to play unique games using embeddings.
In Proceedings of the Symposium on Foundations of Computer Science, pages 687-696, 2006.

[Fil22] Arnold Filtser. Hop-constrained metric embeddings and their applications. In Proceedings of the Symposium on
Foundations of Computer Science, pages 492-503, 2022

[FL21] Arnold Filtser and Hung Le. Clan embeddings into trees, and low treewidth graphs. In Proceedings of the
Symposium on Theory of Computing, pages 342—355, 2021.

[HHZ21] Bernhard Haeupler, D Ellis Hershkowitz, and Goran Zuzic. Tree embeddings for hop-constrained network design.
In Proceedings of the Symposium on Theory of Computing, pages 356-369, 2021.

[KBL16] Emilie Kaufmann, Thomas Bonald, and Marc Lelarge. A spectral algorithm with additive clustering for the
recovery of overlapping communities in networks. In Ronald Ortner, Hans Ulrich Simon, and Sandra Zilles, editors,
Algorithmic Learning Theory, pages 355-370, Cham, 2016. Springer International Publishing.

[KLL"13] Tsz Chiu Kwok, Lap Chi Lau, Yin Tat Lee, Shayan Oveis Gharan, and Luca Trevisan. Improved cheeger’s
inequality: Analysis of spectral partitioning algorithms through higher order spectral gap. In Proceedings of the
Symposium on Theory of Computing, pages 11-20, 2013.

[KLL17] Tsz Chiu Kwok, Lap Chi Lau, and Yin Tat Lee. Improved cheeger’s inequality and analysis of local graph
partitioning using vertex expansion and expansion profile. SIAM Journal on Computing, 46(3):890-910, 2017

[KLMO06] Ravi Kannan, Ldszl6 Lovész, and Ravi Montenegro. Blocking conductance and mixing in random walks.
Combinatorics, Probability and Computing, 15(4):541-570, 2006.

[KVV04] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and spectral. Journal of the
ACM (JACM), 51(3):497-515, 2004.

[LGT14] James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and higher-order Cheeger
inequalities. Journal of the ACM (JACM), 61(6):1-30, 2014.

[LM12] Jure Leskovec and Julian Mcauley. Learning to discover social circles in ego networks. Advances in neural
information processing systems, 25, 2012.

[LM14] Anand Louis and Konstantin Makarychev. Approximation algorithm for sparsest k-partitioning. In Proceedings
of the Symposium on Discrete Algorithms, pages 1244-1255, 2014.

[LR99] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing
approximation algorithms. Journal of the ACM (JACM), 46(6):787-832, 1999.

[LRTV12] Anand Louis, Prasad Raghavendra, Prasad Tetali, and Santosh Vempala. Many sparse cuts via higher
eigenvalues. In Proceedings of the Symposium on Theory of Computing, pages 1131-1140, 2012.

[McS01] Frank McSherry. Spectral partitioning of random graphs. In Proceedings of the Symposium on Foundations of
Computer Science, pages 529-537. IEEE, 2001.

[NJWO1] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. In
Proceedings of NeurIPS, pages 8490-856, 2001.

[OATT22] Lorenzo Orecchia, Konstantinos Ameranis, Charalampos Tsourakakis, and Kunal Talwar. Practical almost-
linear-time approximation algorithms for hybrid and overlapping graph clustering. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 17071-17093.
PMLR, 17-23 Jul 2022.

[PSLI0] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices with eigenvectors of graphs. SIAM
Journal on Matriz Analysis and Applications, 11(3):430-452, 1990.

[R4c08] Harald Récke. Optimal hierarchical decompositions for congestion minimization in networks. In Proceedings of
the Symposium on Theory of computing, pages 255-264, 2008.

[RS10] Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture. In Proceedings of the
Symposium on Theory of Computing, pages 755—764, 2010.

[RST12] Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between expansion problems. In
Proceedings of the Conference on Computational Complezity, pages 64-73, 2012.

[SJ89] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly mixing markov chains.
Information and Computation, 82(1):93-133, 1989

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2263

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[SMO00] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on pattern analysis
and machine intelligence, 22(8):888-905, 2000.

[Spi07] Daniel A Spielman. Spectral graph theory and its applications. In Proceedings of the Symposium on Foundations
of Computer Science, pages 29-38, 2007.

[ST97] Horst D Simon and Shang-Hua Teng. How good is recursive bisection? SIAM Journal on Scientific Computing,
18(5):1436-1445, 1997.

[STO07] Daniel A Spielman and Shang-Hua Teng. Spectral partitioning works: Planar graphs and finite element meshes.
Linear Algebra and its Applications, 421(2-3):284-305, 2007.

[vLO7] Ulrike von Luxburg. A tutorial on spectral clustering. CoRR, abs/0711.0189, 2007.

[YL12] Jaewon Yang and Jure Leskovec. Community-affiliation graph model for overlapping network community detection.
In 2012 IEEE 12th International Conference on Data Mining, pages 1170-1175, 2012.

[YL14] Jaewon Yang and Jure Leskovec. Structure and overlaps of ground-truth communities in networks. ACM Trans.
Intell. Syst. Technol., 5(2), apr 2014.

A Connection to Robust Expansion

In this section, we prove Corollary 1.2.

Proof. [Proof of Corollary 1.2] Let e* = ¢7‘7/(G) be the robust vertex expansion of G. If €* = 0, then the claim
is trivial, because Ay > 0. So we assume below that ¢* > 0. Then for every disjoint subsets S,T C V with
0 <|S| <|V]/2and |T| < £*|S|, we have

as otherwise, we would have a contradiction

Now we apply Corollary 1.1 of Theorem 1.1 with k¥ = 2 and & = £*/2. We get an &’-buffered partition
(Py, P3|| By, Ba) with ¢¢(Pr, P2||B1, B2) < O(A2/e’). Assume without loss of generality that |P;| < n/2. Note
that |By| < &'|Py| < £*|Py| and thus by (A.1),

6(P17B1) < (1 - 77)5(P1, Vv \ Pl)
Therefore,
5(P1, V\ (P1 U Bl)) = 5(P1,V \ Pl) — (5(P1,B1) > 775(P1, Vv \ Pl).
On the other hand,

dXo| P,
(P, V\(PLUBy)) <d-¢g(Pr, P||By,Ba) - |P| <O (21|> .

E*
We conclude that

Plav\Pl)

oz)< LT 0G0 (6) - d0(P1) 2 90+ 65 (G) - o).

|

B Heavy Set P, in a Buffered Partition

In this section, we argue why we may assume that one of the sets P; in the buffered partitioning
(Pi,...,Pg||B1,. .., By) contains at least Q(dn) vertices (where n = |V]).

COROLLARY B.1. There exists a buffered partitioning as in Theorem 1.1 (possibly with a different function c(0)
such that |P;| = Q(én) for some t.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2264

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Proof. Let &' =146 —1=0(d) and k' = [(1 + ¢')k]. Apply Theorem 1.1 with parameters k' and ¢’. We get
an e-buffered partitioning (Py,..., Py || Bi,..., By) with

c(6") log k'

¢0 = ¢c(Pr,..., Py || B1,...,Br) < AL(146)k) -

Assume Wlthout loss of generality that |P1| < |Pa| <--- <|Py|. Mergesets Py, ..., P and sets By, ..., By. That

is, let P| = Ul o P and B) = Ul « Bi. We obtain a buffered partitioning (P, ..., Py—1, P, || B1,...,Bi—1,B},).
We show that it is e-buffered and that its buffered expansion is at most ¢g. Clearly, merging does not change
the value of ¢ (P; || B;) for i € [k — 1], as it does not change sets P; and B;. So it is sufficient to verify that
|B.| <e|Py| and ¢ (P || By) < ¢o. Indeed,

% %
|By,| < Z|Bz| < Z5|Pz‘| = ¢| Pyl
ik i—k

Sa(PLV\ (PLUBL) _ Y1 06(PLV\(PUB)) _ i, dol Pl
7] B 7] L

¢a (P, || By) = = ¢o.

We used that sets Py, ..., Py are disjoint and thus |P}| = |Px| + - -- + |Pw|. Finally, we observe that Pj is the
union of k' — k + 1 = Q(dk) largest sets out of k' sets that together cover at least (1 — e)n vertices. Thus,
|P/| > K }”1(1—5)11:(2(671). d

C Lower Bound for k-way Expansion and Pseudo-approximation Algorithm for Sparsest k-way
Partitioning

In this section, we present the lower bound for non-buffered k-way expansion h’é of graphs with vertex weights and
edge costs. The proof is similar to that for graphs without vertex weights shown in [LRTV12, LGT14]. Combined
with Theorem 1.2, it gives a pseudo-approximation alghorithm for the Sparsest k-way Partitioning problem.

ProrosITION C.1. Given any graph G = (V, E,w, c) with vertex weights w, > 0 and edge costs ¢y, > 0, for any
integer k > 1, the k-way expansion is at least

Ak
hE, > 5
Proof. Let Py, Py, ..., Py be the optimal solution for k-way expansion. Then, we have for any i € [k]
0(PL, VAP _ oy
P)=—"-—"—">=<hg.

Let 1p, be the indicator vector of set P; for all ¢ € [k], i.e. 1p,(u) =1 if u € P;, otherwise 1p,(u) = 0. Then, we

use rp, = DY*1 p, to denote the weighted indicator vector. Let X = {xp, : ¢ € [k]}. Since all vectors in X are
orthogonal to each other, the span of X has dimension k. By the Courant-Fischer Theorem, we have

2T D2 p1/2 T =125 pol/?
(C.2) Ak = max = Ghw * < max T Glw ¥
SCR": dlm(S) k €S Ty z€span(X) T

xT

Suppose x € span(X) is the maximizer of the right-hand side of Equation (C.2). We can write z = Zle a,Ts,
for a; € R. Then, we have

k T k
tT DYV La DY e = <Z ailgi> La <Z ailsi> =

i=1

2 k
= Y cw (Za 1s,(u Zazls) <2) a? Y cwl(ls (u) - 1g,(0))?
=1

(u,v)EE (u,v)EE

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2265

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

where the last inequality is due to the relaxed triangle inequality, for any edge (u,v) € E with u € S; and v € S,
(ails, (u) — ajls; (v))? < 20715, (u)? + 20315, (v)?. Taking it into Equation (C.2), we have

23001 02 Y (yen Cun(1s,(w) = 15,(0))* 25°F a25(P,V \ P)|

Ak k 2 - k 2
Doie1 ZUGV wy1s, (u) > i1 Gw(P;)

IN

< 2h%,.

d

Plugging the bound on A|(145)k|(Ls) from Proposition C.1 into Theorem 1.2, we get the following O. s(log k)
pseudo-approximation algorithm for the Sparsest K-Partitioning problem from

THEOREM C.1. There exists a polynomial-time algorithm that given a graph G = (V, E,w, ¢) with vertex weights
wy, > 0 and edge costs ¢y, >0, >0, 0 >0, and k > 1 such that max,cy w, < ew(V)/(3k), finds a e-buffered
partition (Py,..., Py || B1,...,By) with

x(0)log k11+0k]
") 08I« ,

0G(Pr,.., P || Br,..., Br) < =

Note that in this theorem, we compare the cost of our e-buffered k-partition to that of the optimal non-buffered
| (1 + 6)k]-partition.

D Buffered Balanced Cut

In this section, we present our results for the buffered balanced cut. Consider any graph G(V, E, w, ¢) with vertex
weight w, > 0 and edge cost ¢, > 0. For any 0 < v < 1/2, the y-balanced cut of graph G is a partition
of graph (L, R) such that w(L),w(R) € [yw(V),(1 — y)w(V)]. The 7-balanced cut problem asks to find a -
balanced cut of a graph to minimize the cut size (L, R). We consider the e-buffered ~-balanced cut. Given
a weighted graph G(V, E,w,c), the e-buffered ~-balanced cut is a partition of graph G, (L, R || B) such that
w(L),w(R) € [yw(V), (1 —v)w(V)] and w(B) < emin(w(L), w(R)). We show a bi-criteria approximation for the
balanced cut problem with an e-buffered balanced cut.

THEOREM D.1. Let ¢ € (0,1/4). Consider any weighted graph G = (V, E,w,c) with vertex weight w, > 0
and cyy > 0. There is a polynomial-time algorithm that finds three disjoint sets L, B, R with LUBUR =V,
w(L),w(R) € [Y/4-w(V),3/4-w(V)], and w(B) < 3e min(w(L), w(R)) such that

o(L, R) < O(1/e) - 6(L", R"),

where (L*, R*) is the optimal 1/3-balanced cut. (L,R || B) is a (3¢)-buffered 1/4-balanced cut with cut size at
most O(1/e) times the size of the optimal 1/3-balanced cut.

Proof. We first describe our algorithm for buffered balanced cut, which is inspired by the approximation algorithm
for balanced cut in [LR99]. The algorithm recursively partitions the graph by using the buffered spectral
partitioning algorithm in Section 2. At the beginning, we set the graph G; = G. Then, we run the e-
buffered spectral partitioning to find a partition (Ly, Ry || Bi) of the graph G;. Suppose w(Li) < w(Ry).
If w(Ly) < w(V)/4, then we recursively run the e-buffered spectral partitioning on the subgraph G5 of G on the
set of vertices Ry. For each call of buffered spectral partitioning, we label the partition (L, R; || B;) such that
w(Ly) < w(R;). We recursively call the e-buffered spectral partitioning until Zthl w(Ly) > w(V)/4. Then, the
algorithm returns the partition (L, R, B) of G, where L = U?:l L;, B= Ule Bi, and R=V \ (LU B).

Then, we show that the partition (L, R || B) returned by this algorithm is a 3e-buffered 1/4-balanced cut. Let
(L, Ry || Bt) be the buffered partition of graph G; returned by the ¢-th call of the buffered spectral partitioning.
Then, we have w(L;) < w(V;)/2 and w(B;) < ew(L:). Suppose the algorithm calls the buffered spectral
partitioning for 7' times. Then, we have w(L) = E?:l w(L:) > w(V)/4 and Zt 1 Yw(Ly) < w(V)/4. Since
w(Vr) <w(V), we have

T T-1
=> w(Ly) <> w(le) +w(Lr) < w(V)/4+w(Vr)/2 < 3/4-w(V).

t=1 t=1

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2266

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Since w(L) > w(V)/4, we have w(R) < 3/4 - w(V). Since w(Ly) < w(Vr)/2 and w(Br) < ew(Lr), we have

w(R) = w(Ver) — w(Lz) — w(Br) 2(1“) (V).

Note that w(Vy) = w(V) — Zt 1 Yw(Ly) + w(By) > (1 — =) w(V). Since € < 1/4, we have

w(R) > (1— 1‘;5> (1— 1:5)10(1/)2“’2/).

Thus, we have both w(L) and w(R) are in [w(V)/4,3w(V)/4]. Since w(B;) < ew(L;) for all ¢, we have
w(B) < ew(L) and

w(B) < ew(L) < ¢ %w(V) < 3¢ w(R).

Hence, we have w(B) < 3e - min{w(L), w(R)}.

Next, we bound the size of buffered cut (L, B, R). For each call of the buffered spectral partitioning, we bound
the cut size 6(Ly, R;) for the buffered partition (L¢, By, R;) of graph G;. Let (L*, R*) be the optimal non-buffered
1/3-balanced partition of graph G. Let LY = L* NV; and R} = R* N V;. Then, we have §(L;, R}) < §(L*, R*).
Note that the weight of vertices in V' \ V; is at most

w(V\V) =Y w(L) w(B) <1+ 2

Suppose w(L}) > w(R}). Since w(L*) > w(V)/3 and € < 1/4, we have

w(L}) = w(L*) — w(V\ Vi) > (; - 1?) w(V) > (V).

By Proposition C.1, we have
§(L7, RY)
w(Ly)

Yalla,) _ 5(5,Vi\ §)

i <
2 - SCVt:w(Ig)Hglw(w)/z w(S) -

By Proposition 2.1, we have

5(Le, Ry) < 4 (1 + i) Ao(Lg,) - w(lLy) <

<8 (1 + i) w((f)) S(LE R <O <€> Wil sep R,

Combining all cuts edges in §(L¢, R;) for T calls of buffered spectral partitioning, we have

i sty <0 (L) B sy <0 (Y st mi

t=1

where the last inequality is due to w(L) < 3/4- w(V). d

We also consider the k-way balanced partition problem. Given a graph G(V, E,w,c), for any v > 1, we say
that Pi, Py, ..., Py is a (v, k)-balanced partition of G if w(P;) < yw(V)/k for all i € [k]. The (v, k)-balanced
partition problem aims to find a (v, k) balanced partition to minimize the total cost of edges with two endpoints
in different parts. By using the buffered balanced cut algorithm in Theorem D.1 and the recursive bi-section
algorithm in [ST97], we show a bi-criteria approximation for the k-way balanced partition.

COROLLARY D.1. Let e € (0,1/4). Consider any weighted graph G = (V, E,w, ¢) with vertex weight w, > 0 and
cuv > 0. There is a polynomial-time algorithm that finds a e-buffered (6, k)-balanced partition Py, Ps,..., Py, B
such that Py, Py, ..., Py and B are disjoint, w(B) < O(e)w(V), and

> 8(P;, Py) < O(Y/e -log k) - OPT,
i<j

where OPT is the optimal cost for (1, k)-balanced partition.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2267

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

E Graphs with Vertex Weights and Edge Costs

In this section, we prove our main results for graphs G = (V, E, w, ¢) with vertex weights w, > 0 and edge costs
Cuv > 0.

Theorem 1.1 holds for regular graphs with parallel edges but without edge costs and vertex weights. Assume
that we have a graph G with edge costs c,, and with vertex weights w, = 1 such that the total cost of all
edges incident on a vertex does not depend on the vertex; that is, Cy = ZU:(W)) c i Cuv does not depend on w.
If all edge costs are integers, we can simulate edge costs by adding parallel edges — we replace each edge (u,v)
with ¢, parallel edges. We obtain a Cp-regular graph G’. Let Lo = I — C%)AG’ be the normalized Laplacian

of G'. Let Lg = D;lmf@D;l/Q be the normalized Laplacian of G. It is immediate that Lg = CyLg and
6g(A, B) = 6@/ (A7 B) for every A, B Q V. Let I{/’/ = |_(1 + (S)ICJ Then,)\k’(LG’) =)\k’ (Lg)/oo
By Theorem 1.1, there exists an e-buffered partition (Py,..., Py || Bi, ..., Bg) such that
_ Oc (P, V\(P;UBy)) _ c(d)logk

IPZ‘ Bz— S M (L
dar (P || Bi) ColP . k(Lar)

for every i € [k]. Since \i(Lgr) = A\ (La)/Co and w(P;) = |P;|, we have for all i,

o (P, V \ (P U By)) < c(9) log k

(£3) 66(P. || By = " m) <

Ak (La).

Now if we multiply all edge costs by the same positive number p, both the left and right hand side will get
multiplied by p. Therefore, the inequality holds not only for integer edge costs but also for arbitrary positive
rational costs. By continuity, it holds for arbitrary positive edge costs. We get the following corollary.

COROLLARY E.1. Let G be a graph with positive edge costs ¢y, and unit vertex weights such that Cy =
Zv:(u,v)EE Cup 18 the same for all vertices u. Then there exists an e-balanced partition (Py,..., Py || Bi,...,Bk)
such that inequality (E.3) holds for all i.

Now we present a black-box reduction that proves Theorem 1.2. We note that the reduction can significantly
increase the running time of the algorithm. However, in fact, we can use the algorithm from Theorem 1.1 to find
(Py,..., Py || B1,-..,Bg) (the proof of this fact essentially repeats that of Theorem 1.1, and we do not present it
here).

THEOREM E.1. Let G = (V,E,w,c) be a graph with positive weights w, > 0 and edge costs ¢y, > 0, € € [0,1),
6 € (0,1), and k > 2 be an integer. Assume that max, w, < ew(V)/(3k). Let Lg = D' 2LaDy? be the
normalized Laplacian of G. Then

k(0)logk

k,e
(E.4) het < =

Ala+syk) (La),
where k(0) is a function that depends only on 6.

Proof. Assume first that all vertex weights are integers greater than or equal to 2. Let W = 3 _\, w, be the
total weight of all vertices. Let C' = Z(u’v)eE Cuv be the total cost of all edges and B = C - W?2.

We construct an auxiliary graph G’ with unit vertex weights as follows. For each vertex u of G, we create
its own “cloud of vertices” @, of size w,; all vertices ¢ € @, have unit weights. For (u,v) € F, we connect every
q € Q. with every ¢’ € @, by an edge (q,q’) with cost ¢, = \QSTILIHQU\' Note that the total cost of all edges
between @, and @, equals c¢,,. Let b, = ZU:(W))EE ‘8—1’:‘ be the total cost of edges incident on vertex g € @, (so

far). Now we connect every two vertices ¢,q¢" € @, by an edge of cost Ci]q' = 6;”_”1. After this step, the total
cost of all edges incident on ¢ € @, is exactly B, since ¢ has |@Q,| — 1 neighbors in @,. We denote the obtained
graph by G'.

Properties of G' = (V/, E’) that we established.

o |Qu| = wy; all vertices have unit weights in G'.

e The total cost of all the edges between @, and @, iS Cyy.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2268

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

e The total cost of all edges incident on every vertex equals B (and does not depend on w).
e G'[Qy] is a clique, in which all edges have cost ¢, = \Q | u > B- C > CW.

Now we upper bound Ay (Lg+) in terms of Ag/(Lg).
LEMMA E.1.)\k’ (LG') S)\k’(LG)

Proof. Let x1,...,z), be the first k' orthogonal unit eigenvectors of Lg. Define vectors zq,...,2p € RVl as
follows: for g € Q,, we let z;(q) = f;@ First, observe that zj,..., 2, are pairwise orthogonal unit vectors:

oz = Y w@s@ = 3 3 @ = 1Y — g,) {(j iskts

if i =
qev’ ueV qeQ,, uev J
Further,

2 Lazi= Y Chyl(zila) = 2(d) - (2i(a) — ()

(¢,9")EE’

= (ala) — 2:(0)) - (@) - 2(0)
(“;GE qg |QU||QU

q'€Qy
(a5 q’)GE'
+ Z — > (ai(g) = 2(d) - (7(a) - %(d)
N
u 4,9 €Qu
(¢,9")€E’
zi(u) wi(v) zj(u) x;(v) T
- Z c"“(/2 1/2>'< iz~ ") = i Lew;.
(uw)EE We, Wy Wy Wy

We conclude that ziTLG/zj =\i(Lg) if i = j, and ZZ»TLG/Z]' = 0, otherwise.
Finally, we use the Courant—Fischer theorem to upper bound Ay (L¢g). Let H be the linear span of vectors
21, ..., 2. By the Courant—Fischer theorem,

Lo TLe o)z Loz
A (Ler) < max %: max #: max Z;(3)2 G2
z€H\{0} ||Z|| =3, aizi ||Z|| a€RM \ {0} Ha”
a€R¥\ {0}
a2\ (L
= max 227/%712(@ —)\k’(LG)
ack\{0} o]l

|

Let ¢/ = ¢/10. We apply Theorem 1.1 to G’ and obtain an ¢’-buffered partition (Pj,..., P/ || Bf,...,By,) of
G’ with ¢/ (Py,..., P, || By,...,B},) < %)\k/(LG/) < %A;«(Lc). Observe that if some set @,, contains
a vertex ¢ € P/ and a vertex ¢’ € P] U B} with j # i then ¢c/(P] || Bj) is very large

dc (P}, PjU Bj) > Qv o o

bc (P} || Bf) > W7 2 W

Then, any partition (Py,..., P || @,...,9) of G satisfies the condition of the theorem:

66(P: 1 2) < o2 < 6 (P, | B < LOU%EE

Ak (L),
as required. So we assume below that if P/ N Q. # @ then (PjU B})NQ, = @ for every u, i, and j # i. Then
for every u, there are two possibilities: either

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2269

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1. Q, C P/ U B for some i, or

Depending on which of the possibilities takes place, we say that w is a vertex of the first or second type,
respectively”. Now we define an e-buffered partition (Pi,..., Py || Bi,...,Bx) of G. First, we assign every
vertex u to one of the sets Py, ..., Py, B1,..., B and U, where U is a special set that will be partitioned among
By, ... By later. We do that as follows:

1. if |Qu N P!| > |Qul/2, we assign u to P;;
2. otherwise, if |Q, N B} > |Qu|/2, we assign u to B;;
3. otherwise, we assign u to U.

Note that each vertex of the first type is necessarily assigned to some P; or B;. Each vertex of the second type is
assigned to some B; or U.
Since U consists of the vertices of the second type, we have J, ., Qu C UJ; B; and thus

<|Usil<<|Ur

Here we used that that partition (Py,..., P} || Bi,...,B},) is ¢’-buffered. We create sets BY,..., By, which are

I . P - .
initially empty, and set the capacity of B. to Pl We distribute vertices from U one-by-one among BY,..., B}

<

w(v) =|U Q.
uelU

d
2
so that the total weight assigned to B, does not exceed its capacity. We stop when we either assign all the vertices
from U or no unassigned vertex in U can be assigned to any B!, without violating the capacity requirement for
B!’. We now show that this procedure assigns all the vertices from U. Indeed, assume that some vertex u is not
assigned. Then, w,, is greater than the the remaining capacity of every BY; that is, w, > # —w(BY) for every
1. Adding up these inequalities over all i, we get

k
p!
Fw, >y (E'Q’ —w(Bé’)) > SlUr

—w(U) > %‘UP{

)LlJBZ'

€ , , o 2e Jx 2e(l—=¢) ew(V)
> SUA- > 2o 5 D> 24
Inequality £ above follows from two inequalities: ||J, P{| + |, Bi| = w(V) and ||, Bj| < ¢'|U; P;|. We get that

Wy, > E“é(kv), which contradicts to the assumption of the theorem. We conclude that | J, B; = U. Finally, we add

vertices from B!’ to B; for every i. We obtain the desired partition (P, ..., Py || Bi,..., Bg).

Now we prove that (Py,..., Py || Bi,...,By) satisfies the desired requirements. Fix i. We upper bound
0c(P;, V\ (P;UB;)). Note that if edge (u,v) goes from P; to V'\ (P; U B;) then u is a vertex of the first type and
|Qu N P/| >|Qu|/2 and either

e v is a vertex of the first type and @, C P; U B; for some j # i, or

e v is a vertex of the second type and at least one half of the vertices in @, are not in B; (and none of them
are in P;).
To summarize, in either case at least a half of the vertices in @, lie in P/ and at least half of vertices in @, do
not lie in P/ U B]. Thus, at least one quarter of all edges from @, to @, contribute to é¢(P/,V'\ (P}, B})), and
their total contribution is at least ¢, /4. We conclude that

(SG(PZ‘, Vv \ (Pz @] Bl)) < 45G’(Pi/7 V\ (Pz/ U B:))

If Qu C B, let us assume that u is of the first type.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2270

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Now we lower bound w(FP;). Let A be the set of vertices u of the first type such that @, C P/ U B. Note that
P; C Aand P} C U,cq Qu- Consider u € A. If u € P;, then w(P; N{u}) = |Qul > |Qu N P| — |Qu, N Bj|. If
u ¢ P;, then w(P; N{u}) =0>|Q, NP/ —|Q, N B}, since |Q, N P!| <|Qul/2 < |QuN Bi|. We have,

w(P) =Y w(Pn{u}) > > |QuNP/|—|QuNBj|>|F|—|Bj|>(1-¢) P
ucA u€eA

We have,

5c(P,V \ (P;U B 4 Se/(PLV\(P/UB) 0(c(5)) logk
¢a(P; || B;) =] w(\P() =)Sl—a’ <Ch |]>,|(VB _ ol i) = e (La)-

It remains to show that partition (Pi,..., Py || Bi,...,Bx) is e-buffered. We already showed that w(P;) >
(1 —¢&")w(P). Now we upper bound w(B;). First, w(B)) < €IFjl/2 < sw(Pi)/a(1-¢") < 5ew(Ps)/9.
Then, v € B; \ B if and only if |Q, N B}| > |Qu|/2 = w, /2. Therefore,

2e’ 2e
1—¢&

w(B;\B/)<2 > |QuNBj <2|Bj < 2P| <
u€B;\BY

We conclude that w(B;) = w(B; \ BY) + w(B!') = %w(P;), as required. This completes the proof for the case
when all the vertex weights are integers. By linearity, inequality (E.4) also holds when all the weights are rational

numbers, and by continuity, it follows that inequality (E.4) holds when weights are arbitrary positive real numbers.
d

F Lower Bound on h

In this section, we prove Theorem 1.4, which we now restate as follows.

THEOREM F.1. Consider a d-reqular graph G = (V, E) and its e-buffered partition (Py,..., P||B1,...,Bx). Then
for every i € [k],

)\k: S2¢G(P1a"'7pk||Blv"'aBk?)+€'

Thus,

Ae < 2hEF + e
Proof. By the Courant-Fischer min-max theorem,

. ZTLGZ
A = min max ———,
H zeH:z#0 ||ZH2

where the minimum is over k-dimensional subspaces H of R™. Let b; be the indicator vector of P;: b;(u) = 1 if
u € P; and b;(u) = 0, otherwise. Let H be the linear span of by,...,b; and z = Zle a;b;. Then,

2T Loz

e < max
B2 (a0 |22

First note that vectors b; have disjoint supports and thus are mutually orthogonal. Therefore, |z[|? =

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2271

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Ele a?||hi||? = E?Zl a?|P;|. Now we upper bound 27 Lgz. We will use that |6(P;, B;)| < d|B;| < ed|Py|.

dz" Lez by (1.1) Z (o —aj) - |0(P;, Py)| + Z ; ’5(Pi,UBj)|
i,j_'e[_k] i€[k] J
1<]g
< > (207 +2a3) - 6(PL, P+ Y o - 6(P | B\ Bi)| +af - [6(P;, By
jg[k‘] i€ (k] JijF#i
1<

=2 Y o] 16(P,P)+ > ol | [5(P, | B\ Bi)| +16(P, B

i,j€[k] i€[k] jiji
i#£]
<> az-(206(P. U Bu (U Bi\B))|+ 0P By
i€[k] 3 g
<Y at (2]6(Pi,V\(Pi UB,)) +5d|Pi|).
i€ k]
Therefore,
TLaz 1 2|0(P;, V \ (P U By))| + ed| P 2|6(P;, V' \ (P, U By))|
— max = Imax
122 ~ d i€k |Pi| i€ (k] d|P,|
0

G Gaussian Distribution

In this section, we present several useful estimates on the Gaussian distribution. Let X ~ N(0,1) be a one-
dimensional Gaussian random variable. Denote the probability that X > ¢ by ®(¢):

d(t) = Pr{X > t}.
The first lemma gives an accurate estimate on ®(t) for large ¢.

LeMMA G.1. (see [CMMO06, Lemma A.1]) For every t > 0,
+2

t t2 - 1 2 - ez
e 7 <P(¢ ~7 and ®(t) = © :
Var (2 +1)° <)< Vot ") (t+1)

LEMMA G.2. (see [CMMO06, Lemma A.1, part 2]) For any p > 1 and t > 0, there exists a constant C such that

B(pt) < 1 (OB

LEMMA G.3. Let X and Y be jointly N'(0,1)-Gaussian random variables. Denote 6* = 1/2Var[X —Y]. Choose
m > 3, threshold t > 1 such that ®(t) = 1/m, and a parameter € € [0,t]. Then

Pr{X >t and Y <t—c} <O(6* */logm/m).

Proof. Note that (1) the covariance of X and Y is E[XY] =1— Var[X —Y]/2 =1 —§?, and (2) by Lemma G.1,
t = ©(v/logm). Denote p = Pr{X > tand Y <t —e}. Note that if §%~¢ > 1/32, then the lemma trivially

holds,

1 < 0(525*1«/logm>7

m m
as required. So we assume below that e > 32§%t. Let a = E[XY] =1 — §%2. Consider Gaussian random variable
Z = aX —Y. Note that Z has mean 0 and variance E[Z?] = o + 1 — 202 = 262 — §*. Further, the covariance of
X and Z is 0: E[XZ] = a E[X?] — E[XY] = 0. In particular, for every 7 > 0,

(G.5) Pr{Z > 7} = ®(1/\/262 — &%) <\f5> > Lemgma “o (6—(;56)2/2> '

p=Pr{X>tandY <t—c} <Pr{X >t} =

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2272

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Therefore, X and Z are independent. We have,
1
p=Pr{X>tandY <t—e}=Pr{X >tandaX —Z<t—¢c}=—Pr{Z>c+aX—-t| X >t}
m

Define random variable A = X —¢t. Then

e+ A
2 b

etaX —t=c+(1-)t+A) —t>e/2+ (1 —-56)A >

where we used that £/2 — 6%t > 0 and §% < ¢/(2t) < t/(2t) = 1/2. We have,

1 by (G.5) Ele—(552)7/(48%) | A >
p< 1Pz (ra)y2|asoy ST Bl [A=20
m

m

Let us upper bound the probability density function fa(z) of A conditioned on the event A > 0.

o—(z+1)%/2 —t?/2

fa(z) = W PriA>0}=(t+1) ——— - ot /2—te

V2r(t+1)
<O(t-®(t)- e />) = O(te™*/274) = O(te 7).

We conclude that

X _(eta)? O (wt8t52+e)2
pm < O(l)/ e a5t (te™")dx = O(te4t2§2+5t) / e e dy
0 0

z4+8t524¢

=V 0 (6te4t262+€t) /8:2+e/(2\/§a) «Fidr<0 (&625@ (2%/56))

by Lcnzna G.1 0 <§2te2€t€2/(1662)> —0 (52t>
- e

3

let 2=

here we three times used that € > 3252t. We conclude that p = O(62e~1t/m) = O(6%c 1 /logm/m), as required.
O

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2273

Downloaded 06/30/24 to 205.178.23.18 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

H Supplementary Figures

Buffer B

(a) Buffered partition S, B,T =V \ (SU B). (b) Buffered partitioning (P1,..., Ps||B1,...,B4)

Figure 5: Left: The figure on the left shows a partition of the vertex set V into three pieces S, B and T' = V\ (SUB).
Here B denotes the buffer, and cost of the this cut is §(S,T), as denoted by the edges marked in red. The edges
marked in grey denote the edges between S and the buffer B.

Right: The illustrative figure shows a k = 4 partition Py, P», Ps, P, with buffers By, Bs, B3, By. The red edges
indicate the edges §(P1,V \ (P; U By)) that contribute to the cut corresponding to P;. All parts P, ..., Py and
Bi, ..., By are disjoint.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

2274

	Introduction
	Cheeger inequality for Buffered Partitions
	Graphs with vertex weights and edge costs
	Buffered Cheeger's inequality for k=2
	Our result generalizes higher-order Cheeger inequalities
	Connection to Robust Expansion
	Lower Bounds
	Overview and Organization

	Warm up: Cheeger's Inequality with a Buffer for k=2
	Orthogonal Separators with Buffers
	Partial Partitioning Algorithm
	From Disjoint Sets to Partitioning
	Spectral Embedding
	Orthogonal Separators with Buffers – Proofs
	Connection to Robust Expansion
	Heavy Set P in a Buffered Partition
	Lower Bound for k-way Expansion and Pseudo-approximation Algorithm for Sparsest k-way Partitioning
	Buffered Balanced Cut
	Graphs with Vertex Weights and Edge Costs
	Lower Bound on h(k,epsilon)
	Gaussian Distribution
	Supplementary Figures

